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1. Introduction

Basic facts in kinetic theory:

A gas in normal conditions is formed of elastic molecules
rushing hither and hither at high speed and rebounding
according to the Newton laws of mechanics:

~̇xi = ~ξi, ~̇ξi = ~Fi, i = 1, 2, · · · , N;

There are about N ≈ 2.7× 1019 numbers of molecules in a
cubic centimeter of a gas at atmosphere pressure and a
temperature of 0◦C;

It is a hopeless task to attempt to describe the state of the
gas by specifying the microscopic state (i.e., position and
velocity) for each molecule; we must turn to statistics.
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1. Introduction

Kinetic theory (classical):

"The fundamental assumption of the Kinetic
Theory is that all macroscopic observable
properties of a substance can be deduced, in
principle, from a knowledge of

the forces of interaction and
the internal structure of its molecules."1

1Ref.: Harold Grad, On the kinetic theory of rarefied gases, CPAM,
’49.
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1. Introduction

Statistical descriptions for gas particles:

Introduce a number density, or velocity distribution
function

f (t, x, ξ),

where

f (t, x, ξ)dxdξ = “the number of molecules
contained in the infinitesimal volume
dxdξ centered at the point (x, ξ) of the
single particle phase space R3

x × R3
ξ at

time t”.
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1. Introduction

Gas molecules in an equilibrium state: f = M
Maxwellian ditribution—

M = M[ρ,u,θ](ξ) =
ρ

(2πRθ)n/2 exp
(
−|ξ − u|2

2Rθ

)
.

(J. C. Maxwell, 1858, 1866)

Gas molecules in a non-equilibrium state:

For the rarefied monoatomic gas, an
evolution equation for f (t, x, ξ) was
derived by Ludwig Boltzmann in 1872:

∂t f + ξ · ∇x f = Q(f , f ).
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1. Introduction

Main assumptions for the Boltzmann gas:

Point molecules: N →∞, σ → 0. (Perfect gas)
Collision happens: Nσ2 → b > 0. (Collisions are
significant)
Gas is rarefied: Nσ3 → 0. (Only binary collisions
are important)
Gas particles are elastic. (Collisions preserve
mass, momentum and energy)
Assumption of molecular chaos. (States of two
molecules that are about to collide are statistically
uncorrected)
R.J. Duan (MA-CityU) Rates for BE with Forces Shanghai, Dec 2006 7 / 42



1. Introduction

Collision operator:

Q(f , g)(ξ) =
1
2

∫
Rn×Sn−1

B(ω, |ξ − ξ∗|)(f ′g′∗ + f ′∗g
′ − fg∗ − f∗g)dξ∗dω

where

f = f (ξ), f∗ = f (ξ∗), f ′ = f (ξ′), f ′∗ = f (ξ′∗)
likewise for g,

ξ′ = ξ − [(ξ − ξ∗) · ω]ω, ξ′∗ = ξ∗ + [(ξ − ξ∗) · ω]ω,

and

B(ω, |ξ − ξ∗|) = B̃ (cos θ, |ξ − ξ∗|) ≥ 0, collision kernel

cos θ =
ξ − ξ∗
|ξ − ξ∗|

· ω, ω ∈ Sn−1

R.J. Duan (MA-CityU) Rates for BE with Forces Shanghai, Dec 2006 8 / 42



1. Introduction

Remarks:
Collision mechanism at the microscopic level:

ξ′ + ξ′∗ = ξ + ξ∗,

|ξ′|2 + |ξ′∗|2 = |ξ|2 + |ξ∗|2,
Conservations of momentum and energy

ξ′ ξ′∗

ξ ξ∗

ω

ξ′

ξ∗ ξ′∗

ξ

ω
θ
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1. Introduction

An identity: for any “good ” φ = φ(ξ) and
f = f (ξ), ∫

Q(f , f )φdξ =

1
4

∫∫∫
(f ′f ′∗ − ff∗)(φ + φ∗ − φ′ − φ′∗)B(ω, |ξ − ξ∗|)dωdξdξ∗,

which gives

Collision invariants; local conservation
laws; Boltzmann inequality; Boltzmann’s
H-theorem (the second law of thermo-
dynamics),...
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1. Introduction

Collision kernel: Two classical physical models
— Hard-sphere gas:

B(ω, |ξ − ξ∗|) = |(ξ − ξ∗) · ω|

— Potential of inverse power s :

B(ω, |ξ − ξ∗|) ∼ |ξ − ξ∗|γsbγ′s(cos θ)

