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I: Motivations



Consider the two-fluid Vlasov-type system with collisions

∂tFα + ξ · ∇xFα +
qα
mα

(E +
ξ

c
×B) · ∇ξFα =

(
∂Fα
∂t

)
collision

,

α ∈ {i, e},

coupling to the Maxwell system

∂tE − c∇×B = −4πJ,

∂tB + c∇× E = 0,

∇ · E = 4πρ, ∇ ·B = 0,

with

J =
∑
α

qα

∫
R3

ξFα dξ, ρ =
∑
α

qα

∫
R3

Fα dξ.



Bilinear collision terms(
∂Fα
∂t

)
collision

=
∑
β

Q(Fα, Fβ).

• Conservation laws (⇒macro fluid-type system):∫
R3

mα(
∂Fα
∂t

)collision dξ = 0,∫
R3

mαξi(
∂Fα
∂t

)collision dξ = 0, 1 ≤ i ≤ 3,∫
R3

1

2
mα|ξ|2(

∂Fα
∂t

)collision dξ = 0.

• Entropy product (⇒second law of thermodynamics):∑
α

∫
R3

lnFα(
∂Fα
∂t

)collision dξ ≤ 0,

with equality iff Fα for all α are Maxwellians.



The type of binary collisions depends on the physical
situation under consideration:

I Landau collision (Fokker-Planck type): fully ionized plasma,
all collisions grazing

I Boltzmann collision: fully ionized plasma, collisions grazing at
the deflection angle θ = 0 (non-cutoff vs cutoff)

I Linear Boltzmann collision: weakly ionized plasma
(α = i, e, n), Qαα (α = i, e) skipped. In this case, no
conservations of momentum and energy.

I ...



Boltzmann’s H-theorem:

∂tF = Q(F, F )⇒ d

dt

∫
R3

dξ {−F logF} ≥ 0.

I (Physical) entropy increasing. This gives a description of the
second law of thermodynamics.

I Entropy takes the maximization at the Maxwellian

M = M[ρ,u,T ](ξ) =
ρ

(2πT )3/2
e−
|ξ−u|2

2T .

ρ : density, u : bulk velocity, T : temperature.

I Goal: prove stability and convergence rate of solutions around
the (global) Maxwellian or a non-trivial profile (wave pattern) in
the spatially non-homogeneous case.



Associated with Fα(t, x, ξ), one can introduce the macro
moments

nα(t, x) ≡
∫
R3

Fα(t, x, ξ) dξ,

uα(t, x) ≡ 1

nα(t, x)

∫
R3

ξFα(t, x, ξ) dξ,

θα(t, x) ≡ 1

3kαnα

∫
R3

|ξ − uα(t, x)|2Fα(t, x, ξ) dξ, kα =
kB
mα

,

and the high-order moments (thermal quantities)

Pα(t, x) ≡ mα

∫
R3

(ξ − uα)⊗ (ξ − uα)Fα(t, x, ξ) dξ

= pαI + Πα, pα = kBnαθα,

hα(t, x) ≡ 1

2
mα

∫
R3

|ξ − uα|2(ξ − uα)Fα(t, x, ξ) dξ,

Rα(t, x) ≡
∑
β

∫
R3

mα(ξ − uα)Cαβ dξ,

Qα(t, x) ≡
∑
β

∫
R3

1

2
mα|ξ − uα|2Cαβ dξ.



Macro fluid moment system (Euler-Maxwell, un-closed!!!):

(∂t + uα · ∇x)nα + nα∇x · uα = 0,

nαmα(∂t + uα · ∇x)uα +∇x(kBnαθα)

= nαqα(E +
uα
c
×B)−∇x ·Πα +Rα,

3

2
nα(∂t + uα · ∇x)kBθα + kBnαθα∇x · uα

= −Πα : ∇xuα −∇x · hα +Qα,

coupled to

∂tE − c∇×B = −4π
∑
α

qαnαuα,

∂tB + c∇× E = 0,

∇ · E = 4π
∑
α

qαnα, ∇ ·B = 0.



The mathematical results for the VMB in perturbation
framework (Pure BE1: Carleman, Grad, UKai,...):

Qαβ(Fα, Fβ) =
1

ε

∫
R3

∫
S2

q(ξ − ξ∗, ω){Fα(ξ′)Fβ(ξ′∗)− Fα(ξ)Fβ(ξ∗)} dξdω,

where for ω ∈ S2,

ξ′ = ξ − 2mβ

mα +mβ
[(ξ − ξ∗) · ω]ω,

ξ′∗ = ξ∗ +
2mα

mα +mβ
[(ξ − ξ∗) · ω]ω.

q(ξ − ξ∗, ω) = |(ξ − ξ∗) · ω|. (Hard-sphere model)

I Ω = T3

I Global existence: Guo (IM, 2003) (Energy method)

I Large-time behavior of solutions: Jang (ARMA, 2009)
(t−∞)

1Non-perturbation framework: DiPerna-Lions, Desvillettes-Villani,
Gualdani-Mischler-Mouhot (arXiv),...



I Ω = R3

I Global existence: Strain (CMP, 2006) (Use two-species’
cancelation property to control E and pure time
derivatives)

I Large-time behavior of solutions: D.-Strain (2010)
(t−3/4, Linearized analysis + bootstrap to the nonlinear
equation)

Note: Mathematically it is highly nontrivial to generalize all
the above results to the case of non hard-sphere model
(γ < 1).

