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1. Introduction

Basic facts in kinetic theory:

e A gas in normal conditions is formed of elastic molecules
rushing hither and hither at high speed and rebounding
according to the Newton laws of mechanics:

)-_C'[:é, gzﬁt i:1727"'7N;

o There are about N ~ 2.7 x 10! numbers of molecules in a
cubic centimeter of a gas at atmosphere pressure and a
temperature of 0°C;

o It is a hopeless task to attempt to describe the state of the
gas by specifying the microscopic state (i.e., position and
velocity) for each molecule; we must turn to statistics.
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1. Introduction

Kinetic theory (classical):

""The fundamental assumption of the Kinetic
Theory is that all macroscopic observable
properties of a substance can be deduced, in
principle, from a knowledge of

e the forces of interaction and

o the internal structure of its molecules.""

'Ref.: Harold Grad, On the kinetic theory of rarefied gases, CPAM,
’49,
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1. Introduction

Statistical descriptions for gas particles:

o Introduce a number density, or velocity distribution
function

f(t,x,6),

where

f(t,x,&)dxdé = *“the number of molecules
contained in the infinitesimal volume
dxd¢ centered at the point (x, &) of the
single particle phase space R} x R} at
time 1”.
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1. Introduction

o Gas molecules in an equilibrium state: f =M
Maxwellian ditribution—

p € —ul?
M =My0(8) = gy &P (‘ 2RO )

(J. C. Maxwell, 1858, 1866)

e Gas molecules in a non-equilibrium state:
For the rarefied monoatomic gas, an
evolution equation for f(z, x,{) was
derived by Ludwig Boltzmann in 1872:

Of +&-Vif =0(f.f).
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1. Introduction

Main assumptions for the Boltzmann gas:

o Point molecules: N — oo, 0 — 0. (Perfect gas)

o Collision happens: No> — b > 0. (Collisions are
significant)

o Gas is rarefied: No> — 0. (Only binary collisions
are important)

o Gas particles are elastic. (Collisions preserve
mass, momentum and energy)

o Assumption of molecular chaos. (States of two
molecules that are about to collide are statistically
uncorrected)
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1. Introduction

Collision operator:

OU)&) =3 [ Bl ~ ENE, £ oo —fdd.d
where

f:f(£)7 S+ :f(g*)a f/:f(€/)7 fﬂi :f(gi)

likewise for g,

§—1[(§ = &) ww, & =&+ &) ww,

é/

and

B(w,|¢ — &) = B(cos b, |€ — &]) > 0, collision kernel

e wes

cos f =
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1. Introduction

Remarks:
o Collision mechanism at the microscopic level:

& +& =6+,
€1+ 1617 = €] + 1€,

Conservations of momentum and energy

¢ g,
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1. Introduction

o An identity: for any “good ” ¢ = ¢(£) and
f=r(&),

[ o .pode -
3 [ er=myer 6. ¢ - sl - eavasa.

which gives
Collision invariants; local conservation
laws; Boltzmann inequality; Boltzmann’s
H-theorem (the second law of thermo-
dynamics),...
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1. Introduction

Collision kernel: Two classical physical models
— Hard-sphere gas:

B(wa |€ - g*l) - |(£ - 5*) ’ w‘

— Potential of inverse power s :

B(w7 |§ - f*l) ~ |£ — &

Grad’s cut-off assumption—(mathematically)

Tb.y(cos b))

/ b (cos 0)dw = |S" 3| / b.(cos 0) sin" > 0df < +o0
g1 0

Physically, = co (non cut-off case),...
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1. Introduction

Relations between the BE and other equations:

Regime Equations Scale Unknown

Molecular Newton Micro (xi, &)
| (Boltzamnn-Grad limit)

Kinetic Boltzmann (V/P/M)  Meso: Kn=0(1)  f(t,x,§)
U (fluid dynamics limit)

Fluid Euler, Navier-Stokes Macro: Kn< 1 (p,u,0)(t,x)

Remarks:
o Validity of the Boltzmann equation: O. Lanford ('75),...

e Some equations are beyond the above framework:

o Non-classical fluid dynamics equations (Ghost effect, Y. Sone).
o Models of turbulence (large Reynold number),...
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© Main results
e Problem considered

