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I. Introduction
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Consider a rarefied gas contained in a vessel Ω:
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I Ω: a bounded domain in R3.

I θw ≡ cst > 0 (i.e., wall temperature is constant)

I uw = 0 (i.e., wall is stationary)

I n = n(x) (x ∈ ∂Ω) (unit normal vector from gas to wall)
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The unknown is the density distribution function of particles:

F = F (t, x, v) ≥ 0, t > 0, x ∈ Ω, v ∈ R3,

governed by the Boltzmann equation

∂tF + v · ∇xF = Q(F, F ).

I.D.: F (0, x, v) = F0(x, v).
B.C.:

I in-flow

I reverse reflection (v → −v)

I diffuse reflection (to be considered; clarified later)

I specular reflection (v → v − 2n(x) · v)

Basic problem: Wellposedness on IBVP?
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Boltzmann collision term:
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v + v∗ = v′ + v′∗, |v|2 + |v∗|2 = |v′|2 + |v′∗|2

v′ = v − [(v − v∗) · ω]ω, v′∗ = v∗ + [(v − v∗) · ω]ω

Q(F,H)(v)

=

∫
R3

dv∗

∫
S2

dω |v − v∗|κb0(cos θ)︸ ︷︷ ︸
collision kernel (cutoff)

(
F (v′∗)H(v′)− F (v∗)H(v)

)
,

−3 < κ ≤ 1, 0 ≤ b0 ≤ C| cos θ|
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• Q(·, ·) is a bilinear integral acting only on v.

Observe:

I Hyperbolic property: {∂t + v · ∇x}F (t, x, v) = 0 implies
F (t, x, v) = F (s, x− v(t− s), v), i.e. F is constant along
bi-characteristics before hitting the boundary.

I Dissipative property: collisions induce partial dissipation

I
∫
ψ(v)Q(F, F )dv = 0 for ψ(v) = 1, v1, v2, v3, |v|2 (collision

invariants)

I
∫
Q(F, F ) lnFdv ≤ 0 with “=” iff F is the Maxwellian:

µ[ρ,u,θ](v) =
ρ

(2πθ)3/2
exp(−|v − u|

2

2θ
)

(ρ : density, u : bulk velocity, θ: temperature). Then,

d

dt

∫
F lnFdv ≤ 0

in the spatially homogeneous setting.

I Global-in-time existence is a consequence of the interplay
between two properties above.
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II. A non-exhausting known results:

Global existence and large-time behavior
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• Global solutions for general initial data with finite mass,
energy, and entropy

I Existence:
I DiPerna-Lions 89
I Hamdache 92, Arkeryd-Maslova 94, Mischler 00

I Long-time behavior:
I Desvillettes 90, Arkeryd-Nouri 97
I Desvillettes-Villani 05

‖F (t)−µ‖L2
vH

N
x (1+|v|k) ≤ C(sup

t≥0
‖F (t)‖L2

vH
N+`s
x (1+|v|k), ...)t

−s

I Gualdani-Mischler-Mouhot (arXiv:1006.5523, 2010):

‖F (t)− µ‖L1
vL
∞
x (1+|v|2) ≤ Ce−λt,

by showing that solutions are time-exponentially stable
under small perturbations in L1

vL
∞
x (1 + |v|k) (k > 2).
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• Global solutions near Maxwellians:

Look for F = µ+ µ1/2f , so {∂t + v · ∇x + L}f = Γ(f, f).

I Ω = R3 or T3:

I Ukai 74: 0 ≤ κ ≤ 1, f ∈ L∞(0,∞;L∞β H
N
x )

I Ukai-Asano 82: −1 < κ < 0
I Guo 03: −3 < κ < 0, f ∈ C([0,∞);HN

t,x,v)

I Long-time behavior of solutions: Strain-Guo, Strain, Yu,
D.-Yang-Zhao, Guo-Wang, ...

I Angular non-cutoff potentials: AMUXY 12,
Gressman-Strain 11

I Solutions in a spatially critical Besov space B
3/2
2,1 :

D.-Liu-Xu 16, Morimoto-Sakamoto 16
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I Ω is a general bounded domain in R3:

Guo (ARMA, 2010): develop a new L2 ∩ L∞ theory.

