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Consider a rarefied gas contained in a vessel ():

» O: a bounded domain in R3.

» 0, = cst > 0 (i.e., wall temperature is constant)

Y}

v

uy = 0 (i.e., wall is stationary)

v

n=n(z) (x € 0Q) (unit normal vector from gas to wall)

3/42



The unknown is the density distribution function of particles:

F=F(t,z,v) >0, t>0zcQuveR
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The unknown is the density distribution function of particles:

F=F(t,z,v) >0, t>0zcQuveR

governed by the Boltzmann equation

(OF +v-V,F=Q(F,F)|

I.D.: F(0,z,v) = Fy(x,v).
B.C.:

> in-flow
» reverse reflection (v — —v)
» diffuse reflection (to be considered; clarified later)

» specular reflection (v — v — 2n(x) - v)

Basic problem: Wellposedness on IBVP?
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Boltzmann collision term:

' Uk
A Vi
U+ Uy :U/-i-U;, ‘U’2+’U*|2: |U/|2_|_|,Ui|2

V=0 —[(v =) ww, v =+ [(v—vs) ww
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Boltzmann collision term:

' Uk
A Vi
U+ Uy :U/'i_va/kv ‘U’2+’U*|2: |U/|2+|,Ui|2

V=0 —[(v =) ww, V. =ve+[(v—vs) ww

Q(F,H)(v)
_ / dv, / dw [o— v ["bo(cos8) (FL)H () — F(v) H(v)),
R3 2 ~

collision kernel (cutoff)

—3<k<1, 0<by<Clcosh|
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e Q(-,-) is a bilinear integral acting only on v.
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e (Q(-,-) is a bilinear integral acting only on v. Observe:

» Hyperbolic property: {0, +v -V, }F(¢,z,v) = 0 implies
F(t,z,v) = F(s,x —v(t — s),v), i.e. F is constant along
bi-characteristics before hitting the boundary.

» Dissipative property: collisions induce partial dissipation

» [P()Q(F, F)dv =0 for 1(v) = 1,v1,v2,v3, [v]> (collision
invariants)

» [Q(F,F)InFdv < 0 with “=" iff Fis the Maxwellian:

p v —ul?
Hip,u6) (V) = (270)3/2 exp(— 20 )

(p : density, u : bulk velocity, 0: temperature). Then,
d
— [ FInFdv <0
dt

in the spatially homogeneous setting.

» Global-in-time existence is a consequence of the interplay
between two properties above.
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Il. A non-exhausting known results:

Global existence and large-time behavior
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¢ Global solutions for general initial data with finite mass,
energy, and entropy
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¢ Global solutions for general initial data with finite mass,
energy, and entropy

» Existence:

» DiPerna-Lions 89
» Hamdache 92, Arkeryd-Maslova 94, Mischler 00

> Long-time behavior:

» Desvillettes 90, Arkeryd-Nouri 97
» Desvillettes-Villani 05

—S

1P sllz5 o) < CEIFON a2 gyt

» Gualdani-Mischler-Mouhot (arXiv:1006.5523, 2010):
IF(#) = pll s noe (g o) < Ce,

by showing that solutions are time-exponentially stable
under small perturbations in L1 L°(1 + |[v[¥) (k > 2).
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e Global solutions near Maxwellians:

Look for F = i+ p'/2f, s0 {0 +v -V, + LYf =T(f, ).
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v

v

v

v

Long-time behavior of solutions: Strain-Guo, Strain, Yu,
D.-Yang-Zhao, Guo-Wang, ...
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» Ukai 74: 0<k <1, f€ L°°(O7oo;L;§°HéV)
» Ukai-Asano 82: -1 <k <0
» Guo 03: -3 <k <0, feC([0,00); HY, ,)

» Long-time behavior of solutions: Strain-Guo, Strain, Yu,
D.-Yang-Zhao, Guo-Wang, ...

» Angular non-cutoff potentials: AMUXY 12,
Gressman-Strain 11

» Solutions in a spatially critical Besov space Bg”/f:
D.-Liu-Xu 16, Morimoto-Sakamoto 16
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»  is a general bounded domain in R3:

Guo (ARMA, 2010): develop a new L? N L™ theory.
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f(t) = U(t)fo solve {Ot 4+v-V,+ L}f =0, f’t:() = fo.

> L? time-decay: |[f(t)]z2 S e[ foll.»