R.J. Duan (MA-CityU) Rates for BE with Forces Shanghai, Dec 2006 13/42



Consider the Boltzmann equation in R" with a
potential force

Of + & Vif=V.®(x) Vef = 0O(f.f),

|®(x)| — 0, as |x|] — +oo,
for the hard-sphere model

B(w? |€ - f*‘) - |(§ - 5*) ) w"

Initial data is given by

f(07x7 5) :fO(x7 g)
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Stationary solution (local Maxwellian):

— 00 1 1
M= o (20 +317)
= M{5().0.6..](§) = A(x)Moxo(§),

where q)( )
~ X
P(x) = poc €XP (_RHOO) — Poo-

Aim:
o Stability of the stationary solution.
o Optimal convergence rate in some L%(Lg’c’) spaces.
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© Main results

o Previous works
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Previous works on the convergence rate of the
solution to the steady states for large time:

o Without forces:

o Exponential convergence rate in bounded domain and torus:
Ukai ('74), Giraud ('75), Shizuta-Asano ('77),...

o Algebraic convergence rate in unbounded domain: Ukai ('76),
Nishida-lmai ('76), Ukai-Asano ('83),...

e Almost exponential convergence rate: Strain-Guo ('05),
Desvillettes-Villani ('05)

e Optimal convergence rate: Ukai-Yang ('06)

o With forces:

o Convergence rate in L framework: Asano ('02),...
o Convergence rate in L framework: Ukai-Yang-Zhao ('05),...
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Remarks.

(1) For the spatially homogeneous BE,
@ Exponential convergence rate: Arkeryd ('88), Wennberg ('93)

(I For the compressible Navier-Stokes system,

o Without forces: Matsumura-Nishida ('79), Ponce ('85),
Hoff-Zumbrun ('97), Liu-Wang ('98), Kobayashi-Shibata (’99),
Kagei-Kobayashi (’05), ...

o With forces:

o Slow rate: Deckelnick ('92), Shibata-Tanaka ('03)(for general
forces)

o Almost optimal rate: Ukai-Yang-Zhao ('06),...

o Optimal rate: Duan-Ukai-Yang-Zhao ('06), Duan-Ukai-Yang-Liu
('06)
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Difficulties:

When the force appears,

o the steady state is dependent of 7 and x (the
stationary potential force produces the LOCAL
equilibrium);

o the momentum and energy are NOT
conservative;

o the existence of the steady state is NOT known
for the general force.
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© Main results

o Main results and ideas of proofs: NS and BE
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Compressible Navier-Stokes equations:
( Pt+VX'(pu) =0,
(pu') + Vo - (pu'u) + Py,
Z[()(u —I—l/t] 25UVXM)]x]+pFl7 lzlavN
J
o (Glul* + 3RO) |, + V- (|p (3lul + 5RO) + Pl u)

SO0 + 5 (O (i, + 1, = 30,V -) |+ puF,

Xj

with
(p7 uae)(()?x) = (/)o, uo,eo)(X) - (1000707900) as ‘X| — 0.

where P = P(p,0): pressure, F: external force, 1 and &:
viscosity and heat-conduction coefficients.
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Consider the time-independent potential force
F =—V,®(x).
Stationary solution (7, i, )(x):

p(x) p 0 .
/ @dn +o(x) =0, i(x)=0, O(x)=0x,

Poo

Remark: [®(x)] < 1 = | — poo| < 1:

17 = poolli < Cl|®]l;, 0<I<S.

Q: Convergence rates of solutions to the stationary
solution under the small perturbation.
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For small perturbation, w.l.g., consider (N = 3):

pe+ V- (pu) =0,
{ plus+ (- V)ul + VP(p,0) = pAu+ (p+ 1 )V(V - u)—pV.d(x),
pcu 0 + (u- V)0 + 0Po(p,0)V - u = kA0 + V(u).

where 1 > 0, 1/, K > 0 and ¢, > 0 are constants with
i+ 3 >0 and

V() = Z (u{ci + u;j>2 + Z (%)2 .