Let
f(t) = U(t)f0 solve {∂t + v · ∇x + L}f = 0, f |t=0 = f0.

I L2 time-decay: ‖f(t)‖L2 . e−λt‖f0‖L2

I L∞ time-decay: Let L = ν −K. For a velocity-growth
weight, h = wf solves {∂t + v · ∇x + ν}h = Kwh with
Kw := wK 1

w . Duhamel Principle gives

U(t) = G(t) +

∫ t

0

dsG(t− s)KwU(s)

= G(t) +

∫ t

0

dsG(t− s)KwG(s)

+

∫ t

0

ds

∫ s

0

dτ G(t− s)KwG(s− τ)KwU(τ).

How to estimate L∞ of h(t) = U(t)h0 = h1 + h2 + h3?
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IDEA of estimate on h(t) = U(t)h0 = h1 + h2 + h3:

I Ω = R3: h3 includes an integral with x1 = x− v(t− s)∫ t

0

e−ν(v)(t−s)ds

∫
|v′|≤N

dv′
∫

|v′′|≤2N

dv′′
∫ s−ε

0

e−ν(v′)(s−τ)dτ

Kw(v, v′)Kw(v′, v′′)h(τ, x1 − v′(s− τ), v′′),

we take y = x1 − v′(s− τ), so dv′ = (s− τ)−3dy ≤ ε−3dy,
somehow to obtain

‖h(t)‖L∞ . e−λt‖h0‖L∞ + (ε+
Cε
N

)

∫ t

0

e−λ(t−τ)‖h(τ)‖L∞ dτ

+Cε,N

∫ t

0

e−λ(t−τ)‖f(τ)‖L2 dτ

I Ω is a bounded domain in R3: Given (t, x, v), we have to treat
the case the backward characteristic line hits ∂Ω earlier than
t = 0, then to obtain L∞ bound, we need to iterate boundary
condition k times for k large enough.
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I Further development of Guo’s approach:

I Kim 11: discontinuity of solutions in non convex domains

I Esposito-Guo-Kim-Marra 13: ∃&dynamical stability of
nontrivial stationary sol. for non-constant θw

I Guo-Kim-Tonon-Trescases 16: BV-regularity of solutions
in non-convex domains

I Guo-Kim-Tonon-Trescases 16: C1 regularity of solutions

I Liu-Yang 16: soft potentials
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III. Our results
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Sum: In all previous results in near-µ (global Maxwellian)
framework (F (t, x, v) = µ+ µ1/2f(t, x, v) ≥ 0),

‖f(t)‖L∞x,v � 1

uniformly for all t ≥ 0, particularly at t = 0.

Q.: Is it possible to construct a global-in-time unique strong
solution allowed to initially have large amplitude (thus also
contain vacuum)?

A.: Yes for a class of initial data when the phase area where
F is far from µ is small in a suitable sense!
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The 1st result: Consider

Ω = R3 or T3, −3 < κ ≤ 1.

Note that any solution F (t, x, v) satisfies with µ = µ[1,0,1](v)∫
Ω

∫
R3

(F (t, x, v)−µ(v))dvdx =

∫
Ω

∫
R3

(F0(x, v)−µ(v))dvdx := M0,

∫
Ω

∫
R3

v(F (t, x, v)−µ(v))dvdx =

∫
Ω

∫
R3

v(F0(x, v)−µ(v))dvdx := J0,

∫
Ω

∫
R3

|v|2(F (t, x, v)−µ(v))dvdx =

∫
Ω

∫
R3

|v|2(F0(x, v)−µ(v))dvdx := E0,

for all t ≥ 0.
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Moreover,∫
Ω

∫
R3

{
F (t, x, v) lnF (t, x, v)− µ(v) lnµ(v)

}
dvdx

≤
∫

Ω

∫
R3

{
F0 lnF0 − µ(v) lnµ(v)

}
dvdx.

