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Abstract

We study the global existence and convergence rates of solutions to the
three-dimensional compressible Navier-Stokes equations without heat conduc-
tivity, which is a hyperbolic-parabolic system. The pressure and velocity are
dissipative because of the viscosity, whereas the entropy is non-dissipative due
to the absence of heat conductivity. The global solutions are obtained by com-
bining the local existence and a priori estimates if H3-norm of the initial per-
turbation around a constant state is small enough and its L1-norm is bounded.
A priori decay-in-time estimates on the pressure and velocity are used to get
the uniform bound of entropy. Moreover, the optimal convergence rates are also
obtained.
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1 Introduction

In the whole space R3, the compressible Navier-Stokes equations for the density ρ,
the velocity u = (u1, u2, u3) and the temperature θ, which determine the motion of
gases, are written as

ρt +∇ · (ρu) = 0,

ρ [ut + (u · ∇)u] +∇p(ρ, θ) = µ∆u + (µ + µ′)∇(∇ · u),

ρcV [θt + (u · ∇)θ] + θpθ(ρ, θ)∇ · u = κ∆θ + Ψ(u),

(1.1)
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where p = p(ρ, θ) is the pressure, µ and µ′ are the viscosity coefficients, κ is the
coefficient of heat conduction, cV is the specific heat at constant volume, and Ψ =
Ψ(u) is the classical dissipation function:

Ψ(u) =
µ

2

3∑
i,j=1

(∂iuj + ∂jui)
2 + µ′

3∑
j=1

(∂juj)
2 .

In this paper, we study the case when the coefficient of heat conduction κ = 0, the
viscosity coefficients µ > 0 and µ′ are constants with µ′ + 2

3µ ≥ 0, the specific heat
cV > 0 is a constant, and the gas is ideal and polytropic, i.e.

p = ρθ, e = cV θ,

where e is the internal energy.
It is well-known that all thermodynamics variables ρ, θ, e, p as well as the entropy

s can be denoted by functions of any two of them. We take the two variables to be
p and s. Then the equation of state for the gas is then given by

ρ = ap
cV

cV +1 exp
(
− s

cV + 1

)
, (1.2)

where a > 0 is a constant. Under the aforementioned assumptions, the system (1.1)
in terms of the variables p, u and s reads

pt +
1 + cV

cV
p∇ · u + u · ∇p =

Ψ(u)
cV

,

ut + (u · ∇)u +
∇p

ρ
=

µ

ρ
∆u +

µ + µ′

ρ
∇(∇ · u),

st + (u · ∇)s =
Ψ(u)

p
,

(1.3)

where ρ = ρ(p, s) is defined by (1.2). Notice that (1.3) is a hyperbolic-parabolic
system, where the dissipation comes from viscosity. We consider the initial value
problem to (1.3) in the whole space R3 with the initial data

(p, u, s)(0, x) = (p0, u0, s0)(x) → (p∞, 0, s∞) as |x| → ∞, (1.4)

where p∞ > 0 and s∞ are given constants.
The main purpose of the paper is to prove the following theorem concerning the

global existence and the convergence rates of solutions to the initial value problem
(1.3) and (1.4) when the initial data is a small perturbation of a constant state.

Theorem 1.1. Let the initial data (p0, u0, s0) be such that ‖(p0−p∞, u0, s0−s∞)‖3

is sufficiently small and ‖(p0−p∞, u0)‖L1 is bounded. Then the initial value problem
(1.3)-(1.4) admits a unique solution (p, u, s) globally in time with p > 0, satisfying

p− p∞, s− s∞ ∈ C0(0,∞;H3(R3)) ∩ C1(0,∞;H2(R3)),

u ∈ C0(0,∞;H3(R3)) ∩ C1(0,∞;H1(R3)).
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Moreover, there exists a constant C0 such that for any t ≥ 0,

‖(p− p∞, u)(t)‖2
3 +

∫ t

0
(‖∇p(τ)‖2

2 + ‖∇u(τ)‖2
3) dτ ≤ C0‖(p0 − p∞, u0)‖2

3,

‖(s− s∞)(t)‖3 ≤ C0‖(p0 − p∞, u0, s− s∞)‖3 exp(C0‖(p0 − p∞, u0)‖L1∩H3).

Finally, there is a constant C ′
0 such that for any t ≥ 0, the solution (p, u, s) has the

decay properties

‖(p− p∞, u)(t)‖Lq ≤ C ′
0(1 + t)−

3
2

(
1− 1

q

)
, 2 ≤ q ≤ 6,

‖∇(p− p∞, u)(t)‖2 ≤ C ′
0(1 + t)−

5
4 ,

‖(p− p∞, u)(t)‖L∞ ≤ C ′
0(1 + t)−

5
4 ,

‖∂t(p, u, s)(t)‖ ≤ C ′
0(1 + t)−

5
4 .

Remark 1.1. The boundedness of ‖(p0−p∞, u0)‖L1 is used in the proof of the global
existence. This is different from the previous work [15] for the case of κ > 0, where
only H3-norm of the perturbation is supposed for the global existence. In addition,
due to lack of heat conductivity, the entropy s is non-dissipative and thus has no
decay-in-time property. However, all time derivatives ∂t(p, u, s) in L2-norm decay
in time.