(Why? It is formally due to L ∼ |ξ|γ with γ ≤ 1 but N ∼ |ξ|,
for large |ξ|! )



Remark: Energy and energy product in the Fourier space at
the linearized level for Ω = R3 (D.-Strain):

∂tE(t, k)

+λ‖ν1/2{I−P}û‖2
L2
ξ

+ λ|k|2
1+|k|2 ‖Pû‖

2
L2
ξ

+ λ|Ê|2 + λ|k|2
(1+|k|2)2 |B̂|

2 ≤ 0,

with
E(t, k) ∼ ‖û‖2L2

ξ
+ |[Ê, B̂]|2.

This implies

E(t, k) ≤ e−
λ|k|2

(1+|k|2)2
tE(0, k).

I For k 6= 0, iR ∩ σ(B̂(ik)) = ∅ but one branch of λ(ik) tends to
0 with rate 1/|k|2 as |k| → ∞.

I It also means that (iτ + B)−1 is unbounded as |τ | → ∞.

I Abstract spectral theory and applications to the Bresse
system for polynomial stability of semigoup: Rivera-Racke,
Liu-Rao, Batty,...



Questions:

I Is the energy product optimal? (Li-Yang-Zhong (Spectral
analysis, arXiv, 2014))

I Can the fluid-type system (Euler-Maxwell) with
dampings enjoy a similar property?
(Ueda-Kawashima(MAA, 2011), D. (JHDE 2011),
Ueda-Wang-Kawashima (SIMA 2012), ...)

I What happens to the long-range potentials with/without
angular cutoff? (Guo (VPL, JAMS 2012)→VPB, VMB,
or VML???)

I Abstract theory? (Kawashima’s compensation
function→coupling system)

I Stability of the non-trivial profile (wave patterns)?



II: Eigenvalue problem on Euler-Maxwell with collisions

Non-damped case:

I One-fluid case for electrons: Germain-Masmoudi (dispersive but still
a kind of system of Klein-Gordon equations with different speeds!
arXiv 2011)

I Two-fluid case: Guo-Ionescu-Pausader (arXiv 2013)



II-1: Case of one-fluid for electrons



Consider the Euler-Maxwell system with relaxation2:

∂tn+∇ · (nu) = 0,

∂tu+ u · ∇u+
1

n
∇p(n) = −(E + u×B)−νu,

∂tE −∇×B = nu,

∂tB +∇× E = 0,

∇ · E = nb − n, ∇ ·B = 0.

Here, n = n(t, x) ≥ 0, u = u(t, x) ∈ R3, E = E(t, x) ∈ R3 and
B = B(t, x) ∈ R3, for t > 0, x ∈ R3, denote the electron
density, electron velocity, electric field and magnetic field,
respectively. Initial data is given as

[n, u,E,B]|t=0 = [n0, u0, E0, B0], x ∈ R3.

2D. Nicholson, Introduction to Plasma Theory, 1992.



Consider the linearized homogeneous system for
U = [ρ, u,E,B] around [ρ = 1, u = 0, E = 0, B = 0]:

∂tρ+∇ · u = 0,

∂tu+ γ∇ρ+E+u = 0,

∂tE −∇×B−u = 0,

∂tB +∇× E = 0,

∇ · E = −ρ, ∇ ·B = 0, t > 0, x ∈ R3,

with given initial data

U |t=0 = U0 := [ρ0, u0, E0, B0], x ∈ R3,

satisfying the compatible condition

∇ · E0 = −ρ0, ∇ ·B0 = 0.



For t ≥ 0 and k ∈ R3 with |k| 6= 0, define the decomposition
ρ̂(t, k)
û(t, k)

Ê(t, k)

B̂(t, k)

 =


ρ̂(t, k)
û‖(t, k)

Ê‖(t, k)

0

+


0

û⊥(t, k)

Ê⊥(t, k)

B̂⊥(t, k)

 ,
where û‖, û⊥ are defined by

û‖ = k̃k̃ · û, û⊥ = −k̃ × (k̃ × û) = (I3 − k̃ ⊗ k̃)û,

Define

U I = F−1
 ρ̂(t, k)
û‖(t, k)

Ê‖(t, k)

 , U II = F−1
 û⊥(t, k)

Ê⊥(t, k)

B̂⊥(t, k)

 .
Then,

U = U I + U II .



Theorem
U I , U II satisfies

∂2t U
I − γ∆U I + U I + ∂tU

I = 0,

∂tU
II +

 I3 I3 0
−I3 0 −∇×

0 ∇× 0

U II = 0.

Furthermore, FU I = GI7×7(t, k)FU I0 with

GI7×7 = e−
t
2 cos(

√
3/4 + γ|k|2t)

1
03

03


+e−

t
2

sin(
√

3/4 + γ|k|2t)√
3/4 + γ|k|2

 1/2 −ik 0
−iγk −1/2I3 −I3

0 I3 1/2I3

 .



To solve U II , consider the characteristic equation

F (χ) := χ3 + χ2 + (1 + |k|2)χ+ |k|2 = 0.

Lemma
Let |k| 6= 0. The equation F (χ) = 0, χ ∈ C, has a real root
σ = σ(|k|) ∈ (−1, 0) and two conjugate complex roots

χ± = β ± iω with β = β(|k|) ∈ (−1/2, 0) and

ω = ω(|k|) ∈ (
√

6/3,∞) satisfying

β = −σ + 1

2
, ω =

1

2

√
3σ2 + 2σ + 3 + 4|k|2.

