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» the background profile p(t,x) is T-periodic in time for
T > 0.
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Problem:

Whether a T-periodic driving force p(¢, x) is able to produce
a time-periodic solution with the same period 77

The answer is yes, if p(t,z) is smooth and sufficiently close
to a positive constant state.
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o(t,2) = (—A) " (plt,2) — 1).
The above VPFP system can be also written as
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Define M = (27) %/ exp{—|¢|?/2}, and set f = f(t,z,£) by
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Here
1

f
b= v [orwe (3]



We introduce the function space
X ={f=f(.€) € L(H)) : || flx < o0, M+ M'2f >0,
J[, a2s,g) dean = o)
R3 xR3

with the norm || - [|x defined by
1B = 171172 a12) + 19227 133

Here and in the sequel, for given f(t,z,¢), ® = &/ (¢, 2)

denotes
M1/2
R3 xR3 |5U— \



Theorem (D.-Liu, 2015)

Assume that ¢(t,z) is time-periodic with period T'> 0. There
are € > 0, C' > 0 such that if

sup |[|Vao(t)|| gz < e
0<t<T

then the reformulated VPFP system admits a unique
time-periodic solution f(t,x,&) € X with the same period T and

sup [|f(t)llx < C sup [[Vag(t)] -
0<t<T 0<t<T



Il. Motivation and previous related work



» Ukai (2006): For the Boltzmann equation
8tF+£ V. F = Q(F7F) +S(tax7§)7

a small, T-periodic-in-time, microscopic, inhomogeneous
source can induce a unique T-periodic mild solution with
the time-period 7.



» Ukai (2006): For the Boltzmann equation
atF+£ V. F = Q(F7F) +S(t7x7§)7

a small, T-periodic-in-time, microscopic, inhomogeneous
source can induce a unique T-periodic mild solution with
the time-period 7.

Two key points in his proof:

» obtain the extra time-decay of the semigroup ¢'Z for
B=L- f Vi

» find the solution by establishing the contraction property
of the mapping

[f(t) = / =B Nf, ](s) ds,

— 00

in an appropriate function space.
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» D.-Ukai-Yang-Zhao (2008):
OF+E- Vo F+E(t,z) Ve F =Q(F,F)

Q: Can the T-periodic external force E(t,z) induce a
time-periodic solution F(¢,z,¢) with the same
time-period?

A: » Yes if n > 5,

Proof:

(i) Obtain the optimal time-decay estimates on the
linearised equation;

(ii) Find the fixed point for certain nonlinear mapping V:

\Il[f](t):/ Ug(t,s)N|f, E](s)ds, VteR.

—00

(Well-defined in case n > 5, as Ug(t,s) < (1+t—s)"1)
» Open for 1 < n <4, in particular, n = 3 (Physical).



» DUYZ’s result can also be directly applied to the
Vlasov-Poisson-Boltzmann system with a T-periodic
background profile p(t,x) but still in case n > 5.



» DUYZ’s result can also be directly applied to the
Vlasov-Poisson-Boltzmann system with a T-periodic
background profile p(t,x) but still in case n > 5.

For n = 3,



» DUYZ’s result can also be directly applied to the
Vlasov-Poisson-Boltzmann system with a T-periodic
background profile p(t,x) but still in case n > 5.

For n = 3,

» Guo (2002): global solution around global Maxwellians in
case when p(t,z) = 1.



» DUYZ’s result can also be directly applied to the
Vlasov-Poisson-Boltzmann system with a T-periodic
background profile p(t,x) but still in case n > 5.

For n = 3,

» Guo (2002): global solution around global Maxwellians in
case when p(t,z) = 1.

» D.-Yang (2009): global solution around a stationary local
Maxwellian ¢=¢(®~1¢*/2 in case when p(t,z) = p(z),
independent of time, is sufficiently smooth and close to a
positive constant.



» DUYZ’s result can also be directly applied to the
Vlasov-Poisson-Boltzmann system with a T-periodic
background profile p(t,x) but still in case n > 5.

For n = 3,

» Guo (2002): global solution around global Maxwellians in
case when p(t,z) = 1.

» D.-Yang (2009): global solution around a stationary local
Maxwellian ¢=¢(®~1¢*/2 in case when p(t,z) = p(z),
independent of time, is sufficiently smooth and close to a
positive constant.

» Yang-Li (preprint): both regularity and smallness are
removed in terms of Guo’s robust energy method in L
framework.
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» When collisions are described by the linear Fokker-Planck
operator instead of the nonlinear Boltzmann or Landau,

» Glassey-Schaeffer-Zheng (1996) and D.-Yang-Zhu
(2007): existence of stationary solutions by solving

Ap =e? — p(x).

