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Consider the Boltzmann equations
WFy +&§-VoFy +(E4+ X B) - VeFy = Q(Fy, Fy) + Q(Fy, Fo),
O F_4+& -V, F_. —(E+&XxB)-VeF_ =Q(F_,F1) + Q(F_, F_),
coupling to

OE -V, xB= —/Rsf(FJF—F_)dg,

OB +V,xE=0,

vx-E:/ (Fy —F_)d¢, Vg-B=0.
R3



Here
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z = (71,29, 73) € R® £ = (£1,62,&3) € R®, £ > 0.

Initial data:
Fi(O,IL‘,é) = FO,i(xvé-)) E(O,$) = E0($), B(O7x) = BQ(LE),
with

Vo By= [ (Fos-Fo)ds Ve B0,
R3



Boltzmann collision operator:
QPG = [ al=&.0) [PE)GIE) ~ FEGIE.)] deudo

_EtE &l L _tts g

5/ 2 2 ) é-:k - 2 2 g.
Q(g - 5*7 0) = Cq|£ - f*nb(cos 9)7
with
cost =0 (§—&)/|€ — &
Cy>0,v>-3

3C,>0,0<s<1s.t.

< sinf b(cos ) < Cs
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Two physical examples:

e Hard-sphere model:

q(§ — & 0) = Cyl€ — &
e Inverse power law U(|z|) = |z|~¢~D with 2 < ¢ < oo:
T —1

Remark: For the Coulomb potential ¢/ = 2, one has v = -3,
s = 1, for which Boltzmann operator is NOT defined and
must be replaced by Landau operator.



Boltzmann’s H-theorem:

d
of =QULD) = 5 [ det=rlogs) 20,

» (Physical) entropy increasing. This gives a description of the
second law of thermodynamics.

> Entropy takes the maximization at the Maxwellian

p _le—ul?
M =M, .1 = We

p : density, u : bulk velocity, T: temperature.

» Goal: prove stability and convergence rate of solutions around
the (global) Maxwellian in the spatially non-homogeneous
case.



Perturbation theory of the Boltzmann equation near
Maxwellians:
» Linearized equation: Grad ('58)

> Nonlinear equation based on spectrum analysis: Ukai
('74), Ukai-Asano (’'82), Caflish ('80),...

» Nonlinear energy method: Guo ('02, '04), Liu-Yang-Yu
('04), Strain-Guo (06, '08),....

Recent progress in non-cutoff case:

» Alexandre-Morimoto-Ukai-Xu-Yang (AMUXY) ('10, '12)
» Gressman-Strain ('11)



Extensions taking in account more physics:

» Forces occur:

» Self-consistent potential force satisfying Poisson
equation: Guo ('02), Yang-Yu-Zhao (’'06), Strain-Guo
(’08), D.-Strain ('11),...

» Self-consistent electro-magnetic fields satisfying Maxwell
equations: Guo ('03), Strain ('06), Duan-Strain ('11),...

» Collisions by Landau:

» Linearized operator: Degond-Lemou (’'97), Guo ('02), ...
» Energy method: Guo (’02, '12),...

» Relativistic effects occur: Dudynski-Ekiel-Jezewska
(’88), Glassey-Strauss (’'95), Strain-Guo (04, ’'12),
Strain ('10),...



Our interest of the talk:
» Collisions by Boltzmann for angular non-cutoff and for
soft potentials
» Electric-magnetic fields occur

» No relativistic effect



Reformulation of Cauchy problem:

Felt,z,€) = p+ p 2 fa(t,z,6), p=pu&) = (2m) 3212
satisfies
Of+&-Vof +q(E+E X B) - Vef —E-&uq + Lf
= DE-cu+ (1. f),
@E—vxsz—/’@V%ﬁ—f)&,
R3
HB+V,x E=0,

%szégﬂﬂh—fJ%,VfBzo

Here' qo = dlag(la_l)' q1 = [17_1]’ f = [f—‘r?f—]'



Theorem (D.-Liu-Yang-Zhao, KRM ’13)

Assume

3 1
max{—3,—2—2s} <y < —2s, §§s<1.

For initial data (fo(z,€), Eo(z), Bo(x)) regular enough and
small enough, Cauchy problem on Vlasov-Maxwell-Boltzmann
system admits a unique classical solution

(f(t,z,8), Et, x), B(t, x))
satisfying

1F @)z, + 1B BBz S L4+,
IVaf®llzz  + I Va(B, B)(B)l12 S (1+1)74.



Remarks:

» Convergence rates are the same as those obtained by Ukai’s
spectrum method for the angular cutoff Boltzmann equation
without forces (F = B = 0).

» Collision kernel includes the inverse power law which can be
close to the Coulomb potential, i.e. v - —3+, s = 1—.

> Restriction s > 1/2 is technical and essentially needed in our
proof, since by AMUXY

Cu{Ifl , +IfBe b <If < Colffhe,

2

for f € (ker L)+, where |f|%4 = (~Lf, f) is the Dirichlet norm.



Main difficulties and our efforts in the proof

» Angular non-cutoff:

» Use the commutator estimates by AMUXY
» Extra efforts: Introduce the exponential weight into the
non-cutoff framework

» Soft potentials:

» Use the weighted energy norm by Guo
» Extra effort: To take care the nonlinear estimates, use
the velocity-time-dependent weight (D.-Yang-Zhao, '12):

= wat.6) = 7" exp { (6 |



Main difficulties and our efforts in the proof (cont.)

» Regularity-loss of (E, B):

» D.-Strain: The dissipation rate of ||(E, B)||3,~ includes
only
1|71 + Ve Bl[Fpv -2

» Do the time-weighted estimates with time weight of
negative power

d

7 [+ 7NE, B) )] + o1+ 677 (B, B)(#) [~

< LLh 1) t.”

Such approach firstly introduced by Hosono-Kawashima
(M3AS ’06).



More details on the a priori estimates:

» Define the energy functional

Envert) ~ 3 lProlF+ Y [asada- ey

<N lal+IBI<N lad+1B1=6A
+HI(E, B)(®) 1~
~ D O FOI + 1B, BY (D)7
la|<N
where P : L7 — ker L is the projection, and the norm || - ||

defined by

IFORA= [ Ot duds



» Define the dissipation rate:

Dnen(t) = Y Hagafﬁ{I - P}f(t)HQ

la|+|BI<N

+ > IVL0ePf))?
la| <N -1

HIE®) 3w + IVe BE) | Fx—

EE D (GRS JHU]
la|+]B8|<N

D, |af+|B]—£,A
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Duiy= Y |mata-pyo + X Iv.oeso)

la|<N la|<N—-1
HIE@OFnv-1 + Ve B[ Fn -2




» Define the time-weighted norm:

X(t) = sup {Ew,(s) + (1+5)1En, a(s)}

0<s<t

1+e€
+ sup {(1 +8) 7T EN 00 (8) + EN—1,0,00(5)
0<s<t

3
2

+(1+ )

+ sup {(1+ )}V, (B, B)(s)ll3 |

0<s<t

6N1—3,f1—#~,/\0 (S)}

» Define initial norm:

o= > |

la|+|BI<Ny

920 fo

la|+]8]—=£1,20

+ [[(Eo, Bo)llg~ian + Hw—thHLg(L}E) .



» Claim: Take

Nl > 147
15(7y + 2s)

14
2 > 1y

9

Ao > 0,
0<e 1.

Then,
X(t) SYF+ X2().



Thank you !