Define

E(F (t)) :=

∫
Ω

∫
R3

{
F (t, x, v) lnF (t, x, v)− µ lnµ

}
dvdx

+

[
3

2
ln(2π)− 1

]
M0 +

1

2
E0.

Then,
E(F (t)) ≥ 0,

for all t ≥ 0. Note, in particular, that E(F0) ≥ 0 holds true for
any function F0(x, v) ≥ 0.
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Theorem (D.-Huang-Wang-Yang, 17)

Let Ω = T3 or R3, −3 < κ ≤ 1. Set w(v) := (1 + |v|2)
β
2 with

β > max{3, 3 + κ}. Let F0(x, v) = µ(v) +
√
µ(v)f0(x, v) ≥ 0.

For any M̄ ≥ 1, there is ε0 > 0 depending on γ, β, M̄ s.t. if

‖wf0‖L∞ ≤ M̄,

E(F0) + ‖f0‖L1
xL
∞
v
≤ ε0,

then the Cauchy problem on B.E. has a global unique mild
solution F (t, x, v) = µ(v) +

√
µ(v)f(t, x, v) ≥ 0 satisfying

‖wf(t)‖L∞ ≤ C̃1M̄
2,

where C̃1 depends only on γ, β.

18/42



Remarks:

• An example for initial data: F0(x, v) = ρ0(x)µ with ρ0 ≥ 0,
ρ0 ∈ L∞x , and

‖ρ0 ln ρ0 − ρ0 + 1‖L1
x

+ ‖ρ0 − 1‖L1
x

is small.

• It can be shown that for Ω = T3 and (M0, J0, E0) = (0, 0, 0),

‖f(t)‖L∞ .

e−σ0t for 0 ≤ γ ≤ 1,

(1 + t)
−1− 2

|γ|+ for − 3 < γ < 0,

for all t ≥ 0, as long as ‖wβf0‖L∞ is further sufficiently small
for β > 0 large enough.
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Key points of the proof:
I Local-in-time existence: For β > 3,

sup
0≤t≤t1

‖wβf(t)‖L∞ ≤ 2‖wβf0‖L∞ ,

t1 := (8C̃4[1 + ‖wβf0‖L∞ ])
−1

> 0.

I Global a priori estimates: Let h = wβf .
I L∞ estimate: Let β > 3, −3 < γ ≤ 1, p > 1, then

sup
0≤s≤t

‖h(s)‖L∞ ≤ C1

{
‖h0‖L∞ + ‖h0‖

2
L∞ +

√
E(F0) + E(F0)

}

+ C1 sup
t1≤s≤t, y∈Ω

‖h(s)‖
9p+1

5p
L∞

( ∫
R3
|f(s, y, η)|dη

) p−1
5p

 .
I L∞x L

1
v Estimate: Let −3 < γ ≤ 1, β > max{3, 3 + γ}, then∫

R3
|f(t, x, v)|dv

≤
∫
R3
e
−ν(v)t|f0(x− vt, v)|dv + CNλ

− 3
2

√
E(F0) + CNλ

−3E(F0)

+C
(
m

3+γ
+ Cm[λ +

1

N
+

1

Nβ−3
]
)
· sup
0≤s≤t

{
‖h(s)‖L∞ + ‖h(s)‖2L∞

}

+CNλ
−3
(√
E(F0) + E(F0)

)1− 1
p · sup

0≤s≤t
‖h(s)‖

1+ 1
p

L∞ ,

where λ > 0,m > 0 are small and N ≥ 1 is large.
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The 2nd result: Consider

Ω is a bounded domain with diffuse-reflection boundary of
constant wall temperature, 0 ≤ κ ≤ 1.

IBVP under consideration:

∂tF + v · ∇xF = Q(F, F ) in {t > 0} × Ω× R3

F = F0 on {t = 0} × Ω× R3

F |γ− = cµµ

∫
v·n>0

F |γ+v · n dv on {t ≥ 0} × γ−.