σ, β, ω are smooth over |k| > 0, and σ(|k|) is strictly decreasing
in |k| > 0 with

lim
|k|→0

σ(|k|) = 0, lim
|k|→∞

σ(|k|) = −1.



Lemma (cont.)

Mover, the following asymptotic behaviors hold true:

σ(|k|) = −O(1)|k|2,

β(|k|) = −1

2
+O(1)|k|2, ω(|k|) =

√
3

2
+O(1)|k|

whenever |k| ≤ 1 is small, and

σ(|k|) = −1 +O(1)|k|−2,
β(|k|) = −O(1)|k|−2, ω(|k|) = O(1)|k|

whenever |k| ≥ 1 is large. Here and in the sequel O(1) denotes a
generic strictly positive constant.



Remarks:

• Recently Ueda-D.-Kawashima (2012) developed a general
theory for characterising the structure of the linear
symmetric hyperbolic system with partially relaxation in the
case of the regularity-loss type (p = 1, q = 2)

E(t, k) ≤ e−λ
|k|2p

(1+|k|2)2q
tE(0, k).

Only Fourier energy method!

The key point is to introduce a symmetric matrix S besides
the skew-symmetric matrix K.

• More recently Ueda-D.-Kawashima (2013) also constructed
two classes of concrete regularity-loss type (p < q) models for
more general values of (p, q) in terms of phase dimensions.



II-2: Case of two-fluid:
Justification of diffusion effect



Consider the two-fluid (α = i, e) Euler-Maxwell system

∂tnα +∇ · (nαuα) = 0,

mαnα(∂tuα + uα · ∇uα) +∇pα(nα)

= qαnα(E +
uα
c
×B)−ναmαnαuα,

∂tE − c∇×B = −4πJ,

∂tB + c∇× E = 0,

∇ · E = 4πρ, ∇ ·B = 0,

with
J =

∑
α

qαnαuα, ρ =
∑
α

qαnα.

t ≥ 0, x ∈ R3.



Our goal is to give a complete analysis of

• eigenvalue problems,
• as well as the optimal large-time behaviour of solutions,
i.e., tending time-asymptotically linear diffusive waves.

This can be regarded as an attempt for the mathematical
justification of Darcy’s law in the context of two-fluid plasma
with collisions at the linear level.



Heuristic derivation of diffusion waves:

Expected long-term asymptotic profile satisfies the
quasi-neutral assumption:

ni = ne = n(t, x), ui = ue = u(t, x), B = Const.

Assume: B = (0, 0, |B|) along x3-direction. Then, the
momentum equations

∇pα(n) = qαn
(
E +

u

c
×B

)
− ναmαnu,

can uniquely determine (pα(n) = Tαn w.l.g.)

n


u1

u2

u3

 =


− Ti+Te
miνi+meνe

0 0

0 − Ti+Te
miνi+meνe

0

0 0 − Ti+Te
miνi+meνe



∂1n

∂2n

∂3n

 .



and moreover,

n


E1

E2

E3

 =
1

e


Timeνe−Temiνi
miνi+meνe

e|B|
c

Ti+Te
miνi+meνe

0

− e|B|c
Ti+Te

miνi+meνe
Timeνe−Temiνi
miνi+meνe

0

0 0 Timeνe−Temiνi
miνi+meνe



∂1n

∂2n

∂3n

 .

Notice that n therefore satisfies the diffusion equation

∂tn− µ1∆n = 0, µ1 :=
Ti + Te

miνi +meνe
.

Whenever pα(·) takes the γ-law, the corresponding diffusion
wave is nonlinear with isotropic diffusion coefficient.



From

I R.J. Goldston and P.H. Rutherford, Introduction to Plasma
Physics, Taylor & Francis (1995).

it is said that
196 DifSusion in plasmas 

The ambipolar electron and ion fluxes are then obtained from equation (12.22) 
for electrons: 

nuel = nuil = - D , V l n  (12.24) 

where 

(12.25) 

where (rk) = T'/(mo;) = mTe/ (e2B2)  is the mean-square Larmor radius of 
the electrons. The diffusion coefficient D, is seen to be inversely proportional to 
B 2 .  Clearly, our result agrees-at least in some sense-with the heuristic result 
given in equation (12.10), except that ambipolar diffusion is at the slower rate 
similar in order-of-magnitude to that given by equation (12.10) for electrons. 

However, the electric field required for ambipolar diffusion perpendicular to 
a magnetic field can sometimes be short-circuited by an imbalance in fluxes along 
B. Specifically, the negative charge resulting from the net perpendicular outflux 
of ions can be dissipated by electrons escaping along field lines. Although the 
total diffusion must be ambipolar, the perpendicular part of the losses need not 
be ambipolar; the ions can diffuse across the field, while the electrons are lost 
primarily along the field. 

