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I: Motivations



Consider the two-fluid Vlasov-type system with collisions

« aFa
OFn+&-VaFot 254+ % B).- VeF :< ) |
« ¢ ot collision
a e {i,e},

coupling to the Maxwell system

OFE —cV x B=—47J,
OB +cV x E=0,
V-E=4mp, V- -B =0,

with

J:an/ngFadf, p:an/RSFadf.

«



Bilinear collision terms
OF,
(%).....-Tanm
at collision B

e Conservation laws (=-macro fluid-type system):

OF,
RS ma(#)collision df = O,
OF,
Ma&i(— Jeollision d§ = 0, 1< <3,

s ot

1 oF,
43 ima|£|2(ﬁ)collision dg =0.

e Entropy product (=-second law of thermodynamics):
OF,
1 Fa ~a, /co isiond SO;
;/Rg B Fa (T Jeotision d

with equality iff I}, for all o are Maxwellians.



The type of binary collisions depends on the physical
situation under consideration:

> Landau collision (Fokker-Planck type): fully ionized plasma,
all collisions grazing

v

Boltzmann collision: fully ionized plasma, collisions grazing at
the deflection angle § = 0 (non-cutoff vs cutoff)

v

Linear Boltzmann collision: weakly ionized plasma
(e =1,e,n), Qua (@ =1i,€e) skipped. In this case, no
conservations of momentum and energy.



Boltzmann’s H-theorem:

d
OF = Q(F.F)= - /RS d¢ {~Flog F}| > 0.

> (Physical) entropy increasing. This gives a description of the
second law of thermodynamics.

> Entropy takes the maximization at the Maxwellian

p _le—ul?

M = M 1) €)= We 2T

p : density, u : bulk velocity, T: temperature.
» Goal: prove stability and convergence rate of solutions around

the (global) Mazwellian or a non-trivial profile (wave pattern) in
the spatially non-homogeneous case.



Associated with F,(t,z,¢), one can introduce the macro
moments

na(t,z) = /1&3 Fo(t,z,€)dg,

B 1
ua(t,x) = na(t,az) 3 £Fa(t,$,£) d£7

_ 1 2 __ ks
Oa(t,z) = T 1€ —ua(t, )| Fa(t,z,8) d§,  ka = pa

and the high-order moments (thermal quantities)

Pu(t, ) = ma / (€ — ta) ® (€ — ua)Fult,z,€) de
]R3
= pa—l + Hom Pa = anaoou
halt) = Sma €= (€~ ) Fu(t, 2.,

o(t,x) Z/ Ma (€ — ua)Cap dE,
o(t,x) = Zmal€ — ual?Ca .
Qul(t,) ;/Rﬁmg o *Ca



Macro fluid moment system (Euler-Maxwell, un-closed!!!):
(Or +uq - Va)ng +noVe - uq =0,

nama(at + Uq - vx)ua + vx(anaaa)
:naQa(E+u?a XB) — Vg - 1Io + Ra,

3
5”04(875 + uq - vx)kBga + k;Bnaeavx * Uy
= —Ily : Vgug — Vg - ho + Qom

coupled to
OE —cV x B = —47quanaua,
8tB +cV X E = 0,

V-E:47quana, V-B=0.
(0%



The mathematical results for the VMB in perturbation
framework (Pure BE!: Carleman, Grad, UKai,...):

QuolFurFo) = ¢ [ [ alé =€ a){Pul)Falel) — Ful€)Fo(6)} dedo,

where for w € S?,
2m

é‘/:g_m[(g 5*) }7
PSS VSRS S
€=t (6= 6)

q(€ — &w) = [(€ — &) -w|.  (Hard-sphere model)
» Q=T3

» Global existence: Guo (IM, 2003) (Energy method)

» Large-time behavior of solutions: Jang (ARMA, 2009)
()

'Non-perturbation framework: DiPerna-Lions, Desvillettes-Villani,
Gualdani-Mischler-Mouhot (arXiv),...