Long-time behavior: F (t, x, v)→ µ(v) (t→∞)?
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Theorem (D.-Wang, preprint 16)
Let w(v) = (1 + ρ2|v|2)βe$|v|

2

with ρ > 1 large enough, β ≥ 5/2, and
0 ≤ $ ≤ 1/64. Assume F0(x, v) = µ+

√
µf0(x, v) ≥ 0 with the mass

conservation. For any M0 ≥ 1, there is ε0 > 0 depending only on δ
and M0 such that if

‖wf0‖L∞ ≤M0, ‖f0‖L2 ≤ ε0,

then IBVP admits a unique solution F (t, x, v) = µ+
√
µf(t, x, v) ≥ 0

satisfying

‖wf(t)‖L∞ ≤ C̃0M
5
0 exp

{
2

ν0
C̃0M

5
0

}
e−ϑ1t, ∀ t ≥ 0,

where C̃0 ≥ 1 is a generic constant, ϑ1 = min
{
ϑ, ν0

16

}
> 0, and

ν0 := infv∈R3 ν(v) > 0. Moreover, if Ω is strictly convex, and F0(x, v)
is continuous except on γ0 then F (t, x, v) is continous in
[0,∞)× {Ω× R3\γ0}.
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The most key ingredients for the proof of Theorem:

I L2
x,v–L∞x L

1
v–L∞x,v estimates along a bootstrap argument:

‖f(t)‖L2 ≤ eC̃1M̄t‖f0‖L2 .

I Pointwise estimates on the upper bound of the gain
term by the product of L∞ norm and L2 norm:

|w(v)Γ+(f, f)(v)| ≤
Cβ‖wf‖L∞v

1 + |v|

(∫
R3

(1 + |η|)4e$|η|
2

|f(η)|2 dη

) 1
2

.

I An iterative procedure on the nonlinear term:

w(η)|f(s, y, η)| ≤ · · ·
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Two Key Lemmas:

Lemma
Under the a priori assumption, there exists a generic constant
C̃2 ≥ 1 such that given any T0 > t̃ with

t̃ :=
2

ν0
ln
(
C̃2M0

)
> 0,

there is a generally small positive constant ε1 = ε1(M̄, T0) > 0,
depending only on M̄ and T0, such that if ‖f0‖L2 ≤ ε1, then one
has

R(f)(t, x, v) ≥ 1

2
ν(v),

for all (t, x, v) ∈ [t̃, T0)× Ω× R3. Here ε1 is decreasing in M̄
and T0.

Proof. Use the mild formulation with k-times reflection
+ L2-L∞ interplay.
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Lemma
Assume ‖f0‖L2 ≤ ε1 = ε1(M̄, T0). There exists a generic
constant C̃3 ≥ 1 such that

‖h(t)‖L∞ ≤ C̃3e
2ν0 t̃‖h0‖L∞

[
1 +

∫ t

0
‖h(s)‖L∞ ds

]
e−

ν0
8
t

+ C̃3e
2ν0 t̃

{(
ε+ λ+

Cε,T0

N

)
sup

0≤s≤t

[
‖h(s)‖L∞ + ‖h(s)‖3L∞

]
+Cε,λ,N,T0 sup

0≤s≤t

[
‖f(s)‖L2 + ‖f(s)‖3L2

]}
,

holds true for all 0 ≤ t ≤ T0, where λ > 0 and ε > 0 can be
arbitrarily small, and N > 0 can be arbitrarily large.
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The 3rd result (joint with Huang-Wang-Zhang, preprint 17):

Consider

Ω is a bounded domain with diffuse-reflection boundary
where the wall temperature can have a small variation

around a positive constant, −3 < κ < 0.

IBVP under consideration:
∂tF + v · ∇xF = Q(F, F ) in {t > 0} × Ω× R3

F = F0 on {t = 0} × Ω× R3

F |γ− = µθ

∫
v·n>0

F |γ+v · n dv on {t ≥ 0} × γ−,

µθ(v) =
1

2πθ2(x)
exp

[
− |v|

2

2θ(x)

]
, sup

∂Ω
|θ − 1| � 1.

