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Abstract

There have been extensive studies on the large time behavior of solutions to systems
on gas motions, such as the Navier-Stokes equations and the Boltzmann equation.
Recently, an approach is introduced by combining the energy method and the spectral
analysis to the study on the optimal rates of convergence to the asymptotic profiles.
In this paper, we will first illustrate this method by using some simple model and then
we will present some recent results on the Navier-Stokes equations and the Boltzmann
equation. Precisely, we proved the stability of the non-trivial steady state for the
Navier-Stokes equations with potential forces and also obtained the optimal rate of
convergence of solutions toward the steady state. The same issue was also studied for
the Boltzmann equation in the presence of the general time-space dependent forces.
It is expected that this approach can also be applied to other dissipative systems in
fluid dynamics and kinetic models such as the model system of radiating gas and the
Vlasov-Poisson-Boltzmann system.
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1 Introduction

Let X be a Banach space. Consider an ordinary differential equation on the functionals

on X,

dy = F(t,y), teR, (1.1)
dt

where y : R — X is an unknown functional while F' : R x X — X is a given mapping.
We are interested in the rate of convergence of the solution y to a time asymptotic state
y« € X. Since in this paper y(t) is viewed as a small perturbation of the time asymptotic
profile, without loss of generality, we set y, = 0 for simplicity. Moreover, we assume that

F has the form
F(t,y) =L{)y + G(t,y) + h(t), V(t,y) e RxX. (1.2)

Here, for any t € R, L(t) : D € X — X is a linear mapping, G(¢,-) : X - Y C X is a
nonlinear mapping with G(¢,0) = 0, and h(t) € Y is a source term, where D, being the
domain of definition of L(t), is a dense subset of X and Y is some subspace of X. Notice
that we do not assume that the mappings L(¢) and G(¢,-) are t-independent.

As usual, the analysis on the linearization problem is useful to deal with a nonlinear
problem with small perturbation. Thus, we first consider the linearized equation

dy
— =Lt t € R. 1.
Y _Lty, te (13)
We call

U(,-): {(t,s) e Rx Ryt > s} — Z(X, X)
the linear solution operator corresponding to (1.3) if, for any s € R and yg € X, U(t, s)yo
is the solution to the Cauchy problem
dy
dt
y‘t:s = ¥Yo-

L(t)y, t>s, (1.4)

Then by the Duhamel’s principle, the nonlinear equation (1.1) with (1.2) can be written
into the mild form

y(t) = U(t; s)y(s) +/ U(t, m)G(7,y(7)) + h(T)]dr,

for any ¢t > s. Based on this mild form, in general, a variety of problems to the nonlinear
equation (1.1) including the Cauchy problem, the time-periodic problem, the stationary
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problem, can be solved by the contraction mapping theorem if U(¢, s) enjoys some good
decay properties.

In both mathematics and physics, it is important to understand the mechanism on
the time asymptotic behavior of the solution operator U(t,s). In general, the time decay
estimate for U(¢, s) may has the form

1UE 8)yollx < Cy (14t =) lwolly,

for any t > s and any yg € Y, where Cy is a constant depending only on Y, and o > 0 is
called the index of decay rate.

The goal here is to obtain the optimal rate index o for a given choice of spaces X and Y.
It is well-known that the spectral analysis is an efficient approach to deal with this issue.
In particular, by using the classical spectral analysis only, the time decay estimates for
some typical linearized equations and systems coming from the fluid dynamics or kinetic
theory such as the compressible Navier-Stokes equations and the Boltzmann equation,
have been well established. However, these classical spectral analysis in general may fail
to be successful if the linearized equation or system has variable coefficients which arise
from other physical effects, such as the external forcing. For this, instead, one can further
turn to the energy method. Indeed, in some cases, it turns out that under some smallness
assumptions on the coefficients, the optimal time decay rates can be obtained by combining
the energy method and the spectral analysis. Here the optimal decay rate for the nonlinear
system means that it is the same as the one for the corresponding linearized system.

To explain this approach, in the next section, we use a simple model to illustrate the
main idea. And then we apply it to the study of the compressible Navier-Stokes equations
and the Boltzmann equation in the presence of the stationary potential forcing in Section 3
and Section 4, respectively. It should be pointed out that this approach can also be applied
to other physical models and also to the study of existence of time periodic solutions.

Throughout this paper, C' denotes a generic large positive constant and A denotes a
generic positive small constant. Further, || - || always denotes the L? norm for different
space dimensions.

2 Analysis on a simple model
Consider a modified linear homogenous heat equation in n-dimensional space R™:

gu _ Li(t)u, teR,zeR",
ot (2.1)

LM(t)u == (1 + a(t,2))Amu,

where u = u(t, ) is an unknown function and LP(#) is a Laplacian operator with a small
given perturbation a(t,z). Obviously, (2.1) is parabolic if a(t, z) is sufficiently small and
smooth. The solution to the Cauchy problem for the equation (2.1) with given initial data
at time s € R,

u|t:s = Uo,
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is denoted by
u(t) = UMt, s)ug, —oo < s <t < o0,

where Ul?(t, s) is the corresponding linear solution operator. We now want to obtain the
time decay estimates on Ué‘(t, s) in some Sobolev space by combining the energy method
and the spectral analysis.

It is well known that for the trivial case when a(t,z) = 0, i.e. for the classical heat
equation, the solution operator Ug‘(t, s) reduces to

U(})l(t, s) = =98z oo < s <t < o0,
where {e!®+},50 denotes the semigroup generated by the heat equation
ur = Agzu, v € R".

By the Fourier analysis, the following result concerned with the time decay estimates on
Ul (t, s) is classical.

Proposition 2.1. Let n > 1,k > 0 be integers and 1 < q < 2. It holds that

105U (E, s)uol| < C(1+t = &)@ Jug| grrpa, (2.2)
for any t > s and ug € H!; N L%, where C is some constant and o, (q, k) is the rate index
defined by

n{l 1 k
k=—=|-—-= —. 2.3
mlh) =5 (1-3) + 5 (2.3

However, in the case with the non-trivial coefficient a(t, x), the direct Fourier analysis
could fail to obtain the estimates similar to (2.2) because in the frequency space, the
equation (2.1) contains a non-local term

Fa(t,-) *iln|*Fu,

where F is the Fourier operator and * denotes the convolution. For our case, a way to
overcome this difficulty is a combination of the energy method and the spectral estimate
in Proposition 2.1. Actually, it leads to the optimal decay estimates. Firstly, we state the
main estimates as follows.

