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1. Introduction

1.1 Consider the Boltzmann equation:

Of +&-Vaf +Vio(x) - Vef = O(f.f), (BE)
where
e t >0 (time), x € R" (position), £ € R" (velocity), n > 3;
o f=f(t,x,£) > 0 (number density), unknown;

e ¢(x) (potential of stationary force), bounded & given;
e Q is a bilinear collision operator (hard sphere model):

1
0 &) =3 [ (L ~foe = L)l(E &) -wlduds.

2
f:f(tax7£)7 f/ :f(t7x7£,)7 f* :f(t7x7£*)a fﬂt Zf(l‘,X,ﬁi),

likewise for g,

=¢6-]¢-¢) ww, &=+][¢-¢&) ww, wes



1.2 (BE) has a stationary solution:
e?CIM,
where

M= (27:)”/267(1) (—|§|2/2) )

on the basis of the observations:

¢ Conservation of energy

€1+ €1 = €] + &I
Q(e¢(x)M, e¢(x)M) = ez¢(x)Q(M, M) =0,

{0 + & Vi + Vid(x) - Vetexp (o(x) — |€]7/2) = 0.



1.3 Aim (D., PhD thesis, "08):

e Stability of stationary solution ¢*M:

IF(0) — e”M|x < 1

6] <1 }:wwwm—mengm_th

X = HY(R" x RZ;M’lﬂdxd{) : no time derivatives.

e Uniform-in-time stability for two solutions:

1£(0) — M|y < 1
18(0) — e’M|lx < 1 p = sup[|f(r) — g(1)]lx < Cllf(0) — g(0)|x.
9] <1 !

¢ Optimal convergence rate in X:

Additional conditions on .
_ 9 < _n
£(0) — e®M & ¢ }jV@ M|l < Gy p(1+1)74.



1.4 Energy method
» Liu-Yu (CMP,’02), Liu-Yang-Yu (PD,’02),...
> Guo (IUMJ,’02)....

e Stability:
Macro-micro decomposition (micro eqn + macro eqn)
+
macroscopic conservation laws
4

Energy inequality: 4&(u(r)) + D(u(r)) <0
e Optimal convergence rate:

High-order energy estimates

+
Spectral analysis

J
Optimal decay rate



1.5 Applications:
¢ General force (non-potential) [DUYZ, CMP, '08]:

E(t,x), E(t,x)+ & x B(t,x).
Assumptions: E, B are small and decay in time (or n > 5).
e General intermolecular interaction law:
€ =&|"b(0), 0<y<1.
e Time-periodic solution [DUYZ, CMP, '08]:
time-periodic force: E(t+7,x) = E(t,x).
Assumptions: E is small and n > 5.

e Physical models such as:
one-species Vlasov-Poisson-Boltzmann system [DY, '08];
one-species Vlasov-Maxwell-Boltzmann system [in progress].



1.6 Back to (BE):

Of +&-Vaf +Vid(x) - Vef = O(f.f).
Problems on the stability of ¢*M in other cases:
(i) ¢(x) can be large:

This situation was studied in the case of the compressible
Navier-Stokes equations.

» Matsumura-Padula (’92):
interior domain, smooth solutions,

¢ € H.

» Matsumura-Yamagata (C01):
the whole space R?, weak solutions,

C C
[p(x)] < T’X” [Vip(x)] < W,

C need not be small.



(i) ¢’M is connected to vacuum at infinity:
?YM — 0 (or ¢(x) — —o0) as x| — oco.
Here, ¢ is a confining potential.
Remark: Related results in this situation:

» Kinetic Fokker-Planck equation:
Of +&-Vaf =Vid(x) - Vef = Aef + Ve - (),
Helffer-Nier, Hérau, Hérau-Nier, Desvillettes, Villani,...:
¢ € CY(R?), infp > —oc.
» Linearized Boltzmann equation:
Ou+&-Veu—V,p(x) - Veu = e ’Lu,

Tabata (TTSP,94):
QZS = ¢(|x|)7 ¢/,(r) >C > 07 QS/(F) < Gor+ Gy, ..