Long-time behavior: (Note: µθ(v) satisfied B.C.:
∫
v·n>0

µθv · ndv = 1)
F (t, x, v)→ F∗(x, v) which is the stationary solution (t→∞)?
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Theorem (Existence of non-Maxwellian stationary solution)

Set w0(v) = (1 + |v|2)
β
2 e$|v|

2
. Let −3 < κ < 0, β > 3 + |κ|,

0 ≤ $ ≤ 1
64 . Let M > 0 be arbitrary. There are δ0 > 0, C > 0

such that if
δ := |θ − θ0|L∞(∂Ω) ≤ δ0,

then there exists a unique F∗(x, v) = Mµ+
√
µf∗(x, v) ≥ 0 to

the steady BVP
v · ∇xF = Q(F, F ) in Ω× R3

F |γ− = µθ

∫
v·n>0

F |γ+v · n dv on γ−

satisfying

‖w0f∗‖L∞ ≤ Cδ.
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Set

w(t, v) = (1 + |v|2)
β
2 exp

{
$|v|ζ

4
+

$|v|ζ

4(1 + t)q

}
where 0 < q < ζ

|κ| and

0 < $ ≤ 1

64
if ζ = 2,

or $ > 0 if 0 < ζ < 2.

Note: For the modified collision frequency ν̃(t, v),

ν̃(t, v) ≥ C(1 + t)
(1+q)|κ|
ζ+|κ| .

Thus, for s < t,

0 < exp

[
−
∫ t

s
ν̃(η, Vcl(η)) dη

]
≤ e−λ(tα−sα),

0 < α =
ζ − q|κ|
ζ + |κ|

< 1.
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Theorem (Global dynamics of large-amplitude solutions)
Let −3 < κ < 0, β > max{3 + |κ|, 4}, and max{ 3

2 ,
3

3+κ} < p <∞.
Assume F0(x, v) = µ+

√
µf0(x, v) ≥ 0 has the same mass as F∗ with

0 < δ := |θ − θ0|L∞(∂Ω) < 1 small enough. For any M0 with

1 ≤M0 ≤
1

Ĉ + 5
2α

log
1

δ
,

there are λ > 0, C0 > 0, ε1 > 0 such that if

‖w(0, ·)(f0 − f∗)‖L∞ ≤M0, ‖f0 − f∗‖Lp ≤ ε1,

then the IBVP of the Boltzmann equation admits a unique global
solution F (t, x, v) = µ(v) +

√
µ(v)f(t, x, v) ≥ 0 satisfying

‖w(t, ·)[f(t)− f∗]‖L∞ ≤ C0e
C0M0e−λt

α

‖w(0, ·)(f0 − f∗)‖L∞ ,

for all t ≥ 0, where 0 < α = ζ−q|κ|
ζ+|κ| < 1.
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Proof: Existence of stationary solution
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∃ of small-amplitude s.s. is a consequence of construction of
iterative solution sequence as well as its L∞ estimate:

v · ∇xf j+1 + Lf j+1 = Γ(f j , f j),

f j+1|γ− = Pγf
j+1+µδ−µ√

µ

+µδ−µ√
µ

∫
v′·n(x)>0 f

j(x, v′)
√
µ(v′){v′ · n(x)}dv′,

for j = 0, 1, 2 · · · with f0 ≡ 0, under the assumption

µδ := µθ(x), θ(x) = 1 + δθ0(x), 0 < δ � 1.

Here,

Pγf(x, v) :=
√
µ(v)

∫
v′·n(x)>0

f(x, v′)
√
µ(v′){v′ · n(x)}dv′.
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Proposition

Assume∫∫
Ω×R3

g(x, v)
√
µ(v)dvdx =

∫
γ−

r(x, v)
√
µ(v)dγ = 0.

