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I. Introduction



Boltzmann Equation

It was derived by L. Boltzmann in 1872 to govern motion of
a nonequilibrium gas. Its unknown is a scalar function

0 ≤ F = F (t, x, v), t ∈ R, x ∈ R3, v ∈ R3

which stands for the probability (or number, or mass) density
function of gas particles having position x and velocity v at
time t, and the Boltzmann equation reads

∂F

∂t
+ v · ∇xF = Q(F, F )

where Q, the collision operator, describes the binary collision
of molecules and is given by



Q(F,H)(v)

=

∫
R3

dv∗

∫
S2
dω |(v − v∗) · ω|︸ ︷︷ ︸

collision kernel

(
F (v′∗)H(v′)− F (v∗)H(v)

)
,

v′ = v − [(v − v∗) · ω]ω, v′∗ = v∗ + [(v − v∗) · ω]ω,

Note:
v + v∗ = v′ + v′∗,

|v|2 + |v∗|2 = |v′|2 + |v′∗|2.
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The equilibrium state (Q(F, F ) = 0) is the Maxwellian distr.:

µ = µ[ρ,u,θ](v) =
ρ

(2πθ)3/2
e−
|v−u|2

2θ

ρ : density, u : bulk velocity, θ: temperature

which can be built in the BE due to Boltzmann’s

H-Theorem

H[F ] =

∫
R3

F logF dv

H-function (negative of physical entropy)

In fact, if F = F (t, v) is a solution to the BE in the spatially
homogeneous setting, then

dH[F ](t)

dt
= D[F ](t) ≤ 0,



for all t ≥ 0, where D[F ] is the entropy product given by

D[F ] =

∫
R3

Q(F, F ) lnF dv

= −
∫
R3×R3×S2

|(v − v∗) · ω|(F ′F ′∗ − FF∗) log
F ′F ′∗
FF∗

dvdv∗dω.

It holds that

Q(F, F ) = 0

⇔ D[F ] = 0

⇔ F is the Maxwellian: F = µ[ρ,u,θ](v)

Thus mathematically it shows that the equilibrium state is
uniquely described by the Maxwellian, not by any other
distribution functions.



One classical property of Q:

For ψ(v) = 1, v1, v2, v3, |v|2 (five collision invariants),∫
R3

ψ(v)Q(F, F )(v) dv = 0.

This gives the local macroscopic conservation laws:

∂t

∫
R3

F dv +∇x ·
∫
R3

vF dv = 0,

∂t

∫
R3

viF dv +∇x ·
∫
R3

vviF dv = 0, i = 1, 2, 3,

∂t

∫
R3

|v|2F dv +∇x ·
∫
R3

|v|2vF dv = 0.

(Unclosed! They are Euler equations if F = µ[ρ,u,θ])



Relation to Fluid Dynamcs:

From

∂tF + v · ∇xF =
1

κ
Q(F, F )

where κ > 0 is the Knudsen number proportional to the
mean free path,

• 0th-order approximation by Hilbert expansion (1912)
gives

Euler equations

• 1st-order approximation by Chapman-Enskog expansion
(1916/17) gives

Navier-Stokes equations



Well-posedness of the Cauchy problem on the Boltzmann
equation:

∂tF + v · ∇xF = Q(F, F ),

F |t=0 = F0.

Goal: Find function spaces X and Y ⊂ X such that if
0 ≤ F0 ∈ X with ‖F0‖X < ∞ then it admits a (unique)
“solution” 0 ≤ F (t) ∈ Y with

sup
0<t<∞

‖F (t)‖Y <∞.

Note: It is expected that the global-in-time existence and
even large-time behavior of solutions be a consequence of
the interplay between the free transport operator and the
partially dissipative Boltzmann operator.



II. Known results on Well-posedness



Known results (Non-exhausting):

• Non-perturbation framework:

I DiPerna-Lions (1989): The weak stability method gives the
global existence of renormalized solutions for general large
initial data with finite mass, energy and entropy. Uniqueness
is still unknown.

