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Background



Physical description of a plasma

I Plasma is the 4th state of matter:
solid→liquid→gas→plasma

I 99.9% of the universe exists in a plasma state

I Plasma is a gas of charged particles, e.g. electrons and
ions

I The motion of plasmas strongly responds to the
self-consistent electromagnetic field through the
Maxwell equations

1

c
∂tE −∇×B = −4π

c
J,

1

c
∂tB +∇× E = 0,

∇ · E = 4πρ, ∇ ·B = 0.

I Plasma physics involves the physics of classical
mechanics, electromagnetism, and non relativistic
statistical mechanics

I Challenge lies in the long-range coulomb interaction



Mathematical description of a plasma

I microscopic particle model for [xi(t), ξi(t)]

I mesoscopic kinetic model for f(t, x, ξ)

I macroscopic fluid model for [n(t, x), u(t, x)]



1st type (Klimontovich)

Microscopic motion equations governing [xi(t), ξi(t)] of all
plasma particles 1 ≤ i ≤ N0 of s-species at any time t:

ms
dξi
dt

= qs[E(t, xi) +
ξi
c
×B(t, xi)],

1

c
∂tE −∇×B = −4π

c
J,

1

c
∂tB +∇× E = 0,

∇ · E = 4πρ, ∇ ·B = 0,

ρ =
∑
s

qs

∫
R3

Ns(t, x, ξ) dξ, J =
∑
s

qs

∫
R3

ξNs(t, x, ξ) dξ,

Ns(t, x, ξ) =

N0∑
i=1

δ(x− xi(t))δ(ξ − ξi(t)).



2nd type (kinetic plasma equations)

fs = fs(t, x, ξ), t ≥ 0, x ∈ R3, ξ ∈ R3, s = i, e

∂tfs + ξ · ∇xfs +
qs
ms

(E +
ξ

c
×B) · ∇ξfs =

(
∂fs
∂t

)
c

,

1

c
∂tE −∇×B = −4π

c
J,

1

c
∂tB +∇× E = 0,

∇ · E = 4πρ, ∇ ·B = 0,

ρ =
∑
s

qs

∫
R3

fs(t, x, ξ) dξ, J =
∑
s

qs

∫
R3

ξfs(t, x, ξ) dξ.

Depending on the collisional feature, the system is called

I Vlasov-Maxwell-Boltzmann

I Vlasov-Maxwell-Landau



Characterization of collisions
– Boltzmann collision (Boltzmann, 1872)(

∂fs
∂t

)
c

=
∑
s′

Q(fs, fs′),

Q(f1, f2)(ξ) =

∫∫
R3×S2

B(ξ − ξ∗, ω){f1(ξ′)f2(ξ′∗)− f1(ξ)f2(ξ∗)} dξ∗dω,{
ξ′ = ξ − 2m2

m1+m2
[(ξ − ξ∗) · ω]ω,

ξ′∗ = ξ∗ + 2m1

m1+m2
[(ξ − ξ∗) · ω]ω,

B(ξ − ξ∗, ω) = Φ(|ξ − ξ∗|)b(
ξ − ξ∗
|ξ − ξ∗|

· ω),

Φ(|z|) ∼ |z|γ (−3 < γ ≤ 1), sin θb(cos θ) ∼ 1

θ1+2ν
(0 < ν < 1)

An example: For the inverse power law U(r) = r−(p−1) (p > 2),
γ = p−5

p−1 , ν = 1
p−1 .

Grad’s angular cutoff assumption:∫ π/2

0

sin θb̃(cos θ) dθ <∞.



– Landau collision (Landau, 1936):(
∂fs
∂t

)
c

=
∑
s′

Q(fs, fs′),

Q(f1, f2)

=
1

m1
∇ξ ·

∫
R3

Φ(ξ − ξ′){ 1

m1
f1(ξ)∇ξf2(ξ′)−

1

m2
f2(ξ)∇ξf1(ξ′)} dξ′,

Φ(z) = |z|γ+2(I− z ⊗ z
|z|2

) (γ ≥ −3),

γ = −3 : Coulomb potential

Remark: Grazing limit: Boltzmann⇒Landau



3rd type (fluid plasma equations)

∂tns +∇ · (nsvs) = 0,

msns(∂tvs + vs · ∇vs) +∇Ps = qsns(E +
vs
c
×B)

+
∑
s′

νss′
msms′nsns′

msns +ms′ns′
(vs − vs′),

1

c
∂tE −∇×B = −4π

c
J,

1

c
∂tB +∇× E = 0,

∇ · E = 4πρ, ∇ ·B = 0,

ρ =
∑
s

qsns, J =
∑
s

qsnsvs.

