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Background



Physical description of a plasma

» Plasma is the 4th state of matter:
solid—liquid—gas— plasma

» 99.9% of the universe exists in a plasma state

» Plasma is a gas of charged particles, e.g. electrons and
ions

» The motion of plasmas strongly responds to the
self-consistent electromagnetic field through the
Maxwell equations
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» Plasma physics involves the physics of classical

mechanics, electromagnetism, and non relativistic
statistical mechanics

» Challenge lies in the long-range coulomb interaction



Mathematical description of a plasma

» microscopic particle model for [z;(t), &;(t)]
» mesoscopic kinetic model for f(¢,x,¢)

» macroscopic fluid model for [n(t,z), u(t, x)]



1st type (Klimontovich)

Microscopic motion equations governing [z;(t), &;(¢)] of all
plasma particles 1 < i < Ny of s-species at any time ¢:
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2nd type (kinetic plasma equations)
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Depending on the collisional feature, the system is called
» Vlasov-Maxwell-Boltzmann

» Vlasov-Maxwell-Landau



Characterization of collisions
— Boltzmann collision (Boltzmann, 1872)
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— Landau collision (Landau, 1936):
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v = —3 : Coulomb potential

Remark: Grazing limit: Boltzmann=-Landau



3rd type (fluid plasma equations)
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Euler-Maxwell system with/without relaxation



The Plasma Stability Problem

> Due to the collision AND particle-field interactive
mechanism, a plasma usually relaxes to different kinds of
profiles such as equilibrium states, periodic states, and
wave patterns.

> Both physically and mathematically, it is an important
task to understand the stability of those profiles.

» Stability theory addresses the following three questions:

» Can the initial (small) perturbation of a given profile
imply the global-in-time existence of solutions?

» Will the solution converge to it? How fast for the rate of
convergence?

» If unstable, how to characterize the growth modes?



Remark: Problems without collisions are quite different
(nonlinear effect and structure) !
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Molecule model: H. Weitzner (CPAM ’12)

Vlasov-Poisson system: Lemou-Mehats-Raphael (Inve. '11),
Mouhot-Villani (Acta M. ’11), ...

Euler-Maxwell system: Germain-Masmoudi (arXiv '11)
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Time-asymptotic stability of
kinetic plasmas for general collision potentials



Boltzmann’s celebrated H-theorem
o f = Q(f, f) = (Physical) entropy increasing:
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This is a manifestation of the second law of thermodynamics.

» Entropy takes the maximization at the Maxwellian
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p : density, u : bulk velocity, T: temperature.

» L. Boltzmann himself predicted rapid convergence in large
time to the Maxwellian due to the H-theorem. The “proof”
was however held back by “analytical difficulties”.

» Goal: prove convergence and convergence rate around the
Maxwellian in the spatially non-homogeneous case.



Degeneration of H-theorem
{00 +&- Vol f=Q(f, f) =

i/ da:/ d¢{—flog f} >0, Q=R>or T
dt Q R3

H-theorem fails at the local Maxwellian
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In T3 case, a key tool to overcome the degeneration is
the Poincare inequality:

lo= rzar [ pilizcen < CIV oz

In R? case, the Poincare inequality fails.

v

v

Idea: seek out the enough dissipative mechanisms for
the components of the local Maxwellian



Degeneration of the electromagnetic field

» For the Maxwell system in vacuum,
OE—-VxB=0, 0.B+VxE=0, V-E=V-B=0,
the total energy is preserved at all time.

» Can the coupling with the kinetic equation imply a kind
of the dissipative mechanism?

» ldea: again, seek out the enough dissipative mechanisms
for the electromagnetic field with the understanding of
the structure of the system



The Vlasov-Maxwell-Boltzmann/Landau system

f+ = f1(t,z,€) > 0 of two-species:

Orf+ +&-Vafr +(E+EX B) - Vefr =Q(f+, f+) +Q(f+, f-),
Of-+E& Vofo —(E+EX B)-Vefo =Q(f-, f+) + Q(f-, f-).

It is coupled with the Maxwell system

OBV, x B == [ e(r— )i,
OB+ V, x E=0,

V,,;-E:/ (f+ — f-)d¢, V. -B=0.
R3
The initial data in this system is given as

fi(oaxvé) = fO,i(xvg)’ E(va) = Eo(x), B(O,l’) = B[)(LE)



Previous results on VMB
Boltzmann collision term () takes the hard sphere model:

B(§ =& w) = |(§ = &) - wl.

