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1. Introduction

1.1 Consider a linear symmetric hyperbolic system with
relaxations

Ut +

n∑
j=1

AjUxj + LU = 0

where

� U = U(t; x) 2 Rm, t � 0, x 2 Rn;
� Aj 2 Rm�m with (Aj)T = Aj , 1 � j � n;
� L 2 Rm�m with L � 0. (kerL 6= 0).

Observe:
d

dt
kUk2 = �2hLU; Ui:

So, no spectral gap in L2 because hLU; Ui � �kUk2 is NOT
true.

Q: Which kind of system structure can guarantee the
time-decay of solutions u(t) = etBu0?



1.2 The characteristic equation is

det (�Im +

n∑
j=1

ikjA
j + L) = 0:

Let � = �(ik) be the eigenvalue or the dispersive relation.

Dissipative Structure: Key to the stability for t !1.

I Dissipativity: <�(ik) � 0 for any k 2 Rn;

I Strict dissipativity: <�(ik) < 0 for any 0 6= k 2 Rn.

Definition
The partially dissipative linear system is strictly dissipative of the

type (p; q) if

<�(ik) � �
c jk j2p

(1 + jk j2)q
; 8 k 2 Rn:



1.3 When
L = LT ;

there are general frameworks to deduce the type (1; 1):

I T. Umeda, S. Kawashima & Y. Shizuta (1984): Condition (K)

I Y. Shizuta & S. Kawashima (1985): (SK) stability condition

I K. Beauchard & E. Zuazua (2010): Kalman rank condition

Remark: Feature of the system of type (1; 1):

<�(ik) � �c jk j2=(1 + jk j2)

implies

<�(ik) . �c jk j2 for jk j ! 0; <�(ik) . �c forjk j ! 1:

Moreover,

jFfetBU0gj � Ce
�

�jkj2

1+jkj2
t
jÛ0(k)j;

kr`etBU0k � C(1 + t)�
n
2
( 1
p
�

1
2
)� `

2 (kU0kLp + kr`U0k); 1 � p � 2:



1.4 (SK) condition:

8 0 6= k = (k1; � � � ; kn) 2 R
n, every eigenvector of

A(k) :=

m∑
j=1

kjA
j

does not belong to kerL.

Theorem (Shizuta-Kawashima, 1985)

Let L = LT . The following statements are equivalent:

(a) (SK) condition holds;

(b) The system is strictly dissipative;

(c) The system is strictly dissipative of the type (1; 1).

Remark: In such case, one has the normal energy inequality
of the form

kU(t)k2HN +

∫ t

0
kfI� PLgU(s)k

2
HN + krPLU(s)k

2
HN�1ds � CkU0k

2
HN :



1.5 There are also concrete models that have properties:

I L 6= LT ;

I the system is of the type (1; 2).

Some examples:

I Dissipative Timoshenko system:
J.E.M. Rivera & R. Racke (2003); K. Ide, K. Haramoto & S.

Kawashima (2008), K. Ide & S. Kawashima (2008).

I Euler-Maxwell system of one-fluid:
D (2010); Y. Ueda, S. Wang & S. Kawashima (2010

preprint); Y. Ueda & S. Kawashima (2010 preprint).

I Vlasov-Maxwell-Boltzmann system of two-species:
D.-Strain (2010): goal of this talk.

Feature of systems of type (1; 2): <�(ik) � �c jk j2=(1 + jk j2)2

implies

�<�(ik) . �c jk j2 for jk j ! 0;

�<�(ik) . �c=jk j2 for jk j ! 1:



1.6 Systems of type (p; q) with 0 < p < q have a new general
dissipative feature of the regularity-loss type which shows
that

(i) if U0 2 HN with N properly large, it could occur that
there is some component Ui of the solution
U = (U1; � � � ; Um) such that∫ t

0

∫
Rn

krNUi(s)k
2ds =1:

(ii) the semigroup etB has the bound of the form

jFfetBU0gj � Ce��(ik)t jÛ0j;

where the frequency function �(ik) is positive and
smooth over k 2 Rn with

�(ik)! 0 as jk j ! 0; �(ik)! 0 as jk j ! 1:



2. A motivation
2.1 A special technique due to Kanel (1968) and
Matsumura-Nishida (1981) is as follows:

Consider the linearized Navier-Stokes (or damped Euler)
system: {

@t�+r � u = 0;

@tu +r� = �u:
()

{
@t �̂+ ik � û = 0;

@t û + ik�̂ = �jk j2û:

() @t ẑ =

(
0 �ik

�ik �jk j2

)
ẑ = L̂(k)ẑ ; ẑ =

[
�̂

û

]
:

� “Natural” dissipation from diffusions:

1

2

@

@t
(j�̂j2 + jûj2) + jk j2jûj2 = 0:

� Dissipation along the degenerate component:

jk j2j�̂j2 = (ik�̂; ik�̂) = (ik�̂;�jk j2jûj2 � @t û) = I + II

I = (ik�̂;�jk j2jûj2) �
1

2
jk j2j�̂j2 +

1

2
jk j4jûj2:



II = (ik�̂;�@t û) = �@t(ik�̂; û) + (ik@t �̂; û)

= �@t(ik�̂; û) + jk � ûj2:

) @t <
(ik�̂; û)

1 + jk j2︸ ︷︷ ︸
E int(ẑ)

+
jk j2

2(1 + jk j2)
j�̂j2 �

1

2
jk j2jûj2:

� Combination:

@

@t
E(ẑ) +

�jk j2

1 + jk j2
(j�̂j2 + jûj2) � 0;

where

E(ẑ(t; k)) =
1

2
(j�̂j2 + jûj2) + �0<

(ik�̂; û)

1 + jk j2

for some 0 < �0 � 1.



2.2 Remarks:

� An interesting observation by Shizuta-Kawashima:

< (ik�̂; û) = <

([
�̂

û

]
; ik

(
0 �1

1 0

)[
�̂

û

])
which suggests a formulation in terms of a skew-symmetric
matrix K. The general theory was developed by introducing
the compensation function related to such skew-symmetric
matrix:

K(~k)A(~k) + [K(~k)A(~k)]T

2
+ L > 0 in Rn; ~k = k=jk j:

� Applications to the kinetic theory:

I Boltzmann equation: Kawashima (1990);

I Vlasov-Poisson-Boltmzann system: Glassey-Strauss
(1999);

I Landau equation, VPB system of two-species, VMFP
system: Yang-Yu (2010, 2011)



2.3 Our approach is based on the “explicit step-by-step”
construction of some interactive functionals in terms of the
pointwise time-frequency analysis. The key point is to prove
a Lyapunov inequality

@tE(Û(t; k)) + p(k)E(Û(t; k)) � 0; (�)

where

E(Û(t; k)) = jÛ(t; k)j2 + �<E int(Û(t; k)) � jÛ(t; k)j2:

Remarks:

I In general, (�) can yield the linearized time-decay of
solutions in Lp with 2 � p � 1. For the case when
1 � p < 2, Green’s function need to be used (Boltzmann
equation in R3: Liu-Yu);

I For the kinetic equation, E(Û(t; k)) can be involved in
the velocity weight (Boltzmann equation with non-cutoff
soft potentials in R3: Strain, preprint)



3. Main results

3.1 Vlasov-Maxwell-Boltzmann system:

@t f+ + � � rx f+ + (E + � � B) � r�f+ = Q(f+; f+) +Q(f+; f�);

@t f� + � � rx f� � (E + � � B) � r�f� = Q(f�; f+) +Q(f�; f�):

It is coupled with the Maxwell system

@tE �rx � B = �

∫
R3

�(f+ � f�)d�;

@tB +rx � E = 0;

rx � E =

∫
R3

(f+ � f�)d�; rx � B = 0:

The initial data in this system is given as

f�(0; x; �) = f0;�(x; �); E(0; x) = E0(x); B(0; x) = B0(x):



3.2 Known results on the asymptotic stability of
near-equilibrium solutions to the two-species VMB system

I x 2 T3

I Global existence: Guo (’03) (Energy method)
I Large-time behavior of solutions: Strain-Guo (’06&’08)

(Time-velocity splitting), Jang (’09)

I x 2 R3

I Global existence: Strain (’06) (Use two-species’
cancelation property to control E and pure time
derivatives)

I Large-time behavior of solutions: Duan-Strain (’10)
(Contruct time-frequency functionals + bootstrap to the
nonlinear equation)

Remark: For the case of one-species VMB system, D. (’10)
also obtained the global existence. When there is no
cancelation, more delicate Lyapunov functionals are desgined
to control the dissipation of the electromagnetic field.