Euler-Maxwell system with/without relaxation



The Plasma Stability Problem

I Due to the collision AND particle-field interactive
mechanism, a plasma usually relaxes to different kinds of
profiles such as equilibrium states, periodic states, and
wave patterns.

I Both physically and mathematically, it is an important
task to understand the stability of those profiles.

I Stability theory addresses the following three questions:

I Can the initial (small) perturbation of a given profile
imply the global-in-time existence of solutions?

I Will the solution converge to it? How fast for the rate of
convergence?

I If unstable, how to characterize the growth modes?



Remark: Problems without collisions are quite different
(nonlinear effect and structure) !

I Molecule model: H. Weitzner (CPAM ’12)

I Vlasov-Poisson system: Lemou-Mehats-Raphael (Inve. ’11),

Mouhot-Villani (Acta M. ’11), ...

I Euler-Maxwell system: Germain-Masmoudi (arXiv ’11)

I ...



Time-asymptotic stability of
kinetic plasmas for general collision potentials



Boltzmann’s celebrated H-theorem
∂tf = Q(f, f)⇒ (Physical) entropy increasing:

d

dt

∫
R3

dξ {−f log f} ≥ 0.

This is a manifestation of the second law of thermodynamics.

I Entropy takes the maximization at the Maxwellian

M = M[ρ,u,T ](ξ) =
ρ

(2πT )3/2
e−
|ξ−u|2

2T .

ρ : density, u : bulk velocity, T : temperature.

I L. Boltzmann himself predicted rapid convergence in large
time to the Maxwellian due to the H-theorem. The “proof”
was however held back by “analytical difficulties”.

I Goal: prove convergence and convergence rate around the
Maxwellian in the spatially non-homogeneous case.



Degeneration of H-theorem

{∂t + ξ · ∇x}f = Q(f, f)⇒

d

dt

∫
Ω

dx

∫
R3

dξ {−f log f} ≥ 0, Ω = R3 or T3.

I H-theorem fails at the local Maxwellian

M[ρ(t,x),u(t,x),T (t,x)](ξ).

I In T3 case, a key tool to overcome the degeneration is
the Poincare inequality:

‖ρ− 1

|T3|

∫
T3

ρ dx‖L2
x(T3) ≤ C‖∇ρ‖L2

x(T3)

I In R3 case, the Poincare inequality fails.

I Idea: seek out the enough dissipative mechanisms for
the components of the local Maxwellian



Degeneration of the electromagnetic field

I For the Maxwell system in vacuum,

∂tE −∇×B = 0, ∂tB +∇×E = 0, ∇ ·E = ∇ ·B = 0,

the total energy is preserved at all time.

I Can the coupling with the kinetic equation imply a kind
of the dissipative mechanism?

I Idea: again, seek out the enough dissipative mechanisms
for the electromagnetic field with the understanding of
the structure of the system



The Vlasov-Maxwell-Boltzmann/Landau system

f± = f±(t, x, ξ) ≥ 0 of two-species:

∂tf+ + ξ · ∇xf+ + (E + ξ ×B) · ∇ξf+ = Q(f+, f+) +Q(f+, f−),

∂tf− + ξ · ∇xf− − (E + ξ ×B) · ∇ξf− = Q(f−, f+) +Q(f−, f−).

It is coupled with the Maxwell system

∂tE −∇x ×B = −
∫
R3

ξ(f+ − f−)dξ,

∂tB +∇x × E = 0,

∇x · E =

∫
R3

(f+ − f−)dξ, ∇x ·B = 0.

The initial data in this system is given as

f±(0, x, ξ) = f0,±(x, ξ), E(0, x) = E0(x), B(0, x) = B0(x).



Previous results on VMB
Boltzmann collision term Q takes the hard sphere model:

B(ξ − ξ∗, ω) = |(ξ − ξ∗) · ω|.

I Ω = T3

I Global existence: Guo (IM, ’03) (Energy method)

I Large-time behavior of solutions: Jang (ARMA, ’09)

I Ω = R3

I Global existence: Strain (CMP, ’06) (Use two-species’
cancelation property to control E and pure time
derivatives)

I Large-time behavior of solutions: D.-Strain (’10)
(Linearized analysis + bootstrap to the nonlinear
equation)

! Unknown for non hard-sphere model !



Previous results on VML

The only existing results concern the case of the absence of
the variable magnetic field, i.e.

Vlasov-Poisson-Landau instead of VML

I Ω = T3: Guo (JAMS, ’12)

I Ω = R3:

I D.-Yang-Zhao (arXiv ’11): an application of the
exponential weight

I Strain-Zhu (arXiv ’12) and Yu (preprint ’12): approach
by Guo

I Wang (arXiv ’12): pure energy method without
linearized analysis

! Unknown in the case of VML !