» L*° time-decay: Let L = v — K. For a velocity-growth
weight, h = wf solves {0, + v -V, + v}h = K,,h with
K, = wK->L. Duhamel Principle gives

Ut)=G()+ /t ds G(t — s)K,U(s)
0

=G()+ /t dsG(t — 8)K,,G(s)
0

ot S
—|—/ ds / dr G(t — $)K,G(s — 1)K, U(T).
Jo Jo
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» L*° time-decay: Let L = v — K. For a velocity-growth
weight, h = wf solves {0, + v -V, + v}h = K,,h with
K, = wK->L. Duhamel Principle gives

Ut)=G(t) + /Ot dsG(t — s)K,U(s)
=G(t) + /Ot dsG(t — s)K,,G(s)

+/(;t ds /U.S dr G(t — $)K,G(s — 7) K, U(T).

How to estimate L™ of h(t) = U(t)ho = h1 + ha + h3?
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IDEA of estimate on h(t) = U(t)hg = h1 + ha + hs:

» Q =R3: hsz includes an integral with 1 = 2 — v(t — s)

t s—e
/ 67V(v)<t78>d8 / d’l}l / d’l)”/ eiV(UU(S*T)dT
0 0

WisN  feri<en
K0, 0Ky (', 0" (1,21 — v (s — 7),0"),

we take y = 7, —v'(s — 7), so dv’ = (s — 7)3dy < e 3dy,
somehow to obtain

- Ce k — —T
1h(@)llze S e hollzee + (e + W)/ e M| |A(r) Lo dr
0

t
+Cen | eV f ()2 dr
0
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IDEA of estimate on h(t) = U(t)hg = h1 + ha + hs:

» Q =R3: hsz includes an integral with 1 = 2 — v(t — s)

t s—e€
/ e~ (0)(t=5) qq / dv’ / dv”/ e*l/(’u/)(sfr)dT
0 0

Wi<N  ri<eN

K0, 0Ky (', 0" (1,21 — v (s — 7),0"),
we take y = 7, —v'(s — 7), so dv’ = (s — 7)3dy < e 3dy,
somehow to obtain

- Ce k — —T
1h(@)llze S e hollzee + (e + W)/ e M| |A(r) Lo dr
0

t
+Cen [ e F(T) |2 dr
0

»  is a bounded domain in R3: Given (¢,7,v), we have to treat
the case the backward characteristic line hits 02 earlier than
t = 0, then to obtain L*>° bound, we need to iterate boundary
condition £ times for £ large enough.
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» Further development of Guo’s approach:

» Kim 11: discontinuity of solutions in non convex domains

» Esposito-Guo-Kim-Marra 13: 3&dynamical stability of
nontrivial stationary sol. for non-constant 6,

» Guo-Kim-Tonon-Trescases 16: BV-regularity of solutions
in non-convex domains

» Guo-Kim-Tonon-Trescases 16: C! regularity of solutions

» Liu-Yang 16: soft potentials
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I11. Our results
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Sum: In all previous results in near-; (global Maxwellian)
framework (F(t,z,v) = p + p/2f(t, z,v) > 0),

1f)llLge, <1

uniformly for all ¢ > 0, particularly at ¢ = 0.
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Sum: In all previous results in near-; (global Maxwellian)
framework (F(t,z,v) = p + p/2f(t, z,v) > 0),

1f)llre, < 1
uniformly for all ¢ > 0, particularly at ¢ = 0.
Q.: Is it possible to construct a global-in-time unique strong

solution allowed to initially have large amplitude (thus also
contain vacuum)?

A.: Yes for a class of initial data when the phase area where
F'is far from p is small in a suitable sense!
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The 1st result: | Consider

QO=R3orT? —3<k<I.

Note that any solution F(t,r,v) satisfies with p = pp o 1)(v)

// (F(t,z,v)— dvdxf// (Fo(z,v)—p(v))dvdx := My,
Q JR3 R3
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QO=R3orT? —3<k<I.

Note that any solution F(t,r,v) satisfies with p = pp o 1)(v)

// (F(t,z,v)— dvdxf// (Fo(z,v)—p(v))dvdx := My,

Q JR3 R3

/ / F(t,x,v) ))dvdx = / / (Fo(x,v)—p(v))dvdr = Jy,
R3 R3

/ [o]2(F(t,z,v)—p(v))dvds = / |v|2(Fy(z,v)—p(v))dvdz = Ey,
Q JR3 Q JR3
for all ¢t > 0.
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Moreover,
/Q/]R3 {F(t,az,v) In F(t,z,v) — u(v) IDM(U)}dvd:c
< /Q/R3 {Fo In Fy — pu(v) 1D,u(v)}dvdx.

