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. Introduction

1.1 Consider the coupled chemotaxis-Navier-Stokes eqns:
om+u-Vn=356An—-V - (x(c)nVe),
Oc+u-Ve = pAc —k(c)n,
Ou+u-Vu+ VP =vAu—nVo,
V-u=0, t>0,x€cR3,

(cNS)

with initial data

(n’ ¢, ”)|t=0 = (no(x),co(x),uo(x)), X € R3a

where
e unknowns:

chemotaxis variables — n = n(t,x) > 0 (cell density)
¢ = c(t,x) > 0 (substrate concentration)
fluid variables — u = u(t,x) € R? (velocity)
P = P(t,x) € R (pressure)



e given:

constant coefficients — ¢ > 0 (cells diffusion)
p > 0 (substrate diffusion)
v > 0 (viscosity)

variable coefficients — x(c) (chemotactic sensitivity)
k(c) (consumption rate)

potential function — ¢ = ¢(t,x) (external forcing)
e basic assumptions (Al):

(i) no(x) >0, co(x) >0, V-up(x) =0;
(ii) k(0) = 0, k'(c) > 0.
Remarks:

a) —nV¢ is the force exerted on the fluid by cells.

b) (ii) implies that k(c) > 0 holds for ¢ > 0, that is
the case of consumption of chemical substrates.



1.2 Our interest lies in
» the existence of the free energy functional;

» the global well-posedness of the Cauchy problem on
(cNS);

> the large-time behavior of solutions and convergence
rates.

So far, we can answer that

> any constant steady state (n,c,u) = (n > 0,0,0) is
asymptotically stable under small perturbations, and the
rate of trend to equilibrium can be obtained;

» J temporal free energy functionals E(n(t), c(t),u(t)) and
corresponding dissipation rate D(n(t),c(t),u(t)) s.t.

dt
provided that

» the potential forcing is weak, or
» the substrate concentration is small.



1.3 Background of the model system:

e Bacteria live in thin fluid layers near solid-air-water contact lines
e Chemotactic Boycott effect in sedimentation:

» Bacteria swim up to the free surface between water and air
(chemotaxis), and slide down the bottom;

> high concentrations of Bacteria are produced at two contact
lines, and the oxygen in water is consumed;

» Bacteria at upper contact line slide down due to gravitational
forcing;

> a vortex is formed in the water due to incompressibility

e This mathematical model consists of
» diffusion, chemotaxis and transport for bacteria;
» diffusion, consumption and transport for Oxygen;

» viscosity and incompressibility for fluid



1.4 Formulation of the boundary conditions: Let () be a
bounded domain with smooth bdries. Then, on 91},

(gz - x(X)ngi)

0
claa = 0 (Dirichlet) or ko ) (Neumann),
o |50

ulpq = 0 (Dirichlet).

= 0 (no-flux on n),
o0

For the semi-dimension problem:
Vo = geq,
¢ takes the mixed boundary conditions:
c|lr, = c4 > 0 Dirichlet on the upper bdy,

@ = 0 no-flux on the lower bdy,
ov|p
where

Iy ={x€0Q:e; v(x) >0},

. ={x€0Q:e; v(x) <0}.



1.5 Related results:
e Chemotaxis for the angiogenesis system:
Om = An—V - (xnVc),

Oic=—c"n, t>0,x€,
(n,¢)(0,x) = (no, co)(x), x € Q C R

Rascle, Fontelos-Friedman-Hu, Guarguaglini-Natalini,
Corrias-Perthame-Zagg, ...

e Kinetic-fluid-coupled model:

kinetic equation: Vlasov-type

+
fluid dynamic equations: NS or Euler (C or IC)

Caflish-Papanicolaou, Hamdache, Jabin, Goudon, Carrillo-Goudon,
Mellet-Vasseur, ...



1.5 Related results (cont.):

e Keller-Segel model (substrate is also produced by cells):

Om = An—V - (xnVc),
Oic = Ac —c+n.