Grad’s cut-off assumption—(mathematically)∫
Sn−1

bγ′s(cos θ)dω = |Sn−2|
∫ π

0
bγ′s(cos θ) sinn−2 θdθ < +∞

Physically, = ∞ (non cut-off case),...
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1. Introduction

Relations between the BE and other equations:

Regime Equations Scale Unknown

Molecular Newton Micro (xi, ξi)
⇓ (Boltzamnn-Grad limit)

Kinetic Boltzmann (V/P/M) Meso: Kn = O(1) f (t, x, ξ)
⇓ (fluid dynamics limit)

Fluid Euler, Navier-Stokes Macro: Kn� 1 (ρ, u, θ)(t, x)

Remarks:

Validity of the Boltzmann equation: O. Lanford (’75),...
Some equations are beyond the above framework:

Non-classical fluid dynamics equations (Ghost effect, Y. Sone).
Models of turbulence (large Reynold number),...
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2. Main results

Consider the Boltzmann equation in RN with a
potential force

∂t f + ξ · ∇x f−∇xΦ(x) · ∇ξ f = Q(f , f ),
|Φ(x)| → 0, as |x| → +∞,

for the hard-sphere model

B(ω, |ξ − ξ∗|) = |(ξ − ξ∗) · ω|.

Initial data is given by

f (0, x, ξ) = f0(x, ξ).
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2. Main results

Stationary solution (local Maxwellian):

M =
ρ∞

(2Rθ∞)N/2 exp
{
− 1

Rθ∞

(
Φ(x) +

1
2
|ξ|2
)}

= M[ρ̃(x),0,θ∞](ξ) = ρ̃(x)M∞(ξ),

where

ρ̃(x) = ρ∞ exp
(
−Φ(x)

Rθ∞

)
→ ρ∞.

Aim:

Stability of the stationary solution.

Optimal convergence rate in some L2
ξ(L

p
x) spaces.
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2. Main results

Previous works on the convergence rate of the
solution to the steady states for large time:

Without forces:
Exponential convergence rate in bounded domain and torus:
Ukai (’74), Giraud (’75), Shizuta-Asano (’77),...
Algebraic convergence rate in unbounded domain: Ukai (’76),
Nishida-Imai (’76), Ukai-Asano (’83),...
Almost exponential convergence rate: Strain-Guo (’05),
Desvillettes-Villani (’05)
Optimal convergence rate: Ukai-Yang (’06)

With forces:
Convergence rate in L∞ framework: Asano (’02),...
Convergence rate in L2 framework: Ukai-Yang-Zhao (’05),...
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2. Main results

Remarks.
(I) For the spatially homogeneous BE,

Exponential convergence rate: Arkeryd (’88), Wennberg (’93)

(II)For the compressible Navier-Stokes system,

Without forces: Matsumura-Nishida (’79), Ponce (’85),

Hoff-Zumbrun (’97), Liu-Wang (’98), Kobayashi-Shibata (’99),

Kagei-Kobayashi (’05), ...

With forces:
Slow rate: Deckelnick (’92), Shibata-Tanaka (’03)(for general
forces)
Almost optimal rate: Ukai-Yang-Zhao (’06),...
Optimal rate: Duan-Ukai-Yang-Zhao (’06), Duan-Ukai-Yang-Liu
(’06)
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2. Main results

Difficulties:

When the force appears,

the steady state is dependent of t and x (the
stationary potential force produces the LOCAL
equilibrium);

the momentum and energy are NOT
conservative;

the existence of the steady state is NOT known
for the general force.
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2. Main results

Compressible Navier-Stokes equations:

ρt +∇x · (ρu) = 0,

(ρui)t +∇x · (ρuiu) + Pxi

=
∑

j
[µ(θ)(ui

xj
+ uj

xi
− 2

N δij∇x · u)]xj + ρFi, i = 1, · · · , N[
ρ
(

1
2 |u|

2 + N
2 Rθ

)]
t +∇x ·

([
ρ
(

1
2 |u|

2 + N
2 Rθ

)
+ P

]
u
)

=
∑

j
(κ(θ)θxj)xj +

∑
ij

[
µ(θ)ui

(
ui

xj
+ uj

xi
− 2

N δij∇x · u
)]

xj

+ ρu · F,

with

(ρ, u, θ)(0, x) = (ρ0, u0, θ0)(x) → (ρ∞, 0, θ∞) as |x| → ∞.

where P = P(ρ, θ): pressure, F: external force, µ and κ:

viscosity and heat-conduction coefficients.
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2. Main results

Consider the time-independent potential force

F = −∇xΦ(x).