Linearization (Carleman, Grad, ...)

I Define the perturbation u as u = M−1/2(f −M),
u = [u+, u−], f = [f+, f−], M = M[1,0,1](ξ).

I Boltzmann’s H-theorem implies: f± →M, [E,B]→ 0.

I The linearized system

∂tu+ ξ · ∇xu− E · ξM1/2[1,−1] = Lu+ g,

∂tE −∇x ×B = −〈[ξ,−ξ]M1/2, {I−P}u〉,
∂tB +∇x × E = 0,

∇x · E = 〈M1/2, u+ − u−〉, ∇x ·B = 0,
[u,E,B]|t=0 = [u0, E0, B0],

kerL = span
{
[1, 0]M

1
2 , [0, 1]M

1
2 , [ξi, ξi]M

1
2 (1 ≤ i ≤ 3), [|ξ|2, |ξ|2]M

1
2

}
.

I The local Maxwellian

P±u = {a±(t, x) + b(t, x) · ξ + c(t, x)(|ξ|2 − 3)}M
1
2 .



Dissipation from L:

∫
R3

u · Lu dξ . −
∫
R3

ν(ξ)|{I−P}u|2 dξ

I Collision frequency: ν(ξ) = 〈ξ〉γ; P: projection from L2
ξ

to ker L

I A summary of possible difficulties:
I The dissipation of Pu is missing: The local Maxwellian is

dispersive in the whole space due to the degeneration of
L ! (Hypocoercivity: Villani)

I If γ < 1 then how to control a nonlinear term which
grows in large |ξ| at least linearly?

I If γ < 0 then how to control 1st-order velocity derivative
of the linear transport term ξ · ∇xu?

I If γ < 0 is much smaller then how to control the
nonlinear transport term E · ∇ξu provided that the
velocity differentiation needs the extra velocity weight?



Dissipation of Pu

Observation (Grad, Kawashima, Liu-Yu, Guo, D.-Strain ’10):

I Find dissipation from the dynamics of the local
Maxwellian?

∂ta± +∇x · b+∇x · 〈ξM1/2, {I± −P±}u〉 = 0,

∂t[bi + 〈ξiM1/2, {I± −P±}u〉] + ∂i(a± + 2c)∓ Ei
+∇x · 〈ξξiM1/2, {I± −P±}u〉 = 0,

∂t

[
c+

1

6
〈(|ξ|2 − 3)M1/2, {I± −P±}u〉

]
+

1

3
∇x · b

+
1

6
∇x · 〈(|ξ|2 − 3)ξM1/2, {I± −P±}u〉 = 0,

These equations are NOT closed!



I To close the system of the local Maxwellian, we also
need to study the high-order moment equations:

∂t[Θii({I± −P±}u) + 2c] + 2∂ibi = Θii(l±),

∂tΘij({I± −P±}u) + ∂jbi + ∂ibj +∇x · 〈ξM1/2, {I± −P±}u〉
= Θij(l±), i 6= j,

∂tΛi({I± −P±}u) + ∂ic = Λi(l±).

Here, the high-order moment functions are defined by

Θij(u±) = 〈(ξiξj−1)M1/2, u±〉,Λi(u±) =
1

10
〈(|ξ|2−5)ξiM

1/2, u±〉,

and L± are defined in terms of {I−P}u.



I For γ ≥ 0, there is a time-frequency functional E(t, k)
such that

E(t, k) ∼ ‖û‖2L2
ξ

+ |Ê|2 + |B̂|2,

and

∂tE(t, k) +
λ|k|2

(1 + |k|2)2
E(t, k) ≤ 0, ∀ t ≥ 0, k ∈ R3.

Remark:

I The inequality seems terrible to prove decay rates because
the “dissipative term” goes to zero as |k| → ∞.

I It is an essential “regularity-loss” feature for the VMB
system, not a deficiency of our approach; see D. (Eigenvalue
analysis of damped Euler-Maxwell, ’11), Hosono-Kawashima
(M3AS ’06), Ueda-D.-Kawashima (’11):

λ(ik) ∼ − 1

|k|2
± i|k| (|k| → ∞).



Case when γ < 0: D. (arXiv ’12)
The situation becomes more subtle for γ < 0; see Strain
(’11) and D.-Yang-Zhao (’11)

I Let w = w(ξ) = 〈ξ〉
γ+2
2 for Landau.