2. Well-posedness of the Cauchy problem

2.1 To expose the main idea, suppose
n=3.
Set the perturbation u by
f=e’IM 4 vVMu.
The Cauchy problem for (BE) is reformulated as

{ O+ & - Vu+ Vip(x) - Veu — 1€ Vip(x)u = e?OLu + T'(u, u),

M(O,x, 5) = uO(xv g)
(CP);
Here

Lu=M"/2 [Q(M, M'/2y) + QM 2, M)]
D(u,u) = M~2Q(M" /20, M'/2y).



2.2 Recall some standard facts on L:

(@) (Lu)(§) = —v(&u(§) + (Ku)(&), where
o w(L+[€]) Sw(€) < vy (L4 [E]), w0 > 0;
* K is a self-adjoint compact operator on L*(R});

o KerL = span {M'/2; ¢MY2 i = 1,2,3; [¢PM!/2} := N;
(b) L is self-adjoint on L*(R}) with the domain
D(L) = {u € L*(RY)|v(&)u € L*(RY)},
and —L is locally coercive: 3 )\ > 0 s.t.
- /R} uLudé > )\/R3 v(€) ({1 - PYu)*d¢, Vu e D(L)
= A|{T— P}ull},

where P is the projector from L*(R}) to \.



2.3 Define the energy functional
[W@OF = > 1030u() = u()zy, .
|af+|8|<N '
and the dissipation rate

()] = HL=Phu)5+ > l0gu(n)ll;

0<|a|<N
+ > 10202 {1 — PYu(o)|3.-

o]+ BI<N, |8]>0

2.4 Assumptions on the potential ¢(x):
(AP):

pelLy,
0g = H<1 + \x‘)zvxquLgo + Z (1 + ‘xDa?(bHLf‘J <1

2<]al<N



Theorem | (Well-posedness) Let fy(x, &) = M + vMug(x, £) > 0.
409 >0, A\g > 0and Cy > 0s.t. if

[[u(0)]] + 04 < o,
then 3\ u(t, x, ) to (CP)g s.t. f(t,x,€) = M + vVMu(t, x, &) > 0, and

[[(n)]1” + Xo /Ot[[u(S)]]ids < Col[u(0)]?, V1 > 0.

Theorem Il (Uniform stability) Let
Jo(x, &) = M + VMug(x, ) > 0, go(x, ) = M+ VMug(x, £) > 0.
36, € (0,00), A\ > 0and C; > 0 s.t. if

max{[[u(0)]], [v(0)]]} + 0¢ < 61,

then the solutions u(t, x, ), v(t, x, §) obtained in Theorem I satisfy

t

[l(t) = v(O])* + X1 /0 [lu(s) —v(s)Jods < Ci[[u(0) —v(0)]]?, ¥1 > 0.



2.5 Related results:
» Spaces based on the spectral analysis (¢ = 0):
> Ukai, Nishida-Imai: L (R}; HX(RY)), B > 5/2, k > 2,
where L3 (R?) = {u(1 + [¢])71u € L>(RY)}.
> Shizuta (Torus case): Ly (R}; CY(T})), 41 > 5/2,
k=0,1,---.
> Ukai-Yang: L*(R} x R}) N L3 (R L2(RY)), B > 3/2
Remark Notice that
3 3 23
L5 (Re) & L (Rg) & L7(Ry),

where [\ and (3, are sufficiently close to 5/2 and 3 /2, respectively.

» Spaces based on the energy method:
» Liu-Yu, Liu-Yang-Yu, Yang-Zhao, D. (JDE, '08) (Refined
energy method, no time derivative),...
» Guo, Strain,...

HN("unz,ns)(Ri % RE),

t7'x7£
N =N(ny,ny,n3) =ny +ny +n3 > 4.