> Q — T3
» Global existence: Guo (IM, '03) (Energy method)
» Large-time behavior of solutions: Jang (ARMA, '09)

> Q:RS

» Global existence: Strain (CMP, '06) (Use two-species’
cancelation property to control £ and pure time
derivatives)

» Large-time behavior of solutions: D.-Strain ('10)
(Linearized analysis + bootstrap to the nonlinear
equation)

I Unknown for non hard-sphere model !



Previous results on VML

The only existing results concern the case of the absence of
the variable magnetic field, i.e.

Vlasov-Poisson-Landau instead of VML

» O =T3: Guo (JAMS, '12)
» Q=R

» D.-Yang-Zhao (arXiv '11): an application of the
exponential weight

» Strain-Zhu (arXiv '12) and Yu (preprint '12): approach
by Guo

» Wang (arXiv '12): pure energy method without
linearized analysis

I Unknown in the case of VML !



Linearization (Carleman, Grad, ...)

» Define the perturbation v as © = M~'/2(f — M),
u=[up,u_], f=[f+,f-], M=Mpg(§)-
» Boltzmann’s H-theorem implies: f. — M, [E, B] — 0.

» The linearized system

du+¢&-Vou—E-eMY?[1, 1] = Lu+g,
O,E -V x B =—([¢, ~{M"* {I - P}u),
OB+ V,x E=0,

Ve - E=(MY? u, —u_), Vy-B=0,

[u, E, B”t:O = [UO,E(),B()],

ker L = span { [1,0]M, [0, 1]M2, [¢, &]M2 (1 < i < 3), €], |¢IM2 }.

» The local Maxwellian

Piu={ay(t, ) +b(t,z) - €+ c(t,z)(|€]? — 3)IM:.



Dissipation from L:

[ weLuds <= [ wOUT- Py ae
R3 R3

» Collision frequency: v(§) = (¢)7; P: projection from Lg
to ker LL
» A summary of possible difficulties:
» The dissipation of Pu is missing: The local Maxwellian is
dispersive in the whole space due to the degeneration of
L ! (Hypocoercivity: Villani)
» If v < 1 then how to control a nonlinear term which
grows in large |¢| at least linearly?
» If v < 0 then how to control 1st-order velocity derivative
of the linear transport term ¢ -V, u?
» If v < 0 is much smaller then how to control the
nonlinear transport term £ - V.u provided that the
velocity differentiation needs the extra velocity weight?



Dissipation of Pu

Observation (Grad, Kawashima, Liu-Yu, Guo, D.-Strain "10):

» Find dissipation from the dynamics of the local
Maxwellian?

Aas + V- b+ V- (EMY2 {1 —Pylu) = 0,
Ay[b + (EMY2 {1 —PYu)] + 8;(ax + 2¢) T E;
+V, - (EEMY? {Le — Py tu) =0,

1 1
O e+ G{(IE* = 3)M2 {Te — Pu}u)| + 2V, b

Ve (167 — 3)EM2, (L — Pu}u) =0,

These equations are NOT closed!



» To close the system of the local Maxwellian, we also
need to study the high-order moment equations:

0104 ({I+ — Py }u) + 2¢] + 20;b; = O44(14),

80 ({Le — Pi}u) + ;b + 9;b; + Vg - (EMY2 {11 — P }u)
=0;(l+), i# 7,

O Ni({Ix — Piu) + dc = Ay(l).

Here, the high-order moment functions are defined by
1
@ij(ui) = <(€16371)M1/27u:|:>7A2(u:|:) = 1*0<(|£‘275)61M1/2,Ui>,

and L. are defined in terms of {I — P}u.



» For v > 0, there is a time-frequency functional £(¢, k)

such that ) )
Et, k) ~ Hﬁllig +|EP? + B,
and
OE(t k)+Lk|25(t k)<0, Vt>0, k€ R3
t 9 (1 i |]€|2)2 ) >~ Y, - Yy .
Remark:

» The inequality seems terrible to prove decay rates because
the “dissipative term” goes to zero as |k| — co.

» It is an essential “regularity-loss” feature for the VMB
system, not a deficiency of our approach; see D. (Eigenvalue
analysis of damped Euler-Maxwell, '11), Hosono-Kawashima
(M3AS '06), Ueda-D.-Kawashima ('11):

A(ik) ~ +ilk] (k] — 0).

b
[k[?