I Derive
∂tM`(t, k) + κD`(t, k) ≤ 0,

with

M`(t, k) = ‖û‖2
L2 + |[Ê, B̂]|2 + κ0 <E

int
(t, k)

+κ2

∣∣∣w`{I− P}û
∣∣∣
L2

χ|k|≤1 +
κ1

1 + |k|2

∣∣∣w`û∣∣∣2
L2

χ|k|≥1,

D`(t, k) = |{I− P}û|2D +
1

1 + |k|2

∣∣∣w`{I− P}û
∣∣∣2
D

+
|k|2

1 + |k|2
(| ̂a+ + a−|

2
+ |b̂|2 + |c|2) + | ̂a+ − a−|

2

+
1

1 + |k|2
|Ê|2 +

|k|2

(1 + |k|2)2
|B̂|2, ρ(k) =

|k|2

(1 + |k|2)2
.

I Make the time weighted estimate

M`(t, k) . [1 + ερ(k)t]−JM`+J+p−1(0, k).



Nonlinear perturbation theory for general collisional
potentials

I Mathematically, when there is an external force, it is highly
nontrivial to generalize existing results to the case of non
hard-sphere model, which is also of physical importance!

I A progress was made by Guo (JAMS, ’11):

I the Landau collision with the Coulomb potential (γ = −3)
I the potential force E = −∇φ with vanishing B = 0:

(ξ · ∇xu+∇xφ · ξu)eφ = ξ · ∇x(eφu).

I Ω = T3

I It is difficult to deal with the non-potential force !!!



I A completely different approach was developed by
D.-Yang-Zhao (arXiv ’11)

I A new dissipative mechanism due to the introduction of
the time-velocity dependent weight

exp{λ〈ξ〉q/(1 + t)θ}

⇒ ∂te
λ〈ξ〉q

(1+t)θ = −λθ 〈ξ〉q

(1 + t)1+θ
e
λ〈ξ〉q

(1+t)θ .

I The approach that we developed can apply to

• Landau or Boltzmann
• Ω = R3 or T3

• For the Boltzmann with most of values of γ: angular
cutoff or non-cutoff
• Maxwell system (non-potential force) can be included!



Main results:

Global classical solutions near a global Maxwellian uniquely
exist and time asymptotically tend to the Maxwellian with
some rates for the cases of

I D.-Yang-Zhao (’11): Vlasov-Poisson-Boltzmann, angular cutoff
with −2 ≤ γ ≤ 1

I D.-Liu (’11): Vlasov-Poisson-Boltzmann, angular non cutoff with
−3 < γ < −2 and 1/2 ≤ s < 1

I D. (arXiv ’12): Vlasov-Maxwell-Landau, soft potentials
−3 ≤ γ < −2 including the Coulomb γ = −3



Idea in the proofs:

I Find an energy functional E(t) and its time-weighted
norm X(t) such that

X(t) . Y0 + [X(t)]2.

I To control the term E · ∇ξu and E · ξu, the time-decay
of E is needed. Thus, Y0 generally includes L1-norm of
initial data. Note that Y0 needs to be small enough to
ensure the global-in-time bound by the continuity
argument.

I To balance an estimate on both E · ∇ξu and ξ · ∇xu, γ
can NOT be too small in the cutoff case. However, in
the non cutoff case, since∫

uLu dξ . −
∫
〈ξ〉γ+2s|{I−P}u|2 dξ − {· · · },

we may require that γ + 2s need not be too small.



Idea in the proofs (cont.):

I To deal with the degeneration of ν(ξ) for soft potentials,
choose E(t) in the way that

I higher the differentiation order is, the order of velocity
weights is lower, for instance, consider (∂βα = ∂βx∂

α
ξ ,

|α|+ |β| = N)∫∫
∂βαQ(u, u) · w2

α,β,`(t, ξ)∂
β
αu dxdξ.

I To deal with the degeneration of the Maxwell equations,
choose X(t) in the way that

I higher the order of EN (t) is, the rate of its time weights
is lower;

I the highest-order energy norm EN (t) may increase in
time! For instance, consider∫∫

∂βα[(B × ξ) · ∇ξu] · w2
α,β,`(t, ξ)∂

β
αu dxdξ.



Idea in the proofs (cont.):

I A trouble occurs to the estimate on∫∫
∂αβ (E · ξM1/2) · w2

α,β,`(t, ξ)∂
α
βu dxdξ (|α|+ |β| = N)

No dissipation for
∫
|∇Nx E|2 !

Use an idea from Hosono-Kawashima (M3AS ’06) to
deduce

d

dt
[(1 + t)−ε0EN1(t)] + κ(1 + t)−ε0DN1(t)

+
ε0

(1 + t)1+ε0
EN1(t) . (1 + t)−ε0 × {h.o.t.}.

from the basic energy inequality without any weight

d

dt
EN1(t) + κDN1(t) . h.o.t..



Problems for the future:

I Bounded domain

I Eigenvalue analysis and the spectrum



Thank you !


