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Abstract

Although the decay in time estimates of the semi-group generated by the linearized Boltz-
mann operator without forcing have been well established, there is no corresponding result
for the case with general external force. This paper is mainly concerned with the optimal
decay estimates on the solution operator in some weighted Sobolev spaces for the linearized
Boltzmann equation with a time dependent external force. No time decay assumption is
made on the force. The proof is based on both the energy method through the macro-micro
decomposition and the Lp-Lq estimates from the spectral analysis. The decay estimates
thus obtained are applied to the study on the global existence of the Cauchy problem to
the nonlinear Boltzmann equation with time dependent external force and source. Precisely,
for space dimension n ≥ 3, the global existence and decay rates of solutions to the Cauchy
problem are obtained under the condition that the force and source decay in time with some
rates. This time decay restriction can be removed for space dimension n ≥ 5. Moreover, the
existence and asymptotic stability of the time periodic solution are given for space dimension
n ≥ 5 when the force and source are time periodic with the same period.
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1 Introduction

The Boltzmann equation for the hard-sphere gas in n-dimensional space under the influence of
an external force and a source takes the form

∂tf + ξ · ∇xf + F · ∇ξf = Q(f, f) + S. (1.1)

Here, the unknown function f = f(t, x, ξ) with (t, x, ξ) ∈ R×Rn×Rn is a non-negative function
standing for the number density of gas particles which have position x = (x1, · · · , xn) ∈ Rn and
velocity ξ = (ξ1, · · · , ξn) ∈ Rn at time t ∈ R. Here, the external force field F = F (t, x) and the
source term S = S(t, x, ξ) are assumed to be some given time dependent functions. Q is the
usual bilinear collision operator defined by

Q(f, g) =
1
2

∫
Rn×Sn−1

(f ′g′∗ + f ′∗g
′ − fg∗ − f∗g)|(ξ − ξ∗) · ω|dωdξ∗,

f = f(t, x, ξ), f ′ = f(t, x, ξ′), f∗ = f(t, x, ξ∗), f ′∗ = f(t, x, ξ′∗),
ξ′ = ξ − [(ξ − ξ∗) · ω]ω, ξ′∗ = ξ∗ + [(ξ − ξ∗) · ω]ω, ω ∈ Sn−1,

and likewise for g. Although the physical space is three dimensional, in this paper, we consider
the general space dimension n ≥ 3 to show how the space dimension plays in the decay estimates.

Throughtout this paper, we consider the perturbative solution near an absolute Maxwellian.
Without loss of generality, define the perturbation u = u(t, x, ξ) by

f = M + M1/2u,

where the absolute Maxwellian

M =
1

(2π)n/2
exp

(
−|ξ|

2

2

)
is normalized to have zero bulk velocity and unit density and temperature. Then the equation
for the perturbation u is:

∂tu + ξ · ∇xu + F · ∇ξu−
1
2
ξ · Fu = Lu + Γ(u) + S̃, (1.2)

where

Lu = M−1/2
(
Q(M,M1/2u) + Q(M1/2u,M)

)
, (1.3)

Γ(u, u) = M−1/2Q
(
M1/2u,M1/2u

)
, (1.4)

S̃ = M−1/2S + M1/2ξ · F. (1.5)

There are extensive literatures on the existence theory for the Cauchy problem of the Boltz-
mann equation without external force. The well-known result is the global existence of the
renormalized solution with large data proved by DiPerna-Lions [6] where the uniqueness prob-
lem remains open. On the other hand, the existence is established in the framework of small
perturbation of an absolute Maxwellian [12, 13, 14, 17, 19, 21, 23, 24, 29], or an infinite vacuum
[2, 9, 15, 16] where uniqueness can be justified. In particular, so far there are two basic methods
to deal with solutions near an absolute Maxwellian. One is based on the spectral analysis of the
linearized Boltzmann equation and the bootstrap argument for the nonlinear equation initiated
by Grad and developed by Ukai, cf. [19, 23, 24, 25], where the optimal convergence rate to the
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Maxwellian can be also obtained. Another one is based on the direct energy method for the
nonlinear problem through the macro-micro decomposition which was initiated by Liu-Yu and
developed by Liu-Yang-Yu [17] and Guo [13] independently in two different ways. The former
decomposition is around a local Maxwellian while the latter is around an absolute Maxwellian.
Here we use the latter decomposition because we are concerned with the decay structure of the
linearlized equation around the absolute Maxwellian.

One of the features of the convergence to the equilibrium for the Boltzmann equation is the
coupling of the conservative operator for the free transportation and the degenerate dissipative
operator on the velocity variables through the celebrated H-theorem. This property can be
found in many kinetic equations and it is now called “hypocoercivity” [32]. For the problems in
a torus or in a bounded domain, this property is well investigated where an exponential or almost
exponential convergence rate in time to the equilibrium for both space and velocity variables
can be obtained, cf.[33] and references therein. However, for problems in the whole space, this
property is not yet well understood especially under the influence of some enternal force. And
this is one of the motivations of this paper to study the convergence to the equilibrium under
the influence of the external force in a general form.

To do this, the main part of the paper is concentrated on the decay in time properties of the
solution operator for the linearized Boltzmann equation corresponding to (1.2), that is,

∂tu + ξ · ∇xu + F · ∇ξu−
1
2
ξ · Fu = Lu.

The decay estimates are obtained in some Sobolev space weighted in velocity variables. Our
main result is stated in Theorem 2.2 in Section 2, where the obtained decay is optimal in the
sense that it is equal to the one for the linearized Boltzmann equation without external force.
The proof is a combination of the two methods mentioned above for perturbative solutions. In
fact, the energy estimate is first carried out for the linearized Boltzmann equation with an error
term determined by the space derivative of the macroscopic component in the perturbation. It
is then combined with the Lp-Lq estimates from the spectral analysis to yield the optimal decay
in time estimates for the above linear solution operator.

The optimal decay estimates on the solution operator to the linearized equation will then
be applied to the study on the existence of solutions to the Cauchy problem for the original
nonlinear equation. In particular, we will use it to prove the existence and stability of the time
periodic solution for some given time periodic force and source. This problem is related to the
generation and propagation of sound waves so that it has its physical importance besides its
mathematical interest. In fact, for the time periodic solution, the existence and stability have
been studied for the Navier-Stokes equaions, cf. [1, 10, 30, 31] and references therein. Recently,
some results on this problem are obtained for the nonlinear Boltzmann equation [26, 27, 28] in
various function spaces when there is a time periodic external source but no external force, for
the space dimension n ≥ 3. Thus, it is natural to study the problem under the influence of a
time periodic external force. We will show that there exists a time periodic solution if the force
is small and time periodic when the space dimension n ≥ 5. The physical case when the space
dimension n = 3 is still not known and will be pursued by the authors in the future.

A lot of work has been done on the convergence rate estimation of the solutions for the
Boltzmann equation to the time asymptotic states. For example, the almost exponential decay
in time of the solution for the Cauchy problem was given by Desvillettes-Villani [5] for general
cutoff potential cases in either torus or smooth bounded domain under the assumption of the
existence of smooth global solutions, and also by Strain-Guo [22] for the cutoff soft potentials
in the torus for small pertubation of the absolute Maxwellian. Notice that the convergence
rate of the perturbative solution for the cutoff hard potentials is exponential in a torus, [23].



4 R.J. Duan, S. Ukai, T. Yang and H.J. Zhao

For problems in the whole space, the convergence rate should be algebraic and it depends on
the space dimension because the low frequency in the Fourier variable domintates the decay
estimate, see [24, 25]. For the Boltzmann equation with a time independent potential force, the
optimal convergence rate of the solution to a local Maxwellian was obtained in [8], where the
proof is motivated by the study of the corresponding problems for the Navier-Stokes equations,
cf. [18, 20, 7].

The rest of this paper is arranged as follows. In Section 2, we will first present a decomposi-
tion of the linearized Boltzmann equation. Then, some basic estimates on the communicators of
the linearized collision operator L and the differential operator will be derived. Based on these
estimates, the optimal decay in time estimates on the linear solution operator are proved in The-
orems 2.1 and 2.2. In Section 3, we will apply the estimates obtained in Section 2 to prove the
global existence and convergence rate of the solution to the Cauchy problem for the nonlinear
Boltzmann equation. In addition, the existence and asymptotic stability of the time periodic
solution are also given. These existence and stability results are summarized in Theorems 3.1,
3.2 and 3.3.

