Global Solutions to the Coupled Chemotaxis-Fluid Equations

Renjun Duan

Johann Radon Institute for Computational and Applied Mathematics
Austrian Academy of Sciences

This is a joint work with Alexander Lorz and Peter Markowich

Modern Topics in Nonlinear Kinetic Equations University of Cambridge, April 20–22, 2009

Outline

- Introduction
 - ► Mathematical models under consideration
 - ► The main goal of this talk
 - ► Related results
- Free energy functionals
 - ► Identity I
 - **▶** Identity II
- Global existence of weak solutions
 - ► Theorem I for the case when forcing is small
 - ▶ Theorem II for the case when initial c_0 is small
- Classical solutions near constant states
 - **▶** Global existence of solutions
 - ► Rate of convergence of solutions to constant states
- Final remarks

1. Introduction

1.1 Consider the coupled chemotaxis-Navier-Stokes eqns:

$$\begin{cases} \partial_t n + u \cdot \nabla n = \delta \Delta n - \nabla \cdot (\chi(c) n \nabla c), \\ \partial_t c + u \cdot \nabla c = \mu \Delta c - k(c) n, \\ \partial_t u + u \cdot \nabla u + \nabla P = \nu \Delta u - n \nabla \phi, \\ \nabla \cdot u = 0, \quad t > 0, x \in \mathbb{R}^3, \end{cases}$$
(cNS)

with initial data

$$(n, c, u)|_{t=0} = (n_0(x), c_0(x), u_0(x)), \quad x \in \mathbb{R}^3,$$

where

unknowns:

chemotaxis variables —
$$n=n(t,x)\geq 0$$
 (cell density)
$$c=c(t,x)\geq 0 \text{ (substrate concentration)}$$

fluid variables —
$$u = u(t,x) \in \mathbb{R}^3$$
 (velocity)
 $P = P(t,x) \in \mathbb{R}$ (pressure)

• given:

constant coefficients —
$$\delta>0$$
 (cells diffusion)
$$\mu>0 \text{ (substrate diffusion)}$$

$$\nu>0 \text{ (viscosity)}$$
 variable coefficients — $\chi(c)$ (chemotactic sensitivity)
$$k(c) \text{ (consumption rate)}$$
 potential function — $\phi=\phi(t,x)$ (external forcing)

• basic assumptions (A1):

(i)
$$n_0(x) \ge 0$$
, $c_0(x) \ge 0$, $\nabla \cdot u_0(x) = 0$;
(ii) $k(0) = 0$, $k'(c) \ge 0$.

Remarks:

- a) $-n\nabla\phi$ is the force exerted on the fluid by cells.
- b) (ii) implies that $k(c) \ge 0$ holds for $c \ge 0$, that is the case of consumption of chemical substrates.

1.2 Our interest lies in

- the existence of the free energy functional;
- the global well-posedness of the Cauchy problem on (cNS);
- the large-time behavior of solutions and convergence rates.

So far, we can answer that

- ▶ any constant steady state $(n, c, u) \equiv (n_{\infty} \ge 0, 0, 0)$ is asymptotically stable under small perturbations, and the rate of trend to equilibrium can be obtained;
- ▶ \exists temporal *free* energy functionals $\mathcal{E}(n(t), c(t), u(t))$ and corresponding dissipation rate $\mathcal{D}(n(t), c(t), u(t))$ s.t.

$$\frac{d}{dt}\mathcal{E}(n(t),c(t),u(t)) = -\mathcal{D}(n(t),c(t),u(t)) \le 0,$$

provided that

- the potential forcing is weak, or
- the substrate concentration is small.

1.3 Background of the model system:

- Bacteria live in thin fluid layers near solid-air-water contact lines
- Chemotactic Boycott effect in sedimentation:
 - Bacteria swim up to the free surface between water and air (chemotaxis), and slide down the bottom;
 - high concentrations of Bacteria are produced at two contact lines, and the oxygen in water is consumed;
 - Bacteria at upper contact line slide down due to gravitational forcing;
 - a vortex is formed in the water due to incompressibility
- This mathematical model consists of
 - diffusion, chemotaxis and transport for bacteria;
 - diffusion, consumption and transport for Oxygen;
 - viscosity and incompressibility for fluid

1.4 Formulation of the boundary conditions: Let Ω be a bounded domain with smooth bdries. Then, on $\partial\Omega$,

$$\begin{split} \left(\frac{\partial n}{\partial \nu} - \chi(x) n \frac{\partial c}{\partial \nu}\right) \bigg|_{\partial \Omega} &= 0 \ (\text{no-flux on } n), \\ c|_{\partial \Omega} &= 0 \ (\text{Dirichlet}) \ \text{or} \ \left. \frac{\partial c}{\partial \nu} \right|_{\partial \Omega} = 0 \ (\text{Neumann}), \\ u|_{\partial \Omega} &= 0 \ (\text{Dirichlet}). \end{split}$$