» Spaces based on the method of Green’s function (¢ = 0),
Liu-Yu:

LR}, w(t,x)dx; L (RY)), B3 > 3,
where the pointwise weight function,

~(xl=+/5/3?
e Ct

— ¢~ CxI+8s1) _
w(t,x) =e + e

+ {acoustic cone},

exposes the wave structure of convergence. Notice that
the initial perturbation 1y decays exponentially in x.

Remark The energy method is an effective one in the presence of the
external force.



2.6 Key points of the proof.
(a) Macro-micro decomposition: For fixed (7,x),
u(t,x, §) = u1 + ua,

uy =Puc N,
uy={I-Pluec N*.

(b) Our goal is to obtain the dissipation rate [[u(¢)]]2, which
is equivalent with

Yo IR I-PH@IE+ Y 05Pu(r)]”

| +|B]<N 0<|a|<N

(1): micro dissipation rate (11): macro dissipation rate

Remark
o (I)<the local coercivity of —L;
o (II)<=macro equations + local macro balance laws.



(c) Expand u; = Pu as

3
up = {a(t7 x) + Z bi(t,x)& + c(t, x)§|2} M!/2,

i=1

One can determine the evolution of u; and (a,b,c) in terms
of uz:

e Macroscopic equation on u;:
1
Oy +& - Vauy + Vg - Veuy — Ef-vxqﬁul =r+{+n
with

r= _aﬂ’tZ?

1
{=—& -V — V- Vguz + Ef - Viduy + e¢Lu2,
n="T(u,u).



e Macroscopic equations on coefficients (a,b,c) of u;:

da+b-Vip=—070 + 00 4 0 =0
By + Oia — (adid — 2c0:9) = — ") + £ 4+ p) = 4V
Oc + 0ibi — b0 = 7@,,1(2) + ffz) + ”1(2) = ,Yi(Z)’

Oy + i — (biOrd + bidyo) = ~0i7) + 05 +nd) =4 i # ),

0;c — C@ﬂﬁ = —8;17(3) + £1(3) + nl(S) = ’yl.(3).

1

Remark An important observation from Guo is that b = (by, by, b3)
satisfies an elliptic-type equation:

—Ab; — 0;0;b; = Z 0;(bi0i9) + Z o
i#j i#j
~ ST 006 + bidyo) — 3 o
i#j i#j
~20,(b;056) — 2077



e Macroscopic balance laws on coefficients (a, b, c) of u;:

0~ 3V (EPEVL ) = —3b- V.o,
dubi + a-(a + 5c) + V.- (EEVM, ) = (a +3¢)90,

a,c+3v b+ v (EPEVM, up) = ,b V.o,

where it is noticed that one also has the conservation of mass
O(a+3c)+Vy-b=0.

Remark The time derivatives 0;(a, b, ¢) can be replaced by the
spatial derivatives and the nonlinear product terms. For the product
terms, the Hardy inequality

2
[ B <o [ itolas vee n'®),
R R3

is used to gain the spatial derivatives.



e (BE) can be exactly written as the linearized viscous
compressible Navier-Stokes equations with remaining terms
only related to 13 moments of the micro part u; and product
terms between (a,b,c) and V,¢:

O(a+3c)+V,-b=0,
1
b+ Vi(a+3c) +2V,e — Ay — FViVirb = R’

1
a[C+ gvx . b — Axc = RC7
where R® = (RY, RS, R%) and R¢ are defined by

R = Vo (€YML, w) — 30,9, - {|EPeVM o)

J

- Z 8,7,1 28ﬂJ + {product terms},
i#

RE — _évx . <’§‘2§\/1\7[’ up) — Zai»yi(3) + {product terms}.

i



2.7 Proof of Theorem I:

e Local existence: ...
e A prior estimates:
Part I: To obtain the microscopic dissipation

(i) Estimates on zero-order:
1d 2 2 2 2
5 7 1O+ Mzl < ClluON[[u ()], + Cog[| V|

(ii) Estimates on pure spatial derivatives:

%% Yoo lorulP+x Y 0ful} < Cllwo)])un)]]}

1<|a|<N 1<]al<N

+Coy Y lofm|P+Cop Y 103 Veun|.