I Desvillettes-Villani (2005): the t−∞ convergence of a class of
large amplitude solutions toward the global Maxwellian with
an explicit almost exponential rate in large time, conditionally
under some assumptions on smoothness and polynomial
moment bounds of solutions:

‖F (t)− µ‖L2
vH

N
x (1+|v|k) ≤ C(sup

t≥0
‖F (t)‖L2

vH
N+`s
x (1+|v|k), ...)t

−s

I Gualdani-Mischler-Mouhot (2010): a sharp exponential time
rate by developing an abstract semigroup theory for linear
operators which are non-symmetric in some Banach spaces:

‖F (t)− µ‖X ≤ Ce−λt‖F0 − µ‖X , X := L1
vL
∞
v (1 + |v|k), k > 2



Known results (Non-exhausting):

• Perturbation framework (small data results):

I Close-to-vacuum:

I Illner-Shinbrot (1984): the global existence under
smallness assumption on velocity weighted norms.

I Close-to-global-Maxwellians:

I Ukai (1974): existence and uniqueness of mild solutions
based on the fixed point principle through the spectral
analysis of linearized equation and the bootstrap
argument.

I Guo (2002, 2010), Liu-Yang-Yu (2004), Liu-Yang-Yu
(2004): the existence and uniqueness of classical or
strong solutions by the nonlinear energy method.

Recent progress in non-cutoff case:
I Alexandre-Morimoto-Ukai-Xu-Yang (AMUXY) (’10, ’12)
I Gressman-Strain (’11)



Remark: Recall

I L2 ∩ L∞ approach for global well-posedness (even for
IBVP) with small data around global Maxwellians was
developed by Guo (2010), and

I the only large-amplitude solution (no uniquesness) was
given by DiPerna-Lions (1989).

Q.: Is it possible to develop an in-between framework where
the unique strong solution exists and is allowed to have large
amplitude and thus contain vacuum?

A.: D.-Huang-Wang-Yang (’16, preprint): ∃ !F with

sup
t≥0
‖(F − µ)µ−1/2‖L∞x,v(1+|v|β) <∞

provided that the above norm is finite initially and

E(F0) + ‖(F − µ)µ−1/2‖L1
xL
∞
v
� 1.



III. The goal of the talk

Motivation:

I In the close-to-equilibrium framework, L2
x,v is not enough

to close the nonlinear dynamics, and in general

X = L2
vH

s
x, s > 3/2

is needed, for instance Ukai’s result.

I Q.: Is s = 3/2 spatially critical for such function spaces
to obtain the global-in-time well-posedness?

Notice that the embedding Hs(R3) ⊂ L∞(R3) is no
longer true for s = 3/2. A replacement would be

B
3/2
2,1 (R3) ⊂ L∞(R3).



Recall
∂tF + v · ∇xF = Q(F, F ).

Set

F = µ+ µ1/2f,

µ = µ(v) = (2π)−3/2e−|v|
2/2.

Then the Boltzmann equation can be reformulated as

∂tf + v · ∇xf + Lf = Γ(f, f),

with initial data f(0, x, v) = f0(x, v) given by F0 = µ+ µ1/2f0.
Here

Lf = −µ−1/2[Q(µ, µ1/2f) +Q(µ1/2f, µ)],

Γ(f, g) = µ−1/2Q
[
µ1/2f, µ1/2g

]
.



Moreover,
L = ν −K,

ν(v) =

∫
R3

dv∗

∫
S2
dω |v − v∗|γB0(θ)µ(v∗) ∼ (1 + |v|)γ ,

K is a self-adjoint compact operator on L2
v.

ker L = {1, v1, v2, v3, |v|2}
√
µ, dim ker L = 5.

Define the macroscopic projection of f(t, x, v) by

Pf =
{
a(t, x) + v · b(t, x) +

(
|v|2 − 3

)
c(t, x)

}√
µ.

Then, the function f(t, x, v) can be decomposed as

f = Pf + {I−P}f .

L is coercive in the sense that there is λ0 > 0 such that∫
R3

f Lf dv ≥ λ0
∫
R3

ν(v)|{I−P}f |2.