Theorem 2.1. Let n > 3, N > 3 be integers. Suppose that

Sai= Y lo%allege + > lllofalre + lallze 2
lo] <N -1 I<|al<N
1s sufficiently small. Then it holds that
U2 (t, s)uoll < C(1+1t = 5) 7 ug| v s, (2.4)
IVLUR (¢ s)uoll yy—1 < C(L+t =)~ O flug| | gynp, (2.5)

for any t > s and ug € HY N LY, where o,,(-,-) is defined by (2.3).

xT’
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Remark 2.1. Here, we consider the case when ug € HY N LY for simplicity. In fact,
the general case when ug € Hév NLL for 1 < q < 2 can also be considered in a similar
way based on the Proposition 2.1. For the consistency of the presentation, in the next two
sections, we shall apply the analysis on the simple model considered in this section to the
study on some complicated nonlinear physical models only when the initial perturbation is
bounded in L'. The investigation on the more general case can be found in those relevant

papers.

Proof of Theorem 2.1: Without loss of generality, suppose s = 0 and set u = Uil(t, 0)uog.
For any t > 0, u solves the Cauchy problem
ou

% Agu=a(t,z)Azu, t>0,x e R", (2.6)

u‘t:() = Uug. (2.7)
We will obtain the following two types of estimates whose combination will then give the
desired time decay estimates.

FEstimates of Type I (Based on the energy method). Fix a with 1 < |a| < N. By applying
0% to (2.6), multiplying it by 0%u and taking integration over R™, one has

1 d (6% (6% (63 Q
5 g 105 ull® + Vo 0ul® = (97 la(t 2) Agu], 07 u)
= (a(t,r)Az05u, O3 u) + Z Cg‘(@g_ﬁa(t,x)Axafu, 0% u)
[B<a
=11 + I. (28)

I and Iy can be estimated as follows. For I7, it holds that

I = —(a(t,x)Vz05u, V305u) — (Vga(t, z)Vz05u, 05u)
osu
Ed

IN

lallzze, Va0 ull* + [l Vaal 5s, V205 ul

«
x

< C0y||V20%ul|?,
where the Hardy inequality [16] has been used. For I, similarly, one has

(64
oSu

|z]

L <O 205 Palt, )| g [|A-05u|
B<a
< C6al|V3ul| -1 V205 u|
< C(SaHv?:uH?qN—l-

Putting the above two estimates into (2.8) and taking summation over 1 < |a| < N yield

Ld

th”vaH?{SJCV_l + )\||V§UH2 o <K O7

H
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where the smallness of §, has been used. Define the energy functional £"(u(t)) on the
higher order derivatives by
EM () = [VaulZr.

Then it is standard to show that the Lyapunov type inequality
d
& () + A (u(t)) < C||Vaul|* (2.9)

holds good, which is the desired estimate of Type I. This inequality is not a closed in-
equality for £"(u(t)) because the constant C' on the right hand side is not small, but a
remarkable feature is that the left hand side exhibits an exponential decay property in the
sense that

t
EV(u(t)) < E(up)e M + C / e M=) |V w2 ds.
0

Thus, the energy inequality can be closed if the decay estimates on the lowest order
derivative are known. Such estimates are available from the spectral estimates given in
Proposition 2.1.

Estimates of Type II (Based on the spectral analysis). First, in terms of the emigroup
Ul (t,0), one can write the Cauchy problem (2.6)-(2.7) in the mild form

u(t) = UR(t,0)ug + /Ot UL(t, s){a(s, ) Ayu(s)}ds, (2.10)
for any ¢t > 0. By using Proposition 2.1, we have
IVeull < Clluoll gz (1 + )7
+C /Ot(1 +t— )" la(s, ) Agu(s) || grinpds.
By noticing

laAzullpy < la]l - [[Azul],
laAsullgy < C(lallrge + Vol o)V 2ull g3,

it follows that
HvaH < CHuOHH%ﬁLi(l + t)*on(l,l)
t
+C§"’/ (14t =)=Vl myds, (2.11)
0

which is the desired estimate of Type II.

Combinations of estimates of Type I and Type II. In order to get the time decay rate of
the energy functional £%(u(-)), set

Ex(t) = sup (1+5)*7HDE (uls)). (2.12)
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Notice that by the above definition, £ (¢) is a non-decreasing function over ¢ > 0. From
the estimate (2.11) of Type II, it follows that

192l = €407 (uolasy + /(0. (213)
where we have used the fact that n > 3, N > 3 so that

n 1 1 n 1

IV2ully < /€2 (u(?)).

Hence, by the Gronwall’s inequality, the estimate (2.9) of Type I together with (2.13) give
that for any ¢ > 0,

and

t
EM(u(t)) < EP(up)e ™M + C / e~ 79|V, u|?ds
0

< " (ug)e M + /Ot e N1+ 5)720 00 (Jug |2y, + G265 (1))
< O+ 67270 (£ ug) + Jluo 3y + S2EL(D))
which implies that
E (1) < C (w0 + uollFpany + B2E%(1)) -
Since 9, is small enough, it holds that

EL (1) < € (o) + luolFnsy ) < Clluoldiynry

which from the definition (2.12) gives the time decay estimate (2.5).
Finally, by the mild form (2.10), the time decay estimate (2.4) on the solution itself

follows from
lull < Clluoll2nry (14 £)= 0
t
+C’/ 1+t —s) "0 a(s, ) Agu(s) |l 2nrrds
0
< Clluoll p2nzy (1 +¢) =710
t
+05“/ (14t —5)7 (14 5)=7 D ds | Jeh (1)
0 F
< C(1+ )00 ug| v,

where again Proposition 2.1 from the spectral analysis has been used together with
on(1,1) > 1. This completes the proof of Theorem 2.1.
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We conclude this section by a remark. From the proof of Theorem 2.1, one may
consider a more general linear partial differential equations

ou

5=

Here, u = wu(t,z) is an unknown function, and P,(9,) is a polynomial of differential

P,(0z)u, teR,zeR" (2.14)

operators in the form of

Pa(02) = > (Ca+ aalt,2))07,

la<m

where for each «, ¢, is a constant and a,(t,z) depending only on ¢t and z is small in
suitable norms. Consider the case when aq(t,z) = 0 for any «, that is, an equation with
constant coefficients

ou

% Py(0z)u, teR,zeR"™ (2.15)

Under some situation, one can obtain the time decay estimates of the solutions to (2.15)
by the help of Fourier transform. Then the above method can be used to obtain the time

decay estimates on (2.14) under some smallness assumption on a,.