Let β > 3 + |κ|, and assume ‖ν−1wg‖L∞ + |wr|L∞ <∞. Then
there exists a unique solution f = f(x, v) to the linearized
steady Boltzmann equation

v · ∇xf + Lf = g, f(x, v)|γ− = Pγf + r, (P )

such that
∫

Ω×R3 f
√
µdvdx = 0 and

‖wf‖L∞ ≤ C
{
|wr|L∞(γ) + ‖ν−1wg‖L∞

}
.
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Proof of Proposition: The solution f(x, v) to (P ) is obtained
as a limit (first n→∞ and then ε→ 0) ofεf

(n,ε) + v · ∇xf (n,ε) + ν(v)f (n,ε) −Kf (n,ε) = g,

f (n,ε)(x, v)|γ− = (1− 1
n)Pγf

(n,ε) + r,
(Pn,ε)

or equivalently, for h := h(n,ε)(x, v) = w(v)f (n,ε)(x, v),εh+ v · ∇xh+ ν(v)h = Kwh+ wg,

h(x, v)|γ− = (1− 1
n) 1

w̃(v)

∫
v′·n(x)>0 h(x, v′)w̃(v′)dσ′ + wr(x, v),

where w̃(v) ≡ 1

w(v)
√
µ(v)

and Kwh = wK( hw ).
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• Step 1. A priori L∞ estimates.

Definition (Speeded backward bi-characteristics)

Given (t, x, v) with t > 0,
dX̂(s)
ds = (1 + |V (s)|2)

|γ|
2 V (s) := V̂ (s),

dV (s)
ds = 0,

[X(t), V (t)] = [x, v],

has the solution

[X̂(s; t, x, v), V (s; t, x, v)] = [x− v̂(t− s), v],

with
v̂ := (1 + |v|2)

|κ|
2 v.
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Define the speeded back-time cycle:

I Given (t, x, v) with t > 0, x ∈ Ω̄ and for only outgoing
particles if x ∈ ∂Ω

I t̂b(x, v) = inf{τ ≥ 0 : x− v̂τ /∈ Ω̄}.
I x− t̂bv̂ ∈ ∂Ω. x̂b(x, v) = x̂(t̂b) = x− t̂bv̂ ∈ ∂Ω.

I For vk+1 ∈ V̂k+1 := {vk+1 ·n(x̂k+1) > 0}, inductively define

(t̂k+1, x̂k+1, vk+1) = (t̂k − t̂b(x̂k, vk), x̂b(x̂k, vk), vk+1).

Lemma
For T0 sufficiently large, there exist generic constants Ĉ1 and

Ĉ2 independent of T0 such that for k = Ĉ1T
5
4

0 and 0 ≤ t ≤ T0, it
holds that

∫
Πk−1
j=1 V̂j

1{t̂k>0} Πk−1
j=1dσ̂j ≤

(
1

2

)Ĉ2T
5
4

0

where dσ̂j := µ(vj){vj · n(x̂j)}dvj.
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Consider (Note: 1 can be placed by 1− 1
n)εh

i+1 + v · ∇xhi+1 + ν(v)hi+1 = λKm
w h

i + λKc
wh

i + wg,

hi+1(x, v)|γ− = 1
w̃(v)

∫
v′·n(x)>0 h

i(x, v′)w̃(v′)dσ′ + w(v)r(x, v),

for i = 0, 2, 3, · · · and h0 = h0(x, v) is given. Denote

ν̂(v) := (1 + |v|2)
|κ|
2 [ε+ ν(v)].

Observe

inf
v
ν̂(v) ≥ inf

v
(1 + |v|2)

|κ|
2 ν(v) := ν̂0 > 0 independent of ε.

Rewrite the equation as

{v̂ · ∇x + ν̂(v)}hi+1 = (1 + |v|2)
|κ|
2 {· · · }.
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Mild formulation with parameter t ∈ [0, T0] for T0 > 0
sufficiently large:

h
i+1

(x, v) = 1{t̂1≤0}e
−ν̂(v)t

h
i+1

(x− v̂t)

+

∫ t
max{t̂1,0}

e
−ν̂(v)(t−s)

ν(v)
−1
[
λK

m
w h

i
+ λK

c
wh

i
+ wg

]
(x− v̂(t− s), v)ds

+ e
−ν̂(v)(t−t̂1)

w(v)r(x̂1, v)1t̂1>0 +
e−ν̂(v)(t−t̂1)

w̃(v)