17/42



Moreover,
/Q/]R3 {F(t,az,v) In F(t,z,v) — u(v) IDM(U)}dvd:c
< /Q/R3 {Fo In Fy — pu(v) 1D,u(v)}dvdx.

Define

E(F(t)) := /Q/R3 {F(t,x,v) In F(t,z,v) — ,ulnu}dvd:v

1
+ B In(27) — 1] Mo + §E0.
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Moreover,

/Q/]R3 {F(t,:r,v) In F(t,z,v) — u(v) lnu(v)}dvd:c

< /Q/R3 {Fg In Fy — p(v) ln,u(v)}dvdx.

Define
E(F(t)) := / / {F(t,x,v) In F(t,z,v) — ,ulnu}dvd:v
Q JRr3
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+ |:2 111(27'&') — 1:| My + §E0

Then,
E(F(t)) =20,

for all ¢t > 0.
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Moreover,
/ / {F(t,:r,v) In F(t,z,v) — u(v) IDM(U)}dvdx
Q JRr3
< /Q/R3 {Fo In Fy — pu(v) 1D,u(v)}dvdx.

Define
E(F(t)) := / / {F(t,x,v) In F(t,z,v) — ,ulnu}dvd:v
Q JRr3
3 1
+ |:2 111(27'&') — 1:| My + §E0

Then,
E(F(t)) =20,

for all ¢ > 0. Note, in particular, that £(Fy) > 0 holds true for
any function Fy(z,v) > 0.
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Theorem (D.-Huang-Wang-Yang, 17)
Let Q=T3 or R?, -3 <k < 1. Setw() ( +|v\)2 with

B > max{3, 3—{—/{} Let Fy(z,v) = p(v) + +/p(v) fo(z,v) > 0.

For any M > 1, there is g > 0 dependmg on ’y B, M s.t. if

lw foll e < M,
E(F0) + |l follrre < <o,

then the Cauchy problem on B.E. has a global unique mild
solution F(t,z,v) = pu(v) + /u(v) f(t,z,v) > 0 satisfying

lwf(®)lz= < C1M?,

where Cy depends only on v, 3.
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Remarks:
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Remarks:
e An example for initial data: Fy(z,v) = po(x)u with py > 0,
po € L°, and

lpoInpo — po + 1|Lr + [lpo — 1| L1
is small.
e It can be shown that for Q = T? and (M, Jy, Eo) = (0,0,0),

e~oot for 0 <~y <1,

7@ .
(14+¢) I for —3 <v<0,

for all ¢t > 0, as long as ||wgafo||r is further sufficiently small
for 5 > 0 large enough.

19/42



Key points of the proof:
» Local-in-time existence: For 3 > 3,

sup |wg f(t)llpee < 2|lwg follpoo,
0<t<tq

= (8C4[1 + llwgfollLeo)™F > 0.
» Global a priori estimates: Let h = wgf.
» [ estimate: Let 3 >3, -3 <~v <1, p>1, then

L2 I@)lizoe < Ca{liholloe + IhollE oo + /E(Fo) + £(F0) |
=s=

91;)’#»1 p—1
+C1 sup ()l 32 (/ngf(s,y,n)\dn) 5y

t) <s<t, yeQ

» L°L! Estimate: Let —3 < <1, 8> max{3,3 +~}, then
/ (¢, @, v)|dv
</ Y 0 — ot o) |do + O A~ 3 1 [E(Fo) + ON A3 ()

1
3+ - ) 2
+C(m*T 4 O+ +NB s1) Ozpét{uhmum+nh<s)uLoo}

1

. _1 1+1
+OnA T (Ve + £r) T sup 0 e

where A > 0,m > 0 are small and N > 1 is large. L]
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’The 2nd result: \ Consider

Q) is a bounded domain with diffuse-reflection boundary of
constant wall temperature, 0 < x < 1.

IBVP under consideration:
WF +v-V,F=Q(F,F) in{t>0}xQxR?

F=Fy on{t=0}xQxR?