Notation. Throughout this paper, C denotes a general constant. If the dependence needs to be
specified, then the notations Ci, i = 1, 2, · · · are used. In addition, c > 0 also denotes a positive
constant which may vary from line to line and δ > 0 stands for a small constant. 〈·, ·〉 is the
inner product in the space L2(Rn

x × Rn
ξ ) with the norm denoted by ‖ · ‖. Sometimes, ‖ · ‖ also

denotes the norm of the space L2(Rn
x) without any ambiguity. ‖ · ‖Lp

x,ξ
with 1 ≤ p ≤ ∞ denotes

the norm in the Lebesgue space Lp(Rn
x ×Rn

ξ ). The norm in the space Zq = L2
ξ(L

q
x) is defined by

‖u‖Zq =

(∫
Rn

(∫
Rn

|u(x, ξ)|qdx

) 2
q

dξ

) 1
2

, u = u(x, ξ) ∈ Zq.

For the multiple indices α, β, γ with α = (α1, α2, · · · , αn), β = (β1, β2, · · · , βn), and γ =
(γ1, γ2, · · · , γn), we adopt the usual notations ∂β

x∂γ
ξ = ∂β1

x1 ∂β2
x2 · · · ∂

βn
xn ∂γ1

ξ1
∂γ2

ξ2
· · · ∂γn

ξn
, and in par-

ticular ∂α
x,ξ = ∂β

x∂γ
ξ when α = β + γ. The length of α is |α| =

∑n
i=1 αi.

2 Decay estimates on the linearized equation

2.1 Preliminaries

(i) Linearized equation. In this section, we are concerned with the initial value problem for
the linearized Boltzmann equation corresponding to (1.1). More generally, for some initial time
s ∈ R, it is in the form

∂tu + ξ · ∇xu + E1 · ∇ξu = Lu + ξ · E2u, t > s, x ∈ Rn, ξ ∈ Rn, (2.1)
u(t, x, ξ)|t=s = u0(x, ξ), x ∈ Rn, ξ ∈ Rn. (2.2)

Here u0(x, ξ) is given, denoting the same initial data for different initial time, and Ei = Ei(t, x),
i = 1, 2, are given vector-valued functions for generalization. Formally the solution to the initial
value problem (2.1)-(2.2) is written as

U(t, s)u0, −∞ < s ≤ t < ∞,

where U(t, s) is called the solution operator for the linear equation (2.1). We shall obtain some
basic decay in time estimates on U(t, s) in some Sobolev space weighted with velocity functions

H`
(
Rn

x × Rn
ξ ; (1 + |ξ|)kdxdξ

)
, ` ≥ 2, k ≥ 1,



Boltzmann Equation with Force and Source 5

which enable us to solve the nonlinear problem by the Duhamel formula and the contraction
mapping theorem.

(ii) Known properties of the linearized collision operator. For the linearized collision
operator L given by (1.3), one has

(Lu)(ξ) = −ν(ξ)u(ξ) + (Ku)(ξ),

ν(ξ) =
∫

Rn×Sn−1

|(ξ − ξ∗) · ω|M∗ dωdξ∗,

(Ku)(ξ) =
∫

Rn×Sn−1

[
−M

1
2 u∗ + (M′

∗)
1
2 u′ + (M′)

1
2 u′∗

]
|(ξ − ξ∗) · ω|M

1
2
∗ dωdξ∗

=
∫

Rn

K(ξ, ξ∗)u(ξ∗)dξ∗.

Moreover, the following well-known properties hold; see [3, 4, 11].
(a) there exists ν0 > 0 such that

ν0(1 + |ξ|) ≤ ν(ξ) ≤ ν−1
0 (1 + |ξ|);

(b) K is a self-adjoint compact operator on L2(Rn
ξ ) with a real symmetric integral kernel

K(ξ, ξ∗) which enjoys the estimate∫
Rn

|K(ξ, ξ∗)|(1 + |ξ∗|)−βdξ∗ ≤ C(1 + |ξ|)−β−1, β ≥ 0; (2.3)

(c) the nullspace of the operator L is the space of collision invariants

N = KerL = span
{
M1/2; ξiM1/2, i = 1, 2, · · · , n; |ξ|2M1/2

}
;

(d) L is an unbounded, self-adjoint and non-positive operator on L2(Rn
ξ ) with the domain

D(L) =
{

u ∈ L2(Rn
ξ )
∣∣∣ ν(ξ)u ∈ L2(Rn

ξ )
}

.

(iii) Macro-micro decomposition. Define P as a velocity projection operator from L2(Rn
ξ )

to N . Then any function u(t, x, ξ) for any fixed (t, x) can be uniquely decomposed as the sum
of the macroscopic component Pu and microscopic component {I−P}u:

u(t, x, ξ) = Pu + {I−P}u.

With this notion, the linearized collision operator L satisfies

−
∫

Rn

uLu dξ ≥ c0

∫
Rn

ν(ξ)({I−P}u)2dξ, ∀u ∈ D(L),

for some constant c0 > 0. Here for simplicity, throughout this section, one sets

u1 = Pu, u2 = {I−P}u.

The equation (2.1) is also decomposed as follows. The microscopic equation for u2 is obtained
by applying the microscopic projection I−P to (2.1):

∂tu2 − Lu2 = −{I−P}
(
ξ · ∇xu

)
− {I−P}

(
E1 · ∇ξu− ξ · E2u

)
,
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or,

∂tu2 − Lu2 = −ξ · ∇xu2 − E1 · ∇ξu2 + ξ · E2u2

−ξ · ∇xu1 − E1 · ∇ξu1 + ξ · E2u1

+P
(
ξ · ∇xu + E1 · ∇ξu− ξ · E2u

)
. (2.4)

In order to write the macroscopic equation, as in [13], one first expands u1 = Pu as

u1 =

{
a(t, x) +

n∑
i=1

bi(t, x)ξi + c(t, x)|ξ|2
}

M1/2.

Putting this expansion into the following equation

∂tu1 + ξ · ∇xu1 + E1 · ∇ξu1 − ξ · E2u1

= −
{

∂tu2 + ξ · ∇xu2 + E1 · ∇ξu2 − ξ · E2u2 − Lu2

}
:= <, (2.5)

and then collecting the coefficients with respect to the basis

M1/2,
(
ξiM1/2

)
1≤i≤n

,
(
|ξi|2M1/2

)
1≤i≤n

,
(
ξiξjM1/2

)
1≤i<j≤n

,
(
|ξ|2ξiM1/2

)
1≤i≤n

,

one has

M1/2 : ∂ta + E1 · b = <0, (2.6)
ξiM1/2 : ∂tbi + ∂ia− (aĒi − 2cE1i) = <i

1, (2.7)
|ξi|2M1/2 : ∂tc + ∂ibi − Ēibi = <i

21, (2.8)
ξiξjM1/2 : ∂ibj + ∂jbi − (Ēibj + Ējbi) = <ij

22, (2.9)

|ξ|2ξiM1/2 : ∂ic− Ēic = <i
3, (2.10)

where for simplicity, ∂i = ∂xi , ∂j = ∂xj , and <0,<i
1,<i

21,<
ij
22,<i

3 with 1 ≤ i 6= j ≤ n are the
corresponding coefficients of < with respect to the above basis, and Ē is defined by

Ē =
1
2
E1 + E2.

Finally we list a basic fact for any function u = u(t, x, ξ).

Proposition 2.1. Let m be a non-negative integer and k be any number. Then for any β and
γ, one has ∂m

t ∂β
xPu = P∂m

t ∂β
xu with estimates

1
C

∥∥∥νk∂m
t ∂β

x∂γ
ξ Pu

∥∥∥ ≤ ∥∥∥∂m
t ∂β

xa
∥∥∥+

∥∥∥∂m
t ∂β

x b
∥∥∥+

∥∥∥∂m
t ∂β

x c
∥∥∥ ≤ C

∥∥∥∂m
t ∂β

xPu
∥∥∥ ,

where C > 1 is some constant independent of u.

2.2 Estimates on commutators

In this subsection we study the functional properties of commutators related to L:

[L, ξi] , [L, ∂ξi
] , [[L, ∂ξi

] , ξj ] ,
[
[L, ∂ξi

] , ∂ξj

]
, 1 ≤ i, j ≤ n.