For the semi-dimension problem:

$$\nabla \phi = g \mathbf{e}_d$$

c takes the mixed boundary conditions:

$$\left. \begin{array}{l} c|_{\Gamma_+}=c_+>0 \text{ Dirichlet on the upper bdy}, \\ \left. \frac{\partial c}{\partial \nu} \right|_{\Gamma_-} = 0 \text{ no-flux on the lower bdy}, \end{array} \right.$$

where

$$\Gamma_{+} = \{ x \in \partial\Omega : \mathbf{e}_{d} \cdot \nu(x) > 0 \},$$

$$\Gamma_{-} = \{ x \in \partial\Omega : \mathbf{e}_{d} \cdot \nu(x) < 0 \}.$$

1.5 Related results:

• Chemotaxis for the angiogenesis system:

$$\partial_t n = \Delta n - \nabla \cdot (\chi n \nabla c),$$

$$\partial_t c = -c^m n, \quad t > 0, x \in \Omega,$$

$$(n, c)(0, x) = (n_0, c_0)(x), \quad x \in \Omega \subseteq \mathbb{R}^d.$$

Rascle, Fontelos-Friedman-Hu, Guarguaglini-Natalini, Corrias-Perthame-Zagg, ...

• Kinetic-fluid-coupled model:

kinetic equation: Vlasov-type

+

fluid dynamic equations: NS or Euler (C or IC)

Caflish-Papanicolaou, Hamdache, Jabin, Goudon, Carrillo-Goudon, Mellet-Vasseur, ...

1.5 Related results (cont.):

Keller-Segel model (substrate is also produced by cells):

$$\partial_t n = \Delta n - \nabla \cdot (\chi n \nabla c),$$

 $\partial_t c = \Delta c - c + n.$

(recent progress only)

- Chalub-Markowich-Perthame-Schmeiser: the model was justified as a diffusion limit of a kinetic model
- ► Blanchet-Dolbeault-Perthame, Blanchet-Carrillo-Masmoudi: Parabolic-elliptic in ℝ²
- ▶ Calvez-Corrias: Parabolic-parabolic in \mathbb{R}^2
- **...**

2. Free energy functionals

2.1 To expose the idea, consider

$$\begin{cases} \partial_t n = \delta \Delta n - \nabla \cdot (\chi(c) n \nabla c), \\ \partial_t c = \mu \Delta c - k(c) n, \quad t > 0, x \in \mathbb{R}^d, \end{cases}$$

where the fluid component was ignored. Define

$$\mathcal{E}(n(t), c(t)) = \int_{\mathbb{R}^d} n \ln n \, dx + \frac{1}{2} \int_{\mathbb{R}^d} |\nabla \Psi(c)|^2 dx,$$

with

$$\Psi(c) = \int_0^c \left(\frac{\chi(s)}{k(s)}\right)^{1/2} ds.$$

Then, one has

Proposition (identity I)

$$\frac{d}{dt}\mathcal{E}(n(t),c(t)) = -\mathcal{D}(n(t),c(t)),$$

where the dissipation rate $\mathcal{D}(n(t),c(t))$ is given by

$$\mathcal{D}(n(t), c(t)) = \delta \int_{\mathbb{R}^d} \frac{|\nabla n|^2}{n} dx + \int_{\mathbb{R}^d} \frac{\chi'(c)k(c) + \chi(c)k'(c)}{2\chi(c)} n |\nabla \Psi|^2 dx$$
$$+ \mu \int_{\mathbb{R}^d} \left| \nabla^2 \Psi - \frac{d}{dc} \sqrt{\frac{k(c)}{\chi(c)}} \nabla \Psi \otimes \nabla \Psi \right|^2 dx$$
$$- \frac{\mu}{2} \int_{\mathbb{R}^d} \frac{d^2}{dc^2} \left(\frac{k(c)}{\chi(c)} \right) |\nabla \Psi|^4 dx.$$

Moreover,

$$\mathcal{D}(n(t), c(t)) \ge 0$$

holds provided that

$$\chi(c) > 0, \quad \frac{d}{dc}(\chi(c)k(c)) > 0, \quad \frac{d^2}{dc^2}\left(\frac{k(c)}{\chi(c)}\right) < 0.$$
 (A2)

Proof of Proposition: it follows from the direct calculations.