Whether or not this occurs depends on the geometry of the particular 
magnetic configuration and on experimental conditions. In a mirror-trapped 
plasma on open field lines, the losses of electrons along the field generally 
far exceed the ion cross-field losses, so the plasma tends to become positively 
charged, in accordance with the requirement for ambipolar diffusion along (or 
without) a magnetic field. In the opposite case of a 'closed' plasma configuration, 
in which the field lines close back on themselves so that there is no possibility 
of escape along the field, the cross-field losses of ions are dominant, and the 
plasma tends to become negatively charged, in accordance with the requirement 
for ambipolar diffusion across a magnetic field. In a cylindrical plasma column 
with the field lines terminating on conducting end-plates, the ambipolar electric 
field is short-circuited out; each species is then able to diffuse radially at a 
different rate, provided there is sufficiently rapid compensating diffusion of net 
charge in the parallel direction to the end-plates. 

12.5 DIFFUSION IN FULLY IONIZED PLASMAS 

We will consider next the diffusion perpendicular to a magnetic field in a 
fully ionized plasma, where Coulomb collisions dominate over collisions with 
neutral atoms. 

Copyright © 1995 IOP Publishing Ltd.

Remark: A cancelation effect due to two-fluid could be
ignored in the above formal argument of the textbook.



The expected asymptotic equations for the electromagnetic
part in the sense of ”Darcy’s Law”:

− eĒ⊥ +miνiūi,⊥ = 0,

eĒ⊥ +meνeūe,⊥ = 0,

− c∇× B̄ + 4πn(eūi,⊥ − eūe,⊥) = 0,

∂tB̄ + c∇× Ē⊥ = 0.

Letting n = 1, this gives

∂tB̄ − µ2∆B = 0, µ2 =
c2miνimeνe

4πe2(miνi +meνe)
,

ūi,⊥ =
e

miνi
Ē⊥ =

c

4πe

meνe
miνi +meνe

∇× B̄,

ūe,⊥ = − e

meνe
Ē⊥ = − c

4πe

miνi
miνi +meνe

∇× B̄,

Ē⊥ =
c

4πe2
miνimeνe
miνi +meνe

∇× B̄.



Goal: Mathematical justification!



Main results: (D.-Liu-Zhu, arXiv 2014)

• Eigenvalue analysis shows that

|Û(t, k)− Û(t, k)| . χ|k|≤1|k|e−λ|k|
2t|Û0(k)|+χ|k|≥1e

− λ
|k|2

t|Û0(k)|,

where U is the solution to the linearized Cauchy problem
with initial data U0, and U is the solution to the asymptotic
diffusion equations with the same initial data.

The proof is also combined with the Fourier energy estimate
for the high-frequency region.



• Solutions to the nonlinear Cauchy problem tend
time-asymtotically toward the diffusion waves with a faster
rate than the one in which solutions themselves decay.
Precisely, let U = [ρα, uα, E,B] be the solution the perturbed
Cauchy problem on the Euler-Maxwell system with initial
data U0. Define U∗ = U∗(x, t) = [ρ∗, u∗α, E

∗, B∗] by

ρ∗(x, t) =Gµ1
(x, t+ 1)

(
miνi

miνi +meνe

∫
R3

ρi0(x)dx

+
meνe

miνi +meνe

∫
R3

ρe0(x)dx

)
,

B∗(x, t) =Gµ2(x, t+ 1)

∫
R3

B̄0(x)dx = Gµ2(x, t+ 1)

∫
R3

B0(x)dx,

u∗α(t, x) = − Ti + Te
miνi +meνe

∇n∗(t, x) +
c

4πqα

meνe
miνi +meνe

∇×B∗(t, x),

E∗(t, x) =
Timeνe − Temiνi
e(miνi +meνe)

∇n∗(t, x) +
c

4πe2
miνimeνe
miνi +meνe

∇×B∗(t, x).



Then, one can show:

‖(U − U∗)(t)‖ . (1 + t)−
5
4 ,

under additional conditions on initial data:∫
R3

ρα0(x) dx = 0,

∫
R3

B0(x) dx = 0.

Remark:
‖U∗(t)‖ ∼ (1 + t)−

3
4

⇒U∗ is a large-time asymptotic profile in terms of Darcy’s
law! More precisely,∑

α=i,e

‖ρα − ρ∗‖+ ‖B −B∗‖ ≤ C(1 + t)−
5
4 ,

and ∑
α=i,e

‖uα − u∗α‖+ ‖E − E∗‖ ≤ C(1 + t)−
7
4 .



Approach: Energy estimate combined with the result from
the spectral analysis (D.-Ukai-Yang-Zhao 2008)

U − U∗ = (U − etLU0)︸ ︷︷ ︸
I

+ (etLU0 − Ū)︸ ︷︷ ︸
II

+ (Ū − U∗)︸ ︷︷ ︸
III

,

that is,

ρα − ρ∗ =
(
ρα −P1αe

tLU0

)
+
(
P1αe

tLU0 − ρ̄
)

+ (ρ̄− ρ∗) ,
uα − u∗ =

(
uα −P2αe

tLU0

)
+
(
P2αe

tLU0 − ūα
)

+ (ūα − u∗α) ,

E − E∗ =
(
E −P3e

tLU0

)
+
(
P3e

tLU0 − Ē
)

+
(
Ē − E∗

)
,

B −B∗ =
(
B −P4e

tLU0

)
+
(
P4e

tLU0 − B̄
)

+
(
B̄ −B∗

)
.



Remark: It seems more interesting to justify the asymptotic
equations in the sense of generalised Darcy’s laws in the
following settings

I nonlinear diffusion connecting different end states along
one direction (Hsiao-Liu, CMP 1992);

I appearance of vacuum related to the asymptotic stability
of Barenblatt solution (Huang-Marcati-Pan, ARMA
2005).



