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1. Introduction
1.1 Consider the coupled chemotaxis-Navier-Stokes eqns:

∂tn + u · ∇n = δ∆n−∇ · (χ(c)n∇c),

∂tc + u · ∇c = µ∆c− k(c)n,

∂tu + u · ∇u +∇P = ν∆u− n∇φ,

∇ · u = 0, t > 0, x ∈ R3,

(cNS)

with initial data

(n, c, u)|t=0 = (n0(x), c0(x), u0(x)), x ∈ R3,

where
• unknowns:

chemotaxis variables — n = n(t, x) ≥ 0 (cell density)
c = c(t, x) ≥ 0 (substrate concentration)

fluid variables — u = u(t, x) ∈ R3 (velocity)
P = P(t, x) ∈ R (pressure)



• given:

constant coefficients — δ > 0 (cells diffusion)
µ > 0 (substrate diffusion)
ν > 0 (viscosity)

variable coefficients — χ(c) (chemotactic sensitivity)
k(c) (consumption rate)

potential function — φ = φ(t, x) (external forcing)

• basic assumptions (A1):

(i) n0(x) ≥ 0, c0(x) ≥ 0, ∇ · u0(x) = 0;
(ii) k(0) = 0, k′(c) ≥ 0.

Remarks:

a) −n∇φ is the force exerted on the fluid by cells.

b) (ii) implies that k(c) ≥ 0 holds for c ≥ 0, that is
the case of consumption of chemical substrates.



1.2 Our interest lies in

I the existence of the free energy functional;

I the global well-posedness of the Cauchy problem on
(cNS);

I the large-time behavior of solutions and convergence
rates.

So far, we can answer that

I any constant steady state (n, c, u) ≡ (n∞ ≥ 0, 0, 0) is
asymptotically stable under small perturbations, and the
rate of trend to equilibrium can be obtained;

I ∃ temporal free energy functionals E(n(t), c(t), u(t)) and
corresponding dissipation rate D(n(t), c(t), u(t)) s.t.

d
dt
E(n(t), c(t), u(t)) = −D(n(t), c(t), u(t)) ≤ 0,

provided that
I the potential forcing is weak, or
I the substrate concentration is small.



1.3 Background of the model system:

• Bacteria live in thin fluid layers near solid-air-water contact lines

• Chemotactic Boycott effect in sedimentation:

I Bacteria swim up to the free surface between water and air
(chemotaxis), and slide down the bottom;

I high concentrations of Bacteria are produced at two contact
lines, and the oxygen in water is consumed;

I Bacteria at upper contact line slide down due to gravitational
forcing;

I a vortex is formed in the water due to incompressibility

• This mathematical model consists of

I diffusion, chemotaxis and transport for bacteria;

I diffusion, consumption and transport for Oxygen;

I viscosity and incompressibility for fluid



1.4 Formulation of the boundary conditions: Let Ω be a
bounded domain with smooth bdries. Then, on ∂Ω,(

∂n
∂ν

− χ(x)n
∂c
∂ν

)∣∣∣∣
∂Ω

= 0 (no-flux on n),

c|∂Ω = 0 (Dirichlet) or
∂c
∂ν

∣∣∣∣
∂Ω

= 0 (Neumann),

u|∂Ω = 0 (Dirichlet).

For the semi-dimension problem:

∇φ = ged,

c takes the mixed boundary conditions:

c|Γ+ = c+ > 0 Dirichlet on the upper bdy,

∂c
∂ν

∣∣∣∣
Γ−

= 0 no-flux on the lower bdy,

where

Γ+ = {x ∈ ∂Ω : ed · ν(x) > 0},
Γ− = {x ∈ ∂Ω : ed · ν(x) < 0}.



1.5 Related results:

• Chemotaxis for the angiogenesis system:

∂tn = ∆n−∇ · (χn∇c),
∂tc = −cmn, t > 0, x ∈ Ω,

(n, c)(0, x) = (n0, c0)(x), x ∈ Ω ⊆ Rd.

Rascle, Fontelos-Friedman-Hu, Guarguaglini-Natalini,

Corrias-Perthame-Zagg, ...

• Kinetic-fluid-coupled model:

kinetic equation: Vlasov-type

+

fluid dynamic equations: NS or Euler (C or IC)

Caflish-Papanicolaou, Hamdache, Jabin, Goudon, Carrillo-Goudon,

Mellet-Vasseur, ...