Remarks:

- a) Identity I is inspired by Tupchiev-Fomina (CMMP '04) for the study of the two-dimensional case, where some inequalities were derived.
- b) A typical example for $\chi(c)$ and k(c) satisfying the above condition is

$$\chi(c) = \chi_0 c^{-\alpha}, \quad k(c) = k_0 c^m$$

with constants $\chi_0 > 0$, $k_0 > 0$ and

$$0 < m < 1, \quad 0 \le \alpha < \min\{m, 1 - m\}.$$

c) When the transportation occurs, i.e.,

$$\begin{cases} \partial_t n + u \cdot \nabla n = \delta \Delta n - \nabla \cdot (\chi(c) n \nabla c), \\ \partial_t c + u \cdot \nabla c = \mu \Delta c - k(c) n, \quad t > 0, x \in \mathbb{R}^d, \end{cases}$$

one has

$$\frac{d}{dt}\mathcal{E}(n(t),c(t))+\mathcal{D}(n(t),c(t))=-\sum_{ii}\int_{\mathbb{R}^d}\partial_iu_j\partial_i\Psi\partial_j\Psi dx.$$

2.2 Consider the (cNS), that is the coupled chemotaxis-Navier-Stokes, with

$$\phi = \phi(x)$$

independent of time t. Then one has

Proposition (identity II)

$$\begin{split} &\frac{d}{dt} \int_{\mathbb{R}^d} \left(n\phi + \frac{1}{2} |u|^2 \right) dx + \nu \int_{\mathbb{R}^d} |\nabla u|^2 dx \\ &= \delta \int_{\mathbb{R}^d} n\Delta \phi dx + \int_{\mathbb{R}^d} \sqrt{k(c)\chi(c)} n\nabla \Psi \cdot \nabla \phi dx. \end{split}$$

Proof of Proposition: it follows from the integration by parts and replacing $\phi u \cdot \nabla n$ by the eqn of n.

Remark. The r.h.s terms of identities I and II can be controlled provided that

- $\blacktriangleright \phi$ is small in some sense, or
- lacktriangledown ϕ is bounded in some sense and c is small in L^{∞} .

3. Global existence of weak solutions

3.1 Consider the simplified model system of the coupled chemotaxis-Stokes equations:

$$\begin{cases} \partial_t n + u \cdot \nabla n = \delta \Delta n - \nabla \cdot (\chi(c) n \nabla c), \\ \partial_t c + u \cdot \nabla c = \mu \Delta c - k(c) n, \\ \partial_t u + \nabla P = \nu \Delta u - n \nabla \phi, \\ \nabla \cdot u = 0, \quad t > 0, x \in \mathbb{R}^3, \end{cases}$$

$$(cS)$$

with

$$(n, c, u)|_{t=0} = (n_0(x), c_0(x), u_0(x)), \quad x \in \mathbb{R}^3.$$

Remark. The nonlinear convective term $u \cdot \nabla u$ may produce the new difficulty for regularity of u.

Theorem I Let assumptions A1- A2 hold and let $\phi = \phi(x) \ge 0$ be independent of t with $\nabla \phi \in L^{\infty}(\mathbb{R}^3)$. Suppose that

$$n_0(|\ln n_0| + \langle x \rangle + \phi(x)) \in L^1(\mathbb{R}^3),$$

$$c_0 \in L^1(\mathbb{R}^3) \cap L^{\infty}(\mathbb{R}^3), \quad \nabla \Psi(c_0) \in L^2(\mathbb{R}^3),$$

$$u_0 \in L^{\infty}(\mathbb{R}^3) \cap L^2(\mathbb{R}^3)$$

where $\langle x \rangle := \sqrt{1+x^2}$. Then, $\exists \epsilon_{\phi} > 0$, depending only on δ , μ , ν , $\|c_0\|_{L^{\infty}}$, s.t. if

$$\sup_{x} |x| |\nabla \phi(x)| + \sup_{x} |x|^{2} |\Delta \phi(x)| \le \epsilon_{\phi},$$

the Cauchy problem of (cS) has a global-in-time weak solution (n, c, u), satisfying that

$$n(t,x) \ge 0, \sup_{t \ge 0} \|n(t)\|_{L^1} \le \|n_0\|_{L^1},$$

 $c(t,x) \ge 0, \sup_{t \ge 0} \|c(t)\|_{L^p} \le \|c_0\|_{L^p}, \text{ for any } 1 \le p \le \infty,$

and

$$\mathcal{E}_1(t) + \int_0^t \mathcal{D}_1(s)ds \leq \mathcal{E}_1(0), \text{ for any } t \geq 0,$$

where the free energy $\mathcal{E}_1(t)$ and its dissipation rate $\mathcal{D}_1(t)$ are given by

$$\mathcal{E}_1(t) = \int_{\mathbb{R}^3} \left(n \ln n + \frac{1}{2} |\nabla \Psi(c)|^2 + \frac{1}{\lambda_1 \mu \nu} n \phi + \frac{1}{2\lambda_1 \mu \nu} |u|^2 \right) dx,$$