III: Two-fluid VMB system without angular cutoff

Recent progress in non-cutoff case for the pure Boltzmann:

I Alexandre-Morimoto-Ukai-Xu-Yang (AMUXY) (CMP 2011,
JFA 2012)

I Gressman-Strain (JAMS, 2011)



Consider the Boltzmann equations

∂tF+ + ξ · ∇xF+ + (E + ξ ×B) · ∇ξF+ = Q(F+, F+) +Q(F+, F−),

∂tF− + ξ · ∇xF− − (E + ξ ×B) · ∇ξF− = Q(F−, F+) +Q(F−, F−),

coupling to

∂tE −∇x ×B = −
∫
R3

ξ(F+ − F−) dξ,

∂tB +∇x × E = 0,

∇x · E =

∫
R3

(F+ − F−) dξ, ∇x ·B = 0.



Here

F± = F±(t, x, ξ) ≥ 0,

x = (x1, x2, x3) ∈ R3, ξ = (ξ1, ξ2, ξ3) ∈ R3, t ≥ 0.

Initial data:

F±(0, x, ξ) = F0,±(x, ξ), E(0, x) = E0(x), B(0, x) = B0(x),

with

∇x · E0 =

∫
R3

(F0,+ − F0,−) dξ, ∇x ·B0 = 0.



Boltzmann collision operator:

Q(F,G) =

∫
R3×S2

q(ξ − ξ∗, σ)
[
F (ξ′)G(ξ′∗)− F (ξ)G(ξ∗)

]
dξ∗dσ,

ξ′ =
ξ + ξ∗

2
+
|ξ − ξ∗|

2
σ, ξ′∗ =

ξ + ξ∗
2
− |ξ − ξ∗|

2
σ.

q(ξ − ξ∗, σ) = Cq|ξ − ξ∗|γb(cos θ),

with

cos θ = σ · (ξ − ξ∗)/|ξ − ξ∗|

Cq > 0, γ > −3

∃ Cb > 0, 0 < s < 1 s.t.

1

Cbθ1+2s
≤ sin θ b(cos θ) ≤ Cb

θ1+2s
, ∀ θ ∈ (0,

π

2
].



Our interest:

I Collisions by Boltzmann for angular non-cutoff and for
soft potentials

I Electric-magnetic fields occur

I No relativistic effect



Reformulation of Cauchy problem:

F±(t, x, ξ) = µ+ µ1/2f±(t, x, ξ), µ = µ(ξ) = (2π)−3/2e−|ξ|
2/2,

satisfies

∂tf + ξ · ∇xf + q0(E + ξ ×B) · ∇ξf − E · ξµ1/2q1 + Lf

=
q0
2
E · ξf + Γ(f, f),

∂tE −∇x ×B = −
∫
R3

ξµ1/2(f+ − f−) dξ,

∂tB +∇x × E = 0,

∇x · E =

∫
R3

µ1/2(f+ − f−) dξ, ∇x ·B = 0

Here, q0 = diag(1,−1), q1 = [1,−1], f = [f+, f−].

L ∼ (1 + |ξ|)γ{I−P}!!!



Theorem (D.-Liu-Yang-Zhao, KRM ’13)

Assume

max

{
−3,−3

2
− 2s

}
< γ < −2s,

1

2
≤ s < 1.

For initial data (f0(x, ξ), E0(x), B0(x)) regular enough and
small enough, Cauchy problem on Vlasov-Maxwell-Boltzmann
system admits a unique classical solution

(f(t, x, ξ), E(t, x), B(t, x))

satisfying

‖f(t)‖L2
x,ξ

+ ‖(E,B)(t)‖L2 . (1 + t)−
3
4 ,

‖∇xf(t)‖L2
x,ξ

+ ‖∇x(E,B)(t)‖L2 . (1 + t)−
5
4 .



Remarks:

I Convergence rates are the same as those obtained by Ukai’s
spectrum method for the angular cutoff Boltzmann equation
without forces (E = B = 0).

I Collision kernel includes the inverse power law which can be
close to the Coulomb potential, i.e. γ → −3+, s→ 1−.

I Restriction s ≥ 1/2 is technical and essentially needed in our
proof, since by AMUXY

C1

{
|f |2Hs

γ/2
+ |f |2L2

s+γ/2

}
≤ |f |2D ≤ C2|f |2Hs

s+γ/2
,

for f ∈ (kerL)⊥, where |f |2D = 〈−Lf, f〉 is the Dirichlet norm.



Main difficulties and our efforts in the proof

I Angular non-cutoff:

I Use the commutator estimates by AMUXY
I Extra effort: Introduce the exponential weight into the

non-cutoff framework

I Soft potentials:

I Use the weighted energy norm by Guo
I Extra effort: To take care the nonlinear estimates, use

the velocity-time-dependent weight (D.-Yang-Zhao, ’12):

wτ,λ = wτ,λ(t, ξ) = 〈ξ〉γτexp

{
λ

(1 + t)ϑ
〈ξ〉
}
.

Note: Guo’s trick (JAMS ’12):

e∓φf±(∓1

2
∇xφ · ξf± + ξ · ∇xf±) =

1

2
ξ · ∇x(e∓φf2±)

fails in the case of non-potential forces!



Main difficulties and our efforts in the proof (cont.)