» O =R3

» Global existence: Strain (CMP, 2006) (Use two-species’
cancelation property to control F and pure time
derivatives)

» Large-time behavior of solutions: D.-Strain (2010)
(t~*/*, Linearized analysis + bootstrap to the nonlinear
equation)

Note: Mathematically it is highly nontrivial to generalize all
the above results to the case of non hard-sphere model

(v < 1).

(Why? It is formally due to L ~ |£]7 with v < 1 but N ~ [¢],
for large |£]! )



Remark: Energy and energy product in the Fourier space at
the linearized level for () = R? (D.-Strain):

8t8(t> )
~ A k|2 ~ Ak
FAAE— PYal2; + i lPal, + NEP + gl B2 <0,

with o
E(t, k) ~ Hﬁ\lig + |[E, B]|*.

This implies
AE|2

E(t, k) < e THREZ'E(0, k).

» For k # 0, iR N o(B(ik)) = 0 but one branch of A(ik) tends to
0 with rate 1/|k|? as |k| — oo.

» It also means that (i + B)~! is unbounded as |7| — oco.

» Abstract spectral theory and applications to the Bresse
system for polynomial stability of semigoup: Rivera-Racke,
Liu-Rao, Batty,...



Questions:

> Is the energy product optimal? (Li-Yang-Zhong (Spectral
analysis, arXiv, 2014))

» Can the fluid-type system (Euler-Maxwell) with
dampings enjoy a similar property?
(Ueda-Kawashima(MAA, 2011), D. (JHDE 2011),
Ueda-Wang-Kawashima (SIMA 2012), ...)

» What happens to the long-range potentials with/without
angular cutoff? (Guo (VPL, JAMS 2012)—VPB, VMB,
or VML?77?)

» Abstract theory? (Kawashima’s compensation
function— coupling system)

» Stability of the non-trivial profile (wave patterns)?



Il: Eigenvalue problem on Euler-Maxwell with collisions

Non-damped case:

> One-fluid case for electrons: Germain-Masmoudi (dispersive but still
a kind of system of Klein-Gordon equations with different speeds!
arXiv 2011)

> Two-fluid case: Guo-lonescu-Pausader (arXiv 2013)



I1-1: Case of one-fluid for electrons



Consider the Euler-Maxwell system with relaxation?:
(On+ V- (nu) =0,
1
ou+u-Vu+ —Vp(n) = —(E +u x B)—vu,
n
OtF —V x B = nu,
OB+V xE =0,

V-E=ny,—n, V-B=0.

Here, n = n(t,z) > 0, u = u(t,z) € R3, E = E(t,r) € R3 and
B = B(t,x) € R3, for t > 0, z € R?, denote the electron
density, electron velocity, electric field and magnetic field,
respectively. Initial data is given as

[na u?-EaB”tZO = [n(),U[),EO,BQ], MRS RS'

2D. Nicholson, Introduction to Plasma Theory, 1992.



Consider the linearized homogeneous system for
U=[p,u,E,B] around [p=1,u=0,E=0,B =0]:

op+V-u=0,
ou +yVp+E+u =0,
OHE —V x B—u=0,

HB+V x E =0,

\V-E=—p, V-B=0, t>0,z¢cR>
with given initial data

Uli—o = Uy = [po, uo, Eo, Bo], = € R3,
satisfying the compatible condition

V'Eoz—po, V'B():O.



For t > 0 and k € R? with |k| # 0, define the decomposition

Pt k) Pt k) 0

'L}(t? k) _ {fH(tvk) + {fJ_(ta k)

(k) || Byt k) Ey (k)|
(t,k) 0 B, (t, k)

ay = kk-a
Define

/3(757 k) QZ’J-(tvk)

vl =F1aytk) |, UT=F 1 EL(tk)

Then,
U=U'+U",



Theorem
UL, U satisfies

RUT —yAUT + U +0,UT =0,

I; Is 0
UM + | =Is 0 —Vx |UHT =0.

0 Vx 0
Furthermore, FU! = GL_.(t, k) FU{L with

1
GL,. = e 2 cos(v/3/4 +v|k|?t) | O3
03
' /2 —ik 0
: 44k
eiism( 3/4 + ~[k[*t) —ivk —1/213 —1I3

V3/4+ k[ 0 Iy 1/2I4




To solve U!!, consider the characteristic equation

F(x) :==x*+ x>+ (1 + [k[*)x + k> = 0.