$$\mathcal{D}_{1}(t) = \frac{\delta}{2} \int_{\mathbb{R}^{3}} \frac{|\nabla n|^{2}}{n} dx + \frac{\lambda_{0}}{2} \int_{\mathbb{R}^{3}} n|\nabla \Psi|^{2} dx + \frac{\lambda_{1}\mu}{2} \int_{\mathbb{R}^{3}} |\nabla \Psi|^{4} dx + \frac{1}{2\lambda_{1}\mu} \int_{\mathbb{R}^{3}} |\nabla u|^{2} dx + \mu \sum_{ij} \int_{\mathbb{R}^{3}} \left| \partial_{i}\partial_{j}\Psi - \frac{d}{dc} \sqrt{\frac{k(c)}{\chi(c)}} \partial_{i}\Psi \partial_{j}\Psi \right|^{2} dx,$$

for constants λ_0 and λ_1 depending only $||c_0||_{\infty}$, and moreover, for any T > 0,

$$n(|\ln n| + \langle x \rangle) \in L^{\infty}([0, T], L^{1}(\mathbb{R}^{3})), \ u \in L^{\infty}([0, T] \times \mathbb{R}^{3}).$$

Theorem II Let the assumption **A1** and also k'(c) > 0 hold, and let $\phi = \phi(x) \ge 0$ be independent of t with

$$\sup_{x}(1+|x|)|\nabla\phi(x)|+\sup_{x}|x|^{2}|\Delta\phi(x)|<\infty.$$

Suppose that

$$n_0(|\ln n_0| + \langle x \rangle + \phi(x)) \in L^1(\mathbb{R}^3),$$

$$c_0 \in H^1(\mathbb{R}^3) \cap L^{\infty}(\mathbb{R}^3), \quad u_0 \in L^2(\mathbb{R}^3) \cap L^{\infty}(\mathbb{R}^3).$$

Then, $\exists c_* > 0$, depending only on δ , μ , ν and ϕ , s.t. if

$$||c_0||_{L^\infty} \leq c_*,$$

the Cauchy problem of (cS) has a global-in-time weak solution (n, c, u), satisfying that

$$n(t,x) \ge 0, \sup_{t \ge 0} \|n(t)\|_{L^1} \le \|n_0\|_{L^1},$$

$$c(t,x) \ge 0, \sup_{t \ge 0} \|c(t)\|_{L^p} \le \|c_0\|_{L^p}, \text{ for any } 2 \le p \le \infty,$$

and

$$\mathcal{E}_2(t) + \lambda \int_0^t \mathcal{D}_2(s) ds \le C(\|n_0 \ln n_0\|_{L^1} + \|c_0\|_{H^1}^2 + \|u_0\|_{L^2}^2),$$

for any $t \ge 0$, where the free energy $\mathcal{E}_2(t)$ and its dissipation rate $\mathcal{D}_2(t)$ are given by

$$\mathcal{E}_{2}(t) = \int_{\mathbb{R}^{3}} n(\ln n + \lambda \phi) dx + \lambda (\|c\|_{H^{1}}^{2} + \|u\|^{2})$$

$$\mathcal{D}_{2}(t) = \|\nabla \sqrt{n}\|^{2} + \|\nabla c\|_{H^{1}}^{2} + \|\sqrt{n}c\|^{2} + \|\sqrt{n}\nabla c\|^{2} + \|\nabla u\|^{2},$$

and $\lambda > 0$ is a small constant, and moreover, for any T > 0,

$$n(|\ln n| + \langle x \rangle) \in L^{\infty}([0, T], L^{1}(\mathbb{R}^{3})), \ u \in L^{\infty}([0, T] \times \mathbb{R}^{3}).$$

3.2 Proof of Theorem I: (uniform a priori estimates)

a) From

$$\partial_t n + \nabla \cdot (\delta \nabla n + n(u + \chi(c) \nabla c)) = 0,$$

$$\partial_t c + u \cdot \nabla c = \mu \Delta c - k'(\xi) nc,$$

where $\xi=\xi(t,x)$ is between 0 and c(t,x), by the assumption (A1), the maximum principle implies

$$n(t,x) \ge 0, \quad 0 \le c(t,x) \le ||c||_{L^{\infty}} = c_M$$

for any $0 \le t \le T$, $x \in \mathbb{R}^3$.

b) Proof of the energy inequality: Denote $c_M = \|c_0\|_{L^\infty}$, and define

$$\lambda_0 = \min_{0 \le c \le c_M} \frac{\chi'(c)k(c) + \chi(c)k'(c)}{2\chi(c)} > 0,$$

$$\lambda_1 = \min_{0 \le c \le c_M} -\frac{1}{2} \frac{d^2}{dc^2} \left(\frac{k(c)}{\chi(c)}\right) > 0,$$

by assumptions A1 and A2.