F"YZCMM/ Fly,v-ndv on {t>0} x~_.
v-n>0

Long-time behavior: F(t,z,v) = u(v) (t — 00)?
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Theorem (D.-Wang, preprint 16)

Let w(v) = (1 + p?|v|?)? =11 with p > 1 large enough, B > 5/2, and
0 <w <1/64. Assume Fo(x,v) = p+ \/ifo(x,v) > 0 with the mass
conservation. For any My > 1, there is g > 0 depending only on §
and My such that if

|lwfollLe < Mo, | follz2 < €o,

then IBVP admits a unique solution F(t,xz,v) = p+ /uf(t,z,v) >0
satisfying

- 9 -
lwf (@)l < CoM exp{ycoMg}eﬁlt, V>0,
0

where Cy > 1 is a generic constant, Y1 = min {19, 16} >0, and

vo = inf,egs v(v) > 0. Moreover, if Q is strictly convezx, and Fy(x,v)
is continuous except on g then F(t,x,v) is continous in

[0,00) x {2 x R3\7p}.
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Mool T 4 - - -

IkFeel
&HV[Z_}___
€1, D=6

& T ’,\YMané— Hme
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The most key ingredients for the proof of Theorem:

» L2 ,—LL;—L3", estimates along a bootstrap argument:

IFOllze < €M) fol 2.
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The most key ingredients for the proof of Theorem:

» L2 ,—LL;—L3", estimates along a bootstrap argument:

IFOllze < €M) fol 2.

» Pointwise estimates on the upper bound of the gain
term by the product of L>° norm and L? norm:

1

wrs (Nl < L (] @ piye R )

» An iterative procedure on the nonlinear term:

w(n)|f(s,y,m] < -+

24/42



Two Key Lemmas:

Lemma
Under the a priori assumption, there exists a generic constant
Cy > 1 such that given any Ty >t with

- 2 ~

fim Zn (CQMO) >0,

20

there is a generally small positive constant ¢; = e (M, Ty) > 0,
depending only on M and Ty, such that if || fol|;2 < €1, then one
has

R(f)(t,2,0) = Sv(v),

N

for all (t,x,v) € [t,Ty) x Q x R3. Here ¢ is decreasing in M
and Tj.

25 /492



Two Key Lemmas:

Lemma
Under the a priori assumption, there exists a generic constant
Cy > 1 such that given any Ty >t with

- 2 ~

fim Zn (CQMO) >0,

20

there is a generally small positive constant ¢; = e (M, Ty) > 0,
depending only on M and Ty, such that if || fol|;2 < €1, then one
has

R(f)(t,z,v) = Sv(v),

N

for all (t,x,v) € [t,Ty) x Q x R3. Here ¢ is decreasing in M
and Tj.

Proof. Use the mild formulation with k-times reflection
+ L2-L*™ interplay. ]
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Lemma
Assume | follL2 < €1 = e1(M,Tp). There exists a generic
constant C3 > 1 such that

~ t .
IA(#)]| Lo < C3e® || ho | Lo [1 +/ [17(8)[| oo ds] e %t
0

N - C
2upt e, o - 3
s ot { (ot S5 sup [I1(6) i + (o)1

0<s<t

#Convy s (15 + £ }.

holds true for all 0 <t < Ty, where A >0 and € > 0 can be
arbitrarily small, and N > 0 can be arbitrarily large.
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The 3rd result (joint with Huang-Wang-Zhang, preprint 17):‘

Consider

Q) is a bounded domain with diffuse-reflection boundary
where the wall temperature can have a small variation
around a positive constant, —3 < k < 0.

IBVP under consideration:

WF +v-V,F=Q(F,F) in{t>0} xQxR?
F=F on{t=0}xQxR?

F|7_:,u9/ Fly,v-ndv on {t>0} xy_,
v-n>0

1 |v]?
= —— < — T, N - 1 1.
po(v) 2m0%(z) exp { 29(90)]’ sglp 10— 1| <

Long-time behavior: (Note: 1o (v) satisfied B.C.: fv'n>0 pov-ndv = 1)
F(t,z,v) — Fy(x,v) which is the stationary solution (¢t — 00)?
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Theorem (Existence of non-Maxwellian stationary solution)

Set wo(v) = (1 + |v\2)§ew|”|2. Let -3 <k <0, 8>3+ |k,
0<w< é. Let M > 0 be arbitrary. There are 69 > 0, C >0
such that if

§ = |0 - (90|Loo(3Q) < 50,

then there exists a unique Fy(x,v) = Mp+ \/iufs«(x,v) >0 to
the steady BVP

v-V,F=Q(FF) inQxR?
F|7_:,u9/ Fly,v-ndv on~y_
v-n>0
satisfying

[wo full Lo < CO.
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Set

wlv|¢ w|v|¢ }

w(t,v) =1+ |U|2)§exp{ 4 4(1 + t)a

where 0 < g < % and

1
< —if (=2,
0<w_64l ¢

orw>0if0<(<2.
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Set

w|v|¢ w|v|¢ }

w(t,v) =1+ |U|2)§exp{ 4 4(1 + t)a

where 0 < g < % and

1
< —if (=2,
0<w_64|C

orw>0if0<(<2.