Spaces and norms: Define

ET (f) ∼ ‖f‖
L̃∞T L̃

2
vB

3/2
x

=
∑
q≥−1

23q/2 sup
0≤t≤T

‖∆qf(t, ·, ·)‖L2
x,v

and

DT (f) = ‖∇x(a, b, c)‖
L̃2
TB

1/2
x

+ ‖{I−P}f‖
L̃2
T L̃

2
v,νB

3/2
x
,

where Bs
x denotes the Besov space Bs

2,1(R3
x) and

‖f‖
L̃
%1
T L̃

%2
v Bsp,r

=

∑
q≥−1

2qsr

(∫ T

0

(∫
R3

‖∆qf‖%2Lpxdv
)%1/%2

dt

)r/%1 1
r

,

with the usual convention for %1, %2, p, r =∞.



Main result:

Theorem
There is ε0 > 0 and C > 0 such that if

‖f0‖L̃2
vB

3/2
x
≤ ε0,

then there is a unique global strong solution f(t, x, v) to
the Boltzmann equation with initial data f |t=0 = f0,
satisfying

ET (f) +DT (f) ≤ C‖f0‖L̃2
vB

3/2
x
,

for any T > 0. Moreover, if f0 ≥ 0 then F (t) ≥ 0 for all
positive time.



Previous solution spaces for well-posedness in perturbation
regime:

I The first global existence theorem for the mild solution
is given by Ukai (’74) in the space

L∞
(

0,∞;L∞β (R3
v;H

N (R3
x))
)
, β >

5

2
, N ≥ 2,

by using the spectrum method as well as the contraction
mapping principle, see also Nishida-Imai (’76/’77) and
Kawashima (’90). Here L∞β (R3

v) denotes a space of all

functions f with (1 + |v|)βf uniformly bounded.



I Using a similar approach, Shizuta (’83) obtains the
global existence of the classical solution
f(t, x, v) ∈ C1,1,0((0,∞)× T3

x × R3
v) on torus, with the

uniform bound in the space

L∞
(

0,∞;L∞β (R3
v;C

s(T3
x))
)
, β >

5

2
, s >

3

2
.

I The spectrum method was later improved in Ukai-Yang
(’06) for the existence of the mild solution in the space

L∞
(

0,∞;L2(R3
x × R3

v) ∩ L∞β (R3
v;L

∞(R3
x))
)
, β >

3

2
,

without any regularity conditions, where some L∞-L2

estimates in terms of the Duhamel’s principle are
developed.



I On the other hand, by means of the robust energy
method (’02), for instance, Guo, Liu-Yu and
Liu-Yang-Yu, the well-posedness of classical solutions is
also established in the space

C
(

0,∞;HN
t,x,v(R3

x × R3
v)
)
, N ≥ 4,

where the Sobolev space HN
t,x,v(R3

x ×R3
v) denotes a set of

all functions whose derivatives with respect to all
variables t, x and v up to N order are integrable in
L2(R3

x × R3
v).

I If only the strong solution with the uniqueness property
is considered then the time differentiation can be
disregarded in the above Sobolev space. Indeed D. (’08)
obtained such strong solution in the space

C
(

0,∞;L2(R3
v;H

N (R3
x))
)
, N ≥ 2.



I AMUXY (’13) presents a result for local existence in a
“larger” function space. In cutoff case the solution
space may take

L∞
(

0, T0;L
2(R3

v;H
s(R3

x))
)
, s >

3

2
,

where T0 > 0 is a finite time.

I The key motivation to consider s = 3
2 is to apply the

Chemin-Lerner space which has been extensively used to
deal with the incompressible Navier-Stokes equations:

u ∈ L̃∞T Bs
x, i.e.

∑
q≥−1

2qs sup
0≤t≤T

‖∆qu(t)‖L2
x
<∞.



Further recent progress:

I Yoshinori Morimoto, Shota Sakamoto, Global solutions in
the critical Besov space for the non cutoff Boltzmann
equation, arXiv:1512.00585.