The r.h.s. of identity I is bounded by

$$\frac{1}{2\lambda_1\mu}\int_{\mathbb{R}^3}|\nabla u|^2dx+\frac{\lambda_1\mu}{2}\int_{\mathbb{R}^3}|\nabla\Psi|^4dx.$$

The r.h.s. of identity II is bounded by

$$\delta\epsilon \int_{\mathbb{R}^{3}} \left| \frac{\sqrt{n}}{|x|} \right|^{2} dx + \epsilon \left(\sup_{0 \leq c \leq c_{M}} k(c) \chi(c) \right)^{1/2} \int_{\mathbb{R}^{3}} \frac{\sqrt{n}}{|x|} \cdot \sqrt{n} |\nabla \Psi| dx$$

$$\leq \left(\delta\epsilon + \frac{\sup_{0 \leq c \leq c_{M}} k(c) \chi(c)}{2\lambda_{0}\lambda_{1}\mu\nu} \epsilon^{2} \right) \int_{\mathbb{R}^{3}} \frac{|\nabla n|^{2}}{n} dx + \frac{\lambda_{0}\lambda_{1}\mu\nu}{2} \int_{\mathbb{R}^{3}} n |\nabla \Psi|^{2} dx,$$

where one used the Hardy inequality

$$\int_{\mathbb{R}^3} \left| \frac{\sqrt{n}}{|x|} \right|^2 dx \le 4 \int_{\mathbb{R}^3} |\nabla \sqrt{n}|^2 dx = \int_{\mathbb{R}^3} \frac{|\nabla n|^2}{n} dx,$$

and

$$\sup_{x} |x| |\nabla \phi(x)| + \sup_{x} |x|^{2} |\Delta \phi(x)| \le \epsilon.$$

Then, $\epsilon > 0$ is small $\Rightarrow \cdots$

c) Estimates on moments and $||u||_{L^{\infty}}$: Eqn of $n \Rightarrow$

$$\begin{split} \int_{\mathbb{R}^{3}} \langle x \rangle n(t,x) dx &\leq C \delta \|n_{0}\|_{L^{1}} T + C \|n_{0}\|_{L^{1}} T \sup_{0 \leq t \leq T} \|u(t)\|_{L^{\infty}} \\ &+ \frac{1}{\lambda_{0}} \left(\sup_{0 \leq c \leq c_{M}} \chi(c) \right) \int_{0}^{T} \|k(c)n\|_{L^{1}} ds \\ &+ \frac{\lambda_{0}}{4} \int_{0}^{T} \|\sqrt{n} \nabla \Psi\|^{2} ds, \end{split}$$

+ Eqn of $c \Rightarrow$

$$||c(t)||_{L^1} + \int_0^t ||k(c)n||_{L^1} ds \le ||c_0||_{L^1},$$

+ Eqn of $u \Rightarrow$

$$||u(t)||_{L^{\infty}} \le C||u_0||_{L^{\infty}} + C||\nabla \phi||_{L^{\infty}} \int_{0}^{t} \sqrt{t-s}||\nabla \sqrt{n}||^2 ds.$$

Then,

$$\begin{split} \int_{\mathbb{R}^{3}} \langle x \rangle n(t,x) dx &\leq \frac{\|c_{0}\|_{L^{1}}}{\lambda_{0}} \sup_{0 \leq c \leq c_{M}} \chi(c) + C(\delta + \|u_{0}\|_{L^{\infty}}) \|n_{0}\|_{L^{1}} T \\ &+ C \|n_{0}\|_{L^{1}} T^{3/2} \|\nabla \phi\|_{L^{\infty}} \int_{0}^{T} \|\nabla \sqrt{n}\|^{2} ds \\ &+ \frac{\lambda_{0}}{4} \int_{0}^{T} \|\sqrt{n} \nabla \Psi\|^{2} ds. \end{split}$$

Take the linear combination with the energy inequality ⇒

$$\begin{split} \sup_{0 \leq t \leq T_0} \mathcal{E}_1^+(t) + \frac{1}{2} \int_0^{T_0} D_1(s) ds \\ \leq \mathcal{E}_1(0) + C + \frac{\|c_0\|_{L^1}}{\lambda_0} \sup_{0 < c < c_M} \chi(c) + C(\delta + \|u_0\|_{L^\infty}) \|n_0\|_{L^1} T_0, \end{split}$$

for some small $T_0 > 0$, where

$$\mathcal{E}_1^+(t) = \int_{\mathbb{D}^3} n \ln n \chi_{n \ge 1} dx + \int_{\mathbb{D}^3} \left(\frac{1}{2} |\nabla \Psi(c)|^2 + \frac{1}{\lambda_1 \nu} n \phi + \frac{1}{2\lambda_1 \nu} |u|^2 \right) dx.$$