Let L denote this kind of commutator.
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Lemma 2.1. L is a bounded linear operator from L2(Rn
ξ ) to itself, i.e., there is some constant

C such that
‖Lu‖ ≤ C‖u‖, (2.11)

for any u = u(ξ) ∈ L2(Rn
ξ ).

Proof. This lemma is proved by the following steps.
Step 1. The explicit expressions of ν and K are available:

ν(ξ) = Cn

∫
Rn

|ξ − ξ∗|M(ξ∗)dξ∗,

K(ξ, ξ∗) = K1(ξ, ξ∗) + K2(ξ, ξ∗)

K1(ξ, ξ∗) = −Cn|ξ − ξ∗| exp
(
−|ξ|

2 + |ξ∗|2

4

)
,

K2(ξ, ξ∗) =
Cn

|ξ − ξ∗|n−2
exp

(
−1

8
(|ξ|2 − |ξ∗|2)2

|ξ − ξ∗|2
− |ξ − ξ∗|2

8

)
,

where for simplicity Cn may be some different positive constants depending only on the space
dimension n. The proof for the case n = 3 is given in [11]. The general case n ≥ 3 can be
obtained similarly.

Step 2. In this step, some preparations are made for the next step. First, from (2.13), one
can easily verify that ν(ξ) is a smooth function of ξ with bounded derivatives of any order.

Next, for the integral kernels K1 and K2, set

K1(ξ, ξ∗) = K11(|ξ − ξ∗|)K12(ξ, ξ∗),
K2(ξ, ξ∗) = K21(|ξ − ξ∗|)K22(ξ, ξ∗),

where

K11(|ξ − ξ∗|) = −Cn|ξ − ξ∗|,

K21(|ξ − ξ∗|) =
Cn

|ξ − ξ∗|n−2
exp

(
−|ξ − ξ∗|2

8

)
,

K12(ξ, ξ∗) = exp (V1) , V1 = −|ξ|
2 + |ξ∗|2

4
,

K22(ξ, ξ∗) = exp (V2) , V2 = −1
8

(|ξ|2 − |ξ∗|2)2

|ξ − ξ∗|2
.

Finally, for the simplicity of notions, we define velocity differential operators ∂̄i, i = 1, 2, · · · , n
by ∂̄i = −{∂ξi

+ ∂ξi∗}.
Notice that ∂̄ih ≡ 0 for any radial function h = h(|ξ − ξ∗|), and moreover,

∂̄iV1 = V1i, V1i =
ξi + ξi∗

2
,

∂̄iV2 = V2i, V2i =
(ξi − ξi∗)
2|ξ − ξ∗|2

(|ξ|2 − |ξ∗|2),

∂̄jV1i = ∂̄j ∂̄iV1 = V1ij , V1ij = −δij ,

∂̄jV2i = ∂̄j ∂̄iV2 = V2ij , V2ij =
(ξi − ξi∗)(ξj − ξj∗)

|ξ − ξ∗|2
,
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where δij is the Kronecker’s symbol. Then one has

∂̄iK11 = ∂̄iK21 ≡ 0,

∂̄iK12 = K12V1i, ∂̄iK22 = K22V2i,

∂̄j(K12V1i) = K12V1iV1j + K12V1ij ,

∂̄j(K22V2i) = K22V2iV2j + K22V2ij .

Step 3. This step is concerned with the computation of commutators. Set V0i = ξi∗ − ξi,
direct calculations yield

[L, ξi]u =
∫

Rn

K(ξ, ξ∗)V0iu(ξ∗)dξ∗,

[L, ∂ξi
]u = ∂ξi

νu +
∫

Rn

(K1V1i + K2V2i)u(ξ∗)dξ∗,

[[L, ∂ξi
], ξj ] =

∫
Rn

(K1V1i + K2V2i)Aju(ξ∗)dξ∗,[
[L, ∂ξi

], ∂ξj

]
= −∂2

ξiξj
νu +

∫
Rn

[K1(V1iV1j + V1ij) + K2(V2iV2j + V2ij)]u(ξ∗)dξ∗.

Step 4. Write Kc(ξ, ξ∗) as any one of the following integral kernels:

KV0i, K1V1i + K2V2i, (K1V1i + K2V2i)V0j ,

K1(V1iV1j + V1ij) + K2(V2iV2j + V2ij).

Direct observations show that K1 can absorb any finite numbers of velocity functions V0i, V1i

and V1ij , while K2 can absorb any finite number of velocity functions V0i, V2i and V2ij . This
means that if one defines

K̃1(ξ, ξ∗) = Cn|ξ − ξ∗| exp
(
−|ξ|

2 + |ξ∗|2

8

)
,

K̃2(ξ, ξ∗) =
Cn

|ξ − ξ∗|n−2
exp

(
− 1

16
(|ξ|2 − |ξ∗|2)2

|ξ − ξ∗|2
− |ξ − ξ∗|2

16

)
,

then
|Kc(ξ, ξ∗)| ≤ K̃1(ξ, ξ∗) + K̃2(ξ, ξ∗) := K̃(ξ, ξ∗).

Since K̃(ξ, ξ∗) satisfies the estimate (2.3) for β = 0 similar to K, it follows that∫
Rn

|Kc(ξ, ξ∗)|dξ ≤ C,

∫
Rn

|Kc(ξ, ξ∗)|dξ∗ ≤ C,

which implies that ∥∥∥∥∫
Rn

Kc(ξ, ξ∗)u(ξ∗)dξ∗

∥∥∥∥ ≤ C‖u‖.

Thus (2.11) is proved. This completes the proof of the lemma.

In general, for any positive integer N , define the iterative commutator L by

L = [· · · [[L,X1],X2] · · · ,XN ],

where for each k ∈ {1, 2, · · · , N}, Xk denotes the velocity multiplier ξik or the velocity differential
operator ∂ξik

. Write L as the sum of two parts LI and LII :

L = LI + LII ,

LI = [· · · [[−ν(ξ),X1],X2] · · · ,XN ],
LII = [· · · [[K,X1],X2] · · · ,XN ].

Then L has the same property as in Lemma 2.1.
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Corollary 2.1. The following properties hold:
(i) LI is a bounded linear operator on L2(Rn

ξ ).
(ii) LII is a compact operator on L2(Rn

ξ ) with the integral kernel Kc(ξ, ξ∗), which satisfies
that for any k ≥ 0, there is some constant C depending on k such that

‖νkLIIu‖ ≤ C‖νk−1u‖, (2.12)

for any u = u(ξ).
(iii) L is a bounded linear operator on L2(Rn

ξ ).

Proof. It is obvious that (iii) directly follows from (i) and (ii). Thus it suffices to prove (i) and
(ii). For the first part LI , in fact it is a velocity multiplier generated by ν(ξ), given by

LI =


(−1)N+1

(
N∏

k=1

Xk

)
ν(ξ) all Xk are ∂ξik

,

0 otherwise.

Thus (i) holds from the proof of Lemma 2.1. For the second part LII , it can be written as

(LIIu)(ξ) =
∫

Rn

Kc(ξ, ξ∗)u(ξ∗)dξ∗,

Kc(ξ, ξ∗) = K1(ξ, ξ∗)V1 + K2(ξ, ξ∗)V2,

where V1 is the linear combination of products of velocity multipliers V0i, V1i and V1ij , and
similarly V2 is the linear combination of products of velocity multipliers V0i, V2i and V2ij . Hence,
similar to the compact operator K, LII is also a compact operator on L2(Rn

ξ ) with the integral
kernel Kc satisfying (2.3). Finally we claim that (2.3) implies (2.12). In fact, for any k ≥ 0 and
any u = u(ξ),

(LIIu)(ξ) ≤
{∫

Rn

|Kc(ξ, ξ∗)|ν−2k(ξ∗)dξ∗

}1/2{∫
Rn

|Kc(ξ, ξ∗)|ν2k(ξ∗)u2(ξ∗)dξ∗

}1/2

≤ Cν−(2k+1)/2(ξ)
{∫

Rn

|Kc(ξ, ξ∗)|ν2k(ξ∗)u2(ξ∗)dξ∗

}1/2

,

which gives∫
Rn

ν2k(ξ)(LIIu)2(ξ)dξ ≤ C

∫
Rn

ν2k(ξ∗)u2(ξ∗)
∫

Rn

|Kc(ξ, ξ∗)|ν−1(ξ)dξdξ∗

≤ C

∫
Rn

ν2k−2(ξ∗)u2(ξ∗)dξ∗.