(recent progress only)
» Chalub-Markowich-Perthame-Schmeiser: the model was

justified as a diffusion limit of a kinetic model

» Blanchet-Dolbeault-Perthame,
Blanchet-Carrillo-Masmoudi: Parabolic-elliptic in R?

» Calvez-Corrias: Parabolic-parabolic in R?

> ...



2. Free energy functionals

2.1 To expose the idea, consider
Om = 6An—V - (x(c)nVc),
Oic = pAc —k(c)n, t>0,x € R4,

where the fluid component was ignored. Define

E(n(t),c(t)):/wnlnndx—i—;/Rd]V\I/(c)de,

Proposition (identity I)

with
Then, one has

d
5 (1), ¢(r)) = =D(n(t), (1)),

where the dissipation rate D(n(t), c(t)) is given by



D)) =5 [ Y ae / X (OO + XK g
Rd

Rd N 2x(c)
2
d [k(c)
W — [ =LV @ VU
+M/Rd v T X(C)V ® VVU| dx
pof d (k) 4
—= — W dx.
2 /Rd dc? (X(c) VOl
Moreover,
D(n(1),c(1)) 2 0
holds provided that
d d* (k(c)
x(c) >0, %(X(c)k(c)) >0, 72 <X(C)> < 0. (A2)

Proof of Proposition: it follows from the direct calculations.ll



Remarks:

a) ldentity | is inspired by Tupchiev-Fomina (CMMP ’'04) for
the study of the two-dimensional case, where some
inequalities were derived.

b) A typical example for x(c) and k(c) satisfying the above
condition is

x(c) = xoc™ %, k(c) = koc™
with constants xo > 0, ko > 0 and

0<m<1, 0<a<min{m,1—m}.

c) When the transportation occurs, i.e.,
om—+u-Vn=35An—V - (x(c)nVe),
Oc+u-Ve = pAc —k(c)n, t>0,x € RY,

ﬁg(n() c(t)) + D(n(t Z/ ;0,0 9y Udx.



2.2 Consider the (cNS), that is the coupled chemotaxis-
Navier-Stokes, with

¢ = ¢(x)
independent of time 7. Then one has

Proposition (identity II)

d 1 2
— = d d.
a (n(b—i—z\u] ) x—i—z//Rd]Vu] X

= 5/ nAqux—l—/ Vk(c)x(c)nVV - Vdx.
R R

Proof of Proposition: it follows from the integration by parts
and replacing ¢u - Vn by the eqn of n. B

Remark. The r.h.s terms of identities | and Il can be
controlled provided that
» ¢ is small in some sense, or

» ¢ is bounded in some sense and c is small in L.



3. Global existence of weak solutions

3.1 Consider the simplified model system of the coupled
chemotaxis-Stokes equations:

om~+u-Vn=358An—V - (x(c)nVc),
Oc+u-Ve = plAc —k(c)n,

Ou+ VP =vAu—nVo,

V-u=0, t>0,x¢cR3

with
(n,c,u)|=0 = (no(x),co(x),up(x)), x€R>.

Remark. The nonlinear convective term u - Vu may produce
the new difficulty for regularity of u.



Theorem |  Let assumptions A1- A2 hold and let ¢ = ¢(x) > 0 be
independent of t with V¢ € L™ (R?). Suppose that

no(| Inno| + (x) + o(x)) € L'(R?),
co € L'(R*) NL®(R?), V¥(cp) € L*(R?),
up € L®(RY) N L2(R3)

where (x) := \/1 +x2. Then, ey > 0, depending only on 6, 1, v,
||COHL<X>, S.1. l]c

sup |x|| Vo (x)| + sup |x[*| Ag(x)| < e,

the Cauchy problem of (cS) has a global-in-time weak solution
(n,c,u), satisfying that

n(t,x) = 0, sup||n(z)|| < [|Inol|.r,
>0

c(t,x) 2 0, sup [[e(®)||lr < |leoller, forany 1 <p < oo,
>0



and
t
+ / Dy (s)ds < £1(0), foranyt >0,
0

where the free energy £\ (t) and its dissipation rate D, (t) are given by

1 1 1
= Inn+ =|VU(c)]* + + 2
& (1) /3 (n nn 2| ()] N anb Y V|u| >dx,

V]2 A
Di(t) = = 3 Rz' n”' X+ S /3n|wf|2dx+%“/z |V |*dx
K)ol
24 § / v Y owav| d
2)\1u/ |Vul“dx + p 0,0; (C)a 0; X,

for constants Ay and \| depending only ||co||o, and moreover, for
any T > 0,

n(|Inn| + (x)) € L([0, T],LY(R?)), u € L>=([0,T] x R?).