Note: For the modified collision frequency (¢, v),

(1+q)|x|

D(t,0) > C(1+1t) AT

Thus, for s < ¢,

O<a=
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Theorem (Global dynamics of large-amplitude solutions)

Let =3 < k <0, B > max{3 + |x|,4}, and max{2, 3_%{} <p < 0.

Assume Fo(x,v) = p+ y/ifo(x,v) > 0 has the same mass as F, with
0 < 6:= 10— 0o|p~0) <1 small enough. For any My with

1 1
1< My < = log —,
S Ofc—kﬁoga

there are A > 0, Cy > 0, €1 > 0 such that if

[w(0,-)(fo = f)llLee < Mo, |lfo = fullzr < e,

then the IBVP of the Boltzmann equation admits a unique global
solution F(t,x,v) = p(v) + v/ p(v) f(t,z,v) > 0 satisfying

lot,)[f(t) = filllzee < Coe™M e Jw(0,)(fo — fu) 2=,

or allt > 0, where 0 < o = S—alk] - q
f CHIn]
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A Iwle (feor- £ “If

€,

1 9 Mﬂc('ﬂ’_&t”lf‘

_f/_____

€
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Proof: Existence of stationary solution
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3 of small-amplitude s.s. is a consequence of construction of

iterative solution sequence as well as its L>° estimate:

V-V fith 4 LT =T(f7, f7),

fj—HH, _ PA,fj"'l—l—“f/%“

FEZE [ ym0 (20 E) {0 n(2) v,

for j =0,1,2--- with Y =0, under the assumption
Hs = Ho(z)s O(x) =14 0d0p(z), 0 < < 1.

Here,

f(z,v) = F/ oo f (@, o)/ (W) {v" - n(z)}d'.
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Proposition
Assume

//QxRS g(z,v)\/p(v)dvdz = /7_ r(z, v)/p(v)dy = 0.

Let B> 3+ ||, and assume ||v " wg|| L= + |wr|p~ < co. Then
there exists a unique solution f = f(x,v) to the linearized
steady Boltzmann equation

v-Vof+Lf=g, f(z,0),.=Pf+r, (P)

such that fﬂng f/pdvdr =0 and

leollzse < C{Jwrlpeey) + v wgloee |-
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Proof of Proposition: The solution f(x,v) to (P) is obtained
as a limit (first n — oo and then ¢ — 0) of

{Ef(n,e) + v - vmf(n’e) + ]/(v)f(n»e) — Kf(nve) = g, (P )

FmO(@,0)l, = (1= L)Pyfee) 11,

or equivalently, for h := h("9) (z,v) = w(v) £ (z,v),

eh+v-Vih+v(v)h = Kyh + wg,
h(z,v)|, = (1 - 1) fv,_n(x)>0 h(z,v")w(v")de" + wr(z,v),

n/ w(v)

where w(v) = m and K, h = wK(%)
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e Step 1. A priori 1> estimates.

Definition (Speeded backward bi-characteristics)
Given (t,z,v) with t > 0,

X6 — (14 [V (s)2) 5V (s) = V(s),
dV( ) —0,
ds

(X (), V(8)] = [z, 0],
has the solution
(X (s;t,2,0), V(s;t,z,0)] = [z — 0(t — s), 0],

with

]

0= 1+ )=
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Define the speeded back-time cycle:

» Given (t,z,v) with t > 0, € Q and for only outgoing
particles if z € 902

> lp(x,v) =inf{r >0:2 — 07 ¢ Q}.

>z — iy € ON. dp(x,v) = (fp) = x — tp0 € ON.
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Define the speeded back-time cycle:

» Given (t,z,v) with t > 0, € Q and for only outgoing
particles if z € 902

> lp(x,v) =inf{r >0:2 — 07 ¢ Q}.

>z — iy € ON. dp(x,v) = (fp) = x — tp0 € ON.