Apply to intervals $[0, T_0], [T_0, 2T_0], \cdots, [mT_0, T] \Rightarrow \cdots$

3.3 Proof of Theorem II: (uniform a priori estimates)

a) c_M is small. The direct energy estimates \Rightarrow

$$\begin{split} \frac{d}{dt} \int_{\mathbb{R}^{3}} (n \ln n + \lambda_{2} |\nabla c|^{2} + |c|^{2}) dx + \mu \min\{\lambda_{2}, 2\} \int_{\mathbb{R}^{3}} (|\nabla c|^{2} + |\nabla^{2} c|^{2}) dx \\ + \min\{1, 2 \min_{0 \leq c \leq c_{M}} k'(c)\} \int_{\mathbb{R}^{3}} n(|c|^{2} + |\nabla c|^{2}) dx + \frac{\delta}{4} \int_{\mathbb{R}^{3}} \frac{|\nabla n|^{2}}{n} dx \\ \leq \frac{\lambda_{2} c_{M}^{2}}{\mu} \int_{\mathbb{R}^{3}} |\nabla u|^{2} dx. \end{split}$$

b) Identity II gives

$$\begin{split} &\frac{d}{dt} \int_{\mathbb{R}^3} \left(n\phi + \frac{1}{2} |u|^2 \right) dx + \nu \int_{\mathbb{R}^3} |\nabla u|^2 dx \\ &\leq \delta \sup_x |x|^2 |\Delta \phi(x)| \int_{\mathbb{R}^3} \frac{|\nabla n|^2}{n} dx \\ &\quad + \frac{1}{2} \sup_x |x| |\nabla \phi(x)| \sup_{0 < c < c_M} |\chi(c)| \left(\int_{\mathbb{R}^3} \frac{|\nabla n|^2}{n} dx + \int_{\mathbb{R}^3} n |\nabla c|^2 dx \right). \end{split}$$

c) Smallness of c_M + linear combination of a) and b) $\Rightarrow \cdots$

3.4 Remarks:

- a) It is unknown that Theorems I and II could still hold for one of the following three cases:
 - ▶ the smallness of both ϕ and $\|c_0\|_{L^{\infty}}$ is removed;
 - ▶ the nonlinear convective term $\nabla \cdot (u \otimes u)$ is added;
 - **both** $\chi(c)$ and k(c) take the more general forms.
- b) Similar results hold for the case of
 - ▶ the space dimension $d \ge 2$, or
 - the bounded domain with homogeneous boundary conditions

$$\frac{\partial n}{\partial \nu}\Big|_{\partial\Omega} = \frac{\partial c}{\partial \nu}\Big|_{\partial\Omega} = 0, \quad u|_{\partial\Omega} = 0.$$

However, it is not clear for the general biological non-homogeneous bdry conditions.

4. Classical solutions near constant states

4.1 Consider

$$\begin{cases} \partial_t n + u \cdot \nabla n = \delta \Delta n - \nabla \cdot (\chi(c) n \nabla c), \\ \partial_t c + u \cdot \nabla c = \mu \Delta c - k(c) n, \\ \partial_t u + u \cdot \nabla u + \nabla P = \nu \Delta u - n \nabla \phi, \\ \nabla \cdot u = 0, \quad t > 0, x \in \mathbb{R}^3, \end{cases}$$
 (cNS)

with initial data

$$(n,c,u)|_{t=0} = (n_0(x),c_0(x),u_0(x)), \ x \in \mathbb{R}^3.$$

Suppose

$$(n_0(x), c_0(x), u_0(x)) \to (n_\infty \ge 0, 0, 0)$$
 as $|x| \to \infty$.

Our goal is to prove

the constant steady state $(n_{\infty}, 0, 0)$ is asymptotically stable under small smooth perturbations.

4.2 Reformulation of the Cauchy problem: Let

$$n = \sigma + n_{\infty}, \quad \bar{P} = P + n_{\infty}\phi.$$

Then,

$$\begin{cases} \partial_t \sigma + u \cdot \nabla \sigma - \delta \Delta \sigma = -\nabla \cdot (\chi(c)\sigma \nabla c) - n_\infty \nabla \cdot (\chi(c)\nabla c), \\ \partial_t c + u \cdot \nabla c - \mu \Delta c + k'(0)(\sigma + n_\infty)c = -(k(c) - k'(0)c)(\sigma + n_\infty), \\ \partial_t u + u \cdot \nabla u + \nabla \bar{P} - \nu \Delta u = -\sigma \nabla \phi, \\ \nabla \cdot u = 0, \quad t > 0, x \in \mathbb{R}^3, \end{cases}$$

with

$$(\sigma, c, u)|_{t=0} = (\sigma_0(x), c_0(x), u_0(x)) \to (0, 0, 0) \text{ as } |x| \to \infty,$$

where $\sigma_0 = n_0 - n_{\infty}$.