Assumptions:
® Poo, O > 0, Py(poo,0x) > 0 and Py(poc, ) > 0.
o [0f)s < 1.
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Stability Proposition (by Matsumura-Nishida):
There exist constants Cy > 0 and ¢; > 0 such that if
1(Po — Pocs o, o — Os) |3 + [|P]|s < €0,

then the initial value problem for NS has a unique solution
(p,u,0) globally in time and a unique stationary state
(7,0,0), which satisfy

p—p e C%0,00; H(R*) N C'(0, 00; H*(R?)),
u,0 — 0 € C°(0, 00; H*(R*)) N C'(0, o0; H' (R?)),
and
I(p - pu, 0 — 0:0)(1)113
+/0 IV (o = 5, u.0 — 00)(5)I13 + [V (u, 0 — 0o (5)|3) ds
< Coll(po — 7, 1o, o — 0o |15-
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Theorem for Optimal [P-L7 Convergence Rates:
Let Cy and ¢, be defined above. Let 1 < p < 6/5. Suppose

4
k
el =+ ; 1A+ DV 2 <
for some constant ¢ > 0, and
||(100 - 157 Uop, 00 - eoo)HLP < +o00.

Then if € € (0,¢) is small enough, it holds that
IV (p = 3yu, 0 — 0)(D)[|12 < C(1+1)77P2D k= 1,2,3,
1(p = 7,1, 0 = 00) ()]0 < C(1+1)77P4D 2 < g <6,

for any t > 0, where C > 0 is some constant and

3/1 1 k
kK)==(-->)+=.
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Remark. If we linearize the equations at the
constant state (p.,0,0)

pt—i_/yvu:()?
u, — 1 Au — VvV -u+yVp+ AV =0,
0, — RAO+ AV -u =0,

then the theorem shows that for the bounded ”
initial perturbation with 1 < p < 6/5, the optimal L7
decay rate holds for the solution itself with

2 < g <6, and all first-order derivatives with g = 2.
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Main ldeas:
o (1) Use energy estimates to find a Lyapunov

type inequality in the form of
a’H( )

dt
(Dissipation: Viscosity + Heat conduction)

+ CH(r) < C||VU(1)|7?,

where H(t) is an energy functional including all
derivatives of at least one order:

H(t) ~ [VU@)]3,
and U denotes the perturbation:
U= (p—p,u,b—0).
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e (II) Reformulate the system as the linearized version
U, + AU = S[U],

where A: differential operator with constant coefficients,
S[U]: source term (nonlinear+small linear). Mild form:

U(r) = E(1)Up + /0 E(c — 5)S[UI(s)ds,

where E(1) = ¢e~*. Based on the optimal [/-L* time-decay
estimates on the linearized system, the first order deriva-
tive |[VU(¢)|* can be bounded by H(t) in some time-weig-
hted integral form with a small coefficient.

e Combine (1) and (1) and use the Gronwall’s inequality to
give the decay rate of H(t), i.e. [’-L? rate for derivatives.
L[7-11 rate follows from the interpolation.
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Remarks.
e ® can be taken in the form
€
P(x) = ———
W)= 5 e

where ¢ > 0 is small enough, and
0>3/p—5/2.

o For the optimal convergence rate on the Boltz-
mann equation, the same idea can be applied,
together with more delicate analysis for the ma-
croscopic and microscopic parts of the solution
by using the Macro-Micro decomposition.
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L? energy method:
@ Liu-Yu '04, Liu-Yang-Yu '04, Ukai-Yang-Zhao ’05, Yang-Zhao '05
@ Guo ’'04, Guo-Strain '06

Macro-Micro decomposition: Given any Maxwellian

p € —ul?
M =My, ,.0() = 2ROV exp (— TTRIR

define the inner product in L{(M~'d¢) associated with M:

(h,e)m= [ M 'h(£)g(€)de,

RN
and the corresponding normal orthogonal basis:

X?/I> le?L 7N7
for the finite dimensional linear subspace:
N =Span{M, {Mi=1,--- N, [£*M},
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Macroscopic and Microscopic projections:

N+1
P L2(MdE) — N, PY =D (h o,

a=0

PV LA(Mldg) - N PY =1 P

Let M be the local Maxwellian determined by the
solution to the Boltzmann equation, then

f=M+G, McN, GeN*
with
M =P}'f =P)YM, G =Py =P)G.
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Theorem for Nonlinear Stability:
Assume fy(x,£) >0, s > N+ 1. Then, 35y > 0,¢) > O s.t. if

9208 (fo — M
ol + > [ EERE
|al+1B]<s * 2,

then 3! global classical solution 0 < f(#,x,£) € H' (M) s.t.

t
H (1) +/ Dy (7)dr < 6(2),
0

< 507

where
aPM=r(0) |’
H(0) = (o - pubd— 001+ Y || =" .
v+ 8| <s VM L,
) VIR (1)
Di(t) = IValp — .0 — 0) D)2+ Y )
[v[+IB]<s \/I\TOO