1<]a|<N 1<]al<N~-1



(iii) Estimates on mixed derivatives:

1d
3 dr Z Hf‘??a?quZ+A Z H@?afuzlli
|B|=k |B|=k
|| +|BI<N la|+|B| <N
< CluNu@]Z+C > 0wl
|| <N—k+1
+Oxpzay > 020wz +C Y (100Vi(a, b, )|,
1<|8|<k—1 la| <N—k
la|+|BI<N

where the integer 1 <k < N and x>, denotes the
characteristic function of the set {k > 2}.

Remark The above estimate is based on the equation:

Otz + & - Vattr + Vo - Ve — 1/26 - Vi + e”v(E)u
= ¢®Kuy + I'(u,u) — Oy — & - Vyuy — Vi - Veup +1/2& - Viduy.



Proper linear combinations of (i), (ii), (iii)r=

1d o o
o= (Z D DI afuﬂ)

la]<N la+[BI<N, |8]=1

A 9rdwl
lal+I81<N

< ClluN@]E +C Y 193Vala,b, )|

la|<N—1



Part Il: To obtain the macroscopic dissipation

28T+ Y V0@ b o)

o <N—1

<9 D Nogul? + [Pl ¢ -

la|<N

where Z(u(t)) is called the interactive energy functional:

3
T(u(r) = Y Y [Zaiult) + I¢ i (u(®) + I¢ (u(r) + Za(u(0)] |

|a|<N—1 i=1
I u(0) = (97" a02a)
70 () = — 32 (097D 0,098, ) + 32 (027D 9,008, ) + 2 (927 5,09, ) |
' j7£i< ! > j¢,-< g > < >
I, () = (907, 0.0%¢)
Igl?i(“(t)) = (0;0%a,0b;) .



Idea for Part Il:
—Ab; = —90,7 +

—

IV = 4 @aer®), aen) + @087, 00 +

- —% (0772, —0,07b)) + (0,007, 03 0,b)) +
0} (m

e (1) is bounded by the temporal energy;
e (1) is estimated by the Cauchy-Schwarz inequality and the
balance law for b;:

Dby = —dj(a + 5¢) — V- (EEVM, u2) + (a + 3¢)9j¢.



Further linear combination of Part | and Part lI=
d

2 Em(u(6) + ND(u(1)) < C/Eni(u(1))D(u (1),

where the energy functional is in the form

Ev(u) ~ > %P+ Y (000w

|| <N lo|+|BI<N |B]>1
ST ol + 22 ()
la] <N
~ (o),

and the dissipation rate is in the form

Du(t) ~ > [0f00ulli+ > Vi02(a,b,0)|

laf+|8I<N la|<N—1

~ [lu(r)]J3-



2.8 Proof of Theorem II:

Set
w(t,x,&) = u(t,x,§) —v(t,x,§).

Then w satisfies
8,w+§~vxw+vx¢(x)-V§w—%E-szb(x)w — PO L T (w, 1) +T(v, w).
Similar proof yields the Lyapunov-type inequality

%SM(W(I)) + CD(w(r)) < C{D(u(t)) + D(v(1) }m(w(7)).

By using the time integrability

/OOO{’D(M(S)) + D(v(s))}ds < 0

and the Gronwall’s inequality, the uniform-in-time stability
estimate holds true.



2.9 Generalized to the general collision kernel:
€= &I"b(0), 0<y<1.
Problem: one of the source terms
—1/26 - Vip(x)u

can not be controlled in terms of the dissipation Lu since
(L) = A [ (1 1) (e P

Idea: use another kind of perturbation
f=e’M + VedMu.
Then the reformulated equation reads

O+ € - Vo + Vip(x) - Veu = e®ILu + 920 (u, u).



2.10 Application: Vlasov-Poisson-Boltzmann system
(DY, recent work)

A = / Flt,x,€)de — 5,
R3

where 5 > 0 is (or near) a positive constant.