I Zhengrong Liu, Hao Tang, On the Cauchy problem for the
Boltzmann equation in Chemin-Lerner type spaces, DCDS
2015.



IV. The proof of the main result



Key points in the a priori estimates:

• (K1) How does Besov meet Boltzmann?
(∂t + v · ∇x + L)f = Γ(f, f)

⇒ 1

2

d

dt
23q‖∆qf‖2L2

vL
2
x

+ λ023q‖∆q{I−P}f‖2L2
v,νL

2
x

≤ 23q|(∆qΓ(f, f),∆q{I−P}f)|.

⇒ 2
3q
2 ‖∆qf(t)‖L2

vL
2
x

+
√
λ02

3q
2

(∫ t

0

‖∆q{I−P}f‖2L2
v,νL

2
x
dτ

)1/2

≤ 2
3q
2 ‖∆qf0‖L2

vL
2
x

+ 2
3q
2

(∫ t

0

|(∆qΓ(f, f),∆q{I−P}f)|dτ
)1/2

,

⇒
∑
q≥−1

2
3q
2 sup

0≤t≤T
‖∆qf(t)‖L2

vL
2
x

+
√
λ0

∑
q≥−1

2
3q
2

(∫ T

0

‖∆q{I−P}f‖2L2
v,νL

2
x
dt

)1/2

≤
∑
q≥−1

2
3q
2 ‖∆qf0‖L2

vL
2
x

+
∑
q≥−1

2
3q
2

(∫ T

0

|(∆qΓ(f, f),∆q{I−P}f)|dt
)1/2

.



• (K2) Most key estimate: Trilinear estimate

Lemma
Assume s > 0, 0 ≤ T ≤ +∞, it holds that

∑
q≥−1

2qs
[∫ T

0
|(∆qΓ(f, g),∆qh)| dt

]1/2
. ‖h‖1/2

L̃2
T L̃

2
v,ν(B

s
x)

×

[
‖g‖1/2

L̃2
T L̃

2
v,ν(B

s
x)
‖f‖1/2

L∞T L
2
vL
∞
x

+ ‖f‖1/2
L2
TL

2
v,νL

∞
x
‖g‖1/2

L̃∞T L̃
2
v(B

s
x)

+ ‖f‖1/2
L̃2
T L̃

2
v,ν(B

s
x)
‖g‖1/2

L∞T L
2
vL
∞
x

+ ‖g‖1/2
L2
TL

2
v,νL

∞
x
‖f‖1/2

L̃∞T L̃
2
v(B

s
x)

]
.



Recall

Γ(f, g) =µ−1/2(v)Q
[
µ1/2f, µ1/2g

]
=Γgain(f, g)− Γloss(f, g)

=

∫
R3

dv∗

∫
S2
dω |v − v∗|γB0(θ)µ

1/2(v∗)f(v′∗)g(v′)

− g(v)

∫
R3

dv∗

∫
S2
dω |v − v∗|γB0(θ)µ

1/2(v∗)f(v∗).



• Proof of Trilinear Estimate-1:

I0 =
∑
q≥−1

2qs
[∫ T

0

|(∆qΓ(f, g),∆qh)| dt
]1/2

I Elementary observation-1: ((A+B)1/2 ≤ A1/2 +B1/2)[∫ T

0

|(∆qΓ(f, g),∆qh)| dt
] 1

2

≤
[∫ T

0

|(∆qΓgain(f, g),∆qh)| dt
] 1

2

+

[∫ T

0

|(∆qΓloss(f, g),∆qh)| dt
] 1

2

with

∆qΓgain(f, g) =

∫
R3

dv∗

∫
S2
dω |v − v∗|γB0(θ)µ1/2(v∗)∆q[f(v′∗)g(v′)],

∆qΓloss(f, g) =

∫
R3

dv∗

∫
S2
dω |v − v∗|γB0(θ)µ1/2(v∗)∆q[f(v∗)g(v)].