That is (2.12). This completes the proof of this lemma.

Finally, Corollary 2.1 directly gives

Corollary 2.2. Let γ, k be |γ| ≥ 1 and k ≥ 0. Then there is some constant C such that

‖[L, ∂γ
ξ ]u‖ ≤ C

∑
0≤|γ′|≤|γ|−1

‖∂γ′

ξ u‖,

‖νk[K, ∂γ
ξ ]u‖ ≤ C‖νk−1u‖,

for any u = u(ξ).



10 R.J. Duan, S. Ukai, T. Yang and H.J. Zhao

2.3 Energy estimates

From now on, we use the following notation of the index sets for differentiations. Let ` be any
positive integer.

Λ0(β) = {0 ≤ |β| ≤ `},
Λ1(β) = {1 ≤ |β| ≤ `},
Λ2(β) = {0 ≤ |β| ≤ `− 1},

Λi
3(β, γ) = {|γ| = i, 0 ≤ |β|+ |γ| ≤ `}, i = 1, 2, · · · , `,

Λ3(β, γ) = {|γ| ≥ 1, 0 ≤ |β|+ |γ| ≤ `} = ∪`
i=1Λ

i
3(β, γ),

Λj
4(β, γ) = {|γ| = j, 0 ≤ |β|+ |γ| ≤ `− 1}, j = 1, 2, · · · , `− 1,

Λ4(β, γ) = {|γ| ≥ 1, 0 ≤ |β|+ |γ| ≤ `− 1} = ∪`−1
i=1Λi

4(β, γ).

(i) Assumptions and energy inequality. Throughout this subsection, the following as-
sumptions are made:

(A1) The integer ` ≥ 2;
(A2) For the functions E1 and E2, there is δ > 0 such that∑

Λ0(β)

∥∥∥(1 + |x|)∂β
xEi(t, x)

∥∥∥
L∞t,x

+
∑

Λ2(β)

∥∥∥(1 + |x|)∂t∂
β
xEi(t, x)

∥∥∥
L∞t,x

≤ δ,

where i = 1, 2.
Under the above assumptions, our final goal of this subsection is to show that if δ > 0 is

small enough, then the energy inequality holds:

d

dt
H(t) + cD(t) ≤ C‖∇xu1‖2, (2.13)

where c > 0 is some positive constant, C is some constant, H(t) is a nonlinear energy func-
tional and D(t) is the corresponding dissipation rate. For the moment, we would not like to
expose the precise forms of H(t) and D(t), see Theorem 2.1, but only point out some important
characteristics for them:

• H(t) contains the microscopic component u2 and its derivatives with respect to t, x, and ξ
up to order of ` ≥ 2, and also only the derivatives of the macroscopic component u1 with
respect to t and x;

• In H(t), for the time derivatives, the differential order of time is at most one, where there
is not any weight function, but for others, the velocity function ν is added.

• D(t) contains those terms corresponding to H(t) but the power of velocity weight function
is higher 1/2.

• There is some constant C such that H(t) ≤ CD(t) for any t ≥ 0.

(ii) Energy estimates on the microscopic part. Now we turn to the proof of the energy
inequality in the form of (2.13). First consider the estimates on some energy functional H1(t)
which is a linear combination of the following terms:

‖u2‖2,
∑

Λ1(β)

∥∥∥∂β
xu
∥∥∥2

,
∑

Λ2(β)

∥∥∥∂t∂
β
xu
∥∥∥2

,
∑

Λi
3(β,γ)

∥∥∥∂β
x∂γ

ξ u2

∥∥∥2
,
∑

Λj
4(β,γ)

∥∥∥∂t∂
β
x∂γ

ξ u2

∥∥∥2
.
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For brevity, define the time dependent linear operator B(t) and D(t) by

B(t) = ξ · ∇x + E1 · ∇ξ − L,

D(t) = ξ · ∇x + E1 · ∇ξ − ξ · E2.

Using the above notations, (2.1) and (2.4) can be rewritten as

∂tu + B(t)u = ξ · E2u, (2.14)

and
∂tu2 + B(t)u2 = ξ · E2u2 + [P,D(t)]u, (2.15)

where [P,D(t)] is the commutator given by

[P,D(t)] = PD(t)−D(t)P.

In what follows, a series of lemmas are given. The first one is concerned with the L2
x,ξ−estimate

on the microscopic component u2. For this purpose, from the properties of the linearized Boltz-
mann operator L, the smallness assumption we imposed on the external forces E1, E2, and by
using the Hardy inequality

∥∥∥u1
|x|

∥∥∥ ≤ ‖∇xu1‖, we have by applying the standard energy method
to (2.15) that

Lemma 2.2. If δ > 0 is small enough, then one has

d

dt
‖u2‖2 + c

∥∥∥ν1/2u2

∥∥∥2
≤ C‖∇xu1‖2.

The next lemma is on the L2
x,ξ−estimate on ∂β

xu for β ∈ Λ1(β).

Lemma 2.3. If δ > 0 is small enough, then one has

d

dt

∑
Λ1(β)

∥∥∥∂β
xu
∥∥∥2

+ c
∑

Λ1(β)

∥∥∥ν1/2∂β
xu2

∥∥∥2
≤ Cδ

∑
Λ1(β)

∥∥∥∂β
xu1

∥∥∥2
+ Cδ

∑
Λ3(β,γ)

∥∥∥∂β
x∂γ

ξ u2

∥∥∥2
. (2.16)

Proof. Directly applying ∂β
x with β ∈ Λ2(β) to (2.14) gives

∂t(∂β
xu) + B(t)(∂β

xu) = ∂β
x (ξ · E2u) + [B(t), ∂β

x ]u. (2.17)

Further multiplying (2.25) by ∂β
xu and then integrating over Rn

x × Rn
ξ , one has

1
2

d

dt
‖∂β

xu‖2 + c0

∥∥∥ν1/2∂β
xu2

∥∥∥2
≤

2∑
i=1

Ii, (2.18)

where we have used the identity

{I−P}∂β
xu = ∂β

x{I−P}u = ∂β
xu2,

and Ii, i = 1, 2, denote the corresponding terms after taking the inner product with ∂β
xu for

ones on the right hand side of (2.17) .
Next we estimate I1 and I2. To this end, from the smallness assumption we imposed on E1

and E2, the Hardy inequality and the Cauchy-Schwarz inequality, we can deduce that

I1 ≤ Cδ
∑

Λ1(β′)

∥∥∥ν1/2∂β′
x u2

∥∥∥2
+ Cδ

∑
Λ1(β′)

∥∥∥∂β′
x u1

∥∥∥2
,
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and

I2 ≤ Cδ
∑

Λ1(β′)

∥∥∥∂β′
x u1

∥∥∥2
+ Cδ

∑
Λ3(β′,γ′)

∥∥∥∂β′
x ∂γ′

ξ u2

∥∥∥2
.

Thus taking summation over β ∈ Λ1(β) for (2.18) and then collecting all estimates, (2.16) follows
if δ > 0 is small enough. This completes the proof of the lemma.

For the L2
x,ξ−estimate on ∂t∂

γ
xu(γ ∈ Λ2(β)), we have the following result

Lemma 2.4. If δ > 0 is small enough, then one has

d

dt

∑
Λ2(β)

‖∂t∂
γ
xu‖2 + c

∑
Λ2(β)

∥∥∥ν1/2∂t∂
γ
xu2

∥∥∥2

≤ Cδ

∑
Λ1(β)

‖∂β
xu1‖2 +

∑
Λ2(β)

‖∂t∂
β
xu1‖2


+Cδ

∑
Λ1(β)

∥∥∥ν1/2∂β
xu2

∥∥∥2
+

∑
Λ3(β,γ)

∥∥∥∂β
x∂γ

ξ u2

∥∥∥2
+

∑
Λ4(β,γ)

∥∥∥∂t∂
β
x∂γ

ξ u2

∥∥∥2

 . (2.19)

Proof. First it is easy to see that for β ∈ Λ2(β),

∂t(∂t∂
β
xu) + B(t)(∂t∂

β
xu) = ξ · ∂t∂

β
x (E2u) + [B(t), ∂t∂

β
x ]u,

which gives
1
2

d

dt
‖∂t∂

β
xu‖2 + c0

∥∥∥ν1/2∂t∂
β
xu2

∥∥∥2
≤

2∑
i=1

Ii. (2.20)

For I1, one has

I1 ≤ δ
∥∥∥ν1/2∂t∂

β
xu
∥∥∥2

+ Cδ
∥∥∥ν1/2∂t∂

β
x (E2u)

∥∥∥2

≤ Cδ
∑

Λ2(β′)

∥∥∥ν1/2∂t∂
β′
x u2

∥∥∥2
+ Cδ

∑
Λ2(β′)

∥∥∥∂t∂
β′
x u1

∥∥∥2

+Cδ
∑

Λ1(β′)

∥∥∥ν1/2∂β′
x u2

∥∥∥2
+ Cδ

∑
Λ1(β′)

∥∥∥∂β′
x u1

∥∥∥2
.