Energy functional:
W@P= 3 ocofulr+ Y 90,0
laf+|BI<N || <N
Dissipation rate:

2= > locod{X—-PllZ+ > [02ul?

|ee|+BI<N,|B>0 0<|a|<N

+ > loeveeP+ Y (ol

laf<N-1 o <N—1



A prior estimate:

d

Eg( u(t)) + AD(u(t)) < /Eu(t))D(u
E(u(r)) ~ [[u(t)]]z, D(u(t)) ~ Hu(t)]]i-
Difficulties:

e No time-derivatives;
¢ Dissipations include:

|V, ®||> (Poisson equation?)

|b]|> (Eliptic equation?)

Remark ||V,®|| or ||b| is necessary to be included since the
source term contains

[[ ¢ viviasic = [ v.0-ba+ serax.



3. Convergence rate

3.1 The case of ¢ = 0: the solution semigroup {eb'},>(, where
B= ¢ V,+L,
decays with an algebraic rate:

||v,’:le‘3’glng5 < Clg,m)(1+ 1) (|lgllz, +IV'sllz2,):
m Z 07 q € [172]7 Zq = Lé(l’g)a

_3(1 1y m
Cam=3\q 2) "2

Remark The above rate was obtained by the spectral analysis due to
Ukai (°74) and Nishida-Imai (’76). Recently, an extra decay was
obtained by Ukai-Yang (AA-"06) if g is purely microscopic.



Theorem |1l (Optimal convergence rates) Let all conditions in
Theorem I hold. Further assume that ||uo||z, is bounded and

6@l oo + 1Vl 2

is small enough. Then the solution u obtained in Theorem I satisfies

[lu(@)]] < €O+ 073 ([[uo]] + uollz,), ¥ > 0.

Remarks
(a) By optimal, it means that the decay rate is the same as one of e
when ¢ = 0, at the level of zero order (o1 o = 3/4).

(b) The proof is based on
e the energy estimates of higher order,
o the decay-in-time estimates on € (Ukai-Yang),
e and the analysis on the damping transport operator

Bt

O +&- V4 v().



3.2 Hypocoercivity:

degenerate dissipative operator

+
conservative operator

4

full dissipation and convergence (Villani, etc.)

Models: Boltzmann equation, Fokker-Planck equation,
Classical Landau equation, BGK model, etc.



3.3 Some known results on the convergence rates:

» Without forces:

» Exponential convergence rate in bounded domain and
torus: Ukai ('74), Giraud ('75), Shizuta-Asano ('77),...

» Algebraic convergence rate in unbounded domain: Ukai
(’76), Nishida-Imai ('76), Ukai-Asano (’'83),...

» Almost exponential convergence rate: Strain-Guo ('05),
Desvillettes-Villani ('05)

» Optimal convergence rate (extra decay): Ukai-Yang ('06)

» With forces:
» Convergence rate in L™ framework: Asano ('02),...
» Convergence rate in L> framework: Ukai-Yang-Zhao
(’05),...

» Torus case: Mouhout-Neumann ('06),...



3.4 Sketch of proof of Theorem III.
Step 1. Energy estimates of higher order:

%511.0.(%0)) + Mu()]]} < ClIVila, b, o),

where

SR < Eno () < CI(o)],

[u(®)]5 = IHL = PYu()I* + D llogu(o)]?

0<|a|<N

+ > [00al {1 Phu(n)|

o]+ BI<N, |8]>0

Notice that
[u(®)]lo < Cl[u(r)]-
Then

—Eno.(u(1)) + Ano. (u(1)) < C|[Viala, b, )|



Step 2. Decay-in-time estimates from the spectral analysis
on V,u:

t
u(t) = eBug —|—/ B8] (s5)ds,
0

where

S[u] = =V - Veu + %qub “Eu+ (e? — DLu+T(u,u).