1.5 Related results (cont.):

• Keller-Segel model (substrate is also produced by cells):

∂tn = ∆n−∇ · (χn∇c),
∂tc = ∆c− c + n.

(recent progress only)

I Chalub-Markowich-Perthame-Schmeiser: the model was

justified as a diffusion limit of a kinetic model

I Blanchet-Dolbeault-Perthame,
Blanchet-Carrillo-Masmoudi: Parabolic-elliptic in R2

I Calvez-Corrias: Parabolic-parabolic in R2

I ...



2. Free energy functionals
2.1 To expose the idea, consider{

∂tn = δ∆n−∇ · (χ(c)n∇c),

∂tc = µ∆c− k(c)n, t > 0, x ∈ Rd,

where the fluid component was ignored. Define

E(n(t), c(t)) =
∫

Rd
n ln n dx +

1
2

∫
Rd
|∇Ψ(c)|2dx,

with

Ψ(c) =
∫ c

0

(
χ(s)
k(s)

)1/2

ds.

Then, one has

Proposition (identity I)

d
dt
E(n(t), c(t)) = −D(n(t), c(t)),

where the dissipation rate D(n(t), c(t)) is given by



D(n(t), c(t)) = δ

∫
Rd

|∇n|2

n
dx +

∫
Rd

χ′(c)k(c) + χ(c)k′(c)
2χ(c)

n|∇Ψ|2dx

+µ

∫
Rd

∣∣∣∣∣∇2Ψ− d
dc

√
k(c)
χ(c)

∇Ψ⊗∇Ψ

∣∣∣∣∣
2

dx

−µ

2

∫
Rd

d2

dc2

(
k(c)
χ(c)

)
|∇Ψ|4dx.

Moreover,
D(n(t), c(t)) ≥ 0

holds provided that

χ(c) > 0,
d
dc

(χ(c)k(c)) > 0,
d2

dc2

(
k(c)
χ(c)

)
< 0. (A2)

Proof of Proposition: it follows from the direct calculations.�



Remarks:

a) Identity I is inspired by Tupchiev-Fomina (CMMP ’04) for
the study of the two-dimensional case, where some
inequalities were derived.

b) A typical example for χ(c) and k(c) satisfying the above
condition is

χ(c) = χ0c−α, k(c) = k0cm

with constants χ0 > 0, k0 > 0 and

0 < m < 1, 0 ≤ α < min{m, 1− m}.

c) When the transportation occurs, i.e.,{
∂tn + u · ∇n = δ∆n−∇ · (χ(c)n∇c),

∂tc + u · ∇c = µ∆c− k(c)n, t > 0, x ∈ Rd,

one has

d
dt
E(n(t), c(t)) +D(n(t), c(t)) = −

∑
ij

∫
Rd

∂iuj∂iΨ∂jΨdx.



2.2 Consider the (cNS), that is the coupled chemotaxis-
Navier-Stokes, with

φ = φ(x)

independent of time t. Then one has

Proposition (identity II)

d
dt

∫
Rd

(
nφ +

1
2
|u|2
)

dx + ν

∫
Rd
|∇u|2dx

= δ

∫
Rd

n∆φdx +
∫

Rd

√
k(c)χ(c)n∇Ψ · ∇φdx.

Proof of Proposition: it follows from the integration by parts
and replacing φu · ∇n by the eqn of n. �

Remark. The r.h.s terms of identities I and II can be
controlled provided that

I φ is small in some sense, or

I φ is bounded in some sense and c is small in L∞.



3. Global existence of weak solutions

3.1 Consider the simplified model system of the coupled
chemotaxis-Stokes equations:

∂tn + u · ∇n = δ∆n−∇ · (χ(c)n∇c),

∂tc + u · ∇c = µ∆c− k(c)n,

∂tu +∇P = ν∆u− n∇φ,

∇ · u = 0, t > 0, x ∈ R3,

(cS)

with
(n, c, u)|t=0 = (n0(x), c0(x), u0(x)), x ∈ R3.

Remark. The nonlinear convective term u · ∇u may produce
the new difficulty for regularity of u.