» Hwang-Jang (2013): global solution around global
Maxwellian in case p(t,z) = 1.

» It then can be proved as in D.-Yang (2009) that
solutions around e—¢@~I¢°/2 are time-asymptotically
stable under smooth small perturbation.

» However, it is still unclear whether or not the Ukai’s
approach can be applied to the situation where p(t, z) is
T-periodic in time around a positive constant.
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The proof is based on the Serrin’s approach (ARMA, 1959).
The key point is to solve the Cauchy problem in the
following way:

Consider
u = Au+ f(t), t>0,
Ulg=g =ug € X D Y.

The following theorem should be investigated.

Theorem. Denote by f(t) € Z the driving term and u(t) € Y a
solution to the Cauchy problem with initial data u € X DY
where linear or nonlinear cases are included; X, Y and Z
Banach spaces, with norms | - ||x, || - ||y and || - ||z respectively.
Furthermore,

if sup || f(t)]|z < oo, then sup ||u(t)|y < oo.
>0 >0
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First consider the Cauchy problem on the reformulated
VPFP system over ¢t > 0, supplemented with initial data

f(O,ZC,&) = f0($>€)



First consider the Cauchy problem on the reformulated
VPFP system over ¢t > 0, supplemented with initial data

f(07 x, g) = fO(xa 6)
Theorem
Assume that fo € X, V¢ € C(0,00; H2) with

[ follx +sup [Vao(t) | 3
>0

sufficiently small. Then the Cauchy problem on the VPFP
system admits a unique solution f(t,x,&) € X with

sup [ F(1)]lx < € (IfoIIX T sup ||vm¢<t>qu) .
>0 >0
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» Let o(¢) =1+ |¢|%. Denote |- |, by

2= [ Ve + ol e, £ = 1(6)

For f = f(2,9),
|(a,-)|2 over RP.

» Recall there is \j > 0 such that

2 stands for the spatial integration of

_ /R3 FLfdE > Xl{TI — Py} f|2,

where Pof = o/ M2, and o (t,z) = [ps MY2f(t,2,€) d€.
» We also introduce the velocity orthogonal projection

P: L} — span{M'/?, §M1/2} by P = Py @ P; with

Pif=bl - EMY? and b/ (t,2) = [os EMY2f(t, 2,€) dE.



> Zero-order estimate:

1d
5 7 I+ IVa® %) + o l{T = Po} £

< C{n + sup{|V.®|, |V} f]|2 + C, I Vo |*.



> Zero-order estimate:

1d
5 7 I+ IVa® %) + o l{T = Po} £

< C{n + sup{|V.®|, |V} f]|2 + C, I Vo |*.

> Higher-order estimate: We introduce an equivalent
energy functional

E(F) ~ N B2z + V2@ 3.

Then,
1d
Sar S0 0P+ 000, B + xS IHT - Po}o 2
1<]al<3 1<|a|<3
<O+ VER) + IVedllgz) D (10 f12 + 10°V.27|)

|| <3
+Cﬁ|‘vx¢“%{3'



» Dissipation of al and V,®':

oal +V, b =0,
bl +Veal +V, THL=PYf) = —b/ + (1 + o))V, (/ + ¢),
A0 =af,

where I' = (I';j)1<i j<3 is the moment functional defined
by

Ty(h) = [ (6 =02 ds.



» Dissipation of al and V,®':

Ol +V, - b =0,
b’ + Vea! +V, - T{I-P}f) = =0 + (1 + a”) V(8 + ¢),
qu)f = af,
where I' = (I';j)1<i j<3 is the moment functional defined
by
L) = [ (66 - DM ds

Then, for |a| < 3,
10°V @7 |1* + [|0%a” |*

= [ 90 -9V, dx + -
R3

4 eyt 0V, dx + | |V.A;10V, b P de+ -
dt R3 R3



d
- = 0%y’ - 9oV, & dx
dt |CY|Z<3 R3

+ AV @ [ + lla 1) < CIHT = Po} 1723,
+CO(llal | s + 1Vadlls) (ol [ Fra + IV @7 [[770)-



» We now define
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laf<3

with the constant x > 0 small enough.
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We now define