3 Compressible Navier-Stokes Equations

In this section, we will apply the method illustrated in the last section to the system of the
compressible Navier-Stokes equations with an external force. The following result is based
on the work of [6]. Similar results were given in [7, 25, 32]. The case without any external
forcing has been extensively studied, cf. [1, 2, 12, 14, 15, 17, 21, 24] and references therein.

Consider the initial value problem of the compressible Navier-Stokes equations with a
potential external force in the whole space:

pt+ V- (pv) =0,

P '
Ut—l—(v-vx)v—l—vp(p) = %Axv—i— ,u—;,u Vi(Vy-v) — Vao(z), (3.1)

(9 0)(0,) = (00, v0) () = (o 0), a5 o] — oo.
€1,

Here, t > 0, © = (21, -+ ,2,) € R™, and the spatial dimension n > 3. p = p(t,x) > 0

and u = u(t,z) (ui(t,x), -+ ,un(t,x)) are the unknown functions representing the
density and velocity respectively. P = P(p) is the pressure function, —V,¢(x) is the time
independent potential force, p, ' are the viscosity coefficients, and (pso,0) is the state of
initial data at infinity. In the following discussion, it is assumed that pu and p/ satisfy the
usual physical conditions p > 0 and u' + %u > 0, while po is a positive constant and P(p)
is smooth in a neighborhood of ps, with P'(pso) > 0.

For the Navier-Stokes equations (3.1)1-(3.1)2 with a potential external force, the sta-

tionary solution (p,u.) is given by (p«(x),0), where p.(x) satisfies, cf. [21],

/p*(x) Plis)ds+¢(x) _o (3.2)

oo
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To consider the time asymptotic stability and convergence rate of the stationary solutions,
let’s define the perturbations o(t,z) and w(t,z) by

o(t,z) = plt, ) — pu(z), w(t,z) = L2 u(t,z),
P'(poo)
and introduce some new parameters u1, 2,y defined by
p B
p=——, pg= ;7= VP (po)-
Poo Poo

Also, denote
pla) = pu(x) = poo-
The initial value problem (3.1) is reformulated into
ot + V- w =S5,

wy — MlAmw — VeV - w + Vo = Sa, (33)
(0-7 ’UJ)(O, I’) = (007 UJO)(.ZU),

where
Sy = —%vm (o + p)ul, (3-4)
2,2 - -
By o+p o+p
Sy = — * Vg - A$ - zVzx”®
5 2 (w- Vz)w u10+p* w u20+p*v Vg w
P’ « P (p, P N P (pos
_[ (0+ps) (p)}vmﬁ_[ (0+ps)  Plp) V.0, (3.5)
o+ px P 0+ Px Poo
and

P'(poo
The global existence of solutions to (3.3) was proved by Matsumura-Nishida [21], which

(00, wo) () = (po—p*,p“)vo> (2) = (0,0) as |z — oc.

is stated in the following proposition.

Proposition 3.1. Let n >3, N > [§] + 2 be integers. Suppose that

(00, wo)llmy + l|llyyv+1.00
is sufficiently small. Then the initial value problem (3.3) has a unique global solution

(o, w) which satisfies

t
(o, w) ()7 +/O (IVa(o, w) ()1 Fy-1 + [Varw(s)l7x) ds < Cli(o0, wo) 77y

for any t > 0 and some constant C.

By using the method introduced in Section 2, one can obtain the optimal time con-
vergence rates for solutions obtained in the above proposition. The result is stated as
follows.
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Theorem 3.1. Suppose that the conditions in Proposition 8.1 hold. Moreover, assume
that [|(o0, wo)||zy is bounded and

I¢llz2ncee + D 11+ 12N Vadl 2L (3.6)
|| <N
is sufficiently small. Then, the perturbation (o,w) in Proposition 3.1 satisfies the following
time decay estimates:
(o, w)(®)]| < CA+ )~ Dl (00, wo) | vy (3.7)
V(o w) ()] -1 < C(1+ )= (00, wo)l| gy (3.8)
for any t > 0, where the rate index function oy (-,-) is given by (2.3).

We now try to sketch the proof of the above theorem. For later use, write
b0 = [[(o0, wo)llzy, Ko = |[(o0, wo)llL1,

and

6 = 0llanree + Y 11+ |20 Vol 2nroe.
la|<N

Notice that 69 > 0 and d4 > 0 can be sufficiently small, while Ky is kept as a finite number.
Firstly, as in [7, 32], based on Proposition 3.1 on the existence of the global solution, we
derive a Lyapunov-type inequality for the energy functional for higher order derivatives
by using the energy method.

Lemma 3.1 (Estimate of Type I). Under the assumptions of Theorem 3.1, let u := (o, w)
be the solution to the initial value problem (3.3). Then for any t > 0, it holds that

L ENSu(t) + AN (1)) < OVl (3.9)

where the energy functional ENS(u(t)) is equivalent to ||qu(t)H12qN_1, that is, there exists
a positive constant C > 0 such that ’

1
g\IVmU(t)quwa < EM(u(t)) < Ol Vau®)|] t=>0. (3.10)

HY D

Proof. For each multi-index o with 1 < |a| < N, by applying 9% to (3.3), multiplying by
0%0, 0%w respectively, and then integrating over R", we have from the sum of (3.3);-(3.3)2

that 14d
5£II3§3U(?5)||2 + |V 05w ()[]* + p2l| Ve - 95w (t)]|?

= (050(t), 0y S1(t)) + (Ofw(t), 05 Sa(t)). (3.11)
Before estimating the two terms on the right hand side of (3.11), we notice from (3.4) and
(3.5) that the source term (S7,S2) has the following properties
S1 ~ O;0w; + o0;w; + 0;pw; + po;w;, (3.12)
Sy ~ w;Oiwj + 00;0;w; + 00;0;w; + 000
+p0;0;w; + pOjO;w; 4 0jpo + pojo. (3.13)
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Then for the first term on the right hand side of (3.11), it follows from (3.12) that

(8% (t), 0081 (1)) < C8%a(t), 0%Dio(t)w;(t))]
+C Y CqaLa(t), 820,010 wi(1))]
18I<]al-1
+C Y Cglosa(t), 080 ()05 P oawi(t))]
1I<lal
+C 3 Og1(02a(t), 020;p05 Pwi(1)))|
1I<laf

+C Y Cil05a(t), 00008 POnwi(t)| =D L. (3.14)

18I1<lat| i=1

Next, we estimate each term I; (¢ = 1,---,5) on the right hand side of (3.14). As in
[7, 32], by Proposition 3.1, we have

3
N <Co Y NemIP+Coh D> otw(t). (3.15)
j=1

1<|a|<N 1<]a|<N+1

For I, and Is, firstly notice that (3.2) together with (3.6) imply

1l 2Azee + Z (1 + |2[)0% Vapllr2nre < Cdy. (3.16)
lo| <N

Hence, it follows that

140{ DS }<a§a<t>,a£aipawwi<t>>

I81=lal  0<|B|<|al-1

o Cllnan - C e
< 6,020 (1)1 + 5% d;pw; ()] + 5 > 1108000 Pui(t))?
¢ ? 0<|8/<|al—-1

wi(t) ||?