Theorem I Let assumptions A1- A2 hold and let φ = φ(x) ≥ 0 be
independent of t with ∇φ ∈ L∞(R3). Suppose that

n0(| ln n0|+ 〈x〉+ φ(x)) ∈ L1(R3),
c0 ∈ L1(R3) ∩ L∞(R3), ∇Ψ(c0) ∈ L2(R3),

u0 ∈ L∞(R3) ∩ L2(R3)

where 〈x〉 :=
√

1 + x2. Then, ∃ εφ > 0, depending only on δ, µ, ν,
‖c0‖L∞ , s.t. if

sup
x
|x||∇φ(x)|+ sup

x
|x|2|∆φ(x)| ≤ εφ,

the Cauchy problem of (cS) has a global-in-time weak solution
(n, c, u), satisfying that

n(t, x) ≥ 0, sup
t≥0

‖n(t)‖L1 ≤ ‖n0‖L1 ,

c(t, x) ≥ 0, sup
t≥0

‖c(t)‖Lp ≤ ‖c0‖Lp , for any 1 ≤ p ≤ ∞,



and

E1(t) +
∫ t

0
D1(s)ds ≤ E1(0), for any t ≥ 0,

where the free energy E1(t) and its dissipation rate D1(t) are given by

E1(t) =
∫

R3

(
n ln n +

1
2
|∇Ψ(c)|2 +

1
λ1µν

nφ +
1

2λ1µν
|u|2
)

dx,

D1(t) =
δ

2

∫
R3

|∇n|2

n
dx +

λ0

2

∫
R3

n|∇Ψ|2dx +
λ1µ

2

∫
R3
|∇Ψ|4dx

+
1

2λ1µ

∫
R3
|∇u|2dx + µ

∑
ij

∫
R3

∣∣∣∣∣∂i∂jΨ− d
dc

√
k(c)
χ(c)

∂iΨ∂jΨ

∣∣∣∣∣
2

dx,

for constants λ0 and λ1 depending only ‖c0‖∞, and moreover, for
any T > 0,

n(| ln n|+ 〈x〉) ∈ L∞([0, T], L1(R3)), u ∈ L∞([0, T]× R3).



Theorem II Let the assumption A1 and also k′(c) > 0 hold, and let
φ = φ(x) ≥ 0 be independent of t with

sup
x

(1 + |x|)|∇φ(x)|+ sup
x
|x|2|∆φ(x)| < ∞.

Suppose that

n0(| ln n0|+ 〈x〉+ φ(x)) ∈ L1(R3),
c0 ∈ H1(R3) ∩ L∞(R3), u0 ∈ L2(R3) ∩ L∞(R3).

Then, ∃ c∗ > 0, depending only on δ, µ, ν and φ, s.t. if

‖c0‖L∞ ≤ c∗,

the Cauchy problem of (cS) has a global-in-time weak solution
(n, c, u), satisfying that

n(t, x) ≥ 0, sup
t≥0

‖n(t)‖L1 ≤ ‖n0‖L1 ,

c(t, x) ≥ 0, sup
t≥0

‖c(t)‖Lp ≤ ‖c0‖Lp , for any 2 ≤ p ≤ ∞,



and

E2(t) + λ

∫ t

0
D2(s)ds ≤ C(‖n0 ln n0‖L1 + ‖c0‖2

H1 + ‖u0‖2
L2),

for any t ≥ 0, where the free energy E2(t) and its dissipation rate
D2(t) are given by

E2(t) =
∫

R3
n(ln n + λφ)dx + λ(‖c‖2

H1 + ‖u‖2)

D2(t) = ‖∇
√

n‖2 + ‖∇c‖2
H1 + ‖

√
nc‖2 + ‖

√
n∇c‖2 + ‖∇u‖2,

and λ > 0 is a small constant, and moreover, for any T > 0,

n(| ln n|+ 〈x〉) ∈ L∞([0, T], L1(R3)), u ∈ L∞([0, T]× R3).



3.2 Proof of Theorem I: (uniform a priori estimates)

a) From

∂tn +∇ · (δ∇n + n(u + χ(c)∇c)) = 0,

∂tc + u · ∇c = µ∆c− k′(ξ)nc,

where ξ = ξ(t, x) is between 0 and c(t, x), by the assumption
(A1), the maximum principle implies

n(t, x) ≥ 0, 0 ≤ c(t, x) ≤ ‖c‖L∞ = cM

for any 0 ≤ t ≤ T, x ∈ R3.

b) Proof of the energy inequality: Denote cM = ‖c0‖L∞, and
define

λ0 = min
0≤c≤cM

χ′(c)k(c) + χ(c)k′(c)
2χ(c)

> 0,

λ1 = min
0≤c≤cM

−1
2

d2

dc2

(
k(c)
χ(c)

)
> 0,

by assumptions A1 and A2.