I Regularity-loss of (E,B):

I D.-Strain: The dissipation rate of ‖(E,B)‖2HN includes
only

‖E‖2HN−1 + ‖∇xB‖2HN−2 .

I Extra effort: Make the time-weighted estimates with
time weight of negative power

d

dt

[
(1 + t)−σ‖(E,B)(t)‖2HN

]
+ σ(1 + t)−σ−1‖(E,B)(t)‖2HN

≤ “h.o.t.”

Such approach firstly introduced by Hosono-Kawashima
(M3AS 2006).



IV: Non-trivial large-time behaviour of VPB system



Consider the Vlasov-Poisson-Boltzmann system:

0 ≤ F = F (t, x, ξ), t ≥ 0, x ∈ R, ξ = (ξ1, ξ2, ξ3) ∈ R3:


∂tF + ξ1∂xF−∂xφ∂ξ1F = Q(F, F ),

−∂2xφ = ρ− ρe(φ), ρ =

∫
R3

F dξ,

with
F (0, x, ξ) = F0(x, ξ) ≥ 0.

We assume

lim
x→±∞

F0(x, ξ) =
ρ±

(2πθ±)3/2
e
− |ξ−u±|

2

2θ± , u± = [u1±, 0, 0],

lim
x→±∞

φ(t, x) = φ±, ρ± = ρe(φ±).



A typical example3:

ρe(φ) =

[
1 +

γe − 1

γe

φ

Ae

] 1
γe−1

,

with
γe > 1, φm = − γe

γe − 1
Ae, φM = +∞,

motivated by the momentum equation of electrons under the
assumption that the electron mass is sufficiently small:

meρe(∂tue + ue∂xue)+∂x (Aeρ
γe
e ) = ρe∂xφ.

The limit case γe → 1 (electron isothermal):

ρe(φ) = e
φ
Ae .

3This has been recently used by D. Han-Kwan (CPDE 2011,...)



In general, we assume

(A) ρe(φ) : (φm, φM )→ (ρm, ρM ) is a positive smooth
function with

ρm = inf
φm<φ<φM

ρe(φ), ρM = sup
φm<φ<φM

ρe(φ),

and

(A1) ρe(0) = 1 with 0 ∈ (φm, φM );
(A2) ρe(φ) > 0, ρ′e(φ) > 0 for each φ ∈ (φm, φM );
(A3) ρe(φ)ρ′′e(φ) ≤ [ρ′e(φ)]2 for each φ ∈ (φm, φM ).



Motivation of introducing (A3): Define

P φ(ρ) =

∫ ρ %

ρ′e(ρ
−1
e (%))

d%,

in terms of
∂xP

φ(ρ) = ρ∂xφ

under the quasi-neutral assumption ρ = ρe(φ). One can check

∂ρP
φ(ρ) =

ρe(φ)

ρ′e(φ)
, ∂2ρP

φ(ρ) =
[ρ′e(φ)]2 − ρe(φ)ρ′′e(φ)

[ρ′e(φ)]3
,

with φ = ρ−1e (ρ) on the right. Due to (A2) and (A3),

∂ρP
φ(ρ) > 0, ∂2ρP

φ(ρ) ≥ 0,

for each ρ ∈ (ρm, ρM ).



Previous works on the pure Boltzmann:

(∂t + ξ · ∇x)F = Q(F, F ).

I Shock wave: Caflisch-Nicolaenko, Liu-Yu, Yu,...

I Rarefaction wave: Liu-Yang-Yu-Zhao,...

I Contact discontinuity: Huang-Yang,...

However,

no result on the Vlasov-Poisson-Boltzmann!

Remark: φ(t, x) satisfying the Poisson equation may take the
distinct states at both far fields x = ±∞:

φ(t,−∞) 6= φ(t,+∞), t ≥ 0.



The goal of this work:

I Construct the rarefaction wave of VPB system:

M[ρR,uR,θR](x/t)(ξ), φR(x/t),

with

M[ρR,uR,θR](z)(ξ)→M[ρ±,u±,θ±](ξ) as z → ±∞
φR(z)→ φ± as z → ±∞;

I Prove that the rarefaction wave is time-asymptotically
stable under small perturbation:

f(t, x, ξ)→M[ρR,uR,θR](x/t)(ξ), φ(t, x)→ φR(x/t),

as t→∞, whenever they are sufficiently “close” at
initial time.



Recall that

ψ0 = 1, ψi = ξi (i = 1, 2, 3), ψ4 =
1

2
|ξ|2,

are five collision invariants satisfying∫
R3

ψiQ(F, F ) dξ = 0 for i = 0, 1, 2, 3, 4.

Maro-Micro decomposition (Liu-Yang-Yu):

F (t, x, ξ) = M(t, x, ξ) + G(t, x, ξ),

with

M[ρ(t,x),u(t,x),θ(t,x)](ξ) ≡
ρ(t, x)

(2πRθ(t, x))
3
2

exp

(
−|ξ − u(t, x)|2

2Rθ(t, x)

)
,

through

ρ(t, x) ≡
∫
R3

F (t, x, ξ) dξ,

ρ(t, x)ui(t, x) ≡
∫
R3

ψi(ξ)F (t, x, ξ) dξ, i = 1, 2, 3,[
ρ

(
3

2
Rθ(t, x) +

1

2
|u(t, x)|2

)]
≡
∫
R3

ψ4(ξ)F (t, x, ξ) dξ.