Case when v < 0: D. (arXiv ’12)

The situation becomes more subtle for v < 0; see Strain
(’11) and D.-Yang-Zhao ('11)

> Let w=w(§) = <§>WT+2 for Landau.
» Derive
O My(t, k) + kDy(t, k) <0,
with
Mo(t, k) = ||all32 + (B, Bl + ro RE™ (¢, k)

0 - 2|2
+r2 (w {I*P}U‘Lz X|k|<1 + ‘w u|L2 X|k|>1>

.
1+ |k|2
N 1 0 12
Dy(t,k) = {1 - P}a|3 + W)w {a- P}u‘D
TR B2 1) + a2
1+ |k|2

B Y S Y SR S L
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» Make the time weighted estimate

My(t, k) < 1+ ep(k)t]™ Mot yip1(0, k).



Nonlinear perturbation theory for general collisional
potentials

» Mathematically, when there is an external force, it is highly
nontrivial to generalize existing results to the case of non
hard-sphere model, which is also of physical importance!

> A progress was made by Guo (JAMS, ’'11):

» the Landau collision with the Coulomb potential (v = —3)
» the potential force £ = —V¢ with vanishing B = 0:

(€-Vou+ Vo -Eu)e? =&V, (eu).

» O ="T3

» It is difficult to deal with the non-potential force !!!



» A completely different approach was developed by
D.-Yang-Zhao (arXiv '11)

» A new dissipative mechanism due to the introduction of
the time-velocity dependent weight

exp{A(E)/(1 4 1))
>\<§>q9 <£>’1 X(§>q9
= ate<1+t) = —/\Qme““) .

» The approach that we developed can apply to

e Landau or Boltzmann

e QO =R3?or T3

e For the Boltzmann with most of values of v: angular
cutoff or non-cutoff

e Maxwell system (non-potential force) can be included!



Main results:

Global classical solutions near a global Maxwellian uniquely
exist and time asymptotically tend to the Maxwellian with
some rates for the cases of

> D.-Yang-Zhao (’'11): Vlasov-Poisson-Boltzmann, angular cutoff
with —2 <~ <1

» D.-Liu (’11): Vlasov-Poisson-Boltzmann, angular non cutoff with
—3<vy<-2and1/2<s<1

> D. (arXiv '12): Vlasov-Maxwell-Landau, soft potentials
—3 < v < =2 including the Coulomb v = —3



Idea in the proofs:

» Find an energy functional £(¢) and its time-weighted
norm X (¢) such that

X(t) S Yo+ [X ().

» To control the term /- V¢u and E - {u, the time-decay
of E is needed. Thus, Y; generally includes L'-norm of
initial data. Note that Y; needs to be small enough to
ensure the global-in-time bound by the continuity
argument.

» To balance an estimate on both £/-V¢u and § - V,u, v
can NOT be too small in the cutoff case. However, in
the non cutoff case, since

/uLuds < —/<§>V+28|{I—P}u\2ds— [h

we may require that v + 25 need not be too small.



Idea in the proofs (cont.):

» To deal with the degeneration of v(¢) for soft potentials,
choose £(t) in the way that
> higher the differentiation order is, the order of velocity

weights is lower, for instance, consider (9] = 9]¢,
la + (8] = N)

] ot w2 ot 0u s

» To deal with the degeneration of the Maxwell equations,
choose X (¢) in the way that
» higher the order of £y (%) is, the rate of its time weights
is lower;

» the highest-order energy norm £y (t) may increase in
time! For instance, consider

// O[(B x &) - Veul - wl g ,(t,€)05u dads.



Idea in the proofs (cont.):

» A trouble occurs to the estimate on
[ o551y it . 995udnde (ol +15]= )

No dissipation for [ |[VYFE|? !
Use an idea from Hosono-Kawashima (M3AS ’06) to
deduce

S104 1706w, (0] + 51+ 1) Dy, (1)
€0

+ (1 + t)1+6(1 gNl (t)

<1+ x {hot).

from the basic energy inequality without any weight

d
%g]vl (t) + HDNI (t) 5 h.o.t..



Problems for the future:

» Bounded domain

» Eigenvalue analysis and the spectrum



Thank you !