Theorem III. Let $n_{\infty} \geq 0$, and the assumption (A1) hold with $n_0(x) \equiv \sigma_0(x) + n_{\infty} \geq 0$ for $x \in \mathbb{R}^3$, and $\phi = \phi(t, x)$ satisfy

$$\sup_{t,x}(1+|x|)|\phi(t,x)|+\sum_{1\leq |\alpha|\leq 3}\sup_{t,x}|\partial_x^\alpha\phi(t,x)|<\infty.$$

Furthermore, suppose that $\|(\sigma_0, c_0, u_0)\|_{H^3}$ is sufficiently small. Then the Cauchy problem of (cNS) admits a unique classical solution (σ, c, u) with

$$n(t,x) \equiv \sigma(t,x) + n_{\infty} \ge 0, \ c(t,x) \ge 0$$

for $t \geq 0$, $x \in \mathbb{R}^3$, such that

$$\|(\sigma, c, u)(t)\|_{H^{3}}^{2} + \lambda \int_{0}^{t} \int_{\mathbb{R}^{3}} (\sigma + n_{\infty}) \left[k(c)c + k'(0) \sum_{1 \leq |\alpha| \leq 3} |\partial_{x}^{\alpha} c(s)|^{2} \right] dx ds$$
$$+ \lambda \int_{0}^{t} \|\nabla(\sigma, c, u)(s)\|_{H^{3}}^{2} ds \leq C \|(n_{0}, c_{0}, u_{0})\|_{H^{3}}^{2}$$

hold for some constants $\lambda > 0$, C and for any $t \ge 0$.

4.3 Proof of Theorem III: (uniform a priori estimates)

a) The maximum principle \Rightarrow

$$\sigma + n_{\infty} = n(t, x) \ge 0, \quad 0 \le c(t, x) \le ||c||_{L^{\infty}}.$$

b) Energy estimates under smallness: (Zero-order)

$$\begin{split} \frac{1}{2} \frac{d}{dt} \int_{\mathbb{R}^3} \left(|u|^2 + d_2 \sigma^2 + d_1 d_2 c^2 \right) dx + \frac{\nu}{2} \int_{\mathbb{R}^3} |\nabla u|^2 dx + \frac{d_2 \delta}{4} \int_{\mathbb{R}^3} |\nabla \sigma|^2 dx \\ + \frac{d_1 d_2 \mu}{2} \int_{\mathbb{R}^3} |\nabla c|^2 dx + d_1 d_2 \int_{\mathbb{R}^3} k(c) c(\sigma + n_\infty) dx \leq 0, \end{split}$$

+ (high-order)

$$\frac{1}{2} \frac{d}{dt} \sum_{1 \le |\alpha| \le 3} C_{\alpha} \int_{\mathbb{R}^{3}} |\partial_{x}^{\alpha}(\sigma, c, u)|^{2} dx + \lambda \sum_{2 \le |\alpha| \le 4} \int_{\mathbb{R}^{3}} |\partial_{x}^{\alpha}(\sigma, c, u)|^{2} dx
+ \lambda k'(0) \sum_{1 \le |\alpha| \le 3} \int_{\mathbb{R}^{3}} (\sigma + n_{\infty}) |\partial_{x}^{\alpha} c|^{2} dx \le C \int_{\mathbb{R}^{3}} |\nabla(\sigma, c, u)|^{2} dx,$$

(linear combination) \Rightarrow uniform a priori estimates.

4.4 Convergence rates: There are three cases:

$$n_{\infty} = 0; \ n_{\infty} > 0, k'(0) = 0; \ n_{\infty}k'(0) > 0.$$

Theorem IV. Let $n_{\infty} = 0$, and all conditions in Theorem III hold.

(i) Assume $\sigma_0, c_0 \in L^1(\mathbb{R}^3)$. Then, for any $1 \leq p < \infty$,

$$\|\sigma(t)\|_{L^{p}} \leq C\|\sigma_{0}\|_{L^{1}\cap L^{p}}(1+t)^{-\frac{3}{2}(1-\frac{1}{p})},$$

$$\|c(t)\|_{L^{p}} \leq C\|c_{0}\|_{L^{1}\cap L^{p}}(1+t)^{-\frac{3}{2}(1-\frac{1}{p})}.$$

(ii) Furthermore, assume that $u_0 \in L^q(\mathbb{R}^3)$ and

$$\phi \in L^{\infty}(\mathbb{R}^+; L^{2q/(2-q)}(\mathbb{R}^3))$$

for 1 < q < 6/5. Then,

$$||u(t)|| \le C(||u_0||_{L^q \cap H^3} + K_0)(1+t)^{-\frac{3}{2}(\frac{1}{q}-\frac{1}{2})},$$

for any $t \geq 0$, where K_0 is defined by

$$K_0 = \|(\sigma_0, c_0)\|_{L^1 \cap H^3} + \|\sigma_0\|_{L^1 \cap L^2} \|c_0\|_{L^1 \cap L^2}.$$