The r.h.s. of identity I is bounded by

1
2λ1µ

∫
R3
|∇u|2dx +

λ1µ

2

∫
R3
|∇Ψ|4dx.

The r.h.s. of identity II is bounded by

δε

∫
R3

∣∣∣∣√n
|x|

∣∣∣∣2 dx + ε

(
sup

0≤c≤cM

k(c)χ(c)

)1/2 ∫
R3

√
n

|x|
·
√

n|∇Ψ|dx

≤
(

δε +
sup0≤c≤cM

k(c)χ(c)
2λ0λ1µν

ε2
)∫

R3

|∇n|2

n
dx +

λ0λ1µν

2

∫
R3

n|∇Ψ|2dx,

where one used the Hardy inequality∫
R3

∣∣∣∣√n
|x|

∣∣∣∣2 dx ≤ 4
∫

R3
|∇
√

n|2dx =
∫

R3

|∇n|2

n
dx,

and
sup

x
|x||∇φ(x)|+ sup

x
|x|2|∆φ(x)| ≤ ε.

Then, ε > 0 is small ⇒ · · ·



c) Estimates on moments and ‖u‖L∞: Eqn of n ⇒∫
R3
〈x〉n(t, x)dx ≤ Cδ‖n0‖L1T + C‖n0‖L1T sup

0≤t≤T
‖u(t)‖L∞

+
1
λ0

(
sup

0≤c≤cM

χ(c)

)∫ T

0
‖k(c)n‖L1ds

+
λ0

4

∫ T

0
‖
√

n∇Ψ‖2ds,

+ Eqn of c ⇒

‖c(t)‖L1 +
∫ t

0
‖k(c)n‖L1ds ≤ ‖c0‖L1 ,

+ Eqn of u ⇒

‖u(t)‖L∞ ≤ C‖u0‖L∞ + C‖∇φ‖L∞

∫ t

0

√
t − s‖∇

√
n‖2ds.

Then,



∫
R3
〈x〉n(t, x)dx ≤ ‖c0‖L1

λ0
sup

0≤c≤cM

χ(c) + C(δ + ‖u0‖L∞)‖n0‖L1 T

+C‖n0‖L1 T3/2‖∇φ‖L∞

∫ T

0
‖∇

√
n‖2ds

+
λ0

4

∫ T

0
‖
√

n∇Ψ‖2ds.

Take the linear combination with the energy inequality ⇒

sup
0≤t≤T0

E+
1 (t) +

1
2

∫ T0

0
D1(s)ds

≤ E1(0) + C +
‖c0‖L1

λ0
sup

0≤c≤cM

χ(c) + C(δ + ‖u0‖L∞)‖n0‖L1 T0,

for some small T0 > 0, where

E+
1 (t) =

∫
R3

n ln nχn≥1dx +
∫

R3

(
1
2
|∇Ψ(c)|2 +

1
λ1ν

nφ +
1

2λ1ν
|u|2
)

dx.

Apply to intervals [0, T0], [T0, 2T0], · · · , [mT0, T] ⇒ · · · �



3.3 Proof of Theorem II: (uniform a priori estimates)

a) cM is small. The direct energy estimates ⇒

d
dt

∫
R3

(n ln n + λ2|∇c|2 + |c|2)dx + µ min{λ2, 2}
∫

R3
(|∇c|2 + |∇2c|2)dx

+ min{1, 2 min
0≤c≤cM

k′(c)}
∫

R3
n(|c|2 + |∇c|2)dx +

δ

4

∫
R3

|∇n|2

n
dx

≤ λ2c2
M

µ

∫
R3
|∇u|2dx.

b) Identity II gives

d
dt

∫
R3

(
nφ +

1
2
|u|2
)

dx + ν

∫
R3
|∇u|2dx

≤ δ sup
x
|x|2|∆φ(x)|

∫
R3

|∇n|2

n
dx

+
1
2

sup
x
|x||∇φ(x)| sup

0≤c≤cM

|χ(c)|
(∫

R3

|∇n|2

n
dx +

∫
R3

n|∇c|2dx
)

.

c) Smallness of cM + linear combination of a) and b) ⇒ · · · �



3.4 Remarks:

a) It is unknown that Theorems I and II could still hold for
one of the following three cases:

I the smallness of both φ and ‖c0‖L∞ is removed;

I the nonlinear convective term ∇ · (u⊗ u) is added;

I both χ(c) and k(c) take the more general forms.

b) Similar results hold for the case of

I the space dimension d ≥ 2, or

I the bounded domain with homogeneous boundary
conditions

∂n
∂ν

∣∣∣∣
∂Ω

=
∂c
∂ν

∣∣∣∣
∂Ω

= 0, u|∂Ω = 0.