Lemma
Let |k| # 0. The equation F(x) =0, x € C, has a real root
o=o(lk|]) € (—1,0) and two conjugate complex roots

with 8 = B(|k|) € (=1/2,0) and

w = w(|k|) € (v/6/3,00) satisfying

| 1
5:—"; , w= 5307+ 20 + 3+ AkP.

o, B,w are smooth over |k| > 0, and o(|k|) is strictly decreasing
in |k| > 0 with

li k|)=20 li k|) =—1.
lim o) =0, lim o)



Lemma (cont.)

Mower, the following asymptotic behaviors hold true:

a(kl) = —O)kP,

=

B(IK) = —5 + OMIKP,  w(lkl) = > + O(1)|K

whenever |k| <1 is small, and

o([k]) = =1+ O(1)[k[ 72,
B(|k[) = —OM)[K2, w(lk]) = O(1)lk|

whenever |k| > 1 is large. Here and in the sequel O(1) denotes a
generic strictly positive constant.



Remarks:

¢ Recently Ueda-D.-Kawashima (2012) developed a general
theory for characterising the structure of the linear
symmetric hyperbolic system with partially relaxation in the
case of the regularity-loss type (p = 1,q = 2)

2p
k] n

Et k) < & THRBTE(0, k).
Only Fourier energy method!
The key point is to introduce a symmetric matrix S besides

the skew-symmetric matrix K.

e More recently Ueda-D.-Kawashima (2013) also constructed
two classes of concrete regularity-loss type (p < ¢q) models for
more general values of (p, ) in terms of phase dimensions.



11-2: Case of two-fluid:
Justification of diffusion effect



Consider the two-fluid (« = i,e¢) Euler-Maxwell system

Ona + V- (nquy) =0,
MaNa (Ot + U - V) + Vpa(nag)
= qana(F + uf X B)—vamanata,
OFE —cV x B = —4xJ,
0B +cV x E=0,
V-E=4mp, V- -B =0,

with

J = annaum p= anna.
(0% (0%

t>0,zeR>.



Our goal is to give a complete analysis of

e eigenvalue problems,
e as well as the optimal large-time behaviour of solutions,
i.e., tending time-asymptotically linear diffusive waves.

This can be regarded as an attempt for the mathematical
justification of Darcy’s law in the context of two-fluid plasma
with collisions at the linear level.



Heuristic derivation of diffusion waves:

Expected long-term asymptotic profile satisfies the
guasi-neutral assumption:

ni =ne =n(t,z), u; =u.=u(t,x), B = Const.

Assume: B = (0,0, |B|) along z3-direction. Then, the
momentum equations

Vpa(n) = gan (E + L B) — UaManu,
c

can uniquely determine (p,(n) = T,n w.l.g.)

_ T'+Te
ui mil’:"’meye 0 0 aln
n|u | = 0 —_Li4Te 0 Oan

miVi+Mele

us O 0 m;Vi+mele 83n



and moreover,

Timeve=Temiv; e|Bl _ T;+T. 0
El miVi+mMeVe C MiVi+Mmele 51n
1 _elBl_ Ti+T. Timeve=Tem,v; 0
n| B | =- c miVitmeve MV tmeve Oom
e
E
3 0 0 Timeve=Temvi Osn

miVi+mele
Notice that n therefore satisfies the diffusion equation

T+ 1T

on—uAn =0, u:=——"-7H-—¥—.
m;V; + Mele

Whenever p,(-) takes the v-law, the corresponding diffusion
wave is nonlinear with isotropic diffusion coefficient.