For I2, noticing that

[B(t), ∂t∂
β
x ]u = −

∑
0≤|β′|≤|β|−1

Cβ′∂
β−β′
x E1 · ∇ξ∂t∂

β′
x u

−
∑

0≤|β′|≤|β|

Cβ′∂t∂
β−β′
x E1 · ∇ξ∂

β′
x u,

one also has
I2 ≤ δ

∥∥∥∂t∂
β
xu2

∥∥∥2
+ Cδ

∑
Λ2(β′)

∥∥∥∂t∂
β′
x u1

∥∥∥2
+ Cδ

∑
Λ1(β′)

∥∥∥∂β′
x u1

∥∥∥2

+Cδ
∑

Λ3(β,γ)

∥∥∥∂β
x∂γ

ξ u2

∥∥∥2
+ Cδ

∑
Λ4(β,γ)

∥∥∥∂t∂
β
x∂γ

ξ u2

∥∥∥2
.

Thus taking summation over β ∈ Λ2(β) for (2.20) and then collecting all estimates, (2.19) follows
if δ > 0 is small enough. This completes the proof of the lemma.
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As to the L2
x,ξ−estimate on ∂β

x∂γ
ξ u2 for (β, γ) ∈ Λi

3(β, γ), we can conclude that

Lemma 2.5. If δ > 0 is small enough, then one has
d

dt

∑
Λi

3(β,γ)

∥∥∥∂β
x∂γ

ξ u2

∥∥∥2
+ c

∑
Λi

3(β,γ)

∥∥∥ν1/2∂β
x∂γ

ξ u2

∥∥∥2

≤ C
∑

Λ1(β)

∥∥∥∂β
xu1

∥∥∥2
+ C

∑
Λ0(β)

∥∥∥∂β
xu2

∥∥∥2

+Ci,i−1

∑
Λi−1

3 (β,γ)

∥∥∥∂β
x∂γ

ξ u2

∥∥∥2
+ δCi,i+1

∑
Λi+1

3 (β,γ)

∥∥∥∂β
x∂γ

ξ u2

∥∥∥2
, (2.21)

where i = 1, 2, · · · , `, and Ci,i−1, Ci,i+1 are some constants with additional conventions:

C1,0 = C`,`+1 = 0. (2.22)

Proof. First apply ∂γ
ξ with |γ| = i = 1, 2, · · · , ` to (2.15) to get

∂t(∂
γ
ξ u2) + B(t)∂γ

ξ u2 = E2 · ∂γ
ξ (ξu2) + ∂γ

ξ [P,D(t)]u + [B(t), ∂γ
ξ ]u2

= ξ · E2∂
γ
ξ u2 + eγ · E2∂

γ−1
ξ u2 − eγ · ∇x∂γ−1

ξ u2

+∂γ
ξ [P,D(t)]u− [L, ∂γ

ξ ]u2, (2.23)

where eγ denotes a constant vector, and for simplicity we used the notations

eγ · E2∂
γ−1
ξ u2 =

∑
|γ′|=1

γ∂γ′

ξ ξ · E2∂
γ−γ′

ξ u2 =
∑

0≤|γ′|≤|γ|−1

Cγ′∂
γ−γ′

ξ ξ · E2∂
γ′

ξ u2,

and

eγ · ∇x∂γ−1
ξ u2 =

∑
|γ′|=1

γ∂γ′

ξ ξ · ∇x∂γ−γ′

ξ u2 =
∑

0≤|γ′|≤|γ|−1

Cγ′∂
γ−γ′

ξ ξ · ∇x∂γ′

ξ u2.

Further apply ∂β
x with (β, γ) ∈ Λi

3(β, γ) to (2.23) to obtain

∂t(∂β
x∂γ

ξ u2) + B(t)(∂β
x∂γ

ξ u2)

=
∑

0≤|β′|≤|β|

Cβ′ξ · ∂β−β′
x E2∂

β′
x ∂γ

ξ u2 +
∑

0≤|β′|≤|β|

Cβ′eγ · ∂β−β′
x E2∂

β′
x ∂γ−1

ξ u2

−
∑

0≤|β′|≤|β|−1

Cβ′∂
β−β′
x E1 · ∇ξ∂

β′
x ∂γ

ξ u2 − eγ · ∇x∂β
x∂γ−1

x u2

+∂β
x∂γ

ξ [P,D(t)]u− [L, ∂γ
ξ ]∂β

xu2. (2.24)

Multiplying (2.24) by ∂β
x∂γ

ξ u2 and integrating it over Rn
x × Rn

ξ , one has

1
2

d

dt

∥∥∥∂β
x∂γ

ξ u2

∥∥∥2
+ c0

∥∥∥ν1/2{I−P}∂β
x∂γ

ξ u2

∥∥∥2
≤

6∑
i=1

Ii. (2.25)

We estimate each term Ii as follows. For I1, I2 and I3, one has

I1 ≤ δ
∥∥∥ν1/2∂β

x∂γ
ξ u2

∥∥∥2
+ Cδ

∑
Λi

3(β′,γ′)

∥∥∥ν1/2∂β′
x ∂γ′

ξ u2

∥∥∥2
,

I2 ≤ δ
∥∥∥∂β

x∂γ
ξ u2

∥∥∥2
+ δCi,i−1

∑
Λi−1

3 (β′,γ′)

∥∥∥∂β′
x ∂γ′

ξ u2

∥∥∥2
+ δCδi1

∑
Λ0(β′)

∥∥∥∂β′
x u2

∥∥∥2
,

I3 ≤ δ
∥∥∥∂β

x∂γ
ξ u2

∥∥∥2
+ δCi,i+1

∑
Λi+1

3 (β′,γ′)

∥∥∥∂β′
x ∂γ′

ξ u2

∥∥∥2
,
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where δi1 is the Kroneker symbol and we have set (2.22). In fact, if i = `, Λ`
3(β, γ) means β = 0

and |γ| = `, i.e. one has taken only the velocity derivative ∂γ
ξ with |γ| = `, which implies I3 = 0

for this special case. For I4, I5 and I6, similarly it holds that

I4 ≤
c0

6

∥∥∥∂β
x∂γ

ξ u2

∥∥∥2
+ Ci,i−1

∑
Λi−1

3 (β′,γ′)

∥∥∥ν1/2∂β′
x ∂γ′

ξ u2

∥∥∥2
+ Cδi1

∑
Λ0(β′)

∥∥∥∂β′
x u2

∥∥∥2
,

I5 ≤
c0

6

∥∥∥∂β
x∂γ

ξ u2

∥∥∥2
+ C

∑
Λ1(β′)

∥∥∥∂β′
x u1

∥∥∥2
+ C

∑
Λ1(β′)

∥∥∥∂β′
x u2

∥∥∥2
,

and

I6 = −
〈
[L, ∂γ

ξ ]∂β
xu2, ∂

β
x∂γ

ξ u2

〉
≤ c0

6

∥∥∥∂β
x∂γ

ξ u2

∥∥∥2
+ C

∥∥∥[L, ∂γ
ξ ]∂β

xu2

∥∥∥2

≤ c0

6

∥∥∥∂β
x∂γ

ξ u2

∥∥∥2
+ C

∑
Λ0(β′)

∥∥∥∂β′
x u2

∥∥∥2
+ Ci,i−1

∑
Λi−1

3 (β′,γ′)

∥∥∥∂β′
x ∂γ′

ξ u2

∥∥∥2
,

where Corollary 2.2 was used. Finally it is noticed that∥∥∥ν1/2{I−P}∂β
x∂γ

ξ u2

∥∥∥2
≥
∥∥∥ν1/2∂β

x∂γ
ξ u2

∥∥∥2
−
∥∥∥ν1/2P∂β

x∂γ
ξ u2

∥∥∥2

≥
∥∥∥ν1/2∂β

x∂γ
ξ u2

∥∥∥2
− C

∑
Λ0(β′)

∥∥∥∂β′
x u2

∥∥∥2
.