3.3 Define the perturbation u as

u =
f �M

M1=2
; u = [u+; u�]; f = [f+; f�]:

The linearized homogeneous system takes the form of

@tu + � � rxu � E � �M1=2[1;�1] = Lu;

@tE �rx � B = �h[�;��]M1=2; fI� Pgui;

@tB +rx � E = 0;

rx � E = hM1=2; u+ � u�i; rx � B = 0;

[u; E;B]jt=0 = [u0; E0; B0];

Important observation: Since the null space of L is given by

ker L = span
{
[1; 0]M1=2; [0; 1]M1=2; [�i ; �i ]M

1=2(1 � i � 3); [j�j2; j�j2]M1=2
}
:

due to Guo (2003),

�M1=2[1;�1] =2 ker L:

The case of one-species is different.



Theorem (D.-Strain, 2010)

There is a time-frequency functional E(t; k) such that

E(t; k) � kûk2
L2
�

+ jÊj2 + jB̂j2;

and

@tE(t; k) +
�jk j2

(1 + jk j2)2
E(t; k) � 0; 8 t � 0; k 2 R3:

Remark: The above time-frequency Lyapunov inequality
implies the Lp-Lq time-decay property of the solution
semigroup similar to the Euler-Maxwell system (D., 2010):

krm
x A(t)U0k � C(1 + t)�

3
2
( 1
r
�

1
2
)�m

2 kU0kLr+C(1 + t)�
`
2 krm+`

x U0k:



3.4 Key idea in the proof: One can use the energy estimate in
the Fourier space and construct some L2 functionals so as to
capture the dissipation of all the degenerate components in
the solution.

Lemma
(i)

@t

(
kûk2

L2
�

+ jÊj2 + jB̂j2
)
+ �k�1=2fI� Pgûk2

L2
�

� 0:

(ii) 9 an interactive time-frequency functional Eint(t; k) such that

jEint(t; k)j � C(kûk2
L2
�

+ jÊj2 + jB̂j2);

and

@tEint(t; k) +
�jk j2

1 + jk j2
kPûk2L2

�
+ �jk � Êj2

+
�jk j2

(1 + jk j2)2
(jÊj2 + jB̂j2) � CkfI� Pgûk2L2

�
:



3.5 Time-decay of the nonlinear VMB system: Define the
instant full energy functional EN;m(t) and the instant
high-order energy functional EhN;m(t), respectively, as

EN;m(t) �
∑

j�j+j�j�N

k�
m
2 @�� u(t)k

2 +
∑
j�j�N

k@�[E(t); B(t)]k2;

Eh
N;m(t) �

∑
1�j�j�N

k�
m
2 @�u(t)k2 +

∑
j�j+j�j�N

k�
m
2 @�� fI� Pgu(t)k2

+
∑

1�j�j�N

k@�[E(t); B(t)]k2;

and we define the dissipation rate DN;m(t) as

DN;m(t) =
∑

1�j�j�N

k�
m+1
2 @�u(t)k2 +

∑
j�j+j�j�N

k�
m+1
2 @�� fI� Pgu(t)k2

+
∑

1�j�j+j�j�N�1

k@�[E(t); B(t)]k2 + kE(t)k2;

for integers N and m. For brevity, we write EN(t) = EN;0(t),
EhN(t) = EhN;0(t) and DN(t) = DN;0(t) when m = 0.



Theorem (D.-Strain, 2010)

Under some smallness conditions,

d

dt
EN;m(t) + �DN;m(t) � 0;

d

dt
Eh
N(t) + �DN(t) � CkrxPu(t)k

2:

Moreover, de�ne �j;m = Ej;m(0) + ku0k
2
Z1

+ k[E0; B0]k
2
L1 . Then,

under some smallness conditions,

EN;m(t) � C�N+2;m(1 + t)�
3
2 ;

EhN(t) � C�N+5;1(1 + t)�
5
2 :

Finally, for 1 � r � 2,

ku(t)kZr + kB(t)kLr
x
� C(1 + t)�

3
2
+ 3

2r ;

kfI� Pgu(t)kZr + kh[1;�1]M1=2; u(t)ikLr
x
+ kE(t)kLr

x
� C(1 + t)�

3
2
+ 1

2r :



Key points in the proof:

I Two types of refined energy estimates, compared with
Strain (2006):

� velocity weighted;
� energy inequality for the high-order energy functional.