From

» R.J. Goldston and P.H. Rutherford, Introduction to Plasma
Physics, Taylor & Francis (1995).

it is said that

The ambipolar electron and ion fluxes are then obtained from equation (12.22)
for electrons:

nug, = nuj = —DaVln (1224)
where
D, ~ Ven(Te ‘2" T)
mog,
) T
R Ven{rie) | 1+ = (12.25)
T.

where (r2,) = T./(mw?,) = mT./(e*B?) is the mean-square Larmor radius of
the electrons. The diffusion coefficient D, is seen to be inversely proportional to
B2. Clearly, our result agrees—at least in some sense—with the heuristic result
given in equation (12.10), except that ambipolar diffusion is at the slower rate
similar in order-of-magnitude to that given by equation (12.10) for electrons.

Remark: A cancelation effect due to two-fluid could be
ignored in the above formal argument of the textbook.



The expected asymptotic equations for the electromagnetic
part in the sense of " Darcy’s Law”:

—eE| +mvi; . =0,

GEJ_ + Melelle, | = 0,

—cV x B+ dmn(eti; | — ele, 1) = 0,
8tB+CVXEJ_:O-

Letting n = 1, this gives

2
— CTMViMelVe
8tB - M?AB = 07 H2 = 2 3
dmre?(miv; + mele)

_ = & Mele >
U | = iniva,

m;v; dme miv; + Mele
_ e — C m;l; —
Ue, | = — EFl=—————VxB,

Mele 4me m;v; + Mele

_ C  MiVimel, _
Bl = ——"""VxB.

dmes miv; + mele




Goal: Mathematical justification!



Main results: (D.-Liu-Zhu, arXiv 2014)

e Eigenvalue analysis shows that

~ = EENTAC I — At~
U (t, k) =Tt k)| < X< lkle M To(k) [+ xps1e #2 | To(K),

where U is the solution to the linearized Cauchy problem
with initial data Uy, and U is the solution to the asymptotic
diffusion equations with the same initial data.

The proof is also combined with the Fourier energy estimate
for the high-frequency region.



e Solutions to the nonlinear Cauchy problem tend
time-asymtotically toward the diffusion waves with a faster
rate than the one in which solutions themselves decay.
Precisely, let U = [p,, uq, F, B] be the solution the perturbed
Cauchy problem on the Euler-Maxwell system with initial
data Uj. Define U* = U*(x,t) = [p*,u}, E*, B*] by

miV;

x,t) = | —— ;
p (ZL‘7 ) Gm(l’,t—‘,— )(min'ereVe ~/]R3 on(l")dx

Mele
+— x)dx |,
mM;Vi + Mele /Rs peo( ) )

By(z)dx = G, (z,t + 1)/ By(x)dx,
R3

B* () =G, (.t + 1) /

R3

T, + T, c Mele
Fhp) = —— e g, V x B*(t,z),
Ua(t, ) miV; + Mele n( x)+47rqa miV; + Mele ()
Ti e e_Te 1) % VilllelVe *
E*(t,z) = —ele — LeMiig« (¢ gy 4 = TiliTele G o prg q).

e(m;v; + mee) 4me? miv; + Mele



Then, one can show:
" _5
[(U-U OIS (X+1t)1,

under additional conditions on initial data:

/ pao(z) dx =0, / By(z)dx = 0.
R3 R3

Remark: ,
[T @) ~ (1 +¢)" 2

=-U™ is a large-time asymptotic profile in terms of Darcy’s
law! More precisely,

* * _5
> oo — ol +IB= B | < C+18)74,
a=t,e

and .
> ua — gl + | E - B < C(1+1t)74.

a=t,e



Approach: Energy estimate combined with the result from
the spectral analysis (D.-Ukai-Yang-Zhao 2008)

U—U*= (U - eUp) + (e"Uy — U) + (U - U*),
~~ ~—

1 17 117

that is,

= (pa — P1ae™Up) + (P1ae“Us — p) +

—u* = (U — PgaetLUo) + (PgaetLUo — Ua) + (o —up),
E—E* = (E —P3e'"Uy) + (P3e'" Uy — E) + (
B — B* = (B — P4 Up) + (Pue' Uy — B) + (



Remark: It seems more interesting to justify the asymptotic
equations in the sense of generalised Darcy’s laws in the
following settings

» nonlinear diffusion connecting different end states along
one direction (Hsiao-Liu, CMP 1992);

» appearance of vacuum related to the asymptotic stability
of Barenblatt solution (Huang-Marcati-Pan, ARMA

2005).