The study of this paper is motivated by Liu-Zeng [13], where the authors con-
sidered the one-dimensional compressible Navier-Stokes equaions without heat con-
ductivity in the Lagrangian coordinates

∂tρ + ρ2∂xu = 0,

∂tu + ∂xp = ∂x(µρ∂xu),
∂tE + ∂x(pu) = ∂x(µρu∂xu),

which in terms of (p, u, s), also read
∂tp + c2∂xu = µρpe(∂xu)2,
∂tu + ∂xp = ∂x(µρ∂xu),
∂ts =

µ

θ
ρ(∂xu)2.

(1.5)

In [13], the elaborate pointwise estimates and large-time behavior of solutions to
(1.5) were obtained by studying the Green’s function and the nonlinear interaction
of waves. We also mention the work of Kawashima [8], where the global existence of
(1.5) was also announced. However, in this paper we are concerned with the global
existence and convergence rates of solutions for the case of three spatial dimensions.
It is observed that in the Euler’s coordinates, the dissipative variables p and u satisfy
(1.3)1-(1.3)2 whose linear parts possess the same structure as ones of the isentropic
viscous compressible Navier-Stokes equations, and the non-dissipative variable s

satisfies the transport equation (1.3)3 with the nonlinear source term. Thus in order
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to obtain the global existence of solutions to (1.3), the direct energy method as in
[16] can apply to the first two equations of (1.3) to obtain the uniform bound of
(p, u) under a priori assumption that ‖(p, u, s)(t)‖3 is sufficiently small; see Lemmas
4.1 and 4.2 in Section 4. Furthermore, the uniform bound of s will be obtained
by making a priori decay-in-time estimates on (p, u), which is based on the decay
property of the linearized equations together with energy estimates of higher order;
see Section 5. This kind of method can be found in the recent works in [4, 5] about
the study of optimal convergence rates for the compressible Navier-Stokes equations
with a potential force. Different from [4, 5], in this paper the additional condition
on the L1-norm boundedness of the initial perturbation plays a role not only in the
proof of the convergence rates but also in the proof of the global existence. Roughly,
the reason why we need it is the appearance of the transport term u · ∇s in (1.3)3.

There are a lot of works on the existence, stability and convergence rates of
solutions to the compressible Navier-Stokes equations. Here we only mention some
of them related to our study for the case of the whole space. When κ > 0, the
problem was studied by Matsumura and Nishida [15, 16], Ponce [17], Deckelnick
[2, 3], Hoff-Zumbrun [6, 7], Liu-Wang [12]. In the presence of the potential force,
the almost optimal convergence rates were considered by [18] and the optimal ones by
[4, 5]. When κ = 0, the one-dimensional system in the Lagrangian coordinates was
studied by [13, 14, 20] and some references therein; see also [19] about a relaxation
model for a gas in thermal non-equilibrium.

The rest of the paper is organized as follows. We will reformulate the problem
in Section 2. In Section 3, we list some elementary facts on the decay-in-time
estimates on (p, u) for the linearized equations and some useful inequalities. The
proof of Theorem 1.1 is given in Sections 4 and 5.

Notations. Throughout this paper, the norms in the Sobolev Spaces Hm(R3) and
Wm,q(R3) are denoted respectively by ‖ · ‖m and ‖ · ‖m,q for m ≥ 0 and q ≥ 1.
In particular, for m = 0, we will simply use ‖ · ‖ and ‖ · ‖Lq . 〈·, ·〉 denotes the
inner-product in L2(R3). Moreover, C denotes a general constant which may vary
in different estimates. Finally,

∇ = (∂1, ∂2, ∂3), ∂i = ∂xi , i = 1, 2, 3,

and for any integer l ≥ 0, ∇lf denotes all derivatives of order l of the function f .
And for multi-indices α and β

α = (α1, α2, α3), β = (β1, β2, β3),

we use

∂α
x = ∂α1

x1
∂α2

x2
∂α3

x3
, |α| =

3∑
i=1

αi,

and Cβ
α = α!

β!(α−β)! when β ≤ α.
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2 Reformulated system

In this section, we will first reformulate the problem as follows. Set

λ =
√

cV

(1 + cV )ρ∞p∞
, λ1 =

√
(1 + cV )p∞

cV ρ∞
, µ1 =

µ

ρ∞
, µ2 =

µ + µ′

ρ∞
,

where ρ∞ = ρ(p∞, s∞). Taking change of variables by (p, u, s) → (p+p∞, λu, s+s∞),
the initial value problem (1.3)-(1.4) is reformulated as

pt + λ1∇ · u = g1,

ut + λ1∇p− µ1∆u− µ2∇∇ · u = g2,

st + λ(u · ∇)s = g3,

(p, u, s)(0, x) = (p0, u0, s0)(x) → (0, 0, 0) as |x| → ∞,

(2.1)

where

g1(p, u, s) ≡ −(1 + cV )λ
cV

p∇ · u− λu · ∇p +
Ψ(λu)

cV
,

g2(p, u, s) ≡ −λu · ∇u− 1
λ

(
1
ρ
− 1

ρ∞

)
∇p + µ

(
1
ρ
− 1

ρ∞

)
∆u

+(µ + µ′)
(

1
ρ
− 1

ρ∞

)
∇∇ · u,

g3(p, u, s) ≡ Ψ(λu)
p + p∞

.