1+ |z

(0% C 6] -
< Gyl 05a(t)II* + @H(l +[2]) 05 0ipl e

C _ a—
ts5 Z 105 03|70 |05~ s (t) ||
? 0<|I<lal-1

<6y Y lote@IP+Cos Yo l0Fw(b)]?, (3.17)

1<]|a|<N 1<|a|<N+1



12 R.-J. Duan, S. Ukai and T. Yang

and

I;<C > [(090(t),00p08 P oiw;(t))]
0<|BI<]af

o C
< Sslogo(®) + 5

> 1080y Pt

? 0<|8|<lof

lo" ¢ = a—
<ol 2o+ 5 D 1Ll 107 Drwi ()]
0<|8|<le|

<0 Y loge@IP+Cds Y lloTw(n)]?, (3.18)

1<|a|<N 1<|a|<N+1

where the Hardy inequality has been used. Thus, (3.15), (3.17) and (3.18) give

(050 (1), 0951(1)) < (Bo+3) D> [05a®IP+Co+0g) Y. 05w(®). (3.19)
1<|a|<N 1<|a|<N+1

From (3.13), similar argument gives

(Ogw(t),0552(1) < (Jo+3d4) D 050> +C(oo+38) Y 07w(®)]? (3.20)

1<|a|<N 1<]a|<N+1
Hence, (3.11) together with (3.19)-(3.20) yield

d (0% (0%
SO oI A Y IVadzu()?

1<|a|<N 1<|a|<N

<C@o+3d6) D 020> +C@o+d5) Y 05w(®)]*. (3.21)

1<|a|<N 1<|a|<N+1

Furthermore, to include the estimation on |V,0%0(t)||? when 1 < |a| < N — 1, from
(3.3)2, we have
YVeo = —w + 1 Azw + MQV;U(VQ; . w) + S5.
After applying 0¢ with 1 < |a] < N — 1 to the above equation, combining (3.3); and
performing the computations similar to (3.17) and (3.18) lead to

1Y e+ S (), Voo ()

1<|a|<N-1 1<]a|<N-1
<C Y 08Vew(t)ln +Cloo+6s) D 1050t
1<]al<N-1 1<|al<N
+C(Go+365) Y ll05w(B)]. (3.22)
1<]a|<N+1
Define
ESuE) =M Y umP+ D (@tw(t), Voga(t)),

1<|a|<N 1<a|<N-1
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for some constant M > 0. By choosing the constant M > 0 sufficiently large and noticing
that dp and 4 can be sufficiently small, the linear combination of (3.21) and (3.22) leads

to
iENS(U(t)) FA (VeI + (IVZw(®)]13) < C(do + 0p) [ Vou(®)]|?,

dt
which implies
isNS(u(t))+ch2u(t)||2 < (8o + 6) | Vou(t) |2
dt T 1> 0 1} zu( )H . (323)
Adding the first-order derivatives ||V u(t)||? to both sides of (3.23) yields (3.9). This
completes the proof of the lemma. O

Next, we will use the result obtained by the spectral analysis to estimate ||V u(t)||
with u = (o, w). For this purpose, we first recall the time decay properties of the solution
semigroup for the linear isentropic compressible Navier-Stokes equations. Actually, the
solution of (3.3) can be written in the mild form as

u(t) = UNS(t, 0)ug + /0 t UNS(t, 5)S (u(s))ds, (3.24)
where we have used the notations
u = (o,w), up= (00,wo), S(u)=(51,85). (3.25)
Here, UJS(t, s) is the solution semigroup defined by
UNS(t,s) = elt=92 ¢ >,

with A being a matrix-valued differential operator given by

0 —~div
A= .
_"Yvw MlAm + ,UQVIdiV

The semigroup e** has the following time decay properties, cf. [14, 15].

Proposition 3.2. Let n > 3, k > 0 be integers, and 1 < q < 2. It holds that
|05e uol < C(1+6)~7" " uo| s

for any t >0 and ug € HY N L, where a,(q, k) is defined by (2.3).

Now, we can use the above proposition to obtain the time decay estimate on ||V u(t)||
similar to the argument for the simple model studied in Section 2.

Lemma 3.2 (Estimate of Type II). Under the assumptions of Theorem 3.1, let u = (o, w)
be the solution to the initial value problem (3.3). Then one has

[Vau(t)|| < C(8o + Ko)(1 4 t)~ oD

t
+C(J0 + 64) / (14t —5) "DV u(s)| yv-1ds, (3.26)
0 x

where Ko = ||Uo||ginzy is finite.
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Proof. From the integral formula (3.24) and Proposition 3.2, we have
IVou(t)]| < C(Jo + Ko)(1 + t) oD

+C / (1+t— ‘7"(1’1)||S(u(5))HH%mLids, (3.27)

where S(u) is given in (3.25) as well as (3.4)-(3.5). To derive (3.26), we need to control
[S(u(®))| 1Ly by the L2-norm of the derivatives of at least one order.
Firstly, we estimate those terms including p. By (3.16), it follows that

Cg[Vawll,

P <l 27l -
190+ wllay <10+ 1) Vel | 7 <

1PV - wllpy <l - (Ve - w]| < Cg||[Vawl],

w
0 - < Ol 700 || — || <
1920l < 0+ ) Vol || < €819

and
[PV - wll < [|pllLee Ve - wl < Cdgl|Vaw].