Putting all the above estimates into (2.25) and then taking summation over (β, γ) ∈ Λi
3(β, γ)

leads to (2.21), provided that δ > 0 is small enough. This completes the proof of the lemma.

Finally for the L2
x,ξ−estimate on ∂t∂

β
x∂γ

ξ u2 ((β, γ) ∈ Λj
4(β, γ), j = 1, 2, · · · , `− 1), we have

Lemma 2.6. If δ > 0 is small enough, then one has

d

dt

∑
Λj

4(β,γ)

∥∥∥∂t∂
β
x∂γ

ξ u2

∥∥∥2
+ c

∑
Λj

4(β,γ)

∥∥∥ν1/2∂t∂
β
x∂γ

ξ u2

∥∥∥2

≤ C
∑

Λ2(β)

∥∥∥∂t∂
β
xu1

∥∥∥2
+ C

∑
Λ2(β)

∥∥∥∂t∂
β
xu2

∥∥∥2

+Cj,j−1

∑
Λj−1

4 (β,γ)

∥∥∥∂t∂
β
x∂γ

ξ u2

∥∥∥2
+ δCj,j+1

∑
Λj+1

4 (β,γ)

∥∥∥∂t∂
β
x∂γ

ξ u2

∥∥∥2

+Cδ
∑

Λ0(β)

∥∥∥∂β
xu2

∥∥∥2
+ Cδ

∑
Λ3(β,γ)

∥∥∥∂β
x∂γ

ξ u2

∥∥∥2
(2.26)

where j = 1, 2, · · · , `− 1, and Ci,i−1, Ci,i+1 are some constants with additional conventions:

C1,0 = C`−1,` = 0.

Proof. Notice that (2.24) also holds for (β, γ) ∈ Λj
4(β, γ) with j = 1, 2, · · · , `− 1. Then further

applying ∂t to it, multiplying the resulting identity by ∂t∂
β
x∂γ

ξ u2, and integrating the final result
over Rn × Rn, we have

1
2

d

dt

∥∥∥∂t∂
β
x∂γ

ξ u2

∥∥∥2
+ c0

∥∥∥ν1/2{I−P}∂t∂
β
x∂γ

ξ u2

∥∥∥2
≤

7∑
i=1

Ii. (2.27)
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First for I1, I2 and I3, one has

I1 =
∑

0≤|β′|≤|β|

Cβ′

〈
ξ · ∂β−β′

x E2∂t∂
β′
x ∂γ

ξ u2 + ξ · ∂t∂
β−β′
x E2∂

β′
x ∂γ

ξ u2, ∂t∂
β
x∂γ

ξ u2

〉
≤ δ

∥∥∥ν1/2∂t∂
β
x∂γ

ξ u2

∥∥∥2
+ Cδ

∑
Λj

4(β′,γ′)

∥∥∥ν1/2∂t∂
β′
x ∂γ′

ξ u2

∥∥∥2
+ Cδ

∑
Λj

3(β′,γ′)

∥∥∥ν1/2∂β′
x ∂γ′

ξ u2

∥∥∥2
,

I2 =
∑

0≤|β′|≤|β|

Cβ′eγ ·
〈
∂β−β′

x E2∂t∂
β′
x ∂γ−1

ξ u2 + ∂t∂
β−β′
x E2∂

β′
x ∂γ−1

ξ u2, ∂t∂
β
x∂γ

ξ u2

〉
≤ δ

∥∥∥∂t∂
β
x∂γ

ξ u2

∥∥∥2
+ δCj,j−1

∑
Λj−1

4 (β′,γ′)

∥∥∥∂t∂
β′
x ∂γ′

ξ u2

∥∥∥2

+δCδj1

∑
Λ2(β′)

∥∥∥∂t∂
β′
x u2

∥∥∥2
+ δCj,j−1

∑
Λj−1

3 (β′,γ′)

∥∥∥∂β′
x ∂γ′

ξ u2

∥∥∥2
+ δCδj1

∑
Λ0(β′)

∥∥∥∂β′
x u2

∥∥∥2
,

and

I3 = −
∑

0≤|β′|≤|β|−1

Cβ′

〈
∂β−β′

x E1 · ∇ξ∂t∂
β′
x ∂γ

ξ u2 + ∂t∂
β−β′
x E1 · ∇ξ∂

β′
x ∂γ

ξ u2, ∂t∂
β
x∂γ

ξ u2

〉
≤ δ

∥∥∥∂t∂
β
x∂γ

ξ u2

∥∥∥2
+ δCj,j+1

∑
Λj+1

4 (β′,γ′)

∥∥∥∂t∂
β′
x ∂γ′

ξ u2

∥∥∥2
+ Cδ

∑
Λj+1

3 (β′,γ′)

∥∥∥∂β′
x ∂γ′

ξ u2

∥∥∥2
.

Furthermore, it holds that

I4 = −eγ ·
〈
∇x∂t∂

β
x∂γ−1

x u2, ∂t∂
β
x∂γ

ξ u2

〉
≤ c0

6

∥∥∥∂t∂
β
x∂γ

ξ u2

∥∥∥2
+ Cj,j−1

∑
Λj−1

4 (β′,γ′)

∥∥∥∂t∂
β′
x ∂γ′

ξ u2

∥∥∥2
+ C

∑
Λ2(β′)

∥∥∥∂t∂
β′
x u2

∥∥∥2
,

I5 = −
〈
∂t∂

β
x∂γ

ξ [P,D(t)]u, ∂t∂
β
x∂γ

ξ u2

〉
≤ c0

6

∥∥∥∂t∂
β
x∂γ

ξ u2

∥∥∥2
+ C

∑
Λ2(β′)

∥∥∥∂t∂
β′
x u1

∥∥∥2
+ C

∑
Λ2(β′)

∥∥∥∂t∂
β′
x u2

∥∥∥2
,

I6 = −
〈
[L, ∂γ

ξ ]∂t∂
β
xu2, ∂t∂

β
x∂γ

ξ u2

〉
≤ c0

6

∥∥∥∂t∂
β
x∂γ

ξ u2

∥∥∥2
+ C

∑
Λ2(β′)

∥∥∥∂t∂
β′
x u2

∥∥∥2
+ Cj,j−1

∑
Λj−1

4 (β′,γ′)

∥∥∥∂t∂
β′
x ∂γ′

ξ u2

∥∥∥2
.

Finally,

I7 = −
〈
∂tE1 · ∇ξ∂

β
x∂γ

ξ u2, ∂t∂
β
x∂γ

ξ u2

〉
≤ δ

∥∥∥∂t∂
β
x∂γ

ξ u2

∥∥∥2
+ Cδ

∑
Λj+1

3 (β′,γ′)

∥∥∥∂t∂
β′
x ∂γ′

ξ u2

∥∥∥2
.

Inserting all the above estimates into (2.27) and then taking summation over (β, γ) ∈ Λj
4(β, γ)

leads to (2.26), provided that δ > 0 is small enough. This completes the proof of the lemma.

Putting all the above estimates together, we can obtain the following elementary energy
estimates, which follows directly from a proper linear combination of all the energy inequalities
obtained in Lemma 2.2-Lemma 2.6.
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Corollary 2.3. Under the assumptions (A1)-(A2), if δ > 0 is small enough, then there is an
energy functional H1(t) and a corresponding dissipation rate D1(t) such that

d

dt
H1(t) + cD1(t) ≤ C

∑
Λ1(β)

‖∂β
xu1‖2 +

∑
Λ2(β)

‖∂t∂
β
xu1‖2

 , (2.28)

where H1(t) and D1(t) is defined by

H1(t) ∼ ‖u2‖2 +
∑

Λ1(β)

‖∂β
xu‖2 +

∑
Λ2(β)

‖∂t∂
β
xu‖2

+
∑

Λ3(β,γ)

‖∂β
x∂γ

ξ u2‖2 +
∑

Λ4(β,γ)

‖∂t∂
β
x∂γ

ξ u2‖2,

D1(t) ∼ ‖ν1/2u2‖2 +
∑

Λ1(β)

‖ν1/2∂β
xu2‖2 +

∑
Λ2(β)

‖ν1/2∂t∂
β
xu2‖2

+
∑

Λ3(β,γ)

‖ν1/2∂β
x∂γ

ξ u2‖2 +
∑

Λ4(β,γ)

‖ν1/2∂t∂
β
x∂γ

ξ u2‖2.

