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I. Problem and main result



Consider the Vlasov-Poisson-Fokker-Planck (VPFP) system

∂tF + ξ · ∇xF +∇xΦ · ∇ξF = ∇ξ · (∇ξF + ξF ),

∆xΦ =

∫
R3

F dξ − ρ(t, x),

where

I the unknown is F (t, x, ξ) ≥ 0 for x = (x1, x2, x3) ∈ R3,
ξ = (ξ1, ξ2, ξ3) ∈ R3, and t ∈ R;

I Φ = Φ(t, x) is the self-consistent potential satisfying

lim
|x|→∞

Φ(t, x) = 0;

I the background profile ρ(t, x) is T -periodic in time for
T ≥ 0.
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Problem:

Whether a T -periodic driving force ρ(t, x) is able to produce
a time-periodic solution with the same period T?

The answer is yes, if ρ(t, x) is smooth and sufficiently close
to a positive constant state.
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Define
φ(t, x) = (−∆x)−1

(
ρ(t, x)− 1

)
.

The above VPFP system can be also written as

∂tF + ξ · ∇xF +∇x(Φ + φ) · ∇ξF = ∇ξ · (∇ξF + ξF ),

∆xΦ =

∫
R3

F dξ − 1.

Define M = (2π)−3/2 exp{−|ξ|2/2}, and set f = f(t, x, ξ) by
F = M +M1/2f . Then,

∂tf + ξ · ∇xf +∇x(Φ + φ) · ∇ξf

−1

2
ξ · ∇x(Φ + φ)f − ξM1/2 · ∇x(Φ + φ) = Lf,

∆xΦ =

∫
R3

M1/2f dξ.

Here

Lf =
1

M1/2
∇ξ ·

[
M∇ξ

(
f

M1/2

)]
.
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We introduce the function space

X = {f = f(x, ξ) ∈ L2
ξ(H

3
x) : ‖f‖X <∞,M +M1/2f ≥ 0,∫∫

R3×R3

M1/2f(x, ξ) dξdx = 0}

with the norm ‖ · ‖X defined by

‖f‖2X = ‖f‖2L2
ξ(H

3
x)

+ ‖∇xΦf‖2H3
x
.

Here and in the sequel, for given f(t, x, ξ), Φf = Φf (t, x)
denotes

Φf (t, x) = − 1

4π

∫∫
R3×R3

M1/2f(t, y, ξ)

|x− y|
dξdy.



Theorem (D.-Liu, 2015)

Assume that φ(t, x) is time-periodic with period T > 0. There
are ε > 0, C > 0 such that if

sup
0≤t≤T

‖∇xφ(t)‖H3
x
≤ ε

then the reformulated VPFP system admits a unique
time-periodic solution f(t, x, ξ) ∈ X with the same period T and

sup
0≤t≤T

‖f(t)‖X ≤ C sup
0≤t≤T

‖∇xφ(t)‖H3
x
.



II. Motivation and previous related work



I Ukai (2006): For the Boltzmann equation

∂tF + ξ · ∇xF = Q(F, F ) + S(t, x, ξ),

a small, T -periodic-in-time, microscopic, inhomogeneous
source can induce a unique T -periodic mild solution with
the time-period T .

Two key points in his proof:

I obtain the extra time-decay of the semigroup etB for
B = L− ξ · ∇x;

I find the solution by establishing the contraction property
of the mapping

Ψ[f ](t) =

∫ t

−∞
e(t−s)BN [f, S](s) ds,

in an appropriate function space.
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I D.-Ukai-Yang-Zhao (2008):

∂t F + ξ · ∇x F + E(t, x) · ∇ξ F = Q(F, F )

Q: Can the T -periodic external force E(t, x) induce a
time-periodic solution F (t, x, ξ) with the same
time-period?

A: I Yes if n ≥ 5,
Proof:
(i) Obtain the optimal time-decay estimates on the
linearised equation;
(ii) Find the fixed point for certain nonlinear mapping Ψ:

Ψ[f ](t) =

∫ t

−∞
UE(t, s)N [f,E](s)ds, ∀ t ∈ R.

(Well-defined in case n ≥ 5, as UE(t, s) . (1 + t− s)−
n
4 )

I Open for 1 ≤ n ≤ 4, in particular, n = 3 (Physical).
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I DUYZ’s result can also be directly applied to the
Vlasov-Poisson-Boltzmann system with a T -periodic
background profile ρ(t, x) but still in case n ≥ 5.

For n = 3,
I Guo (2002): global solution around global Maxwellians in

case when ρ(t, x) ≡ 1.

I D.-Yang (2009): global solution around a stationary local

Maxwellian e−φ(x)−|ξ|
2/2 in case when ρ(t, x) = ρ(x),

independent of time, is sufficiently smooth and close to a
positive constant.

I Yang-Li (preprint): both regularity and smallness are
removed in terms of Guo’s robust energy method in L∞

framework.
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I When collisions are described by the linear Fokker-Planck
operator instead of the nonlinear Boltzmann or Landau,

I Glassey-Schaeffer-Zheng (1996) and D.-Yang-Zhu
(2007): existence of stationary solutions by solving

∆φ = eφ − ρ(x).