Thus, the above inequalities give
Ve - (pw)llry, [IVa - (pw)]] < Cog||Vaw]].
Similarly, it holds that
Ve (po)lly, IVa - (po)| < Coyl[Vaall,
IV - (pw)|lmy < Col|Vawllmy, Ve (po)luy < ColIVaolmy,
IV2(pw)l|y < CosllVawllmy, [IV2(pw) ||y < CO4[IVawl]| 2

The estimation on the other terms in S(u(t)) is straightforward so that we omit it for

brevity. Hence, one has
ISy < Cllu@®)[IVeu) |
C(IVa - (pw)llzy + IVa - (po)l Ly + (V3 (5w) | 1)
< C(00 + 0p)IVault) | a1, (3.28)
and
1S ()l < Cllu@)llyyree | Vau(t)|| 2
CIVz - (pw)llaz + Ve - (50) | + V2 (pw)] 1)
< C(00 + 69) | Vaou(t) || m2- (3.29)

Putting (3.28) and (3.29) into (3.27) gives the desired inequality (3.26). This completes
the proof of the lemma. O
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Proof of Theorem 3.1: Based on the estimates of Type I and Type II, the proof of
Theorem 3.1 is almost the same as the one given in Section 2 for the simple model. For
completeness, we sketch it as follows. Set

ENS(t) = sup (14 )27 (LDENS(4(s)), (3.30)
0<s<t

where ENS(u(t)) is defined in Lemma 3.1. Notice that EX5(t) is non-decreasing over ¢ > 0,
and
IV,u(s)lliz < C1/ENS(u(s)) < C(1+ )70, [eNs(e), 0<s<t.

Then it follows from (3.26) that
IVeu(t)]| < C (8o + Ko)(1 + )~

t
+C(S0 + ) / (14t — )~ @D(1 4 )00 g, [ENS (1)
0

< C(1+ )~ <50 + Ko + (0 + 6,) 52;8(75)) , (3.31)
because 0,(1,1) > 1 when n > 3. Hence, by the Gronwall’s inequality, (3.9) and (3.31)
give
ENS(u(t)) < EN(ug)e ™ + C / t e M|V u(s) || 2ds
< ENS ()N ’
c /Ot 6_,\(t_s)(1 + s)_%"(l’l)ds [(50 + K0)2 + (50 +5¢)25C1>\108(t)]
< C(1+ )72 [ENS(yg) 4 (8 + Ko)? + (Jo + 04)2EN5(1)] . (3.32)
In terms of EX5(t), it follows from (3.32) that
EX(t) < C [E(uo) + (J0 + Ko)® + (50 + 65)°EX5(1)]

which implies
ENS (1) < CENS(ug) 4 C(dp + Ko)? < C(62 + K?2),
where we have used the assumption that dy and ¢, are sufficiently small. Hence, this gives
(3.8) by noticing (3.10) and (3.30).
Next, by Proposition 3.2, (3.28) and (3.29), it follows from the integral formula (3.24)
that

t
mw\sa%+Kmu+w“@®+0/ﬂ+t—$“ﬂmWW@w%mws
0

t
< C(80 + Ko)(1 +)~710) o C(5g + 6y) / (14t —s)~n10 IVau(s)|| g2ds
0

< C(8p + Ko)(1 4 t)~on(10)

t
+C (3o +K0)/ (141t —s)"n10(1 4 5)~onLl g
0

< C(8o + Ko)(1 + 1)1,
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where we again have used o0,(1,1) > 1. Therefore, (3.7) is proved. This completes the
proof of Theorem 3.1.

4 Boltzmann Equation

In this section, we will continue to use the method introduced in Section 2 to consider
the optimal time decay estimates on the Boltzmann equation with an external force. The
results of this section come from the recent series of works [4, 8, 33]. Some related results
can also be found in [3, 10, 11, 18, 19, 34, 35] about the energy method for the Boltzmann
equation, and [9, 26, 23, 27, 28, 29, 31] about the convergence rates of solutions by using
different methods.

In the presence of a potential force, the Boltzmann equation for the hard-sphere gas
in n-dimensional space R" takes the form

Wf+E& Vaf +Vad(x) - Vef =Q(f, f). (4.1)

Here, the unknown function f = f(t,x,&) is non-negative standing for the number density
of gas particles which have position = = (z1,- -+ ,x,) € R and velocity £ = (&1, ,&n) €
R™ at time ¢ € R. The spatial dimension n > 3. ¢(z) depending only on x is the potential
of the external force. @) is the bilinear collision operator defined by

Qo) =y [ (Gt Ll = fa~ Fl(€ - &) - wldude.,
R xSn—1
f = f(t7x7§>7 f/ = f(t,(l?,g,), f* = f(t,(l?,g*), f; = f(t7x7€>,k)7

likewise for g,
=6~ &) ww, &=6+[E-&) ww, wes"™

The local Maxwellian e?(*)M is a stationary solution to the Boltzmann equation (4.1),
where

M= (%Tl)n/zexp (*|§|2/2) s

is a global Maxwellian which has been normalized to have zero bulk velocity and unit
density and temperature. Set the perturbation u = u(t, z, &) by

f=e? ™M + vVMu. (4.2)
Then the Boltzmann equation (4.1) can be reformulated into
1
O+ € - Vou+ V() - Veu = o€ Vad(w)u = e L + T(u, u), (4.3)

where L is the linearized collision operator and I' is the corresponding nonlinear collision
operator, given by

Lu — Q(M, vVMu) + Q(vVMu, M) |,

ﬁ\ %\

Iu,u) =
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We shall consider the Cauchy problem of (4.3) with given initial data
u(0,z,§) = uo(x,§), (z,§) € R" xR™ (4.4)

Firstly, we recall some basic properties of the linearized operator L. L can be decom-
posed into
L=-—v(¢+K,
where v(£) is a multiplier operator called the collision frequency. For the case of the hard
sphere gas, there exists a positive constant vy > 0 such that for any &,
1
;0(1+|€!) <v(§) <w(l+¢]). (4.5)

K is a self-adjoint compact operator on L?(R") with a real symmetric integral kernel. The
null-space of the operator L is the (n + 1)-dimensional space of collision invariants

N = KerL = span{\/ﬁ; VM, i=1,---,n; ]5\2\/M} (4.6)

Following from the Boltzmann’s H-theorem, the linearized collision operator L is non-
positively definite and furthermore, —L is locally coercive in the sense that there is a
constant A > 0 such that

- /n uLu d¢ > )\/n v(€) ({1 - PYu)?de, Vue D(L), (4.7)

for any fixed (t,z). Here, P denotes the projection operator from L?(R™) to N and D(L)
is the domain of L given by

D(L) = {u c L2(R") ‘ (€)u € LQ(R”)}.