(iii) Estimates on the macroscopic part. It should be pointed out that D1(t) is lack of
the macroscopic dissipation rate. Then it is not true that there is a constant C such that
H1(t) ≤ CD1(t) for any t ≥ 0. However, except for the first order derivatives of the macroscopic
component, the higher order derivatives can be bounded by part of the microscopic dissipation
rate D1(t). Thus a proper further linear combination makes the dissipation rate include the
derivatives of the macroscopic component of at least first order.

The following estimate is based on the macroscopic equations (2.6)-(2.10) satisfied by a, b, c.

Lemma 2.7. Under the assumptions (A1) and (A2), if δ > 0 is small enough, then it holds
that ∑

Λ1(β)

∥∥∥∂β
xu1

∥∥∥2
+
∑

Λ2(β)

∥∥∥∂t∂
β
xu1

∥∥∥2

≤ C
d

dt

∑
1≤|β|≤`−1

〈
∂β

xa,∇x · ∂β
x b
〉

+ C‖∇xu1‖2 + C
∑

Λ2(β)

∥∥∥∂β
x<
∥∥∥2

, (2.29)

where for any β, ‖∂β
x<‖2 is defined by

‖∂β
x<‖2 = ‖∂β

x<0‖2 + ‖∂β
x<1‖2 + ‖∂β

x<21‖2 + ‖∂β
x<22‖2 + ‖∂β

x<3‖2,

with ‖∂β
x<1‖2 =

∑
1≤i≤n ‖∂

β
x<i

1‖2, and similarly for other terms.

Proof. First consider estimates on the pure space derivatives of a, b, c. We start with bj , which
will satisfy a standard elliptic equation. In fact, for any fixed j ∈ {1, 2, · · · , n} and |β| ≥ 0, by
(2.8) and (2.9), direct calculations yield

∆∂β
x bj = −∂jj∂

β
x bj −

∑
i6=j

∂j∂
β
x (Ēibi) +

∑
i6=j

∂i∂
β
x (Ēibj + Ējbi) + 2∂j∂

β
x (Ējbj)

−
∑
i6=j

∂j∂
β
x<i

21 +
∑
i6=j

∂i∂
β
x<

ij
22 + ∂j∂

β
x<

j
21.
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Thus after multiplying by ∂β
x bj and taking some integrations by part, it holds that

‖∇x∂β
x bj‖2 + ‖∂j∂

β
x bj‖2

≤ 1
2
‖∇x∂β

x bj‖2 +
1
2

(
‖∂β

x (Ē ⊗ b)‖2 + ‖∂β
x<21‖2 + ‖∂β

x<22‖2
)

≤ 1
2
‖∇x∂β

x bj‖2 + Cδ2
∑

0≤|β′|≤|β|

‖∇x∂β′
x b‖2 + C

(
‖∂β

x<21‖2 + ‖∂β
x<22‖2

)
,

which implies

‖∇x∂β
x b‖2 ≤ Cδ2

∑
0≤|β′|≤|β|−1

‖∇x∂β′
x b‖2 + C

(
‖∂β

x<21‖2 + ‖∂β
x<22‖2

)
.

Furthermore, since δ > 0 can be small enough, by iteration, one has that for any |β| ≥ 0,

‖∇x∂β
x b‖2 ≤ C

∑
0≤|β′|≤|β|

(
‖∂β′

x <21‖2 + ‖∂β′
x <22‖2

)
, (2.30)

which, after taking summation over 0 ≤ |β| ≤ `− 1, gives∑
Λ1(β)

‖∂β
x b‖2 ≤ C

∑
Λ2(β)

(
‖∂β

x<21‖2 + ‖∂β
x<22‖2

)
. (2.31)

For the pure space derivatives of c, it follows from (2.10) that for |β| ≥ 0,

‖∂β
x∇xc‖2 ≤ ‖∂β

x (Ēc)‖2 + ‖∂β
x<3‖3

≤ Cδ2
∑

0≤|β′|≤|β|

‖∂β′
x ∇xc‖2 + ‖∂β

x<3‖2,

which, with δ > 0 small enough, implies

‖∂β
x∇xc‖2 ≤ C

∑
0≤|β′|≤|β|

‖∂β′
x <3‖2. (2.32)

Then, similar to obtain (2.31), taking summation for (2.32) over 0 ≤ |β| ≤ `− 1 gives∑
Λ1(β)

‖∂β
x c‖2 ≤ C

∑
Λ2(β)

‖∂β
x<3‖2. (2.33)

For the pure space derivatives of a, one has from (2.7) that for any |β| ≥ 0,

‖∇x∂β
xa‖2 =

d

dt

〈
∂β

xa,∇x · ∂β
x b
〉
−
〈
∂β

x∂ta,∇x · ∂β
x b
〉

+
n∑

i=1

〈
∂i∂

β
xa, ∂β

x (aĒi − 2cE1i) + ∂β
x<i

1

〉
≤ d

dt

〈
∂β

xa,∇x · ∂β
x b
〉

+
1
2
‖∂β

x∂ta‖2 +
1
2
‖∇x∂β

x b‖2 +
1
2
‖∇x∂β

xa‖2

+Cδ2
∑

0≤|β′|≤|β|

(
‖∇x∂β′

x a‖2 + ‖∇x∂β′
x c‖2

)
+

1
2
‖∂β

x<1‖2. (2.34)
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Notice that (2.6) together with (2.30) gives that for any |β| ≥ 0,

‖∂β
x∂ta‖2 ≤ ‖∂β

x (E1 · b)‖2 + ‖∂β
x<0‖2

≤ Cδ2
∑

0≤|β′|≤|β|

(
‖∂β′

x <21‖2 + ‖∂β′
x <22‖2

)
+ ‖∂β

x<0‖2. (2.35)

Putting (2.30), (2.32) and (2.35) into (2.34) and taking summation over 1 ≤ |β| ≤ `−1, one has∑
1≤|β|≤`−1

‖∇x∂β
xa‖2 ≤ C

∑
1≤|β|≤`−1

d

dt
〈∂β

xa,∇x · ∂β
x b〉+ Cδ2‖∇xa‖2 + C

∑
Λ2(β)

‖∂β
x<‖2. (2.36)

Next we estimate ‖∂t∂
β
xu1‖ with β ∈ Λ2(β). It directly follows from (2.35) that∑

Λ2(β)

‖∂t∂
β
xa‖2 ≤ C

∑
Λ2(β)

‖∂β
x<‖2. (2.37)

In addition, (2.8) gives that for any |β| ≥ 0,

‖∂β
x∂tc‖2 ≤ C

{
‖∇x∂β

x b‖2 + ‖∂β
x (Ē · b)‖2 + ‖∂β

x<21‖2
}

≤ C
∑

0≤|β′|≤|β|

(
‖∂β′

x <21‖2 + ‖∂β′
x <22‖2

)
,

which implies that ∑
Λ2(β)

‖∂t∂
β
x c‖2 ≤ C

∑
Λ2(β)

‖∂β
x<‖2. (2.38)

Similarly (2.7) together with (2.33) and (2.36) gives∑
Λ2(β)

‖∂t∂
β
x b‖2 ≤ C

∑
1≤|β|≤`

(
‖∂β

xa‖2 + ‖∂β
x c‖2

)
+ C

∑
Λ2(β)

‖∂β
x<‖2

≤ C
∑

1≤|β|≤`−1

d

dt
〈∂β

xa,∇x · ∂β
x b〉+ C‖∇xa‖2 + C

∑
Λ2(β)

‖∂β
x<‖2.

Finally, collecting all estimates (2.31), (2.33), (2.36), (2.37), (2.38) and (2.39) yields (2.29).
This completes the proof of the lemma.

(iv) Combination of estimates on the macro-micro components. As in [13], from the
representation (2.5) of <, we can prove the following lemma.