2
L ¢
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and

a3(f — M)
ﬁﬁ € BC,(R™, L3 ;) |v] + 1] < S} :

03 = 099, v = (70, m)-

HS(MOO) - {f

Furthermore,

fm >

Iy|+1Bl<s—N

O3(f(1) = M)
VMo

L (L7)

Remark. Recall that M, = M(&): global Maxwellian,
M = M(x, £): stationary solution with M = j(x)M,, (local).
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Theorem for Optimal Convergence Rates:
Under the above theorem, if it further holds that

-M N
foﬁ e/ = LZ(L)lc)7 AYONS L)?/H,
then s
Hy(t) < C(1+1) 2,
where
Hy(t) = ||Vi(p — p,u. 0)(1)|[,
Moo 2 Y PMoo 2
i \/VMoonpl f(t) Z aﬁpl f(t)
Moo 2. NlHBISs VMoo 2,
Moreover,

N
P

1(p = 1,0 = o) (D)2 < C(1 + 1) 7,
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Vi(f(r) — M)

B =

. 2N
Finally for 2 < g < 7,

PY>£(1)

VMo

<C(141)""%,

2
Lie

2 '
Lie

<c(1+0) 2070,
13(1)

H(f(t) — M)
VMo,

Remarks.

@ The convergence rates given above are optimal up to the first
order derivatives, compared with the convergence rates for the
linearized Boltzmann equation without forces:

{gt:B& B=-¢§ - Vi+Lm,
g(07x7£) :g()(xvg)a
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@ where
Vie(t) 2; Vmgo
20 < (1 4 1) P2m) + ,
H VMOO 7 Vv Z,, \ Z

Z,=LYL0), 1<p<2.

Here for nonnegative integer m, o(p, q; m) is given by

s.am =5 (- 2)+ 5

2

@ The microscopic component G decays faster than the
1

macroscopic components by a factor of order (1 +17)72 in
Z>-norm, since roughly it contains quadratic and differentiation
terms.
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Main ldeas:
o Based on

o the analysis of the macroscopic equations:
Navier-Stokes + Source (microscopic), and

o the dissipation of the microscopic component for the
linearized collision operator,

find a Lyapunov-type energy inequality
dHZ(t)
dt

where H,(t) roughly includes

o Macroscopic variables: at leat first order derivatives;
o Microscopic component: all orders.

+ CH(1) < C||V(p — p,u, 0)(1)]I7,
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o Control |V.(p — p,u,0)(t)||7. by Ha(z) in the

weighted integral form with a small factor.
Observations:

~ ng(tax) M
o Vi(p—p,u,0)(t,x ,SH » 8 =f(t,x,§) — M.
( R vl RIS
o g satisfies
g = Bg + Slg],

Slgl = Vi@ (x) - Veg + 2(p(x) — 1)Q(Mo, &) + O(g, 8),

or in the mild form

t
g0) = g0+ [ e Islel(r)ar,
0
o Time-decay estimates on ¢,
e V,®(x) and j(x) — p are small in some space: Sobolev
inequality, Poincaré inequality, nonlinearity of O, ....
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© Main results

o Generalization and further problems
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Generalization:

e Z, initial perturbation: 1 <p < p,, or Hard potential
collision kernel: 0 <~ <1, (Ukai-Yang, AA, '06);

o Time-dependent force:
F = —V,0(x) + E(t,x),

where E(t,x) is small and tends to zero with some rate as
time goes to infinity, (Duan-Ukai-Yang-Zhao, '06). Putting

f=M+M/u

gives
Tou — pLu = T(u,u) + pE - EMY/2,

where w.l.g. p, =6, =1 is set, and 7z, L and I are
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defined by

1
’]}uz@,u+§-vxu+F-V5u—Ef-Fu,

Lu=M_? [Q(My, MYPu) + QMY Pu, M. )],
M(u,v) = M;O1/2Q(M(1>é2u, M})ézv).

e Vlasov-Poisson-Boltzmann system.

Further problems:

o General force (non-potential) F(z,x) (NS or BE):

o Existence of the stationary solution?
o In general, the stationary solution has weak regularity.

o Gas contained in a torus T°.
e Poincaré inequality can NOT be applied directly.
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