I Application of the linearized time-decay property to the
nonlinear system by the Duhamel’s principle:

I Time weighted: 1 < ` < 2,

(1 + t)`EN;m(t) + �

∫ t

0

(1 + s)`DN;m(s)ds

� CEN+2;m(0) +C`

∫ t

0

(1 + s)`�1(kPu(s)k2 + kB(s)k2)ds;

I Define
XN;m(t) = sup

0�s�t
(1 + s)

3
2 EN;m(s);

and prove

XN;m(t) � Cf�N+2;m_1 +XN;m(t)
2g:



4. Further application
4.1 One-species VMB (D., 2010):

@t f + � � rx f + (E + � � B) � r�f = Q(f ; f );

@tE �rx � B = �

∫
R3

�f d�;

@tB +rx � E = 0;

r � E =

∫
R3

f d� � nb; rx � B = 0:

The key difference of one-species case with two-species lies
in the fact that the coupling term in the source of the
Maxwell system

�

∫
R3

�f (t; x; �)d�

corresponds to the momentum component of the
macroscopic part of the solution which is degenerate with
respect to the linearized operator L.



Theorem (D., 2010)

Let N � 4. De�ne

EN(U(t)) � ku(t)k2HN
x;�

+ k[E(t); B(t)]k2HN ;

DN(U(t)) = k�1=2fI� Pgu(t)k2HN
x;�

+ k�1=2rxu(t)k
2
L2
�
(HN�1

x )

+krxE(t)k2HN�2 + kr2
xB(t)k2HN�3 :

Suppose f0 = M+M1=2u0 � 0. There indeed exists EN(U(t))
such that if initial data U0 = [u0; E0; B0] satis�es the compatible
condition at t = 0 and EN(U0) is su�ciently small, then the
nonlinear Cauchy problem admits a global solution U = [u; E;B]
satisfying

f (t; x; �) =M+M
1=2u(t; x; �) � 0;

[u(t); E(t); B(t)] 2 C([0;1);HN
x;� �HN �HN);

and

EN(U(t)) + �

∫ t

0

DN(U(s))ds � EN(U0); 8 t � 0:



4.2 A summary for the dissipation property of kinetic plasma
model:

E(t; k) � D(t; k) = ku(t)k
L2

�

BE
(1,1) type

kûk2
L2
�

k�1=2fI� Pgûk2
L2
�

+
jkj2

1+jkj2
j[â; b̂; ĉ]j2

C(1 + t)
� 3
4 ku0kZ1\L

2

1-s VPB kûk2
L2
�

+
jâj2

jkj2

k�1=2fI� Pgûk2
L2
�

+
jkj2

1+jkj2
j[â; b̂; ĉ]j2 + jâj2

C(1 + t)
� 1
4 ku0kZ1\L

2

1-s VMB
(2,3) type

kûk2
L2
�

+ j[Ê; B̂]j2

k�1=2fI� Pgûk
L2
�

+
jkj2

1+jkj2
j[â; b̂; ĉ]j2 + jk � Êj2

+
jkj2

(1+jkj2)2
jÊj2 +

jkj4

(1+jkj2)3
jB̂j2

C(1 + t)
� 3
8

�(kU0kZ1
+ krxU0kZ2

)

2-s VMB
(1,2) type

kûk2
L2
�

+ j[Ê; B̂]j2

k�1=2fI� Pgûk
L2
�

+
jkj2

1+jkj2
j[â�; b̂; ĉ]j

2 + jk � Êj2

+
jkj2

(1+jkj2)2
(jÊj2 + jB̂j2)

C(1 + t)
� 3
4

�(kU0kZ1
+ kr2

xU0kZ2
)

Table: Dissipative and time-decay properties of di�erent models

Remark: The developed approach here is also applicable to
other situations such as the Landau operator and the
relativistic model in R3.



Thanks for your attention!
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