Here and in the sequel, for the notational simplicity, we still denote the reformulated
variables by (p, u, s).

Let us define the solution space and the solution norm of the initial value problem
(2.1) by

X(0, T ) =
{
(p, u, s); p, s ∈ C0(0, T ;H3(R3)) ∩ C1(0, T ;H2(R3)),

u ∈ C0(0, T ;H3(R3)) ∩ C1(0, T ;H1(R3)),

∇p ∈ L2(0, T ;H2(R3)),∇u ∈ L2(0, T ;H3(R3))
}

,

and

N(0, T )2 = sup
0≤t≤T

‖(p, u, s)(t)‖2
3 +

∫ T

0
(‖∇p(t)‖2

2 + ‖∇u(t)‖2
3)dt,

for any 0 ≤ T ≤ ∞. As usual, the global existence of solution to (2.1) will be
obtained by combining the local existence result together with a priori estimates.

Proposition 2.1 (Local existence). Let (p0, u0, s0) ∈ H3(R3) be such that

inf
x∈R3

{p0(x) + p∞} > 0.
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Then there exists a positive constant T0 depending on N(0, 0) such that the ini-
tial value problem (2.1) has a unique solution (p, u, s) ∈ X(0, T0) which satisfies
N(0, T0) ≤ 2N(0, 0) and

inf
x∈R3, 0≤t≤T0

{p(t, x) + p∞} > 0.

Proposition 2.2 (A priori estimate). Let (p0, u0, s0) ∈ H3(R3) and (p0, u0) ∈
L1(R3). Suppose that the initial value problem (2.1) has a solution (p, u, s) ∈
X(0, T ), where T is a positive constant. Then there exist a small constant ε > 0 and
a constant C1, which are independent of T , such that if

sup
0≤t≤T

‖(p, u, s)(t)‖3 ≤ ε,

then for any t ∈ [0, T ], it holds that

‖(p, u)(t)‖2
3 +

∫ t

0
(‖∇p(τ)‖2

2 + ‖∇u(τ)‖2
3) dτ ≤ C1‖(p0, u0)‖2

3, (2.2)

‖s(t)‖3 ≤ C1‖(p0, u0, s0)‖3 exp(C1K0), (2.3)

where
K0 = ‖(p0, u0)‖L1∩H3 . (2.4)

Furthermore, there is a constant C ′
1 such that for any t ∈ [0, T ], the solution (p, u, s)

has the decay properties

‖(p, u)(t)‖Lq ≤ C ′
1K0(1 + t)−

3
2
(1− 1

q
)
, 2 ≤ q ≤ 6, (2.5)

‖∇(p, u)(t)‖2 ≤ C ′
1K0(1 + t)−

5
4 , (2.6)

‖(p, u)(t)‖L∞ ≤ C ′
1K0(1 + t)−

5
4 , (2.7)

‖∂t(p, u, s)(t)‖ ≤ C ′
1K0(1 + t)−

5
4 . (2.8)

Theorem 1.1 follows from Proposition 2.1 and Proposition 2.2 by the standard
continuity argument. The proof of Proposition 2.1 is standard and thus omitted;
see [8, 9] for the study of the local existence on the general hyperbolic-parabolic
systems. Proposition 2.2 will be proved in Section 4 and Section 5.

3 Elementary

The linearized equations corresponding to (2.1)1-(2.1)3 read
pt + λ1∇ · u = 0,

ut + λ1∇p− µ1∆u− µ2∇∇ · u = 0,

st = 0.

(3.1)

Thus, at the level of the linearization, s is decoupled with (p, u). If we set

U(t) = (p(t), u(t)),
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then the solution to (3.1)1-(3.1)2 can be written as

U(t) = e−tAU(0),

where A is a matrix-valued differential operator given by

A =

(
0 λ1div

λ1∇ −µ1∆− µ2∇div

)
.

The solution semigroup e−At has the following property on the decay in time, cf.
[10, 11].

Lemma 3.1. Let k ≥ 0 be an integer and 1 ≤ l ≤ 2. Then for any t ≥ 0, it holds
that

‖∇ke−tAU(0)‖ ≤ C(1 + t)−σ(l,2;k)‖U(0)‖Ll∩Hk ,

where the decay rate is measured by

σ(l, 2; k) =
3
2

(
1
l
− 1

2

)
+

k

2
. (3.2)

For later use we list some Sobolev inequalities as follows, cf. [1, 2].

Lemma 3.2. Let f ∈ H2(R3). Then

(i) ‖f‖L∞ ≤ C‖∇f‖
1
2 ‖∇f‖

1
2
1 ≤ C‖∇f‖1;

(ii) ‖f‖L6 ≤ C‖∇f‖;
(iii) ‖f‖Lq ≤ C‖f‖1, 2 ≤ q ≤ 6.

Finally, the following elementary inequality also will be used, cf. [5].