Theorem Il Let the assumption Al and also k' (c) > 0 hold, and let
¢ = ¢(x) > 0 be independent of t with

sup(1 + [x])| Vo (x)| + sup |x[*| Ag(x)| < co.

Suppose that

no(|Inno| + (x) + ¢(x)) € L'(R?),
co € H'(R*) NL®(RY), up € L*(R?) N L>®(R?).

Then, dc, > 0, depending only on 6, u, v and ¢, s.t. if
lcollzee < e,

the Cauchy problem of (cS) has a global-in-time weak solution
(n,c,u), satisfying that

n(t,x) 2 0, sup [|n(6)[|1 < [lno|1,
>0

c(t,x) 2 0, sup [c(t)|r < l[coller, forany2 <p < oo,
t>0



and
t
E(t) + /\/ Dy (s)ds < C(|lnoInno|| + llollzn + lluoll72),
0

for any t > 0, where the free energy E>(t) and its dissipation rate
D, (t) are given by

&) = /3 n(lnn + Ao)dx + A([cllfn + l|ull?)
R‘
Dy(1) = |[VVall* + Vel + Vncell? + [|vVaVel]* + || Vul?,
and A > 0 is a small constant, and moreover, for any T > 0,

n(|Inn| + (x)) € L([0, T], L'(R?®)), u € L*°([0,T] x R?).



3.2 Proof of Theorem I: (uniform a priori estimates)
a) From

om—+V - (0Vn+n(u+ x(c)Ve)) =0,

¢ +u-Ve = plAc —k(&)nc,

where & = £(t,x) is between 0 and ¢(7,x), by the assumption
(A1), the maximum principle implies

n(t,x) 20, 0<c(t,x) < [leflre = cm
forany 0 <¢<T, x € R3.

b) Proof of the energy inequality: Denote c); = ||col|.~, and
define

jo = min XK+ XK(C)
0<c<ceu 2X(C)

2
Al = min —ld— (k(c)> > 0,

0<c<ey 2dc?

>0,

by assumptions Al and A2.



The r.h.s. of identity | is bounded by

1
2hip Jps

A
]Vu]zdx—f—m/ |V |*dx.
2 R3

The r.h.s. of identity Il is bounded by

Vil R
(SG/R3 dx+e< sup k(c)x(c)) /R ~— - \/n|VU|dx

x|

0<c<ey 3 |x|

SUPg< <., k(€)X (C 2 AoA
< | de+ Po<esen () >62 / [Vn dx + 22 l'ul// n|V\II|2dx,
2X0A v r3 N 2 R3

where one used the Hardy inequality

/R}\/ﬁ

|Vn|?

n

x|

dx,

2
dx < 4/ |V v/n|*dx :/
R3 R3

and
sup [x[| Vo (x)| + sup [x|*|Ad(x)| < e.

Then, ¢ >0 is small = ---



c) Estimates on moments and ||u|;~: Eqn of n =

‘/@W@ﬂW<CWth+CWhJ8WHM%m
R3 0<t<T

1 T
+A<mmx@>/HW%M%
0 \ 0<c<cy 0
)\0 r 2
+— | VAV,
4 0
+ Eqgn of ¢ =
t
lle(@)]]z +/0 [k(c)nllprds < [lcolL1
+ Eqgn of u =
t
[u(@)||zoe < ClluollL + C[V || / Vi =s||V/n|ds.
0