∫
Π
k−1
j=1
V̂j

k−2∑
l=1

1{t̂l+1>0}dΣ
r
l

+
e−ν̂(v)(t−t̂1)

w̃(v)

∫
Π
k−1
j=1
V̂j

k−1∑
l=1

1{t̂l+1≤0<t̂l}
h
i+1−l

(x̂l − v̂l t̂l, vl)dΣl(0)

e−ν̂(v)(t−t̂1)

w̃(v)

∫
Π
k−1
j=1
V̂j

k−1∑
l=1

∫ t̂l
0

1{t̂l+1≤0<t̂l}

× ν(vl)
−1
[
λK

m
w h

i−l
+ λK

c
wh

i−l
+ wg

]
(x̂l − v̂(t̂l − s), vl)dΣl(s)

e−ν̂(v)(t−t̂1)

w̃(v)

∫
Π
k−1
j=1
V̂j

k−1∑
l=1

∫ t̂l
t̂l+1

1{t̂l+1≤0<t̂l}

× ν(vl)
−1
[
λK

m
w h

i−l
+ λK

c
wh

i−l
+ wg

]
(x̂l − v̂(t̂l − s), vl)dΣl(s)

+
e−ν̂(v)(t−t̂1)

w̃(v)

∫
Π
k−1
j=1
V̂j

I{t̂k>0}h
i+1−k

(x̂k, vk−1)dΣk−1(t̂k)

where
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dΣl =
{
Π
k−1
j=l+1dσ̂j

}
· w̃(vl)dσ̂l ·

{
Π
l−1
j=1dσ̂j

}
,

dΣl(s) =
{
Π
k−1
j=l+1dσ̂j

}
·
{
w̃(vl)e

−ν̂(vl)(t̂l−s)dσ̂l
}
·
{
Π
l−1
j=1e

−ν̂(vj)(t̂j−t̂j+1)
dσ̂j

}
,

dΣ
r
l =

{
Π
k−1
j=l+1dσ̂j

}
·
{
w̃(vl)w(vl)r(x̂l+1, vl)e

−ν̂(vl)(t̂l−t̂l+1)
dσ̂l

}
·
{
Π
l−1
j=1e

−ν̂(v)(t̂j−t̂j+1)
dσ̂j

}
.

Lemma
Let β > 3. Assume ‖hi‖L∞ + |hi|L∞(γ) <∞ for i = 0, 1, 2, · · · . Then

there exist a large positive constant T0 such that for k = Ĉ2T
5
4

0 , it
holds, for i ≥ k, that

‖hi+1‖L∞ ≤
1

8
sup

0≤l≤k
{‖hi−l‖L∞}+ C

{
‖ν−1wg‖L∞ + |wr|∞

}
+ C sup

0≤l≤k

{∥∥∥∥√νhi−lw

∥∥∥∥
L2

}
.

Moreover, if hi ≡ h for i = 1, 2, · · · , that is h is a solution. Then

‖h‖L∞ ≤ C
{
‖ν−1wg‖L∞ + |wr|∞

}
+ C

∥∥∥∥√νhw
∥∥∥∥
L2

.

Here the positive constant C > 0 do not depend on λ ∈ [0, 1].
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• Step 2. First fix ε > 0, n ≥ n0 � 1. Establish the existence
of solution f (n,ε)(x, v).

Define Sλ = L−1
λ (0 ≤ λ ≤ 1) to be the solution operator for{

Lλf := εf + v · ∇xf + ν(v)f − λKf = g,

f(x, v)|γ− = (1− 1
n)Pγf + r(x, v).

Claim: S1 = L−1
1 is well-defined.

Proof: Bootstrap argument (New!)

I Prove existence of S0.

I A priori L∞ estimate independent of λ ∈ [0, 1].

I Prove existence of Sλ for λ > 0 small enough.

I Given solvability of Sλ for 0 < λ < 1, prove existence of
Sλ+λ0 for λ0 > 0 small enough.

• Step 3. Pass the limits n→∞ and then ε→ 0.
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Thank you!
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