I1I: Two-fluid VMB system without angular cutoff

Recent progress in non-cutoff case for the pure Boltzmann:

> Alexandre-Morimoto-Ukai-Xu-Yang (AMUXY) (CMP 2011,
JFA 2012)

> Gressman-Strain (JAMS, 2011)



Consider the Boltzmann equations
WFy +&§-VoFy +(E4+ X B) - VeFy = Q(Fy, Fy) + Q(Fy, Fo),
O F_4+& -V, F_. —(E+&XxB)-VeF_ =Q(F_,F1) + Q(F_, F_),
coupling to

OE -V, xB= —/Rsf(FJF—F_)dg,

OB +V,xE=0,

vx-E:/ (Fy —F_)d¢, Vg-B=0.
R3



Here
F:I: - Fﬂ:(tax7§) Z 07

z = (71,29, 73) € R® £ = (£1,62,&3) € R®, £ > 0.

Initial data:
Fi(O,IL‘,é) = FO,i(xvé-)) E(O,$) = E0($), B(O7x) = BQ(LE),
with

Vo By= [ (Fos-Fo)ds Ve B0,
R3



Boltzmann collision operator:
QPG = [ al~&.0) [PE)GIE) ~ FEGIE.)] deudo

_EtE &l L _tts g

5/ 2 2 ) é-:k - 2 2 g.
Q(g - 5*7 0) = Cq|£ - f*nb(cos 9)7
with
cost =0 (§—&)/|€ — &
Cy>0,v>-3

3C,>0,0<s<1s.t.

< sinf b(cos ) < Cs

T
S givzs? Vo € (0, 5]

Cb61+28



Our interest:
» Collisions by Boltzmann for angular non-cutoff and for
soft potentials
» Electric-magnetic fields occur

» No relativistic effect



Reformulation of Cauchy problem:

Fu(t,d,6) = p+ p?fe(t, 2, &),  p=p(&) = (2m) 3 2e /2,
satisfies
(O f +€-Vaf +ao(E+EXB) Vef —E-&u'?q + Lf
= DE-Sf+T(£.5),
O ~VoxB=— [ eul(f~ 1)
R3
OB+ V,x E=0,

V, E= / V2(f, —f)de, Vo-B=0

Here, g0 = diag(la _1)' q1 = [17 _1]' = [f—Hf—]'

L~ (1+¢){I— P}



Theorem (D.-Liu-Yang-Zhao, KRM ’13)

Assume

3 1
max{—3,—2—2s} <y < —2s, §§s<1.

For initial data (fo(z,€), Eo(z), Bo(x)) regular enough and
small enough, Cauchy problem on Vlasov-Maxwell-Boltzmann
system admits a unique classical solution

(f(t,z,8), Et, x), B(t, x))
satisfying

1F @)z, + 1B BBz S L4+,
IVaf®llzz  + I Va(B, B)(B)l12 S (1+1)74.



Remarks:

» Convergence rates are the same as those obtained by Ukai’s
spectrum method for the angular cutoff Boltzmann equation
without forces (F = B = 0).

» Collision kernel includes the inverse power law which can be
close to the Coulomb potential, i.e. v - —3+, s = 1—.

> Restriction s > 1/2 is technical and essentially needed in our
proof, since by AMUXY

Cu{l i, +IfBs b <Ifb < Colffhe

for f € (ker L)+, where |f|%4 = (~Lf, f) is the Dirichlet norm.



Main difficulties and our efforts in the proof
» Angular non-cutofF:
» Use the commutator estimates by AMUXY

» Extra effort: Introduce the exponential weight into the
non-cutoff framework

» Soft potentials:

» Use the weighted energy norm by Guo
» Extra effort: To take care the nonlinear estimates, use
the velocity-time-dependent weight (D.-Yang-Zhao, '12):

wrx = wrA(t,§) = (§)" exp {m<§>}

Note: Guo’s trick (JAMS '12):

O Fu(Fy Vot Efe 46 Vafs) = 18- Vale™f)

fails in the case of non-potential forces!