I Hwang-Jang (2013): global solution around global
Maxwellian in case ρ(t, x) ≡ 1.

I It then can be proved as in D.-Yang (2009) that

solutions around e−φ(x)−|ξ|
2/2 are time-asymptotically

stable under smooth small perturbation.

I However, it is still unclear whether or not the Ukai’s
approach can be applied to the situation where ρ(t, x) is
T -periodic in time around a positive constant.
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III. Proof



The proof is based on the Serrin’s approach (ARMA, 1959).
The key point is to solve the Cauchy problem in the
following way:

Consider {
ut = Au+ f(t), t > 0,
u|t=0 = u0 ∈ X ⊃ Y.

The following theorem should be investigated.

Theorem. Denote by f(t) ∈ Z the driving term and u(t) ∈ Y a
solution to the Cauchy problem with initial data u ∈ X ⊃ Y
where linear or nonlinear cases are included; X, Y and Z
Banach spaces, with norms ‖ · ‖X , ‖ · ‖Y and ‖ · ‖Z respectively.
Furthermore,

if sup
t≥0
‖f(t)‖Z <∞, then sup

t≥0
‖u(t)‖Y <∞.
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III.1 Cauchy problem



First consider the Cauchy problem on the reformulated
VPFP system over t > 0, supplemented with initial data

f(0, x, ξ) = f0(x, ξ).

Theorem
Assume that f0 ∈ X, ∇xφ ∈ C(0,∞;H3

x) with

‖f0‖X + sup
t≥0
‖∇xφ(t)‖H3

x

sufficiently small. Then the Cauchy problem on the VPFP
system admits a unique solution f(t, x, ξ) ∈ X with

sup
t≥0
‖f(t)‖X ≤ C

(
‖f0‖X + sup

t≥0
‖∇xφ(t)‖H3

x

)
.
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I Let σ(ξ) = 1 + |ξ|2. Denote | · |σ by

|f |2σ =

∫
R3

[
|∇ξf |2 + σ(ξ)|f |2

]
dξ, f = f(ξ).

For f = f(x, ξ), ‖f‖2σ stands for the spatial integration of
|f(x, ·)|2σ over R3.

I Recall there is λ0 > 0 such that

−
∫
R3

fLf dξ ≥ λ0|{I−P0}f |2σ,

where P0f = afM1/2, and af (t, x) =
∫
R3 M

1/2f(t, x, ξ) dξ.

I We also introduce the velocity orthogonal projection
P : L2

ξ → span{M1/2, ξM1/2} by P = P0 ⊕P1 with

P1f = bf · ξM1/2 and bf (t, x) =
∫
R3 ξM

1/2f(t, x, ξ) dξ.
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R3 M
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I Zero-order estimate:

1

2

d

dt
(‖f‖2 + ‖∇xΦf‖2) + λ0‖{I−P0}f‖2σ

≤ C{η + sup
x
{|∇xΦ|, |∇xφ|}‖f‖2σ + Cη‖∇xφ‖2.

I Higher-order estimate: We introduce an equivalent
energy functional

E(f) ∼ ‖f‖2L2
ξ(H

3
x)

+ ‖∇xΦf‖2H3
x
.
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+Cη‖∇xφ‖2H3 .
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I Dissipation of af and ∇xΦf :

∂ta
f +∇x · bf = 0,

∂tb
f +∇xaf +∇x · Γ({I−P}f) = −bf + (1 + af )∇x(Φf + φ),

∆xΦf = af ,
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R3
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− d

dt

∑
|α|≤3

∫
R3

∂αbf · ∂α∇xΦf dx

+ λ(‖∇xΦf‖2H3 + ‖af‖2H3) ≤ C‖{I−P0}f‖2L2
ξ(H

3
x)

+ C(‖af‖H3 + ‖∇xφ‖H3)(‖af‖2H3 + ‖∇xΦf‖2H3).



I We now define

E(f) = ‖f‖2L2
ξ(H

3
x)

+‖∇xΦf‖2H3
x
−κ

∑
|α|≤3

∫
R3

∂αbf ·∂α∇xΦf dx,

with the constant κ > 0 small enough. Notice that
E(f) ∼ ‖f‖2X and

E(f) ≤ C
∑
|α|≤3

‖{I−P0}∂αf‖2σ + C(‖∇xΦf‖2H3 + ‖af‖2H3).

One has
d

dt
E(f) + λE(f) ≤ C‖∇xφ‖2H3 ,

Gronwall’s inequality implies

‖f(t)‖X ≤ C(‖f0‖X + sup
t≥0
‖∇φ(t)‖H3),

for all t ≥ 0.
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III.2 Time-periodic solutions



• Assume that φ(t, x) is T -periodic in time, and
δφ := sup

0≤t≤T
‖∇xφ(t)‖H3 is sufficiently small.