However, it is not clear for the general biological non-homo-
geneous bdry conditions.



4. Classical solutions near constant states
4.1 Consider

∂tn + u · ∇n = δ∆n−∇ · (χ(c)n∇c),

∂tc + u · ∇c = µ∆c− k(c)n,

∂tu + u · ∇u +∇P = ν∆u− n∇φ,

∇ · u = 0, t > 0, x ∈ R3,

(cNS)

with initial data

(n, c, u)|t=0 = (n0(x), c0(x), u0(x)), x ∈ R3.

Suppose

(n0(x), c0(x), u0(x)) → (n∞ ≥ 0, 0, 0) as |x| → ∞.

Our goal is to prove

the constant steady state (n∞, 0, 0) is asymptotically
stable under small smooth perturbations.



4.2 Reformulation of the Cauchy problem: Let

n = σ + n∞, P̄ = P + n∞φ.

Then,

∂tσ + u · ∇σ − δ∆σ = −∇ · (χ(c)σ∇c)− n∞∇ · (χ(c)∇c),

∂tc + u · ∇c− µ∆c + k′(0)(σ + n∞)c = −(k(c)− k′(0)c)(σ + n∞),

∂tu + u · ∇u +∇P̄− ν∆u = −σ∇φ,

∇ · u = 0, t > 0, x ∈ R3,

with

(σ, c, u)|t=0 = (σ0(x), c0(x), u0(x)) → (0, 0, 0) as |x| → ∞,

where σ0 = n0 − n∞.



Theorem III. Let n∞ ≥ 0, and the assumption (A1) hold with
n0(x) ≡ σ0(x) + n∞ ≥ 0 for x ∈ R3, and φ = φ(t, x) satisfy

sup
t,x

(1 + |x|)|φ(t, x)|+
∑

1≤|α|≤3

sup
t,x
|∂α

x φ(t, x)| < ∞.

Furthermore, suppose that ‖(σ0, c0, u0)‖H3 is sufficiently small. Then
the Cauchy problem of (cNS) admits a unique classical solution
(σ, c, u) with

n(t, x) ≡ σ(t, x) + n∞ ≥ 0, c(t, x) ≥ 0

for t ≥ 0, x ∈ R3, such that

‖(σ, c, u)(t)‖2
H3 + λ

∫ t

0

∫
R3

(σ + n∞)

k(c)c + k′(0)
∑

1≤|α|≤3

|∂α
x c(s)|2

 dxds

+λ

∫ t

0
‖∇(σ, c, u)(s)‖2

H3 ds ≤ C‖(n0, c0, u0)‖2
H3

hold for some constants λ > 0, C and for any t ≥ 0.



4.3 Proof of Theorem III: (uniform a priori estimates)

a) The maximum principle ⇒

σ + n∞ = n(t, x) ≥ 0, 0 ≤ c(t, x) ≤ ‖c‖L∞ .

b) Energy estimates under smallness: (Zero-order)

1
2

d
dt

∫
R3

(
|u|2 + d2σ

2 + d1d2c2) dx +
ν

2

∫
R3
|∇u|2dx +

d2δ

4

∫
R3
|∇σ|2dx

+
d1d2µ

2

∫
R3
|∇c|2dx + d1d2

∫
R3

k(c)c(σ + n∞)dx ≤ 0,

+ (high-order)

1
2

d
dt

∑
1≤|α|≤3

Cα

∫
R3
|∂α

x (σ, c, u)|2dx + λ
∑

2≤|α|≤4

∫
R3
|∂α

x (σ, c, u)|2dx

+λk′(0)
∑

1≤|α|≤3

∫
R3

(σ + n∞)|∂α
x c|2dx ≤ C

∫
R3
|∇(σ, c, u)|2dx,

(linear combination) ⇒ uniform a priori estimates. �



4.4 Convergence rates: There are three cases:

n∞ = 0; n∞ > 0, k′(0) = 0; n∞k′(0) > 0.