Euler-Poisson type system (unclosed!): From∫
R3

ψi (∂tF + ξ1∂xF − ∂xφ∂ξ1F ) dξ = 0, i = 0, 1, 2, 3, 4,

one can deduce (P = Rρθ)

∂tρ+ ∂x(ρu1) = 0,

∂t(ρu1) + ∂x(ρu21) + ∂xP+ρ∂xφ = −
∫
R3

ξ21∂xG dξ,

∂t(ρui) + ∂x(ρu1ui) = −
∫
R3

ξiξ1∂xG dξ, i = 2, 3,

∂t

[
ρ

(
3

2
Rθ +

1

2
|u|2
)]

+ ∂x

[
u1

(
ρ

(
3

2
Rθ +

1

2
|u|2
)

+ P

)]
+ρu1∂xφ = −1

2

∫
R3

|ξ|2ξ1∂xG dξ,

−∂2xφ = ρ− ρe(φ).



To capture viscosity and heat-conductivity, we rewrite

(∂t + ξ1∂x − ∂xφ∂ξ1)(M + G) = Q(M + G,M + G),

and apply the projection PM
1 : f 7→ G = f −M to it, so

∂tG+PM
1 (ξ1∂xM)+PM

1 (ξ1∂xG)−∂xφ∂ξ1G = LMG+Q(G,G).

This further implies

G = L−1M

(
PM

1 (ξ1∂xM)
)

+ Θ,

with

Θ = L−1M

[
∂tG + PM

1 (ξ1∂xG)−∂xφ∂ξ1G
]
− L−1M [Q(G,G)].

Plugging to zero-order fluid type system, we obtain



Navier-Stokes-Poisson type system (unclosed!):

∂tρ+ ∂x(ρu1) = 0,

∂tu1 + u1∂xu1 +
∂xP

ρ
+ ∂xφ =

3

ρ
∂x (µ(θ)∂xu1)−

1

ρ

∫
R3

ξ21∂xΘ dξ,

∂tui + u1∂xui =
1

ρ
∂x (µ(θ)∂xui)−

1

ρ

∫
R3

ξ1ξi∂xΘ dξ, i = 2, 3,

∂t

(
E +

1

2
|u|2
)

+ u1∂x

(
E +

1

2
|u|2
)

+
∂x(Pu1)

ρ
+ u1∂xφ

=
1

ρ
∂x (κ(θ)∂xθ) +

3

ρ
∂x (µ(θ)u1∂xu1) +

1

ρ

3∑
i=2

∂x (µ(θ)ui∂xui)

− 1

2ρ

∫
R3

|ξ|2ξ1∂xΘ dξ,

−∂2xφ = ρ− ρe(φ).



We expect (Why?) that the large-time behaviour is
determined by the quasineutral Euler system

∂tρ+ ρ∂xu1 + u1∂xρ = 0,

∂tu1 + u1∂xu1 +
∂xP

ρ
+ ∂xφ = 0,

∂tθ + u1∂xθ +
P∂xu1
ρ

= 0,

ρ = ρe(φ),

or equivalently,
∂tρ+ ρ∂xu1 + u1∂xρ = 0,

∂tu1 + u1∂xu1 +
∂x[P + P φ(ρ)]

ρ
= 0,

∂tS + u1∂xS = 0,

with P = keSρ5/3.



The Q.E. system has three characteristics
λ1 = λ1(ρ, u1, S) ≡ u1 −

√
∂ρP (ρ, S) + ∂ρP φ(ρ),

λ2 = λ2(ρ, u1, S) ≡ u1,

λ3 = λ3(ρ, u1, S) ≡ u1 +
√
∂ρP (ρ, S) + ∂ρP φ(ρ).

The admissible set of 3-rarefaction wave:

R3(ρ−, u1−, θ−) ≡
{

[ρ, u1, θ] ∈ R+ × R× R+

∣∣∣ ρ2/3
θ

=
ρ
2/3
−
θ−

,

u1−u1− =

∫ ρ

ρ−

√
∂ρP (%, Si) + ∂ρP φ(%)

%
d%, ρ > ρ−, u1 > u1−

}
.



The 3-rarefaction wave
[
ρR, uR1 , θ

R
]

(z) with z = x/t ∈ R:



λ3

(
ρR(z), uR1 (z), Si

)

=


λ3(ρ−, u1−, Si) for z < λ3(ρ−, u1−, Si),

z for λ3(ρ−, u1−, Si) ≤ z ≤ λ3(ρ+, u1+, Si),

λ3(ρ+, u1+, Si) for z > λ3(ρ+, u1+, Si),

uR1 (z)− u1− =

∫ ρR(z)

ρ−

√
5

3
Ai%

− 4
3 + %−1

(
d

dρ
(ρ−1
e )

)
(%) d%,

θR(z) = 3
2
Ai(ρ

R(z))2/3.