4.5 Proof of Theorem IV:

Energy-spectrum method (D.-Ukai-Yang '09)

a) Time-decay of c and n:

$$\frac{d}{dt}\int_{\mathbb{R}^3}c^pdx + \frac{4\mu(p-1)}{p}\int_{\mathbb{R}^3}|\nabla c^{p/2}|^2dx \le 0,$$

+

$$||c(t)||_{L^1} \le ||c_0||_{L^1}$$

(standard argument: interpolation inequality

$$||f||_{L^p} \le C ||\nabla |f|^{p/2} ||\frac{2\gamma_{p,q}}{1+p\gamma_{p,q}}||f||_{L^q}^{\frac{1}{1+p\gamma_{p,q}}}$$

with

$$\gamma_{p,q} = \frac{3}{2} \left(\frac{1}{q} - \frac{1}{p} \right)$$

+ Young inequality) \Rightarrow time-decay of c, and similarly for n.

b) Time-decay of *u*: (Three steps)

Step 1. Time-decay of high-order derivatives of (σ,c) : Use the high-order energy inequality

$$\frac{d}{dt} \|\nabla(\sigma, c)\|_{H^2}^2 + \lambda \|\nabla(\sigma, c)\|_{H^3}^2 \le C \|\nabla(\sigma, c)\|^2,$$

+ Use the mild forms of σ , c to obtain

$$\begin{split} \|\nabla\sigma(t)\| &\leq C\|\sigma_0\|_{L^p\cap H^1}(1+t)^{-\gamma_{2,p}-1/2} \\ &\quad + C\epsilon \int_0^t (1+t-s)^{-5/4} \|\nabla(\sigma,c)(s)\|_{H^1} ds, \\ \|\nabla c(t)\| &\leq C\|c_0\|_{L^1\cap H^1}(1+t)^{-\gamma_{2,p}-1/2} \\ &\quad + C\epsilon \int_0^t (1+t-s)^{-5/4} \|\nabla c(s)\|_{H^1} ds \\ &\quad + C(1+t)^{-5/4} \|c_0\|_{L^1\cap L^2} \|\sigma_0\|_{L^1\cap L^2} \end{split}$$

(Gronwall inequality) \Rightarrow

$$\|\nabla(\sigma,c)(t)\|_{H^2} \le C(\|\nabla(\sigma_0,c_0)\|_{H^2} + K_p)(1+t)^{-\gamma_{2,p}-1/2}$$

for any $1 \le p \le 2$.

Step 2. Time-decay of high-order derivatives of u: Use the mild form

$$u(t) = e^{\nu \Delta t} u_0 + \int_0^t e^{\nu \Delta (t-s)} (-\mathbf{P}(u \cdot \nabla u) + \mathbf{P}(\phi \nabla \sigma)) ds,$$

with

$$\mathbf{P}(\sigma \nabla \phi) = -\mathbf{P}(\phi \nabla \sigma).$$

(Energy-spectrum method again + Riesz inequality) ⇒

$$\|\nabla(\sigma,c,u)(t)\|_{H^2} \le C(\|u_0\|_{L^p\cap H^3} + K_0)(1+t)^{-\gamma_{2,p}-1/2},$$

for 1 .

Step 3. Time-decay of ||u||: Again use the mild form and time-decay of high-order derivatives of u to get

$$||u(t)|| \le C(||u_0||_{L^q \cap H^3} + K_0)(1+t)^{-\frac{3}{2}(\frac{1}{q}-\frac{1}{2})},$$

for 1 < q < 6/5, where $\gamma_{2,q} + 1/2 > 1$ was used. ■

5. Final remarks

Consider the more realistic mathematical model:

$$\begin{cases} \partial_t n + u \cdot \nabla n = \delta \Delta n - \nabla \cdot [\chi(c)n(\nabla c + \nabla \phi)], \\ \partial_t c + u \cdot \nabla c = \mu \Delta c - k(c)n, \\ \partial_t u + u \cdot \nabla u + \nabla P = \nu \Delta u - n[\nabla \phi + \nabla k(c)], \\ \nabla \cdot u = 0, \quad t > 0, x \in \mathbb{R}^3. \end{cases}$$

Here

- $ightharpoonup
 abla \phi$ exhibit the effect of gravity on cells, and
- ightharpoonup
 abla k(c) exhibit the effect of the chemotactic force in the fluid equation.

Claim: Theorem II still holds if the smallness of both ϕ and $||c_0||_{L^{\infty}}$ is supposed. Theorems III and IV also hold.

Remark. It is the on-going work to extend the current results to the above realistic model.

Thanks for your attention!