&) = Iy +IVa® = 3 [ 0°8T-0°v,07 da,

o] <3

with the constant x > 0 small enough. Notice that
E(f) ~IIfII% and

E(f)<C Y IHT=Po}d*fII7 + C(IVa®/ |l + lla? [ Fa)-

|| <3
One has

SE) +AE() < CIVadli,

Gronwall’s inequality implies

IF@)llx < Clfollx + sup Vo)l 1),

for all t > 0. L]
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e Assume that ¢(t,z) is T-periodic in time, and
dp = sup [|[Voo(t)| g is sufficiently small.
0<t<T

o Step 1: Find special initial data. Let f(t,-,-) € X (t > 0) be
the solution by solving the Cauchy problem with arbitrary
initial data fy(z, &) with || fol|x < dp for 9 > 0 small enough.
Take integers m > k > 1, and define

g(t7$a£) = f(t+ (m - k)Ta:E7£)

As ¢(t,x) is T-periodic, it is direct to see that g(¢,x,¢) solves
the same VPFP system

019 +&- Vg + Vi (P9 +¢) - Veg
1
755 V(B9 + ¢)g — EMY? V(B9 + ¢) = Ly,

A9 = /Rg M'Y2gde,

with initial data ¢(0,z,&) = f((m — k)T, x,§).



We define

h(t,z,€) = g(t,2,6) — f(t,2,€), @"(t,x) = ¥I(t,x) — D/ (t,2).
Then h(t,z,§) satisfies

Oh 4 € - Vih + Vo (" 4 ¢) - Veh
‘%s V(@ + §)h — EMV? .V, 9" = Lh+ R,

A,d" = / M'Y2h de,
R3
where R is denoted by

1 1
R:ig-vxcbfh—vx@f-V5h+§£-vx<1>hf—vx<1>h-V§f.



Repeat the similar proofs in solving the Cauchy problem, so
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Repeat the similar proofs in solving the Cauchy problem, so

d
— <
ZE() +AE(h) <0,

which implies
Ih(t)]lx < CE(R(E)) < CER(0))e ™ < ClR(0)]|xe ™,
for all t > 0. Then,
1F(t+ (m = K)T) = f(B)llx < CIf((m—k)T) = f(0)]|xe ™
< C(If((m = k)T)|x + [1F(0) | x)e ™
< C(I1f(0)lx + Sup IV (1) g )e .

Taking t = kT, one has
If (mT) = f(RT)|x < C(8o + 8)e M7,

for all integers m >k > 1. As e T — 0 as k — oo, it shows
that {f(kT,-,-)}k>1 C X is Cauchy w.r.t. || - || x, and the limit
function denoted by f; = f;j(z,&) € X satisfies

1follx < C(do + d5)-



oStep 2: Solve the Cauchy problem on the VPFP system with
initial data f§.



oStep 2: Solve the Cauchy problem on the VPFP system with
initial data f§.

As both §y and ¢, are small enough, so is || fi||x. Again
applying the existence result for the Cauchy problem with
initial data given by f;(z,£) € X, one can obtain a solution

[t @, 8).
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Claim#1. f*(t,z,§) is T-periodic in time.
Indeed, for an integer n > 1, we define
iL(t,SU,&) = f(t + nT7 1"75) - f*(t7$7£)7

where f(t,,¢) is the solution used for obtaining f;(z,) in
the previous step. By estimating h(t,z, &),

IF(t+nT) = F@)llx < CIFOT) = fO)]xe™,
for all t > 0. Letting t =17,
1f((n+DT) = F(T)|lx < Cllf(nT) = follx-
Further taking n — oo, one has || f; — f*(T)||x = 0, namely

1F(0) = A (M)]lx =0. [
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Claim#2.

sup [[f(t)x <C sup [[Vao(t)| ms-
0<t<T 0<t<T

Indeed, using the estimates in solving the Cauchy problem,

E(f* (1) < CE(f3)e ™ + Clsup V@) s)?,

that is,

1 @®)lx < Cllf5lxe™ +C sup [[Vo(t)|s,
0<t<T

for all ¢t > 0.



Claim#2.
P f®)lx < Co?@ Ve () 2
Indeed, using the estimates in solving the Cauchy problem,
E(f* (1) < CE(f3)e ™ + Clsup V@) s)?,
that is,
1 @®)lx < Cllf5lxe™ +C sup [[Vo(t)|s,
0<t<T
forall t > 0. Then, for 0 <t < T,

£l x = £ t+nT) | x < Cllf5llxe T +C sup [[Vo(t)]| s
0<t<T

Hence Claim#2 follows by taking n — cc. L]



Problems:

» Existence of large-amplitude T-periodic solution;

» Existence of small-amplitude T-periodic solution to the
Vlasov-Poisson-Boltzmann system;



Thanks a lot for your attention!
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