The smooth rarefaction wave [ρr, ur, θr](t, x) and φr(t, x) with
ur(t, x) = [ur1(t, x), 0, 0] are defined by

λ3(ρr(t, x), ur1(t, x), Si) = w(t, x),

ur1(t, x)− u1− =

∫ ρr(t,x)

ρ−

√
5

3
Ai%

− 4
3 + %−1

(
d

dρ
(ρ−1
e )

)
(%) d%,

θr(t, x) = 3
2
Ai(ρ

r(t, x))2/3, φr(t, x) = ρ−1
e (ρr(t, x)),

lim
x→±∞

[ρr, ur1, θ
r](t, x) = [ρ±, u1±, θ±], [ρ+, u1+, θ+] ∈ R3(ρ−, u1−, θ−),

with w = w(t, x) being the solution to the Burgers’ equation
∂tw + w∂xw = 0,

w(0, x) = w0(x)
def
= 1

2
(w+ + w−) + 1

2
(w+ − w−) tanh(εx),

w±
def
= λ3(ρ±, u1±, Si).

Here ε > 0 is a constant to be chosen later on.



A technical notion for the weighted energy estimates:

Let the reference weight function M∗ = M∗(ξ) = M[ρ∗,u∗,θ∗](ξ)
be a global Maxwellian such that the constant state
[ρ∗, u∗, θ∗] with u∗ = [u1∗, 0, 0] satisfies


1
2 sup
(t,x)∈R+×R

θr(t, x) < θ∗ < inf
(t,x)∈R+×R

θr(t, x),

sup
(t,x)∈R+×R

{|ρr(t, x)− ρ∗|+ |ur(t, x)− u∗|+ |θr(t, x)− θ∗|} < η0,

for a constant η0 > 0 which is not necessarily small.

Remark: All inequalities are strict! (Why needed? It is also
true for solutions due to small perturbation!!!)



Theorem (D.-Liu, arXiv:1405.2522)

Assume that [ρ+, u1+, θ+] ∈ R3(ρ−, u1−, θ−), ρ± = ρe(φ±) with
φ± ∈ (φm, φM ), and ρe(·) satisfies (A). Let

δr = |ρ+ − ρ−|+ |u1+ − u1−|+ |θ+ − θ−|

be the wave strength which is not necessarily small. There are
ε0 > 0, 0 < σ0 < 1/3 and C0 > 0, which may depend on δr and
η0, such that if F0(x, ξ) ≥ 0 and∑
|α|+|β|≤2

∥∥∥∂αx ∂βξ (F0(x, ξ)−M[ρr,ur,θr ](0,x)(ξ)
)∥∥∥2
L2
x

(
L2
ξ

(
1√

M∗(ξ)

)) + ε ≤ ε20,

then the Cauchy problem on the Vlasov-Poisson-Boltzmann
system admits a unique global solution

[F (t, x, ξ), φ(t, x)],

satisfying



Theorem (conti.)

F (t, x, ξ) ≥ 0

and

sup
t≥0

∑
|α|+|β|≤2

∥∥∥∂αx ∂βξ (F (t, x, ξ)−M[ρr,ur,θr](t,x)(ξ)
)∥∥∥2
L2
x

(
L2
ξ

(
1√

M∗(ξ)

))

+ sup
t≥0

∑
|α|≤2

∥∥∂αx (φ(t, x)− ρ−1e (ρr(t, x))
)∥∥2
H1 ≤ C0ε

2σ0
0 .

Moreover, it holds that

sup
t→+∞

sup
x∈R

{∥∥∥F (t, x, ξ)−M[ρR,uR,θR](x/t)(ξ)
∥∥∥
L2
ξ

(
1√

M∗(ξ)

)

+
∣∣φ(t, x)− ρ−1e

(
ρR(x/t)

)∣∣} = 0.



Final Remark: Two-fluid Navier-Stokes-Poisson system:

∂tni + ∂x(niui) = 0,

mini(∂tui + ui∂xui) + Ti∂xni − ni∂xφ = µi∂
2
xui,

∂tne + ∂x(neue) = 0,

mene(∂tue + ue∂xue) + Te∂xne + ne∂xφ = µe∂
2
xue,

∂2xφ = ni − ne, t > 0, x ∈ R.

Initial data are given by

[nα, uα](0, x) = [nα0(x), uα0(x)], α = i, e, x ∈ R,

with
lim

x→±∞
[nα0, uα0](x) = [n±, u±], α = i, e.

The boundary values of φ at infinity are set by

lim
x→±∞

φ(t, x) = φ±, t ≥ 0.



Large-time behavior for rarefaction waves can be determined by
the quasineutral Euler system

∂tn+ ∂x(nu) = 0,

n(∂tu+ u∂xu) +
Ti + Te
mi +me

∂xn = 0,

with the potential function φ in large time determined by

φ =
Time − Temi

mi +me
lnn.

We can also show

nα(t, x)→ nR(x/t), uα(t, x)→ uR(x/t), α = i, e,

and

φ(t, x)→ φR(x/t) :=
Time − Temi

mi +me
lnnR(x/t),

uniformly for x ∈ R as t goes to infinity.



Open problems:

I Existence and stability of shock wave and contact
discontinuity?

I Collisional plasma on the half-space? (Related to the
kinetic Bohm’s criterion, see M. Suzuki’s talk for
justification at the fluid level)



Acknowledge my collaborators in the talk:

- Liu, Shuangqian (Jinan University)

- Liu, Qingqing (Central China Normal University)

- Kawashima, Shuichi (Kyushu University)

- Strain, Robert (University of Pennsylvania)

- Ueda, Yoshihiro (Kobe University)

- Ukai, Seiji (Tokyo Institute of Technology)

- Yang, Tong (City University of Hong Kong)

- Zhao, Huijiang (Wuhan University)

- Zhu, Changjiang (Central China Normal University)



Thanks a lot for your attention!