Then,



C
[ oty < L sy (6)+ €6+ ) ol 7
R3 0 0<c<cm

T
+ClInoll T [V / IV alPds
0
N [T 5
+32 [ Ivave s
0

Take the linear combination with the energy inequality =

1T
sup & (1) + f/ D (s)ds
0<1<T, 2 Jo

C 1
”ih sup  x(c) + C(8 + [luol[z==)lImoll: To,
0 0<c<cm

< &(0)+C+
for some small 7 > 0, where
EF () / In d +/ 1|V\I/( )+ ! ¢+ ! lu)* ) d
= n nXn X by C —n —Q— U X.
1 e Xz o \ 2 e o

Apply to intervals [0, Ty], [T, 2T0), - - - , [mTo, T] = --- A



3.3 Proof of Theorem Il: (uniform a priori estimates)

a) cy is small. The direct energy estimates =

d
% RS(nlnn + /\2|Vc|2 + |c|2)dx + pmin{),,2} /}Rz(|Vc|2 + |Vzc|2)dx

+min{1,2 min k’(c)}/ n(|c|2+|vc|2)dx+§/ VP
" 0sesa R 4 ) n

A 2
< 2CM/ |Vu|*dx.
moJRr3

b) Identity Il gives

d 1
a o (nqb—l— 2|u|2) dx + 1//R} |Vul*dx

2
< ssuplafA0()] | Vil g
X R3 n

1 |Vn|? )
+=sup |x||[Vo(x)| sup |x(c)] dx+ [ n|Vc|dx|.
2 x R3 n R3

0<c<cy

c) Smallness of cj; + linear combination of a) and b) = --- W



3.4 Remarks:

a) It is unknown that Theorems | and Il could still hold for
one of the following three cases:

» the smallness of both ¢ and ||cy||.~ is removed;
» the nonlinear convective term V - (1 ® u) is added;

» both x(c) and k(c) take the more general forms.

b) Similar results hold for the case of
» the space dimension d > 2, or
» the bounded domain with homogeneous boundary
conditions

@
ov

e

= =0, M’aQ =0.
aq OV

o0

However, it is not clear for the general biological non-homo-
geneous bdry conditions.



4. Classical solutions near constant states
4.1 Consider

om~+u-Vn=758An—V - (x(c)nVc),
Oc+u-Ve = plAc —k(c)n,
Ou+u-Vu+ VP =vAu—nVo,
V-u=0, t>0,xcR>,
with initial data
(n,c,u)|—0 = (no(x), co(x), up(x)), x € R>.
Suppose
(no(x), co(x),up(x)) — (nee > 0,0,0) as |x| — oo.

Our goal is to prove

the constant steady state (n,,0,0) is asymptotically
stable under small smooth perturbations.



4.2 Reformulation of the Cauchy problem: Let

Then,

0o +u-Vo—56Ac =—-V-(x(c)oVec) —nV - (x(c)Ve),
Oc+u-Ve— puAc+kK(0)(o+ ne)ec = —(k(c) —k'(0)c) (0 + neo),
Ou+u-Vu+ VP —vAu= —oVo,

V-u=0, t>0,xecR3,

with
(0,¢,u)|=0 = (00(x), co(x), up(x)) — (0,0,0) as |x| — oo,

where o) = ny — 1o



Theorem lll.  Let ny, > 0, and the assumption (A1) hold with
no(x) = 00(x) + neo > 0 for x € R3, and ¢ = ¢(t, x) satisfy

sup(1+ [x)|o(r.x)| + Y sup|9Fe(r,x)] < oo.
tx 1<|a|<3 tx

Furthermore, suppose that ||(0o, co, uo) || is sufficiently small. Then
the Cauchy problem of (cNS) admits a unique classical solution
(o,c,u) with

n(t,x) = o(t,x) + ne > 0, c(t,x) >0
fort>0,x € R3, such that

2 t Ve + kK “c(s)*| dxds
oc)@lfp+A [ [ (@ n) lk«) FRO) Y [0rels)P | did

1<]al<3
t

A [ IV cs(6) s < Clm, o)
0

hold for some constants A > 0, C and for any t > Q.