• Step 1: Find special initial data. Let f(t, ·, ·) ∈ X (t ≥ 0) be
the solution by solving the Cauchy problem with arbitrary
initial data f0(x, ξ) with ‖f0‖X ≤ δ0 for δ0 > 0 small enough.
Take integers m ≥ k ≥ 1, and define

g(t, x, ξ) = f(t+ (m− k)T, x, ξ).

As φ(t, x) is T -periodic, it is direct to see that g(t, x, ξ) solves
the same VPFP system

∂tg + ξ · ∇xg +∇x(Φg + φ) · ∇ξg

−1

2
ξ · ∇x(Φg + φ)g − ξM1/2 · ∇x(Φg + φ) = Lg,

∆xΦg =

∫
R3

M1/2g dξ,

with initial data g(0, x, ξ) = f((m− k)T, x, ξ).
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• Assume that φ(t, x) is T -periodic in time, and
δφ := sup

0≤t≤T
‖∇xφ(t)‖H3 is sufficiently small.

• Step 1: Find special initial data. Let f(t, ·, ·) ∈ X (t ≥ 0) be
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We define

h(t, x, ξ) = g(t, x, ξ)− f(t, x, ξ), Φh(t, x) = Φg(t, x)− Φf (t, x).

Then h(t, x, ξ) satisfies

∂th+ ξ · ∇xh+∇x(Φh + φ) · ∇ξh

−1

2
ξ · ∇x(Φh + φ)h− ξM1/2 · ∇xΦh = Lh+R,

∆xΦh =

∫
R3

M1/2h dξ,

where R is denoted by

R =
1

2
ξ · ∇xΦfh−∇xΦf · ∇ξh+

1

2
ξ · ∇xΦhf −∇xΦh · ∇ξf.



Repeat the similar proofs in solving the Cauchy problem, so

d

dt
E(h) + λE(h) ≤ 0,

which implies

‖h(t)‖X ≤ CE(h(t)) ≤ CE(h(0))e−λt ≤ C‖h(0)‖Xe−λt,

for all t ≥ 0. Then,

‖f(t+ (m− k)T )− f(t)‖X ≤ C‖f((m− k)T )− f(0)‖Xe−λt

≤ C(‖f((m− k)T )‖X + ‖f(0)‖X)e−λt

≤ C(‖f(0)‖X + sup
t≥0
‖∇xφ(t)‖H3

x
)e−λt.

Taking t = kT , one has

‖f(mT )− f(kT )‖X ≤ C(δ0 + δφ)e−λkT ,

for all integers m ≥ k ≥ 1. As e−λkT → 0 as k →∞, it shows
that {f(kT, ·, ·)}k≥1 ⊂ X is Cauchy w.r.t. ‖ · ‖X , and the limit
function denoted by f∗0 = f∗0 (x, ξ) ∈ X satisfies

‖f∗0 ‖X ≤ C(δ0 + δφ).
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•Step 2: Solve the Cauchy problem on the VPFP system with
initial data f∗0 .

As both δ0 and δφ are small enough, so is ‖f∗0 ‖X . Again
applying the existence result for the Cauchy problem with
initial data given by f∗0 (x, ξ) ∈ X, one can obtain a solution
f∗(t, x, ξ).



•Step 2: Solve the Cauchy problem on the VPFP system with
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applying the existence result for the Cauchy problem with
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Claim#1. f∗(t, x, ξ) is T -periodic in time.

Indeed, for an integer n ≥ 1, we define

h̃(t, x, ξ) = f(t+ nT, x, ξ)− f∗(t, x, ξ),

where f(t, x, ξ) is the solution used for obtaining f∗0 (x, ξ) in
the previous step. By estimating h̃(t, x, ξ),

‖f(t+ nT )− f∗(t)‖X ≤ C‖f(nT )− f∗(0)‖Xe−λt,

for all t ≥ 0. Letting t = T ,

‖f((n+ 1)T )− f∗(T )‖X ≤ C‖f(nT )− f∗0 ‖X .

Further taking n→∞, one has ‖f∗0 − f∗(T )‖X = 0, namely

‖f∗(0)− f∗(T )‖X = 0.
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Claim#2.

sup
0≤t≤T

‖f(t)‖X ≤ C sup
0≤t≤T

‖∇xφ(t)‖H3
x
.

Indeed, using the estimates in solving the Cauchy problem,

E(f∗(t)) ≤ CE(f∗0 )e−λt + C(sup
0≥0
‖∇φ(t)‖H3)2,

that is,

‖f∗(t)‖X ≤ C‖f∗0 ‖Xe−λt + C sup
0≤t≤T

‖∇φ(t)‖H3 ,

for all t ≥ 0. Then, for 0 ≤ t ≤ T ,

‖f∗(t)‖X = ‖f∗(t+nT )‖X ≤ C‖f∗0 ‖Xe−λnT+C sup
0≤t≤T

‖∇φ(t)‖H3 .

Hence Claim#2 follows by taking n→∞.
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Problems:

I Existence of large-amplitude T -periodic solution;

I Existence of small-amplitude T -periodic solution to the
Vlasov-Poisson-Boltzmann system;

I ...



Thanks a lot for your attention!
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