Lemma 3.3. If r1 > 1 and r2 ∈ [0, r1], then it holds that∫ t

0
(1 + t− τ)−r1(1 + τ)−r2dτ ≤ C(r1, r2)(1 + t)−r2 .

4 A priori estimates

Throughout this section and next section, we suppose that all the conditions of
Proposition 2.2 hold. The initial value problem (2.1) has a solution (p, u, s) in the
space X(0, T ) with some T ∈ (0,+∞]. Furthermore we make a priori assumption

sup
0≤t≤T

‖(p, u, s)(t)‖3 ≤ ε, (4.1)

where ε > 0 is sufficiently small. For simplicity, in this section we omit the variable
t of all functions in the proof of different lemmas.

In what follows, a series of lemmas on the energy estimates are given. Firstly,
the energy estimate of lower order for (p, u) is obtained in the following lemma.
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Lemma 4.1. There exists a constant D1 > 0 suitably large which is independent of
ε such that

d

dt

(
D1‖(p, u)(t)‖2 + 〈∇p, u〉(t)

)
+ C‖∇(p, u)(t)‖2 ≤ C‖∇2u(t)‖2, (4.2)

for any 0 ≤ t ≤ T .

Proof. Multiply (2.1)1-(2.1)2 by p, u respectively and then integrating them over R3,
we have

1
2

d

dt
‖(p, u)‖2 + µ1‖∇u‖2 + µ2‖∇ · u‖2 = 〈p, g1〉+ 〈u, g2〉. (4.3)

The two terms on the right hand side of the above equation can be estimated as
follows.

Firstly, for the first term, it holds that

〈p, g1〉 = − (1+cV )λ
cV

〈p, p∇ · u〉 − λ〈p, u · ∇p〉+ 1
cV
〈p, Ψ(λu)〉

= {− (1+cV )λ
cV

+ λ
2}〈p

2,∇ · u〉+ λ2

cV
〈p, Ψ(u)〉. (4.4)

It follows from Lemma 3.2, Hölder inequality and (4.1) that

|〈p2,∇ · u〉| ≤ ‖p‖L3‖p‖L6‖∇u‖ ≤ C‖p‖1‖∇p‖‖∇u‖

≤ Cε(‖∇p‖2 + ‖∇u‖2),

and
|〈p, Ψ(u)〉| ≤ C‖p‖L∞‖∇u‖2 ≤ C‖∇p‖1‖∇u‖2 ≤ Cε‖∇u‖2,

which together with (4.4) implies that the first term is bounded by

|〈p, g1〉| ≤ Cε(‖∇p‖2 + ‖∇u‖2). (4.5)

For the second term, we have

|〈u, g2〉| ≤ C{|〈u, u · ∇u〉|+ |〈u, (1
ρ −

1
ρ∞

)∇p〉|

+|〈u, (1
ρ −

1
ρ∞

)∆u〉|+ |〈u, (1
ρ −

1
ρ∞

)∇∇ · u〉|}. (4.6)

Similar to the proof of (4.5), it follows from Lemma 3.2, Hölder inequality and (4.1)
that

|〈u, u · ∇u〉| ≤ ‖u‖L3‖u‖L6‖∇u‖ ≤ C‖u‖1‖∇u‖2 ≤ Cε‖∇u‖2,

|〈u, (1
ρ −

1
ρ∞

)∇p〉| ≤ ‖u‖L6‖1
ρ −

1
ρ∞
‖L3‖∇p‖

≤ C‖∇u‖‖(p, s)‖1‖∇p‖

≤ Cε(‖∇p‖2 + ‖∇u‖2),

|〈u, (1
ρ −

1
ρ∞

)∆u〉| = |〈u,∇(1
ρ −

1
ρ∞

) · ∇u〉+ 〈∇u, (1
ρ −

1
ρ∞

)∇u〉|

≤ C{‖∇(p, s)‖1‖∇u‖2 + ‖(p, s)‖L∞‖∇u‖2}

≤ C‖∇(p, s)‖1‖∇u‖2

≤ Cε‖∇u‖2, (4.7)
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and similarly,

|〈u, (
1
ρ
− 1

ρ∞
)∇∇ · u〉| ≤ Cε‖∇u‖2, (4.8)

where by (1.2) and (4.1), we have used the fact

1
ρ
− 1

ρ∞
∼ O(1)(p + s).

Substituting (4.7) and (4.8) into (4.6) gives that the second term is bounded by

|〈u, g2〉| ≤ Cε(‖∇p‖2 + ‖∇u‖2). (4.9)

Hence combining (4.3), (4.5) and (4.9) yields

d

dt
‖(p, u)‖2 + C‖∇u‖2 ≤ Cε‖∇p‖2, (4.10)

since ε > 0 is sufficiently small.
Next we shall estimate ‖∇p‖2. From (2.1)2, one has

λ1‖∇p‖2 = 〈−ut,∇p〉+ µ1〈∆u,∇p〉+ µ2〈∇∇ · u,∇p〉+ 〈g2,∇p〉, (4.11)

where from (2.1)1, the first term on the right hand side can be written as

〈−ut,∇p〉 = − d
dt〈∇p, u〉+ 〈∇pt, u〉

= − d
dt〈∇p, u〉 − 〈pt,∇ · u〉

= − d
dt〈∇p, u〉+ 〈λ1∇ · u− g1,∇ · u〉.