Theorem IV. Let n∞ = 0, and all conditions in Theorem III hold.

(i) Assume σ0, c0 ∈ L1(R3). Then, for any 1 ≤ p < ∞,

‖σ(t)‖Lp ≤ C‖σ0‖L1∩Lp(1 + t)−
3
2 (1− 1

p )
,

‖c(t)‖|Lp ≤ C‖c0‖L1∩Lp(1 + t)−
3
2 (1− 1

p )
.

(ii) Furthermore, assume that u0 ∈ Lq(R3) and

φ ∈ L∞(R+; L2q/(2−q)(R3))

for 1 < q < 6/5. Then,

‖u(t)‖ ≤ C(‖u0‖Lq∩H3 + K0)(1 + t)−
3
2 ( 1

q−
1
2 )

,

for any t ≥ 0, where K0 is defined by

K0 = ‖(σ0, c0)‖L1∩H3 + ‖σ0‖L1∩L2‖c0‖L1∩L2 .



4.5 Proof of Theorem IV:

Energy-spectrum method (D.-Ukai-Yang ’09)

a) Time-decay of c and n:

d
dt

∫
R3

cpdx +
4µ(p− 1)

p

∫
R3
|∇cp/2|2dx ≤ 0,

+
‖c(t)‖L1 ≤ ‖c0‖L1

(standard argument: interpolation inequality

‖f‖Lp ≤ C‖∇|f |p/2‖
2γp,q

1+pγp,q ‖f‖
1

1+pγp,q
Lq

with

γp,q =
3
2

(
1
q
− 1

p

)
+ Young inequality) ⇒ time-decay of c, and similarly for n.



b) Time-decay of u: (Three steps)

Step 1. Time-decay of high-order derivatives of (σ, c): Use the
high-order energy inequality

d
dt
‖∇(σ, c)‖2

H2 + λ‖∇(σ, c)‖2
H3 ≤ C‖∇(σ, c)‖2,

+ Use the mild forms of σ, c to obtain

‖∇σ(t)‖ ≤ C‖σ0‖Lp∩H1(1 + t)−γ2,p−1/2

+Cε

∫ t

0
(1 + t − s)−5/4‖∇(σ, c)(s)‖H1 ds,

‖∇c(t)‖ ≤ C‖c0‖L1∩H1(1 + t)−γ2,p−1/2

+Cε

∫ t

0
(1 + t − s)−5/4‖∇c(s)‖H1 ds

+C(1 + t)−5/4‖c0‖L1∩L2‖σ0‖L1∩L2

(Gronwall inequality) ⇒

‖∇(σ, c)(t)‖H2 ≤ C(‖∇(σ0, c0)‖H2 + Kp)(1 + t)−γ2,p−1/2,

for any 1 ≤ p ≤ 2.



Step 2. Time-decay of high-order derivatives of u: Use the
mild form

u(t) = eν∆tu0 +
∫ t

0
eν∆(t−s)(−P(u · ∇u) + P(φ∇σ))ds,

with
P(σ∇φ) = −P(φ∇σ).

(Energy-spectrum method again + Riesz inequality) ⇒

‖∇(σ, c, u)(t)‖H2 ≤ C(‖u0‖Lp∩H3 + K0)(1 + t)−γ2,p−1/2,

for 1 < p ≤ 2.

Step 3. Time-decay of ‖u‖: Again use the mild form and
time-decay of high-order derivatives of u to get

‖u(t)‖ ≤ C(‖u0‖Lq∩H3 + K0)(1 + t)−
3
2 ( 1

q−
1
2 )

,

for 1 < q < 6/5, where γ2,q + 1/2 > 1 was used. �



5. Final remarks
Consider the more realistic mathematical model:

∂tn + u · ∇n = δ∆n−∇ · [χ(c)n(∇c+∇φ)],

∂tc + u · ∇c = µ∆c− k(c)n,

∂tu + u · ∇u +∇P = ν∆u− n[∇φ+∇k(c)],

∇ · u = 0, t > 0, x ∈ R3.

Here

I ∇φ exhibit the effect of gravity on cells, and

I ∇k(c) exhibit the effect of the chemotactic force in the
fluid equation.

Claim: Theorem II still holds if the smallness of both φ and ‖c0‖L∞

is supposed. Theorems III and IV also hold.

Remark. It is the on-going work to extend the current results
to the above realistic model.



Thanks for your attention!
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