Main difficulties and our efforts in the proof (cont.)

» Regularity-loss of (E, B):

» D.-Strain: The dissipation rate of ||(E, B)||3,~ includes
only
1|71 + Ve Bl[Fpv -2

» Extra effort: Make the time-weighted estimates with
time weight of negative power

4 [+ 0)77IE, B) )z~ ] + o1+~ (B, B) ()5~

dt
< “h.o.t.”

Such approach firstly introduced by Hosono-Kawashima
(M3AS 2006).



IV: Non-trivial large-time behaviour of VPB system



Consider the Vlasov-Poisson-Boltzmann system:

OSF:F(t,$,§>, t207x€R7§:(§17§27§3)€R3:
atF+£181F_8z¢8§1F = Q(Fa F)>

_82 = - Me ) = Fd )

2 =p—pe(®), p /RS 3

with
F(0,2,8) = Fo(z,€) > 0.

We assume

le—ug
lim Fp(z,&) = —2% 20,

Lo We , U+ = [Uli,OaO]a

im o(t,7) = s, px = pe(da)-



A typical example?:

_ Ye—1 ¢ ﬁ
pew)—{u = AJ ,

with 5
Ye > 1, Om = — E Ae: ¢M = 400,
Ye — 1

motivated by the momentum equation of electrons under the
assumption that the electron mass is sufficiently small:

NLepe(atue + uPaTlLP)+8x (Aepge) = peaaz(z)'

The limit case 7. — 1 (electron isothermal):

pe(@) = eAe.

3This has been recently used by D. Han-Kwan (CPDE 2011;...)



In general, we assume

(A) pe(d) : (dm,drr) = (pPm, par) is a positive smooth
function with

Pm = inf  pe(¢), pm= sup pe(9),
Im<P<onm Dm<d<drr

and

(A1) pe(0) =1 with 0 € (¢m, dur);
(A2) pe(¢) > 0, pe(¢) > 0 for each ¢ € (dm, P );
(As) pe(0)pl () < [pL(¢)]? for each ¢ € (¢n, dur)-



Motivation of introducing (A3): Define

oy [f_ 0
Fre) /p’e(pe‘l(g))dg’

. P?(p) = pdudh

under the quasi-neutral assumption p = p.(¢). One can check

pe((b) 2 po . [ple(¢)]2 - pe((b)pg((b)
a@ PO =TeE

with ¢ = p-!(p) on the right. Due to (A3) and (Aj3),

in terms of

9P ¢(P) =

9,P%(p) >0, 02P°(p) >0,

for each p € (pm, prr)-



Previous works on the pure Boltzmann:

(at+£'vx)F:Q(FaF)'

» Shock wave: Caflisch-Nicolaenko, Liu-Yu, Yu,...
» Rarefaction wave: Liu-Yang-Yu-Zhao,...

» Contact discontinuity: Huang-Yang,...

However,

no result on the Vlasov-Poisson-Boltzmann!

Remark: ¢(t,x) satisfying the Poisson equation may take the
distinct states at both far fields © = +oc:

¢(t> _OO) 7é ¢(tv +OO)7 13 Z 0.



The goal of this work:

» Construct the rarefaction wave of VPB system:
M5 gryen (6, @™ (@ /1),
with

M[pR,uRﬂR](Z) (f) — M[pivuiﬁi}(g) as z — +o0o

(bR(z) — ¢4 as z — Foo;

» Prove that the rarefaction wave is time-asymptotically
stable under small perturbation:

f(ta €T, f) — M[p”,u’{ﬁ”](:r/t) (5)7 (b(tv .’L‘) — ¢R(x/t)7

as t — oo, whenever they are sufficiently “close” at
initial time.



Recall that

Yo=1, Gi=& (i=1.23), du= P
are five collision invariants satisfying

/}R3 ViQ(F,F)d, =0 for i=0,1,2,3,4.