• Proof of Trilinear Estimate-2:

I0 =
∑
q≥−1

2qs
[∫ T

0

|(∆qΓ(f, g),∆qh)| dt
]1/2

I Elementary observation-2:

I0 .
∑
q≥−1

2qs
[(∫ T

0

dt

∫
R9×S2

dxdvdv∗dω |v′ − v′∗|γµ1/2(v′∗) |∆q[f∗g]|2
)1/2

]1/2

×

[(∫ T

0

dt

∫
R9

dxdvdv∗dω |v − v∗|γµ1/2(v∗) |∆qh|2
)1/2

]1/2

+
∑
q≥−1

2qs
[(∫ T

0

dt

∫
R9×S2

dxdvdv∗dω |v − v∗|γµ1/2(v∗) |∆q[f∗g]|2
)1/2

]1/2

×

[(∫ T

0

dt

∫
R9

dxdvdv∗dω |v − v∗|γµ1/2(v∗) |∆qh|2
)1/2

]1/2



Further by using the discrete version of Cauchy-Schwarz
inequality to two summations

∑
q≥−1 above, one obtains that

I0 .

∑
q≥−1

2qs
(∫ T

0
dt

∫
R9

dxdvdv∗ |v − v∗|γ |∆q[f∗g]|2
)1/2

1/2

×

∑
q≥−1

2qs
(∫ T

0
dt

∫
R9

dxdvdv∗ |v − v∗|γµ1/2(v∗) |∆qh|2
)1/2

1/2

:= I1/2 × II1/2,

where |v′ − v′∗| = |v − v∗|, µ1/2(v′∗) ≤ 1 and
∫
S2 dω = 4π have

been used.



It is straightforward to see

II ≤ ‖h‖
L̃2
T L̃

2
v,ν(B

s
x)

due to ∫
R3

dv∗ |v − v∗|γµ1/2(v∗) ∼ (1 + |v|)γ ∼ ν(v).

It remains to estimate

I =
∑
q≥−1

2qs
(∫ T

0
dt

∫
R9

dxdvdv∗ |v − v∗|γ |∆q[f∗g]|2
)1/2



• Proof of Trilinear Estimate-3:

Idea for estimating I:

I Bony’s decomposition:

f∗g = Tf∗g + Tgf∗ +R(f∗, g),

with
Tuv =

∑
j

Sj−1u∆jv, R(u, v) =
∑

|j′−j|≤1

∆j′u∆jv.

I Use the basic properties: for 1 ≤ p ≤ ∞,

‖∆q · ‖Lpx ≤ C‖ · ‖Lpx , ‖Sq · ‖Lpx ≤ C‖ · ‖Lpx .

I Obtain paraproduct property by defining a new `1 sequence.
For instance, we define

c1(j) = 2js
(∫ T

0

dt

∫
R3

|v|γ ‖∆jg‖2L2
x
dv

)1/2

/‖g‖L̃2
T
L̃2
v,νB

s
x
.

One can see that ‖c1(j)‖`1 = 1.



Indeed,

I ≤
∑
q≥−1

2qs
(∫ T

0

dt

∫
R9

dxdvdv∗|v − v∗|γ
∣∣∣∣∣∑
j

∆q[Sj−1f∗∆jg]

∣∣∣∣∣
2)1/2

+
∑
q≥−1

2qs
(∫ T

0

dt

∫
R9

dxdvdv∗|v − v∗|γ
∣∣∣∣∣∑
j

∆q[Sj−1g∆jf∗]

∣∣∣∣∣
2)1/2

+
∑
q≥−1

2qs

∫ T

0

dt

∫
R9

dxdvdv∗|v − v∗|γ
∣∣∣∣∣∣
∑

|j−j′|≤1

∆q[∆jf∗∆j′g]

∣∣∣∣∣∣
21/2

:= I1 + I2 + I3.

For instance, to estimate I1, notice that∑
j

∆q[Sj−1f∗∆jg] =
∑
|j−q|≤4

∆q[Sj−1f∗∆jg].