Let’s also introduce some notations for the later presentation. We use (-,-) to denote
the inner product in the Hilbert space L?(R™ x R™) or L?(R") in the following without
any ambiguity, and use || - || to denote the corresponding L? norm. Set

<U7U>V = <V(f)u,1)>,

for any functions u = u(z, &) and v = v(x, £) to be the weighted inner product in L?(R™ x
R"™), and use || - ||, for the corresponding weighted L? norm.
To state the well-posedness of the Cauchy problem, we define the energy functional

@)= Y logou®)?, (4.8)
la[+|BI<N
and the dissipation rate
[u®lZ= > 000d{I-Plu@)Z+ > [losPu()]2, (4.9)
la]+]BI<N 0<|a|<N

where N > [3] + 3 is an integer. Then one has
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Proposition 4.1 (Well-posedness). Suppose that ¢ € LY and

[+ 12)*Vad |l o+ D N+ 12D oo

2<|a|<N

is sufficiently small. If [[uo]] is also sufficiently small, then the Cauchy problem admits a
unique solution u(t,x, &) which satisfies

+A/) 12ds < Clu(O)]]%, ¥ ¢ > 0.

For the convenience of the readers, we shall sketch the proof of the above proposition
as follows. On the other hand, the goal of this section is to apply the method introduced
in Section 2 to obtain the optimal time decay estimates for the Boltzmann equation stated
as follows.

Theorem 4.1 (Optimal convergence rates). Suppose that the conditions in Proposition
4.1 hold. Furthermore, assume that HU/OHLE(L%J is bounded and

12Vl 2

is sufficienlty small. Then the solution u(t,z,§) obtained in Proposition 4.1 satisfies

(@] < 1+ )7 ([fuol] + luoll 2z ) (4.10)
for any t > 0.

The reason why we call the above decay estimate optimal is that it is the same as the
case without external forcing. That is, when ¢ = 0, the solution semigroup {eBt}tZO, with

B=-¢ V,+1L,
has the decay estimate

IV5eBgll 2, < OO+ (|lglz, + | VEgll2 ), (4.11)

for the integer £ > 0, 1 < ¢ < 2 and for any function g = g(x,§), where the spatial
dimension n > 3, and Z, = Lg (L%). This decay estimate (4.11) was proved by the spectral
analysis, cf. Ukai [29, 30] and Nishida-Imai [23]. Note that the rate given in (4.10) is the
same as that of eB! without differentiation because o, (1,0) = n/4.

Sketch of the proof of Proposition 4.1: The proof is based on the energy method
by combining the local existence and the closure of the a prior estimate. Here, we only
illustrate the proof of the a prior estimate. That is, under the a prior assumption that
[[u(t)]] is sufficiently small, we want to show that there exists an energy functional & (u(t))
and a dissipation rate D(u(t)) which are equivalent to [[u(t)]] and [[u(t)]], respectively,

such that
d

ZEu(t) + AD(u(t)) < 0. (4.12)
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For this, introduce the macro-micro decomposition, cf. [11]:

u(t,z, &) = uy + ua,

up =Puec N,

Pu = {a(t,x) + Y11 bi(t,2)& + c(t, z)|£*} VM,
ug = {I—Plue Nt

(4.13)

where u; denotes the macroscopic component of u(t, z, £) with coefficients (a, b, ¢), and us
denotes the microscopic component of u(t,z,£). In (4.9), the dissipation rate related to
the microscopic part {I—P }u can be obtained directly from the analysis on the perturbed
equation (4.3) because of the dissipative property (4.7) of L. However, it is more delicate
to obtain the dissipation rate related to the macroscopic part Pu. It turns out that
the coefficients a, b, ¢ of Pu satisfy a system which shares some similar properties of the
linearized compressible Navier-Stokes equations with viscosity and heat conductivity. Thus
the analytical techniques coming from the fluid dynamics as those used in Section 3 can be
applied to obtain the dissipation rate on the macroscopic component. Precisely, we now
give the equations satisfied by u; = Pu or a, b, ¢ as follows, cf. [11]. Firstly, the equation
(4.3) can be rewritten as an equation of wuy:

1
Ouy + &-Vaour + V- Vgul — 55 -Vepur=r+L+h (414)
with
r= _atUZa
1
0=—8 - Vyus —Vyo- V5u2 + 55 - Vzoua + e¢Lu2,
h =T(u,u).

Furthermore, one can also obtain the evolution equations for (a,b,c) which defines u;.
In fact, by putting the expansion (4.13)3 into (4.14) and collecting the coefficients with
respect to the basis {ex} consisting of

VM, (VM) . (l6PvM)

. (a6vM) (lepevm) . (a15)

1<i<n 1<i<n 1<i<j<n

then one has the following macroscopic equations on the coefficients (a, b, ¢) of u;:

da+b- Ve =~ (4.16)

Oubi + Dia — (a0 — 2c0i¢p) =", (4.17)
Dyc + Dib; — bidicd = 717, (4.18)

0;bj + 0;b; — (b;0;¢ + b;0;0) = §f), i # 7, (4.19)
(4.20)

0ic — cO;p = %-(3),
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where all terms on the right hand side are the coefficients of r + ¢ + h with respect to the
corresponding elements in the basis (4.15) given by:

(
) = —ai M + Y 4 n
%'() 8r(2)+€<)+h5 ,
%'(1) 8r(2)+€( )+h(J2), L F 7,
'Vz‘( ) — 81"(3) +€( ) 4 p3)

where r = —3;7. On the other hand, a, b, ¢ also satisfy the local macroscopic balance laws.