Stationary solution (ρ̃, ũ, θ̃)(x):∫ ρ̃(x)

ρ∞

Pρ(η, θ∞)

η
dη + Φ(x) = 0, ũ(x) = 0, θ̃(x) = θ∞,

Remark: |Φ(x)| � 1 ⇒ |ρ̃− ρ∞| � 1:

‖ρ̃− ρ∞‖l ≤ C‖Φ‖l, 0 ≤ l ≤ 5.

Q: Convergence rates of solutions to the stationary
solution under the small perturbation.
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2. Main results

For small perturbation, w.l.g., consider (N = 3):
ρt +∇ · (ρu) = 0,

ρ [ut + (u · ∇)u] +∇P(ρ, θ) = µ∆u + (µ + µ′)∇(∇ · u)−ρ∇xΦ(x),
ρcν [θt + (u · ∇)θ] + θPθ(ρ, θ)∇ · u = κ∆θ + Ψ(u).

where µ > 0, µ′, κ > 0 and cν > 0 are constants with
µ′ + 2

3µ ≥ 0 and

Ψ(u) =
µ

2

∑
ij

(
uj

xi
+ ui

xj

)2
+ µ′

∑
j

(
uj

xj

)2
.

Assumptions:

ρ∞, θ∞ > 0, Pρ(ρ∞, θ∞) > 0 and Pθ(ρ∞, θ∞) > 0.
‖Φ‖5 � 1.
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2. Main results

Stability Proposition (by Matsumura-Nishida):
There exist constants C0 > 0 and ε0 > 0 such that if

‖(ρ0 − ρ∞, u0, θ0 − θ∞)‖3 + ‖Φ‖5 ≤ ε0,

then the initial value problem for NS has a unique solution
(ρ, u, θ) globally in time and a unique stationary state
(ρ̃, 0, θ∞), which satisfy

ρ− ρ̃ ∈ C0(0,∞; H3(R3)) ∩ C1(0,∞; H2(R3)),

u, θ − θ∞ ∈ C0(0,∞; H3(R3)) ∩ C1(0,∞; H1(R3)),

and

‖(ρ− ρ̃, u, θ − θ∞)(t)‖2
3

+

∫ t

0
(‖∇(ρ− ρ̃, u, θ − θ∞)(s)‖2

2 + ‖∇(u, θ − θ∞)(s)‖2
3) ds

≤ C0‖(ρ0 − ρ̃, u0, θ0 − θ∞)‖2
3.
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2. Main results

Theorem for Optimal Lp-Lq Convergence Rates:
Let C0 and ε0 be defined above. Let 1 ≤ p < 6/5. Suppose

‖Φ‖
L

2p
2−p ∩L∞

+
4∑

k=1

‖(1 + |x|)∇kΦ‖
L

2p
2−p ∩L∞

≤ ε,

for some constant ε > 0, and

‖(ρ0 − ρ̃, u0, θ0 − θ∞)‖Lp < +∞.

Then if ε ∈ (0, ε0) is small enough, it holds that

‖∇k(ρ− ρ̃, u, θ − θ∞)(t)‖L2 ≤ C(1 + t)−σ(p,2;1), k = 1, 2, 3,

‖(ρ− ρ̃, u, θ − θ∞)(t)‖Lq ≤ C(1 + t)−σ(p,q;0), 2 ≤ q ≤ 6,

for any t ≥ 0, where C > 0 is some constant and

σ(p, q; k) =
3
2

(
1
p
− 1

q

)
+

k
2
.
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2. Main results

Remark. If we linearize the equations at the
constant state (ρ∞, 0, θ∞)

ρt + γ∇ · u = 0,

ut − µ1∆u− µ2∇∇ · u + γ∇ρ + λ∇θ = 0,

θt − κ̄∆θ + λ∇ · u = 0,

then the theorem shows that for the bounded Lp

initial perturbation with 1 ≤ p < 6/5, the optimal Lq

decay rate holds for the solution itself with
2 ≤ q ≤ 6, and all first-order derivatives with q = 2.
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2. Main results

Main Ideas:

(I) Use energy estimates to find a Lyapunov
type inequality in the form of

dH(t)
dt

+ CH(t) ≤ C‖∇U(t)‖2,

(Dissipation: Viscosity + Heat conduction)

where H(t) is an energy functional including all
derivatives of at least one order:

H(t) ∼ ‖∇U(t)‖2
2,

and U denotes the perturbation:

U = (ρ− ρ̃, u, θ − θ∞).
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2. Main results

(II) Reformulate the system as the linearized version

Ut + AU = S[U],

where A: differential operator with constant coefficients,
S[U]: source term (nonlinear+small linear). Mild form:

U(t) = E(t)U0 +

∫ t

0
E(t − s)S[U](s)ds,

where E(t) = e−tA. Based on the optimal Lp-L2 time-decay
estimates on the linearized system, the first order deriva-
tive ‖∇U(t)‖2 can be bounded by H(t) in some time-weig-
hted integral form with a small coefficient.