By |v − v∗|γ ≤ |v|γ + |v∗|γ and Minkowski’s inequality,

I1 ≤
∑
q≥−1

∑
|j−q|≤4

2qs
(∫ T

0
dt

∫
R9

dxdvdv∗ |v|γ |∆q[Sj−1f∗∆jg]|2
)1/2

+
∑
q≥−1

∑
|j−q|≤4

2qs
(∫ T

0
dt

∫
R9

dxdvdv∗ |v∗|γ |∆q[Sj−1f∗∆jg]|2
)1/2

:= I1,1 + I1,2.



Here I1,1 is bounded as

I1,1 ≤
∑
q≥−1

∑
|j−q|≤4

2qs
(∫ T

0

dt

∫
R3

‖f∗‖2L∞x dv∗
∫
R3

|v|γ ‖∆jg‖2L2
x
dv

)1/2

≤
∑
q≥−1

∑
|j−q|≤4

2qs
(

sup
0≤t≤T

∫
R3

‖f∗‖2L∞x dv∗
∫ T

0

dt

∫
R3

|v|γ ‖∆jg‖2L2
x
dv

)1/2

≤
∑
q≥−1

∑
|j−q|≤4

2qs
(∫ T

0

dt

∫
R3

|v|γ ‖∆jg‖2L2
x
dv

)1/2

‖f‖L∞
T
L2
vL
∞
x

≤
∑
q≥−1

∑
|j−q|≤4

2(q−j)sc1(j)‖g‖L̃2
T
L̃2
v,ν(B

s
x)
‖f‖L∞

T
L2
vL
∞
x
,

where c1(j) is defined as

c1(j) =

2js
(∫ T

0

dt

∫
R3

|v|γ ‖∆jg‖2L2
x
dv

)1/2

‖g‖L̃2
T
L̃2
v,ν(B

s
x)

.



Using the convolution inequality for series∑
q≥−1

∑
|j−q|≤4

2(q−j)sc1(j) =
∑
q≥−1

[(
1|j|≤42

js
)
∗ c1(j)

]
(q)

≤ ‖1|j|≤42js‖`1‖c1(j)‖`1 < +∞,

we further get that

I1,1 . ‖g‖L̃2
T L̃

2
v,ν(B

s
x)
‖f‖L∞T L2

vL
∞
x
.

Other terms can be estimated in a similar way.



Remark: The other two occasions where Besov meets
Boltzmann

I Arsénio-Masmoudi (JMPA ’13): Velocity averaging
lemmas.

I Sohinger-Strain (AM, ’14): Time-decay rate for
f0 ∈ Bs

2,∞L
2
v with some s < 0.

I Bedrossian-Masmoudi-Mouhot (arXiv, ’13): a simpler
proof of nonlinear Landau damping for Gevrey data
through the Bony decomposition.



• (K3) Applying the Trilinear Estimate to

Γ(f, f) =Γ(Pf,Pf) + Γ(Pf, {I−P}f) + Γ({I−P}f,Pf)

+ Γ({I−P}f, {I−P}f),

together with

‖Pf‖1/2
L̃2
T L̃

2
vḂ

3/2
x

. ‖(a, b, c)‖1/2
L̃2
T Ḃ

3/2
x

∼ ‖∇x(a, b, c)‖1/2
L̃2
T Ḃ

1/2
x

. ‖∇x(a, b, c)‖1/2
L̃2
TB

1/2
x

.
√
DT (f),

B3/2
x ⊂ L∞x , Ḃ3/2

x ⊂ L∞x ,

one has

‖f‖
L̃∞T L̃

2
v(B

3/2
x )

+
√
λ0‖{I−P}f‖

L̃2
T L̃

2
v,ν(B

3/2
x )

. ‖f0‖L̃2
v(B

3/2
x )

+
√
ET (f)DT (f).