Maro-Micro decomposition (Liu-Yang-Yu):

F(t,z,&) = M(t,z,&) + G(t,z,£),

with
— p(t,m) _|§—u(t,x)|2
M[P(t,w)yu(t,w)ﬂ(t,w)] (& = (ZWRQ(t,m))% exp( 2RO, 2) ) )
through

plta) = [ Plt.o.€)de
tCEUz / 7/’1 txé-dé-y i:172737

[p@fw(t,x) )}z/ Ga(E)F (2, €) de.



Euler-Poisson type system (unclosed!): From
/ Vi (O F + §&10,F — 0,90¢, F)d§ =0, i=0,1,2,3,4,
R3

one can deduce (P = Rp0)

Orp + 0z (pu1) = 0,

Or(puyr) + 0y (pu?) + 0y P+pdyp = —/ £20,G d¢,
RS
Bu(pus) + 0u(purs) = /m@&acda i=2,3,
3 1 o2 3 1 o2
Oy [p <2Rc9—|— 2]u| ﬂ + 0y [ul (,0 <2R9+ 2|u\ ) —I—Pﬂ

1
0, = =3 [ l€Pao.G e,
—8£¢) =p— Pe(¢)'




To capture viscosity and heat-conductivity, we rewrite

(3 + €10 — 0200, ) (M + G) = QM + G,M + G),

and apply the projection PM: f++ G = f — M to it, so

9, G+PM (&0, M)+PM (£0,G)— 0,60, G = LmG+Q(G, G).

This further implies
G = Iy} (PM (@a.M) )+,
with
0 = Ly [0,G + PM (£0,G) 0,00, G] — L Q(G, G)).

Plugging to zero-order fluid type system, we obtain



Navier-Stokes-Poisson type system (unclosed!):

atp + az(pul) = 07

3 1
16 = 20, (uO)0m) — - /R g0,

Oru; + u10zu; = [1)8 (1(0)0pu;) / £1£0,0dE, i=2,3,

1 1 O, (P
o (5 + \u|2) + 10, (5 + yuP) + (Pu) + 110y
2 2 p
3

. ll)ax (5(0)9,0) + 2895 Oy dar) + ~ 370, (u(0)us0rr)

P =2

1
~5 / [€[%610,0 de,
P JR3

\ _8g%¢ =p— pe<¢)'



We expect (Why?) that the large-time behaviour is
determined by the quasineutral Euler system

( Oip + pOpu1 + u10:p =0,

O, P
Oyu1 + u10,u1 + + 0.0 =0,

)
00 + 1y 0,0 + L0

p = pe(d),

=0,

or equivalently,

81510 + paxul +u10,p = 0,

O.[P + P?
Oyu1 + u10,u1 + M

8,55 + U18x5 = O,

=0,

with P = keSp°/3,



The Q.E. system has three characteristics

A= Ai(p, w1, 8) = ur — \/8,P(p, S) + 0,P%(p),

A2 = Xa(p,u1, S) = uq,

A3 = As(p,ur, S) = ur + +/0,P(p, S) + 9,P%(p).

The admissible set of 3-rarefaction wave:

p2/3 p2/3
R3(p—¢u1—79—) = {[p,U1,9] eRy xR xRy ‘ T = 0;7

. /p \/8pP(Q, Si) + apP¢(Q)
Uur—ui— =

0 do, p> p-, U1>U1—}-



The 3-rarefaction wave [p?, ult, 6%] (2) with z = z/t € R:

Az (p"(2),uf'(2), 8)
)‘3(p*7ulfvsi) for z < )‘3(p*7u1775’i)1
= z  for As(p—,u1—, Si) < z < As(p+, w14, Si),

As(pr,uiy, Si)  for 2 > As(p4, ury, Si),

ui'(z) — u /pR(z>\/5A 073 + ot ( d (p_l)) (o) do
1 —ui- = A —(pe ,
o 3 dp

Ailp"(2)*2,

0% (2) =

W



The smooth rarefaction wave [p",u",0"|(t, ) and ¢"(t,x) with
u”(t,z) = [u](t,z),0,0] are defined by

)‘3(pT(t7 I), U‘q(tv ‘T)v Sl) = w(t7 I),

i) 5 d,
wita) = [ Aot o (L0 e

0" (t,x) = §Ai(p" (t,2))*°, ¢"(t,x) = pt (o7 (L, ),

lim [prauiaer}(tax) = [piaulivai]a [p+au1+70+] € R3(p*au1*a6*)a

x—Foo

with w = w(t, ) being the solution to the Burgers’ equation

Orw + wozw = 0,

w(0,x) = wo(x) &ef 2 (wy +w-) + 3 (wy — w-) tanh(ex),

def
we = A3 (ps, Uit Si).