Combine (I) and (II) and use the Gronwall’s inequality to
give the decay rate of H(t), i.e. Lp-L2 rate for derivatives.
Lp-Lq rate follows from the interpolation.
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2. Main results

Remarks.

Φ can be taken in the form

Φ(x) =
ε

(1 + |x|)1+δ
,

where ε > 0 is small enough, and

δ > 3/p− 5/2.

For the optimal convergence rate on the Boltz-
mann equation, the same idea can be applied,
together with more delicate analysis for the ma-
croscopic and microscopic parts of the solution
by using the Macro-Micro decomposition.
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2. Main results

L2 energy method:
Liu-Yu ’04, Liu-Yang-Yu ’04, Ukai-Yang-Zhao ’05, Yang-Zhao ’05
Guo ’04, Guo-Strain ’06

Macro-Micro decomposition: Given any Maxwellian

M = M[ρ,u,θ](ξ) =
ρ

(2πRθ)N/2 exp
(
−|ξ − u|2

2Rθ

)
,

define the inner product in L2
ξ(M−1dξ) associated with M:

〈h, g〉M ≡
∫

RN
M−1h(ξ)g(ξ)dξ,

and the corresponding normal orthogonal basis:

χM
i , i = 0, 1, · · · , N,

for the finite dimensional linear subspace:

N = Span{M, ξiM, i = 1, · · · , N, |ξ|2M},
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2. Main results

Macroscopic and Microscopic projections:

PM
0 : L2(M−1dξ) → N , PM

0 h ≡
N+1∑
α=0

〈
h, χM

α

〉
M χM

α ,

PM
1 : L2(M−1dξ) → N⊥, PM

1 = I− PM
0 .

Let M be the local Maxwellian determined by the
solution to the Boltzmann equation, then

f = M + G, M ∈ N , G ∈ N⊥,

with

M = PM
0 f = PM

0 M, G = PM
1 f = PM

1 G.
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2. Main results

Theorem for Nonlinear Stability:
Assume f0(x, ξ) ≥ 0, s ≥ N + 1. Then, ∃ δ0 > 0, ε0 > 0 s.t. if

‖Φ‖s+1 +
∑

|α|+|β|≤s

∥∥∥∥∥∂α
x ∂β

ξ (f0 −M)
√

M∞

∥∥∥∥∥
L2

x,ξ

≤ δ0,

then ∃! global classical solution 0 ≤ f (t, x, ξ) ∈ Hs(M∞) s.t.

H1(t) +

∫ t

0
D1(τ)dτ ≤ ε2

0,

where

H1(t) = ‖(ρ− ρ̃, u, θ − θ∞)(t)‖2
s +

∑
|γ|+|β|≤s

∥∥∥∥∥∂γ
βPM∞

1 f (t)
√

M∞

∥∥∥∥∥
2

L2
x,ξ

,

D1(t) = ‖∇x(ρ− ρ̃, u, θ − θ∞)(t)‖2
s +

∑
|γ|+|β|≤s

∥∥∥∥∥
√

νM∞∂γ
βPM∞

1 f (t)
√

M∞

∥∥∥∥∥
L2

x,ξ

,
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2. Main results

and

Hs(M∞) =

{
f

∣∣∣∣∣∂
γ
β(f −M)
√

M∞
∈ BCt(R+, L2

x,ξ), |γ|+ |β| ≤ s

}
,

∂γ
β = ∂γ0

t ∂γ1
x ∂β

ξ , γ = (γ0, γ1).

Furthermore,

lim
t→∞

∑
|γ|+|β|≤s−N

∥∥∥∥∥∂γ
β(f (t)−M)
√

M∞

∥∥∥∥∥
L∞x (L2

ξ)

= 0.

Remark. Recall that M∞ = M∞(ξ): global Maxwellian,

M = M(x, ξ): stationary solution with M = ρ̃(x)M∞ (local).
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2. Main results

Theorem for Optimal Convergence Rates:
Under the above theorem, if it further holds that

f0 −M√
M∞

∈ Z1 = L2
ξ(L

1
x), ∇xΦ ∈ L

2N
N+2
x ,

then
H2(t) ≤ C(1 + t)−

N+2
2 ,

where

H2(t) = ‖∇x(ρ− ρ̃, u, θ)(t)‖2
s−1

+

∥∥∥∥∥
√

νM∞∇xPM∞
1 f (t)

√
M∞

∥∥∥∥∥
2

L2
x,ξ

+
∑

|γ|+|β|≤s

∥∥∥∥∥∂γ
βPM∞

1 f (t)
√

M∞

∥∥∥∥∥
2

L2
x,ξ

.