4.3 Proof of Theorem Ill: (uniform a priori estimates)

a) The maximum principle =

0+ N = I’l(l‘,X) >0, 0< C(Z,X) < HCHLOO'

b) Energy estimates under smallness: (Zero-order)

1d

2 2 2 v 2 d25/ 2
- — d d,d. dx + — Vul“dx + —— Vol|“d
> % R3(|u\+20+120)x+2/R}\u\ x+4 IR3\a|x
did

aek / \Vel?dx + dldz/ k(c)e (o + noo)dx < 0,
2 R3 R3

+ (high-order)

1d o 5 . ,
U Z Ca/R}‘ax(O',C,M”dX-F)\ Z ‘/R3|8X(U,C,u)|dx

1<|a| <3 2<|a|<4

+AK'(0) Z /R}(U—l—noo)w)‘fdzdx < C/R} |V (0, c,u)|*dx,

1<]al<3

(linear combination) = uniform a priori estimates. W



4.4 Convergence rates: There are three cases:
Neo = 0; oo > 0,K(0) = 0; neok’(0) > 0.
Theorem IV. Let ny,, = 0, and all conditions in Theorem III hold.
(i) Assume o, co € L' (R3). Then, forany 1 < p < oo,
lo @)l < Clloollr (141720
le@llr < Clleolliar (1 +1)"
(ii) Furthermore, assume that ug € LY(R?) and
¢ € L®(RT; L/ (RY))
for1 < q < 6/5. Then,
_3(1_1
lu(e)]| < C(lluollare + Ko) (1 +1)"24~2),
forany t > 0, where Ky is defined by

Ko = |[(00,co)llLirms + lloollinzz lleoll iz



4.5 Proof of Theorem IV:
Energy-spectrum method (D.-Ukai-Yang '09)

a) Time-decay of ¢ and n:

dp(p —

d 1
= | Pdx+ ) |VeP/?2dx < 0,
R3

dt R3 p

+
le(@llzr < lleollz

(standard argument: interpolation inequality

27 1

P9
Il < VU2 s | 57

L4
3/71 1
’Yp,q:§ 5—1;

+ Young inequality) = time-decay of ¢, and similarly for n.

with



b) Time-decay of u: (Three steps)

Step 1. Time-decay of high-order derivatives of (o,¢): Use the
high-order energy inequality

d
V@l + NVl < CIV (@),
+ Use the mild forms of o, ¢ to obtain
Vo)l < Clloollpra (141720712
t
+Ce/ (111 — )54V (0,¢)(s) s,
0
IVe(t)ll < Clicollrn (1 + 1)~ 7112
t
+Ce/ (141 —5)7*||Ve(s) || mds
0
+C(1+ 1) collprzz ool inez
(Gronwall inequality) =
IV (0, )l < CUIV (00, o)l + Kp) (1 + 1) 70172,

forany 1 <p <2.



Step 2. Time-decay of high-order derivatives of u: Use the
mild form

u(t) = ">y + /t A=) (—P(u - Vu) + P(¢Vo))ds,
0

with
P(ocV¢p) = —P(¢Vo).

(Energy-spectrum method again + Riesz inequality) =
IV (o, )2 < Clluollprms + Ko)(1+ 1) 720712,

for 1 <p <2.

Step 3. Time-decay of ||u||: Again use the mild form and
time-decay of high-order derivatives of u to get

_3/1_ 1
u(t)|| < C(lluol| ars + Ko)(1 +1) 242,

for 1 < ¢ <6/5, where vy, ,+1/2 > 1 was used. B



5. Final remarks
Consider the more realistic mathematical model:
om+u-Vn=06An—V - [x(c)n(Ve+Vo)],
Oc+u-Ve = plAc —k(c)n,
Ou~+u-Vu+ VP =vAu—n[Vop+Vik(c)],
V-u=0, t>0,xcR.
Here

» V¢ exhibit the effect of gravity on cells, and

» Vk(c) exhibit the effect of the chemotactic force in the
fluid equation.

Claim: Theorem II still holds if the smallness of both ¢ and ||co|| L
is supposed. Theorems Il and 1V also hold.

Remark. It is the on-going work to extend the current results
to the above realistic model.



Thanks for your attention!
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