It follows from the definition of g1 that

|〈−g1,∇ · u〉| ≤ C|〈p∇ · u,∇ · u〉|+ |〈u · ∇p,∇ · u〉|+ |〈Ψ(λu),∇ · u〉|

≤ C{‖∇p‖1‖∇ · u‖2 + ‖∇p‖1‖∇u‖‖∇ · u‖+ ‖∇u‖2‖∇∇ · u‖1}

≤ Cε‖∇u‖2.

(4.12)
Then (4.11)-(4.12) give

λ1‖∇p‖2 + d
dt〈∇p, u〉

= µ1〈∆u,∇p〉+ µ2〈∇∇ · u,∇p〉+ 〈λ1∇ · u− g1,∇ · u〉+ 〈g2,∇p〉

≤ C‖∇2u‖2 + λ1
4 ‖∇p‖2 + λ1‖∇ · u‖2 + Cε‖∇u‖2 + |〈g2,∇p〉|. (4.13)

Similar to the estimate on 〈g2, u〉, we have

|〈g2,∇p〉| ≤ Cε(‖∇p‖2 + ‖∇u‖2) + Cε‖∇2u‖2. (4.14)

Since ε > 0 is small enough, putting (4.14) into (4.13) gives

λ1

2
‖∇p‖2 +

d

dt
〈∇p, u〉 ≤ Cε‖∇u‖2 + C‖∇2u‖2. (4.15)

Finally, multiplying (4.10) by D1 suitably large and adding it to (4.15), one has
(4.2) since ε > 0 is sufficiently small. This completes the proof of the lemma.
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Next, in the following lemma we give the energy estimate of the higher order for
(p, u).

Lemma 4.2. There exists a constant D2 > 0 sufficiently large which is independent
of ε such that

d

dt

D2‖∇(p, u)(t)‖2
2 +

∑
1≤|α|≤2

〈∇∂α
x p, ∂α

x u〉(t)


+C(‖∇2p(t)‖2

1 + ‖∇2u(t)‖2
2) ≤ Cε‖∇(p, u)(t)‖2, (4.16)

for any 0 ≤ t ≤ T .

Proof. For each multi-index α with 1 ≤ |α| ≤ 3, by applying ∂α
x to (2.1)1-(2.1)2,

multiplying them by ∂α
x p, ∂α

x u respectively and then integrating them over R3, we
have

1
2

d

dt
‖∂α

x (p, u)‖2 + µ1‖∇∂α
x u‖2 + µ2‖∇ · ∂α

x u‖2

= 〈∂α
x p, ∂α

x g1〉+ 〈∂α
x u, ∂α

x g2〉

= I1 + I2, (4.17)

where Ii, i = 1, 2 are the corresponding terms in the above equation which will be
estimated as follows. Notice that under the condition (1.2) and (4.1), (g1, g2) has
the following equivalence properties:

g1 ∼ ∂ipui + p∂iui + Ψ(u),

g2j ∼ ui∂iuj + p∂i∂iuj + s∂i∂iuj + p∂j∂iui + p∂jp + s∂jp + s∂j∂iui.

Here and in the sequel proof, the repeated index denotes summation over the index.
Firstly, for I1, it holds that

I1 ≤ C {|〈∂α
x p, ∂α

x (∂ipui)〉|+ |〈∂α
x p, ∂α

x (p∂iui)〉| +|〈∂α
x p, ∂α

x Ψ(u)〉|}

≤ C|〈∂α
x p, ∂α

x ∂ipui〉|+ C
∑

|β|≤|α|−1

Cβ
α |〈∂α

x p, ∂β
x∂ip∂α−β

x ui〉|

+C
∑

|β|≤|α|
Cβ

α |〈∂α
x p, ∂β

xp∂α−β
x ∂iui〉|+ C|〈∂α

x p, ∂α
x Ψ(u)〉|. (4.18)

For the first term on the right hand side of (4.18), from Lemma 3.2, one has

|〈∂α
x p, ∂α

x ∂ipui〉| = 1
2 |〈(∂

α
x p)2, ∂iui〉|

≤ C‖∂iui‖L∞‖∂α
x p‖2 ≤ C‖∇2u‖1‖∂α

x p‖2

≤ Cε‖∂α
x p‖2.

Furthermore, for the second term, it follows from the Hölder inequality and Lemma
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3.2 that ∑
|β|≤|α|−1

|〈∂α
x p, ∂β

x∂ip∂α−β
x ui〉|

=

{ ∑
|β|=0

+
∑

1≤|β|≤|α|−1

}
|〈∂α

x p, ∂β
x∂ip∂α−β

x ui〉|

≤ 2ε‖∂α
x p‖2 + C

ε ‖∂ip∂α
x ui‖2 + C

ε

∑
1≤|β|≤|α|−1

‖∂α−β
x ui∂

β
x∂ip‖2

≤ 2ε‖∂α
x p‖2 + C

ε ‖∂ip‖2
L∞‖∂α

x ui‖2 + C
ε

∑
1≤|β|≤|α|−1

‖∂α−β
x ui‖2

L∞‖∂
β
x∂ip‖2

≤ 2ε‖∂α
x p‖2 + C

ε ‖∇∂ip‖2
1‖∂α

x ui‖2 + C
ε

∑
1≤|β|≤|α|−1

‖∇∂α−β
x ui‖2

1‖∂
β
x∂ip‖2

≤ Cε
∑

1≤|α|≤3

‖∂α
x p‖2 + Cε

∑
1≤|α|≤4

‖∂α
x u‖2.