Moreover,

‖(ρ− ρ̃, u, θ − θ∞)(t)‖L2
x
≤ C(1 + t)−

N
4 ,
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2. Main results

∥∥∥∥∇x(f (t)−M)√
M∞

∥∥∥∥
L2

x,ξ

+

∥∥∥∥PM∞
1 f (t)√

M∞

∥∥∥∥
L2

x,ξ

≤ C(1 + t)−
N+2

4 .

Finally for 2 ≤ q ≤ 2N
N−2 ,∥∥∥∥(f (t)−M)√
M∞

∥∥∥∥
L2

ξ(Lq
x)

≤ C(1 + t)−
N
2 (1− 1

q).

Remarks.
The convergence rates given above are optimal up to the first
order derivatives, compared with the convergence rates for the
linearized Boltzmann equation without forces:{

gt = Bg, B = −ξ · ∇x + LM∞
g(0, x, ξ) = g0(x, ξ),
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2. Main results

where∥∥∥∥∇m
x g(t)√
M∞

∥∥∥∥
Z2

≤ C(1 + t)−σ(p,2;m)

(∥∥∥∥ g0√
M∞

∥∥∥∥
Zp

+

∥∥∥∥ ∇m
x g0√
M∞

∥∥∥∥
Z2

)
,

Zp = L2
ξ(L

p
x), 1 ≤ p ≤ 2.

Here for nonnegative integer m, σ(p, q; m) is given by

σ(p, q; m) =
N
2

(
1
p
− 1

q

)
+

m
2

.

The microscopic component G decays faster than the

macroscopic components by a factor of order (1 + t)−
1
2 in

Z2-norm, since roughly it contains quadratic and differentiation
terms.
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2. Main results

Main Ideas:
Based on

the analysis of the macroscopic equations:
Navier-Stokes + Source (microscopic), and
the dissipation of the microscopic component for the
linearized collision operator,

find a Lyapunov-type energy inequality

dH2(t)
dt

+ CH2(t) ≤ C‖∇x(ρ− ρ̃, u, θ)(t)‖2
L2

x
,

where H2(t) roughly includes
Macroscopic variables: at leat first order derivatives;
Microscopic component: all orders.
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2. Main results

Control ‖∇x(ρ− ρ̃, u, θ)(t)‖2
L2

x
by H2(t) in the

weighted integral form with a small factor.
Observations:

∇x(ρ− ρ̃, u, θ)(t, x) .

∥∥∥∥∇xg(t, x)√
M∞

∥∥∥∥
L2

ξ

, g = f (t, x, ξ)−M.

g satisfies

gt = Bg + S[g],

S[g] = ∇xΦ(x) · ∇ξg + 2(ρ̃(x)− 1)Q(M0, g) + Q(g, g),

or in the mild form

g(t) = etBg0 +

∫ t

0
e(t−τ)BS[g](τ)dτ.

Time-decay estimates on etB.
∇xΦ(x) and ρ̃(x)− ρ∞ are small in some space: Sobolev
inequality, Poincaré inequality, nonlinearity of Q, ....
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2. Main results

Generalization:

Zp initial perturbation: 1 ≤ p < p∗, or Hard potential
collision kernel: 0 ≤ γ ≤ 1, (Ukai-Yang, AA, ’06);

Time-dependent force:

F = −∇xΦ(x) + E(t, x),

where E(t, x) is small and tends to zero with some rate as
time goes to infinity, (Duan-Ukai-Yang-Zhao, ’06). Putting

f = M + M1/2
∞ u

gives
TFu− ρ̃Lu = Γ(u, u) + ρ̃E · ξM1/2

∞ ,

where w.l.g. ρ∞ = θ∞ = 1 is set, and TF, L and Γ are
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2. Main results

defined by

TFu = ∂tu + ξ · ∇xu + F · ∇ξu− 1
2
ξ · Fu,

Lu = M−1/2
∞

[
Q(M∞, M1/2

∞ u) + Q(M1/2
∞ u, M∞)

]
,

Γ(u, v) = M−1/2
∞ Q(M1/2

∞ u, M1/2
∞ v).

Vlasov-Poisson-Boltzmann system.

Further problems:
General force (non-potential) F(t, x) (NS or BE):

Existence of the stationary solution?
In general, the stationary solution has weak regularity.

Gas contained in a torus T3.
Poincaré inequality can NOT be applied directly.
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Thanks!
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