Here ¢ > 0 is a constant to be chosen later on.



A technical notion for the weighted energy estimates:

Let the reference weight function My = M. (§) = M|, ., 0,1(§)
be a global Maxwellian such that the constant state
[x, Us, 0] with u, = [u1,,0,0] satisfies

1 .
5 sup  O"(t,x) <6, < inf  0"(t,x),
2 (t,z)€ER4L xR (t,2) (t,x)eRy xR ()
sup {‘pr(tv x) - IO*’ + ‘ur(t7$) - u*| + ‘Hr(ta x) - 0*’} < No,
(t,x)ER4 XR

for a constant 7y > 0 which is not necessarily small.

Remark: All inequalities are strict! (Why needed? It is also
true for solutions due to small perturbation!!!)



Theorem (D.-Liu, arXiv:1405.2522)

Assume that [p4,u14,0+] € Ry(p—,u1—,0-), p+ = pe(Pp+) with
O+ € (dm, dnr), and pe(-) satisfies (A). Let

or = |p+ — p—| + iy —ur—| + 04 — 0]

be the wave strength which is not necessarily small. There are
€0 >0,0<o09<1/3 and Cy > 0, which may depend on §, and
Mo, such that if Fo(z,£) >0 and

2

‘8;8’3 F( 75)_M Tur,or , T (5) + S 27
\alﬂzmg‘ 5( o\x o 071(0,2)(§)) LE(%(W)) €< €

then the Cauchy problem on the Viasov-Poisson-Boltzmann
system admits a unique global solution

[F'(t, z,8), o(t, z)],

satisfying



Theorem (conti.)

F(t,z,&) >0

and

2
2EM§%<JpJf(F@xf)_BQWMWﬂ@@@» 2(22( i)

+sup > |07 (¢ S (@) |2 < Cocd.
t>0| <2

Moreover, it holds that

sup sup { HF(t, z,8) — MR 2 gr)(2 /1) (§)

t—+4o00 xeR

L2 1
5( M*(@)

+ ot x) — p. (" (/)| } = 0.




Final Remark: Two-fluid Navier-Stokes-Poisson system:
Oni + Op(niu;) = 0,

min; (Opwi + wiOpu;) + Ti0un; — niOpd = pi02u;,
One + Oz (neue) =0,

M (Ope + UeDytic) + TeDpne + by = p1e02ue,

2p=mn;—ne., t>0, ve€R.
Initial data are given by

Mo, ua](0,2) = [nao(x), uao(z)], a=ie, x€R,
with

xli)IjI:loo[na()’ uaO] (x) = [nzl:a Ui], o= 7:7 €.

The boundary values of ¢ at infinity are set by

i = > 0.
xEIjI:loo ¢(t7 l’) ¢x, t2>0



Large-time behavior for rarefaction waves can be determined by
the quasineutral Euler system

On + Oz (nu) =0,

T + 1T,

Ozn =0,
m; + Me

n(Opu + udyu) +

with the potential function ¢ in large time determined by

Time — Tem;
¢=——"—/—/¥—/—"—1Inn.
mi + Me

We can also show
na(t,z) = nf(z/t), ua(t,x) — uf(z/t), a=i,e,

and
3t ) = % (wft) = LT = LMy R4,

mi + Me
uniformly for z € R as ¢ goes to infinity.



Open problems:

» Existence and stability of shock wave and contact
discontinuity?

» Collisional plasma on the half-space? (Related to the
kinetic Bohm’s criterion, see M. Suzuki's talk for
justification at the fluid level)
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