The third and fourth terms on the right hand side of (4.18) can be estimated
similarly. Thus,

I1 ≤ Cε
∑

1≤|α|≤3

‖∂α
x p‖2 + Cε

∑
1≤|α|≤4

‖∂α
x u‖2. (4.19)

Moreover, I2 can be estimated similarly as I1. Then

I2 ≤ Cε
∑

1≤|α|≤3

‖∂α
x p‖2 + Cε

∑
1≤|α|≤4

‖∂α
x u‖2. (4.20)

Hence (4.17) together with (4.19) and (4.20) yields

d

dt

∑
1≤|α|≤3

‖∂α
x (p, u)‖2 +

∑
1≤|α|≤3

‖∇∂α
x u‖2

≤ Cε
∑

1≤|α|≤3

‖∂α
x p‖2 + Cε

∑
1≤|α|≤4

‖∂α
x u‖2. (4.21)

Next, for the estimate on ‖∇∂α
x p‖2 for 1 ≤ |α| ≤ 2, as in [5], we have

λ1
2

∑
1≤|α|≤2

‖∇∂α
x p‖2 + d

dt

∑
1≤|α|≤2

〈∂α
x u,∇∂α

x p〉

≤ C
∑

1≤|α|≤2

‖∂α
x∇u‖2

1 + Cε
∑

1≤|α|≤3

‖∂α
x p‖2 + Cε

∑
1≤|α|≤4

‖∂α
x u‖2. (4.22)

Since ε > 0 is sufficiently small, multiplying (4.21) by D2 suitably large and adding
it to (4.22) give (4.16), and this completes the proof of the lemma.

Finally we consider the energy estimates on the entropy s.

Lemma 4.3. It holds that

d

dt
‖s(t)‖2

3 ≤ C‖∇2u(t)‖1‖s(t)‖2
3 + Cε‖∇u(t)‖2

3, (4.23)

for any 0 ≤ t ≤ T .



12 R.-J. Duan and H.-F. Ma

Proof. For each multi-index α with 0 ≤ |α| ≤ 3, by applying ∂α
x to (2.1)3, multiplying

it by ∂α
x s, integrating it over R3 and then summing them up, we have

1
2

d
dt‖s‖

2
3 = −λ

∑
0≤|α|≤3

〈∂α
x (u · ∇s), ∂α

x s〉+
∑

0≤|α|≤3

〈∂α
x g3, ∂

α
x s〉

= J1 + J2 (4.24)

Here J1 and J2, which are the corresponding terms on the right hand side, are
estimated as follows. For J1, one has

J1 = −λ
∑

0≤|α|≤3

〈u · ∇∂α
x s, ∂α

x s〉 − λ
∑

0≤β≤|α|−1
1≤|α|≤3

〈∂α−β
x u · ∇∂β

xs, ∂α
x s〉,

where for each α with 0 ≤ α ≤ 3, it holds that

〈u,∇∂α
x s, ∂α

x s〉 = −1
2
〈∇ · u, (∂α

x s)2〉 ≤ ‖∇ · u‖L∞‖∂α
x s‖2 ≤ ‖∇2u‖1‖∂α

x s‖2,

and for each α, β with 1 ≤ |α| ≤ 3, 0 ≤ β ≤ |α| − 1, we have

〈∂α−β
x u · ∇∂β

xs, ∂α
x s〉 ≤



‖∂α
x u‖L∞‖∇s‖‖∂α

x s‖, if |β| = 0, |α| = 1

‖∂α
x u‖‖∇s‖L∞‖∂α

x s‖, if |β| = 0, 2 ≤ |α| ≤ 3

‖∂α−β
x u‖L6‖∇∂β

xs‖L3‖∂α
x s‖, if |β| = 1, 2 ≤ |α| ≤ 3

‖∂α−β
x u‖L∞‖∇∂β

xs‖‖∂α
x s‖, if |β| = 2, |α| = 3

≤ ‖∇2u‖1‖∇s‖2
2.