Decomposition of ¢¥ (Ukai-Yang):

Bt
e = Eo(l) + E](Z) + Ez(l‘) ,
~—~ ~—~—~ ~—~—
damping transport  algebraic decay  exponential decay

where

Eo()u = e ©'u(x - &1,9),

IVYE (Dvulz, < C(1+ 1) |lull,,

IV2EL () {1 = PYuullz, < C(1+1)"7"+ |u]lz, : extra decay,
IV Ea(t)vil|z, < Ce™ || Viul -



Remark A technical lemma will be used to deal with the velocity
increasing in the source term S. The trouble comes from the transport
part in the semigroup B, For this, define V[h](t,x,£) as the solution
to

6;1/! + 5 U+ V(f)u = V(é.)h(taxa §)7 u|t:O = 07
where vy > 0 is such that

w1+ [€]) < v(e) < 1( L+ [€]).

Claim: V X\ € (0,19), 3 C s.t.
t t
[ eI ds < € [ NIa)E, ds
0 %€ 0 %8
Sketch of proof for Claim : (a) Decompose
| ([A] ||Lz Z RIGISIRY (R3x Q% (R))?

where
Qc(R) = {€ e RER< || <R+ 1}.



(b) Use the pointwise estimates: { € Q¢(R),

P [A](s, x, €)]
_ / OO L (VR(0, x — (s — 0)¢, €)dO
0

- / R0 Lo L pyinio,x — (s - 0)¢, €)do.
0 o

(c) Minkowski and Holder inequalities and Fubini theorem

yield
t

/ NI )] ds
0

o0

(2+R)? —A(1—6) 2
PIF [ WO 0

Z/ A=) || )||i2(Rgx95(R))d9-



Step 3. Time-decay estimates on higher order: From Steps 1
and 2, Gronwall + Hardy + Claim =

t
Eno. (u(1)) < e~ NEn o (u(0)) + / T u(s) |22 ds
0 e

< C(1+1)73[03 + K3 + (63 + 62)EX. (0], V1> 0,

where
5
Ero (1) = sup (1 +5)2En,. (u(s)),
0<s<r
do = [[uol] = lluollz, Ko = lluollz,
Then

Exve. (1) < C(& + K5)-



Step 4. Decay-in-time rate for zero order: Add |[Pu(r)|?, to
e

both sides of zero-order energy estimates to obtain

6,0 u(0)) + Apo.(ul) < Clu(O

where

Ero (u(t)) ~ [[u(t)]]2 = ||“(I)H129Q’ .

3
Then,

t
Ezo.(u(t)) < e_MEZ‘O.(u(O)) + C/ €_/\([_s)”M(S)Hiz ds.
0 il

The rest computation is similar as before:
e Use the mild form of u(¢) to iterate once;

e Use the decomposition of ¢ and the Claim to
find the time-decay rate.

Ero (u(t) S (14+1)72.



3.5 Application 1:

The following more general linearized Boltzmann equation
with linear and variant-coefficient sources can be considered
in the same way:

Oou—+&-Veu— Lu=A)Ku + Z Aag(?f@?u,
|| +8]<1
= {A()K +A00}u + Ao Vyu+ Ao - v§u,

where
AO == AO(taxa 5)7 Aa,@ = Aaﬁ(t7x7 é.)

satisfies some conditions on smallness in (,x,£) and increase
in £. A physical force inducing the above equation is in the
form:

F(t,x,&) = E(t,x) + & x B(t, x).



3.5 Application 2:

Of +&-Vef +F(t,x)-Vef = 0O(f.f)
P: Force F(t,x) is time-periodic = 3 Time-periodic solution?
A: » Yes if n > 5, D.-Ukai-Yang-Zhao (CMP, '08);

Proof:

(i) Optimal time-decay estimates on the linearized
equation

(ii) Find the fixed point for certain nonlinear
mapping V:

Wlul(1) = / " U )Selu](s)ds, VieR.

(Well-defined since U(z,s) < (1 41— 5)~% and i>1)

» Open for 1 < n <4, in particular, n = 3 (Physical).



Thanks!
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