In fact, multiplying the equation (4.1) by the collision invariants in (4.6) and integrating
the products over R”, one has

o / fae +v, - | efde=o,
R™ R™
o, [ erde+v.- / €@ EfdE = Vo / Je,
Rn Rn Rn
]‘ 2 ]‘ 2 _
o [ gllrac .. [ SiePeras =Veo- [ erde

By using the perturbation (4.2) and the decomposition (4.13), direct computation gives
the macroscopic balance laws on the coefficients (a, b, ¢) of u;:

dha — %vz {|€PEVM, ug) = —%b Va6, (4.21)
Obi + dila+ (n+ 2)c] + Vo - (€&VM, up) = (a + nc)d;, (4.22)
Dret V0 bt -V, (|EPEVM, uz) = b V. (4.23)

n 2n 2n

An important observation from [11] is that for each j, b; satisfies an elliptic-type equation:

— Ay = 8505b; = >0 05 |1 bidno| = 3001 [ + vioie + b0y
i#£j i#£]

20, [ @ 1, ajqﬁ]

Moreover, the proper linear combination of the equations (4.16)-(4.20) and (4.21)-(4.23)
gives

O(a+mnc)+Vy-b=0,
1
Ob+ Vi(a+ne) +2Ve — Ay — EVIVI b= (a+nc)Vyp+ Rb,

1 1
Oc+ —Vg-b—Age=—b-Vyp+ R,
n 2n
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where R? = (Rb,--- | R%) and R° are defined by

RY = V. {6V, ) — -0, - (|€€VM, uo)

B Z o; [’Yi(?) + b0 + biajqﬁ} — 20; [,Y](?) + bj8j¢} )
i#j

R =~ Ve - {JePEVM, w) - -30 2+ o]

We now turn to the dissipation rate of the microscopic component:

N
DI A R A PR SO AT R SO SO (2
laf+IBI<N I<]al<N k=1 |8|=k
o] +|BI<N

For this, set
[+ [2)?Vad || oo = D N1+ [2)OTS] e <6,

2<|a\<N
for small § > 0. Then, one has the following estimates, cf. [5].

(i) Estimates on the zero-th order:

5 2 @I + Mluz ]l < Cllu@N[[w®IF + C8)| Vo ||*. (4.24)

(ii) Estimates on only the spatial derivatives:

%% SoolagulP A > 0suslly < Cllu@N[u)])

1<|a|<N 1<|al<N

+C6 Y Jogm|P+Cs > [09Veusl. (4.25)

1<[a|<N 1<|a]<N-1

(iii) Estimates on the mized derivatives:

1d o o
ST Ao Ty e D W [cRte 2

18|=k 18|=F
lal+BI<N laf 81N
<Oz +C > 0usllp + Cxpsey Y, 10507 us|l}
la|<N—k+1 1<|8|<k—1
| +[BI<N
+C > 09Ve(a,b,0)|?, (4.26)
la|<N—k

where the integer k > 1 and x{;>2) denotes the characteristic function of the set {k > 2}.
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Now, the dissipation rate of the microscopic component can be obtained by a suitable
linear combination of (4.24), (4.25) and (4.26). In fact, the sum of (4.24) and (4.25) gives

1% dooloulP+ A Y (105us|® < Cllu@]][[u®)]];

o <N o] <N
+C6 Y ogmlP+Cs > [09Veusl. (4.27)

1<[al<N 1<[al<N-1

The linear combination of (4.26) with k taking values from 1 to N gives

%% SoeoluslP+x Y 110800us < Cllu(dN ()

lal+G]<N -+ <N
181>1 181>1
+C ) unll+C D> 109V a(a, b, o), (4.28)
la|<N la]<N-1

where the energy functional is actually in the form of

N
Yook Y l050us?,
k=1

|8|=k
laf+|BI<N
for some properly chosen positive constants C . However, for simplicity, we shall ignore
this detailed differences in the coefficients of the energy functional. Therefore, the linear
combination of (4.27) and (4.28) gives

1 d (03 (63 (63
b D AT RS SN (274 ol NP N W[ Re 281
la|<N |lal+[BI<N,|5]>1 laf+|BI<N
< Cllu@®[[u®])z +C Y [05Vala,b, o). (4.29)
la|<N-1

Based on some analysis of the macroscopic equations (4.16), (4.17), (4.18), (4.19),
(4.20) and the macroscopic balance laws (4.21), (4.22), (4.23), one can deduce

20T+ Y V.00 be)P

la] <N -1

< OS> 0%l + [l ¢ (4.30)

la] <N

where Z(u(t)) is the total interactive energy functional defined by

S 3 [E0) T e+ Tl + T )]

la] <N-1 i=1
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with Z¢ ; (u(?)), 70 (u(t)), 75 i(u(t)) and Igbz(u(t)) being the individual interactive energy

a,i

functionals defined by

I, -(u(t))

7

==Y (oo a0z0) + > (027D 05080
J#i JF#i
w2 )

7 (u(t) = (077, aia;zc>,

T8 (u(t)) = (9i05a, 03bi) .

<aaf<1>, aiaaa> ,

Notice that the proof of (4.30) can be found in [3, 5] by using an improved energy method.
Now one can obtain the full dissipation rate [[u(t)]]2 as follows. The linear combination
of (4.27) and (4.30) gives

d | M o 2
i E*E2H@“H+Zﬂwﬂ)
la|<N
A DD I0ualll+ D IVe0(a,b, o))
lal<N lal<N-1
< Cllu@[u@);+Cs Y [05Veus|?, (4.31)
1<[al<N-1

where M > 0 is large enough so that the energy functional in (4.31) is equivalent to its

> ol

la|<N
Recall the definitions of the norms [[u(t)]] and [[u(t)]], given in (4.8) and (4.9), respectively.
Thus the linear combination of (4.29) and (4.31) gives the Lyapunov inequality

2 e(u(t)) + XD(u(t)) < C[VE@D) + @] D(u(r),

where the energy functional is in the form

Do > s+ > 1950 ue?

first part

o] <N || +|BI<N [B]>1
F2ST gl + 22 (u(t)
lal<N
~ ()

and the dissipation rate is in the form

D(u(t)) ~ Y 0500uslls + D V05 (abo)l?

laf+|BI<N la]<N -1

~ [[u®)]]3-
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Thus the uniform a prior estimate (4.12) holds under the assumption that [[u(t)]] is small
enough. This completes the proof of Proposition 4.1.

Proof of Theorem 4.1: The proof is divided into five steps.
Step 1. Let u(t,z,&) be the solution to the Cauchy problem (4.3) and (4.4) which is
obtained in Proposition 4.1. Denote §g, Ky, €, respectively, by
6o = [[uoll, Ko = lluollzy, 66 = D> (1 +12)080| 1o + |2V 2-
la] <N
Notice that dg, d4 can be chosen to be sufficiently small while Ky is kept to be just finite.

Step 2. From the energy estimates of higher order derivatives as in the proof of (4.12),
one can obtain

%gBE@L(t)) +A[®])? < C|Vaull?,

where EBF(u(t)) is equivalent to the energy functional for higher order derivatives given
by

EF@) ~ Y IR -Pru@)IP+ Y [05u®)]”

lee|+|BI<N 0<|a|<N

With the observation that
EPP(u(t)) < Cllu()]].,

one has p
(D) + AEPE(u(t)) < C||Vaul?, (4.32)

which is the estimate of Type I.
Step 3. The solution u to the Cauchy problem (4.3) and (4.4) can be written as

t
u(t) = Prug + / eBUE=)S (u(s))ds,
0
where S(u) is the source term given by
1
S(u) = =Vt Veu+ 5Vao - fu+ (e — 1)Lu 4 T'(u, ).