Hence, it holds that
J1 ≤ C‖∇2u‖1‖s‖2

3. (4.25)

For J2, since Ψ(u) is quadratically nonlinear, using (4.1) we have

J2 ≤
∑

0≤|α|≤3

‖∂α
x g3‖‖∂α

x s‖ ≤ ε
∑

0≤|α|≤3

‖∂α
x (Ψ(λu)

p+p∞
)‖

≤ ε
∑
β≤α

0≤|α|≤3

Cβ
α‖∂α−β

x ( 1
p+p∞

)∂β
xΨ(λu)‖

≤ Cε

 ∑
β≤α

2≤|β|≤|α|≤3

‖∂α−β
x ( 1

p+p∞
)‖L∞‖∂β

xΨ(λu) ‖

+
∑

|β|≤1,β≤α
|β|≤|α|≤3

‖∂α−β
x ( 1

p+p∞
)‖‖∂β

xΨ(λu)‖L∞


≤ Cε‖∇u‖2

3. (4.26)

Combining (4.24), (4.25) and (4.26) yields (4.23), and this completes the proof of
the lemma.
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Remark 4.1. Up to now, one only can close a priori assumption about (p, u) from
Lemmas 4.1 and 4.2. Since there is not any dissipation rate on the entropy s in
the inequality (4.23), a priori assumption on s can not be closed for this moment.
In order to close a priori assumption on s, we have to study a priori decay-in-time
estimates on u. In fact, from Lemma 4.3 together with Lemmas 4.1 and 4.2, we can
obtain the uniform bound of s if ‖∇2u‖1 decays in time at some rate fast enough,
which is given in the next section.

5 Global existence and convergence rate

In order to prove Proposition 2.2, in this section we continue to consider a priori
decay-in-time estimates on (p, u). This will be based on Lemma 3.1 about the decay
estimates on the semigroup e−tA. Precisely, we have the following lemma.

Lemma 5.1. (p, u) satisfies the inequality

‖∇(p, u)(t)‖ ≤ CK0(1 + t)−
5
4 + Cε

∫ t

0
(1 + t− τ)−

5
4 ‖∇(p, u)(τ)‖2dτ, (5.1)

for any 0 ≤ t ≤ T , where K0 = ‖(p0, u0)‖L1∩H3 as in (2.4) is finite by the assumption
of Proposition 2.2.

Proof. From the Duhamel’s principle, it holds that

(p, u)(t) = e−tA(p0, u0) +
∫ t

0
e−(t−τ)A(g1, g2)(τ)dτ.

Thus from Lemma 3.1, we have

‖∇(p, u)(t)‖ ≤ CK0(1 + t)−σ(1,2;1)

+C

∫ t

0
(1 + t− τ)−σ(1,2;1)‖(g1, g2)(τ)‖L1∩H1dτ, (5.2)

where σ(1, 2; 1) = 5
4 by (3.2). The nonlinear source terms can be estimated as

follows:

‖(g1, g2)(t)‖L1 ≤ C‖(p, u, s)(t)‖1‖∇(p, u)(t)‖1 ≤ Cε‖∇(p, u)(t)‖1,

‖(g1, g2)(t)‖1 ≤ C‖(p, u, s)(t)‖W 1,∞‖∇(p, u)(t)‖2 ≤ Cε‖∇(p, u)(t)‖2. (5.3)

Putting these estimates into (5.2) yields (5.1), and this completes the proof of the
lemma.

Now we are in a position to prove Proposition 2.2.
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Proof of Proposition 2.2 We will do it by three steps.

Step 1. Since ε > 0 is sufficiently small, from Lemma 4.1 and Lemma 4.2, we
can choose a constant D3 > 0 suitably large such that

d

dt

D3‖(p, u)(t)‖2
3 +

∑
|α|≤2

〈∇∂α
x p, ∂α

x u〉(t)

+ C(‖∇p(t)‖2
2 + ‖∇u(t)‖2

3) ≤ 0, (5.4)

for any 0 ≤ t ≤ T , which implies

‖(p, u)(t)‖2
3 +

∫ t

0
(‖∇p(τ)‖2

2 + ‖∇u(τ)‖2
3)dτ ≤ C‖(p0, u0)‖2

3, (5.5)

since
D3‖(p, u)(t)‖2

3 +
∑
|α|≤2

〈∇∂α
x p, ∂α

x u〉(t) ∼ ‖(p, u)(t)‖2
3.

Then (5.5) gives (2.2).

Step 2. Define the temporal energy functional

H(t) = D2‖∇(p, u)(t)‖2
2 +

∑
1≤|α|≤2

〈∂α
x u,∇∂α

x p〉(t),

for any 0 ≤ t ≤ T , where it is noticed that H(t) is equivalent to ‖∇(p, u)(t)‖2
2 since

D2 can be large enough, i.e. there exists a constant C > 1, such that

1
C
‖∇(p, u)(t)‖2

2 ≤ H(t) ≤ C‖∇(p, u)(t)‖2
2.