» For v, € f/kﬂ := {vg41-n(Zx4+1) > 0}, inductively define

(tkt1s Bt 15 Ve41) = (Tk — to(Zk, vk), Zb(k, Vk), Vkgr)-

Lemma
For Ty sufficiently large, there exist generic constants Cy and

Cy independent of Ty such that for k = C’1T0 and 0 <t <Tp, it

holds that
-
1) <%
k1lgs. < (1

j=17J

where d&; := p(vj){v; - n(&;)}dv;.
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Consider (Note: 1 can be placed by 1 — %)
ehi ! 4 v VA 4 v(v)hiTE = AKR! + AKS A 4 wy,

¢ f ()>0h(xv) ( )d0+w( ) (.%',U),

hi+1($>v)"¥7 = w(v) Jv'n(z
for i =0,2,3,--- and h° = h%(z,v) is given. Denote
§(v) == (14 [v]*) % [ + v(v))-
Observe

Rewrite the equation as

{0+ Vo 4 0() W = (14 o) 5 -],

Ir|
2 v(v) := i > 0 independent of .
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Mild formulation with parameter ¢ € [0, Ty] for T > 0
sufficiently large:

R (2, 0) = 1{flgo}e*‘7(’”)thi“(z — o)

t . ) )

+ / . eiu(v)(tis)u(v)il[AK:ﬁhl+/\K1Cuhl+wg](z7ﬁ(t75),v)ds
Jmax{t1,0}

N —0(v)(t—%7) k—2

—o(v)(t— - €

4 e P ‘1)w(v)'r(zl,v)1£1>0+

j=177 I=
—o(v)(t—17) k—1

€ . il s a2

+ (o) /H’Zf\}j ’:21 Lii <o<ipph (&1 — Dty v1)dE; (0)

—o(v)(t—1t1) k-1 ¢

e 1

~ /k—l» > / g <0<y
w(v) H]‘:l Vi =1 /0

x v(v) "t [AK;”hi—l +AKS R4 wg] (&, — 0(F, — 8),v)dS; (s)

e~ (V) (t—%1) k—1 #
.7/k,1h Z_/ g, <o0<i;}
w(v) 51V i=17t+1 =

% v(vy) "t [AK;;Lh"*’ +AKS R4 wg] (&1 — (8 — s),v)ds; (s)

—5(v)(t—F1) .
e
+7/ I; RV F (2, v 1)dS, 1 (F
(o) ~H§;11‘7j (i >0} (&, v—1)dSg_1(fx)

where

r
@(v) /Hk—l{} z:l 1{t1+1>0}d21
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ds; = {HJ l+1d°'J} w(vy)déy - {H dﬁj}
d¥;(s) = {Hj:l+1dgj} . {w(vl)e_y(vl)(fl g)do. }- {H 1 e~ P (vj )(t‘—f]+1)da 3

k— - - - -1 _—0 i—t; -
dx] = {szllJrldaj} A (v w () (@41, v1)e 2 ()~ tl+1)dal} . {l'[].=11e 2(v) (5 tJ+1>daj}A

Lemma
Let B> 3. Assume ||h'|| Lo 4 |h|pe(y) < 00 fori=0,1,2,---. Then

there exist a large positive constant Ty such that for k = 02T04 , it
holds, for i > k, that

i 1 i _
10 e < g sup {10 o} + Ol gl + wrl }

(B

Moreover, if k' = h fori=1,2,---, that is h is a solution. Then

+ C sup
0<i<k

- h
Il < C{lb gl + forle } + 0 [ Y22
w

L2

Here the positive constant C > 0 do not depend on A € [0,1].
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e Step 2. First fix ¢ > 0, n > ng > 1. Establish the existence
of solution (™9 (z,v).
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e Step 2. First fix ¢ > 0, n > ng > 1. Establish the existence
of solution (™9 (z,v).

Define Sy = £, (0 < A < 1) to be the solution operator for

{ckf =cef +v-Vof +v(0)f —AKf =g,
F@,0)| = (1= HPyf +r(z,v).

Claim: S; = £ is well-defined.

Proof: Bootstrap argument (New!)
» Prove existence of Sp.
» A priori L™ estimate independent of A € [0, 1].
» Prove existence of Sy for A > 0 small enough.

» Given solvability of Sy for 0 < A < 1, prove existence of
Sxt), for Ag > 0 small enough. ]

e Step 3. Pass the limits n — oo and then ¢ — 0.
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Thank you!
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