Now let’s recall the following decomposition of the semigroup eB* and the corresponding
decay estimates.

Lemma 4.1 ([31]). The semigroup B! can be decomposed into
Bl = Eq(t) + E1(t) + Ex(t).
Here, Eq(t) is the linear transport operator with the collision frequency v(§) defined by

Eo(tyu = e 'u(z - &,£).
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E1(t)v has an algebraic decay while Eo(t)v has an exponential decay. Precisely, one has

IVEEL (vl z, < CA+ )74 ul|,,
IVEEL(O{I Pyl z, < C(1+ )= 07D ul|z,,

and
IV Es(t)vul 2, < Ce™ Vil 2,,
for any non-negative integer m and 1 < g < 2.

Thus, one can rewrite the solution u as a summation of two parts:
u(t) = Ifu](t) + Ia[u](t),

I [u)(t) = eBlug + /0 {E1(t — s) + Eo(t — s)}S(u(s))ds,

Lul(t) = /O Eo(t — 5)S(u(s))ds.
Define

EBE(t) = oiugt(l + 5)20n (LD EBE (4 (5)).

Since £BF(t) is a non-decreasing function, from Lemma 4.1, it is straightforward to show
that, cf. [8],

VoL [u](§)]* < O(L+ )2 D[54+ K + (65 + 63)EL5(1))- (4.33)

Step 4. We need to consider carefully the estimate on ||V I2]u|(t)|| because the decay
estimate as in (4.33) does not hold for I>[u]. In fact, it follows from (4.32) and (4.33) that

t
EPE(u(t)) < e MEPE(ug) + / e M|V u(s)|2e ds
0 @8
< C(1+1t) 728 + K3 + (63 + 62)ERE (1)

t
+ [N nl G, ds
0 e

To deal with the term related to Iz[u], we need a technical lemma about the integral
estimats on the solution to an inhomogeneous transport equation with damping.

Lemma 4.2 ([5]). Define Th(t,x,&) to be the solution to the following Cauchy problem

{ O+ & - Vou + v(€)u = v(€)h(t, 2, ),

u‘t:() =0.

Then, for any A € (0,vy) where vy is defined in (4.5), there exists a constant C' such that

. t
/ e—)\(t—s)HzTh(S)HQL2 gds < C/ e—A(t—S) Hh(S)H%Q gds'
0 - 0 .
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With this, one can write

Valoul(t) = /Ot Eo(t — s)VaS(u(s))ds = T(ViS(u)/v).
The direct calculation yields
1928 (0)/vl3 < (6 + 2)EPE (u(t).
Thus, by using Lemma 4.2, one has
EBE(u(t)) < C(1+1)72mWV[5% + K + (65 + 63)E5E(¢)]
+/Ot e_)‘(t_s)HT(V‘ES(U)/V)”ijgds
< C(1+8) 2 WD[6E + K§ + (55 + 53)ERF (1)),

Since &y and &, can be sufficiently small, E2E(t) is bounded uniformly in ¢ so that the
following time decay estimates on the energy of higher order derivatives hold:

EBE(u(t)) < C(02 4+ K2)(1 + )~ 2om (L1, (4.34)

Step 5. By using (4.34), one can obtain the decay estimate on [|u(t)| 2 . in the same way

as that in the last two steps. In fact, adding ||Pu(t) to both sides of the uniform

H%i ¢
energy estimate (4.12) gives

SEult) +AE () < Clu(d):

The Gronwall’s inequality then yields
t
E(u(t)) < eME(ug) + C / e fu(s)|2, ds.
0 @,

With (4.34), the same procedures as those in Step 2 and Step 3 can be repeated to obtain
E(u(t)) < C(63 + KZ)(1 + )~ 2on(10),

Since £(u(t)) is an energy functional equivalent to [[u(t)]] and o,(1,0) = n/4, (4.10)
follows. This completes the proof of Theorem 4.1.

Remark 4.1. From the proof presented above for the optimal decay rates in the case of
the Boltzmann equation, it is impossible to obtain a similar estimate of Type II in the
form (2.11) and (3.26). Instead, the estimate of Type II is replaced by a weaker integral
estimate as stated in Lemma 4.2.
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5 Conclusions

In this paper we introduced an approach of how to obtain the optimal rates of convergence
of solutions toward the possibly existing non-constant steady state for some dissipative
evolution equations. The main motivation is inspired by the studies of the time-decay esti-
mates on the linearized equations around the non-constant steady state. In fact, whenever
there exists any non-constant steady state for some nonlinear evolution equations, then
the corresponding linearized equations contain the variable coefficients in general, which
leads that the usual method of the spectral analysis in the Fourier space is difficult to be
applied to obtain the time-decay properties of the linearized solution operator. The same
difficulties happen to the nonlinear case when we are trying to control the nonlinear terms
in terms of the dissipations generated by the linearized operator. The current approach
provides one of the ways to overcome these difficulties. The main observation is that at
the level of linearization, the linear term with variable coefficients can be controlled by
the dissipation of equations provided that the strength of perturbations around the con-
stant steady state is small. Therefore, by using the energy estimates, one can obtain the
dissipations of all the high-order derivatives on the basis of the lowest-order derivative,
and on the other hand, the time-decay of the lowest-order derivative can be given in terms
of the high-order derivatives by using the time-decay properties of the linearized solution
operator with constant coefficients, the combination of which implies the optimal decay
rates of solutions.

At this moment, it is expected that the approach introduced in this paper can also be
applied to other dissipative evolution systems in fluid dynamics and kinetic models such
as the model system of radiating gas and the Vlasov-Poisson-Boltzmann system. The
common characteristic for these systems is that there also exist the non-constant steady
states when in the presence of sources or the non-constant background density, respectively.
Thus, it is interesting to apply the current method to study their asymptotical stability
with the possible optimal convergence rates. The corresponding results could be reported
in the future.

Finally, we remark that the current approach fails for the case when the strength of
variable coefficients or perturbations around the constant states is large in the presence
of sources or forces. In this case, the source or force should be regarded as an essential
part of the equations under the consideration, which is generally a challenging research
topic outside of the scope of this paper. The interested readers may refer to [20, 22] and
references therein.
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