From Lemma 4.2, we have

dH(t)
dt

+ C‖∇2(p, u)(t)‖2
1 ≤ Cε‖∇(p, u)(t)‖2. (5.6)

Adding ‖∇(p, u)(t)‖2 to both sides of the above inequality gives

dH(t)
dt

+ D4H(t) ≤ C‖∇(p, u)(t)‖2,

where D4 is a positive constant independent of ε. As in [4], define

M(t) = sup
0≤τ≤t

(1 + τ)
5
2 H(τ). (5.7)

Notice that

‖∇(p, u)(τ)‖2 ≤ C
√

H(τ) ≤ C(1 + τ)−
5
4

√
M(t), 0 ≤ τ ≤ t ≤ T. (5.8)

Then it follows from (5.1) that

‖∇(p, u)(t)‖ ≤ CK0(1 + t)−
5
4 + Cε

∫ t

0
(1 + t− τ)−

5
4 (1 + τ)−

5
4 dτ
√

M(t)

≤ C(1 + t)−
5
4

(
K0 + ε

√
M(t)

)
, (5.9)



Navier-Stokes Equations 15

where we have used Lemma 3.3. Hence, by the Gronwall’s inequality, (5.6) and (5.9)
lead to

H(t) ≤ H(0)e−D4t + C

∫ t

0
e−D4(t−τ)‖∇(p, u)(τ)‖2dτ

≤ H(0)e−D4t + C

∫ t

0
e−D4(t−τ)(1 + τ)−

5
2 dτ

(
K2

0 + ε2M(t)
)

≤ C(1 + t)−
5
2
(
H(0) + K2

0 + ε2M(t)
)
. (5.10)

Since M(t) is non-decreasing, we have from (5.10) that

M(t) ≤ C(H(0) + K2
0 + ε2M(t)),

for any 0 ≤ t ≤ T , which implies that

M(t) ≤ C
(
H(0) + K2

0

)
≤ CK2

0 ,

since ε > 0 is small enough. Thus (5.8) gives

‖∇(p, u)(t)‖2 ≤ CK0(1 + t)−
5
4 , 0 ≤ t ≤ T,

which also implies from Lemma 3.2 that

‖(p, u)(t)‖L∞ ≤ C‖∇(p, u)(t)‖1 ≤ CK0(1 + t)−
5
4 , 0 ≤ t ≤ T.

Hence (2.6) and (2.7) are proved.
Next, using Lemma 3.1 and (5.3), it follows from the Duhamel’s principle that

‖(p, u)(t)‖ ≤ CK0(1 + t)−
3
4 + C

∫ t

0
(1 + t− τ)−

3
4 ‖(g1, g2)(τ)‖L1

⋂
L2dτ

≤ CK0(1 + t)−
3
4 + Cε

∫ t

0
(1 + t− τ)−

3
4 ‖∇(p, u)(τ)‖2ds

≤ CK0(1 + t)−
3
4 + CεK0

∫ t

0
(1 + t− τ)−

3
4 (1 + τ)−

5
4 dτ

≤ CK0(1 + t)−
3
4 ,

for any 0 ≤ t ≤ T . On the other hand, using Lemma 3.2 we have

‖(p, u)(t)‖L6 ≤ C‖∇(p, u)(t)‖ ≤ CK0(1 + t)−
5
4 .

Hence, by the interpolation, it holds that for any 2 ≤ q ≤ 6,

‖(p, u)(t)‖Lq ≤ ‖(p, u)(t)‖θ
L6‖(p, u)(t)‖1−θ ≤ CK0(1 + t)−

3
2
(1− 1

q
)
,

for any 0 ≤ t ≤ T , where θ = 3(q−2)
2q . Thus (2.5) is proved.

Step 3. Since ε > 0 is small enough, from Lemma 4.3 and (5.4), we have

d

dt

D3‖(p, u)(t)‖2
3 + ‖s(t)‖2

3 +
∑
|α|≤2

〈∇∂α
x p, ∂α

x u〉(t)

 ≤ C‖∇2u‖1‖s‖2
3. (5.11)
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Let
y(t) = D3‖(p, u)(t)‖2

3 + ‖s(t)‖2
3 +

∑
|α|≤2

〈∇∂α
x p, ∂α

x u〉(t).

Since D3 > 0 is large enough, then it holds that

y(t) ∼ ‖(p, u, s)(t)‖2
3.

Thus, from (5.11), we have

d

dt
y(t) ≤ C‖∇2u‖1y(t),

which by the Gronwall’s inequality gives

y(t) ≤ y(0) exp
{

C

∫ t

0
‖∇2u(τ)‖dτ

}
≤ y(0) exp

{
CK0

∫ t

0
(1 + τ)−

5
4 dτ

}
≤ y(0) exp{CK0},

i.e., for any 0 ≤ t ≤ T ,

‖(p, u, s)(t)‖2
3 ≤ C‖(p0, u0, s0)‖2

3 exp{CK0}.

Hence (2.3) holds. For (2.8), using the above estimates and (2.1), we have

‖∂t(p, u, s)(t)‖ ≤ ‖λ1∇ · u(t)‖+ ‖g1(t)‖+ ‖λ1∇p(t)− µ1∆u(t)− µ2∇∇ · u(t)‖

+‖g2(t)‖+ ‖λ(u · ∇s)(t)‖+ ‖g3(t)‖

≤ C(‖∇u(t)‖1 + ‖∇p(t)‖+ ‖∇p(t)‖1‖∇u(t)‖+ ‖∇u(t)‖2

+‖∇u(t)‖1‖∇(p, u, s)(t)‖+ ‖∇(p, s)(t)‖1(‖∇p(t)‖+ ‖∇2u(t)‖)

≤ CK0(1 + t)−
5
4 ,

for any 0 ≤ t ≤ T . Thus, (2.8) is proved and this completes the proof of Proposition
2.2.
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