• (K4) Macroscopic Dissipation: The macroscopic
component Pf =

{
a(t, x) + v · b(t, x) +

(
|v|2 − 3

)
c(t, x)

}√
µ

satisfies the fluid-type system

∂ta+∇x · b = 0,

∂tb+∇x(a+ 2c) +∇x ·Θ({I−P}f) = 0,

∂tc+
1

3
∇x · b+

1

6
∇x · Λ({I−P}f) = 0,

∂t[Θim({I−P}f) + 2cδim] + ∂ibm + ∂mbi = Θim(r + h),

∂tΛi({I−P}f) + ∂ic = Λi(r + h),

where

Θim(f) =
(

(vivm − 1)µ1/2, f
)
, Λi(f) =

1

10

(
(|v|2 − 5)viµ

1/2, f
)
.



The energy estimate in Besov space gives

‖∇x(a, b, c)‖
L̃2
TB

1/2
x

. ‖f0‖L̃2
vB

3/2
x

+ ET (f)

+ ‖{I−P}f‖
L̃2
T L̃

2
v,νB

3/2
x

+ ET (f)DT (f),

• The global a priori estimate follows from the linear
combination:

‖f‖
L̃∞T L̃

2
v(B

3/2
x )
− κ3ET (f)

+ λ
{
‖∇x(a, b, c)‖

L̃2
T (B

1/2
x )

+ ‖{I−P}f‖
L̃2
T L̃

2
v,ν(B

3/2
x )

}
. ‖f0‖L̃2

v(B
3/2
x )

+
{√
ET (f) + ET (f)

}
DT (f),

with
‖f‖

L̃∞T L̃
2
v(B

3/2
x )
− κ3ET (f) ∼ ET (f),

since κ3 > 0 can be small enough.



Local existence: The construction of the local solution is
based on
{∂t + v · ∇x}Fn+1 +Fn+1(v)

∫
R3×S2

|v − v∗|γB0(θ)F
n(v∗) dv∗dω

=

∫
R3×S2

|v − v∗|γB0(θ)F
n(v′∗)F

n(v′) dv∗dω,

Fn+1(0, x, v) = F0(x, v),

starting with F 0(t, x, v) = F0(x, v).

Noticing that Fn+1 = µ+ µ1/2fn+1, equivalently we need to
solve fn+1 such that

{∂t + v · ∇x + ν} fn+1 −Kfn = Γgain(fn, fn)− Γloss(f
n, fn+1),

fn+1(0, x, v) = f0(x, v).



Lemma
The solution sequence {fn}∞n=1 is well defined. For a sufficiently
small constant M0 > 0, there exists T ∗ = T ∗(M0) > 0 such that
if

‖f0‖L̃2
vB

3/2
x
≤M0,

then for any n, it holds that

ỸT (fn) := ET (fn) + D̃T (fn) ≤ 2M0, ∀T ∈ [0, T ∗),

where D̃T (f) is defined by D̃T (f) = ‖f‖
L̃2
T L̃

2
v,νB

3/2
x
.



Theorem
For a sufficiently small M0 > 0, there exists T ∗ = T ∗(M0) > 0
such that if

‖f0‖L̃2
vB

3/2
x
≤M0,

then there is a unique strong solution f(t, x, v) to the
Boltzmann equation in (0, T ∗)× R3

x × R3
v, such that

ỸT (f) ≤ 2M0,

for any T ∈ [0, T ∗). Moreover ỸT (f) is continuous in T over
[0, T ∗), and if F0(x, v) = µ+ µ1/2f0 ≥ 0, then

F (t, x, v) = µ+ µ1/2f(t, x, v) ≥ 0

holds true.



Key points of the local existence:

I Energy estimate for uniform bound of sequence of
approximate solutions.

I Energy estimate for uniqueness of solutions in the space.
I A new inequality is observed to prove the continuity of

the super-time norm ỸT (f):

I Show t 7→ E(f(t)) :=
∑
q≥−1 2

3q
2 ‖∆qf(t)‖L2

x,v
is continuous

on [0, T ∗), in terms of

|E(f(t2))− E(f(t1))|

. (
√
M0 + 1)

∑
q≥−1

2
3q
2

(∫ t2

t1

‖∆qf‖2L2
v,νL

2
x
dt

)1/2

.

I Show T 7→ ỸT (f) is continuous.



Thank you!
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