Lemma 2.8. It holds that∑
Λ2(β)

‖∂β
x<‖2 ≤ C

∑
Λ0(β)

∥∥∥∂β
xu2

∥∥∥2
+ C

∑
Λ2(β)

∥∥∥∂β
x∂tu2

∥∥∥2
. (2.39)

Thus the further linear combination of (2.28), (2.29) and (2.39) gives the following result.

Corollary 2.4. Under the assumptions (A1)-(A2), if δ > 0 is small enough, then there is an
energy functional H2(t) and a corresponding dissipation rate D2(t) such that for any t ≥ 0,

d

dt
H2(t) + cD2(t) ≤ C‖∇xu1‖2, (2.40)
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and
H2(t) ≤ CD2(t),

where

H2(t) ∼ ‖u2‖2 +
∑

Λ1(β)

‖∂β
xu‖2 +

∑
Λ2(β)

‖∂t∂
β
xu‖2

+
∑

Λ3(β,γ)

‖∂β
x∂γ

ξ u2‖2 +
∑

Λ4(β,γ)

‖∂t∂
β
x∂γ

ξ u2‖2,

D2(t) ∼ ‖ν1/2u2‖2 +
∑

Λ1(β)

‖ν1/2∂β
xu2‖2 +

∑
Λ2(β)

‖ν1/2∂t∂
β
xu2‖2

+
∑

Λ3(β,γ)

‖ν1/2∂β
x∂γ

ξ u2‖2 +
∑

Λ4(β,γ)

‖ν1/2∂t∂
β
x∂γ

ξ u2‖2,

+
∑

Λ1(β)

‖∂β
xu1‖2 +

∑
Λ2(β)

‖∂t∂
β
xu1‖2.

(v) Further energy estimates on the microscopic part with velocity weight functions.
For later use, we shall make further energy estimates on the microscopic component weighted by
velocity functions ν(ξ). We remark that it is necessary to introduce this velocity weight function
to eliminate the time derivatives so that one can make use of the decay in time estimates for
the linearized equation to deal with the nonlinear problems in terms of the contraction mapping
theorem.

For generality, we shall make the weighted energy estimates on w = w(t, x, ξ), which is the
solution to the following nonhomogeneous linear equation:

∂tw + νw + ξ · ∇xw + E1 · ∇ξw = φ + ξ · E2w, (2.41)

where φ = φ(t, x, ξ) is a given function.

Lemma 2.9. Under the assumptions (A1)-(A2), if δ > 0 is small enough, then for any k, the
solution w to the equation (2.41) enjoys the following estimates:

d

dt
‖νkw‖2 + c‖νk+1/2w‖2 ≤ C‖νk−1/2φ‖2, (2.42)

d

dt

∑
Λ1(β)

‖νk∂β
xw‖2 + c

∑
Λ1(β)

‖νk+1/2∂β
xw‖2

≤ C
∑

Λ1(β)

‖νk−1/2∂β
xφ‖2 + Cδ

∑
Λ3(β,γ)
|β|≥1

‖νk−1/2∂β
x∂γ

ξ w‖2, (2.43)

and

d

dt

∑
Λ3(β,γ)

Cβ,γ‖νk∂β
x∂γ

ξ w‖2 + c
∑

Λ3(β,γ)

‖νk+1/2∂β
x∂γ

ξ w‖2

≤ C
∑

Λ3(β,γ)

‖νk−1/2∂β
x∂γ

ξ φ‖2 + C
∑

Λ0(β)

‖νk−1/2∂β
xw‖2, (2.44)
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where Cβ,γ with (β, γ) ∈ Λ3(β, γ) are some positive constants, and positive constants c and C
may depend on k. Furthermore, it holds that

d

dt

∑
0≤|α|≤`

Cα‖νk∂α
x,ξw‖2 + c

∑
0≤|α|≤`

‖νk+1/2∂α
x,ξw‖2 ≤ C

∑
0≤|α|≤`

‖νk−1/2∂α
x,ξφ‖2, (2.45)

where Cα are also some positive constants.

Proof. For simplicity of presentations, denote the time dependent linear operator A(t) by

A(t) = ν + ξ · ∇x + E1(t, x) · ∇ξ.

Then (2.41) is rewritten as
∂tw + A(t)w = φ + ξ · E2w.

Since for each multi-index β and γ, one has

∂t(νk∂β
x∂γ

ξ w) + A(t)(νk∂β
x∂γ

ξ w)

= νk∂β
x∂γ

ξ φ + νkξ · ∂β
x∂γ

ξ (E2w) + eγ · νk∂β
x∂γ−1

ξ (E2w)− eγ · νk∇x∂β
x∂γ−1

ξ w

−
∑

0≤|γ′|≤|γ|−1

∂γ−γ′

ξ ννk∂β
x∂γ′

ξ w −
∑

0≤|β′|≤|β|−1

Cβ′∂
β−β′
x E1 · νk∇ξ∂

β′
x ∂γ

ξ w

+E1 · ∇ξν
k∂β

x∂γ
ξ w,

and (2.42)-(2.44) can be proved by mimicking the arguments used in the proof of Lemma 2.5.
Finally (2.45) follows from the linear combination of (2.42)-(2.44). This completes the proof

of the lemma.

By applying the above result to the solutions of the equations (2.21) and (2.22), one has

Corollary 2.5. Under the assumptions (A1)-(A2), if δ > 0 is small enough, then for any k, it
holds that

d

dt

∥∥∥νku2

∥∥∥2
+ c

∥∥∥νk+1/2u2

∥∥∥2

≤ C ‖∇xu1‖2 + C

(∥∥∥ν(k−1/2)+−1u2

∥∥∥2
+
∥∥∥ν(k−1/2)+−1∇xu2

∥∥∥2
)

, (2.46)

d

dt

∑
Λ1(β)

‖νk∂β
xu‖2 + c

∑
Λ1(β)

‖νk+1/2∂β
xu‖2

≤ C
∑

Λ1(β)

‖∂β
xu1‖2 + C

∑
Λ1(β)

‖ν(k−1/2)+−1∂β
xu2‖2 + Cδ

∑
Λ3(β,γ)

‖νk−1/2∂β
x∂γ

ξ u2‖2, (2.47)

and

d

dt

∑
Λ3(β,γ)

Cβ,γ‖νk∂β
x∂γ

ξ u2‖2 + c
∑

Λ3(β,γ)

‖νk+1/2∂β
x∂γ

ξ u2‖2

≤ C
∑

Λ1(β)

‖∂β
xu1‖2 + C

∑
Λ0(β)

‖νk−1/2∂β
xu2‖2 + C

∑
Λ3(β,γ)

‖ν(k−1/2)+−1∂β
x∂γ

ξ u2‖2, (2.48)
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where (·)+ means that (m)+ = m if m ≥ 0 and 0 otherwise. Furthermore, for any k, there is an
energy functional H3,k(t) and a corresponding dissipation rate D3,k(t) such that for any t ≥ 0,

d

dt
H3,k(t) + cD3,k(t) ≤ C

∑
Λ1(β)

‖∂β
xu1‖2 + C

∑
Λ0(β)

‖ν(k−1/2)+−1∂β
xu2‖2

+C
∑

Λ3(β,γ)

‖ν(k−1/2)+−1∂β
x∂γ

ξ u2‖2, (2.49)

and
H3,k(t) ≤ CD3,k(t), (2.50)

where

H3,k(t) ∼ ‖νku2‖2 +
∑

Λ1(β)

‖νk∂β
xu‖2 +

∑
Λ3(β,γ)

‖νk∂β
x∂γ

ξ u2‖2, (2.51)

D3,k(t) ∼ ‖νk+1/2u2‖2 +
∑

Λ1(β)

‖νk+1/2∂β
xu‖2 +

∑
Λ3(β,γ)

‖νk+1/2∂β
x∂γ

ξ u2‖2. (2.52)

Proof. Notice that (2.14) and (2.15) can be rewritten as

∂tu + A(t)u = Ku + ξ · E2u, (2.53)

and
∂tu2 + A(t)u2 = Ku2 + [P,D(t)]u + ξ · E2u2. (2.54)

Thus one can apply the estimate (2.43) to the equation (2.53) with φ = Ku to obtain (2.47),
where (2.12) was used. Similarly by applying the estimates (2.42) and (2.44) to the equation
(2.54) with

φ = Ku2 + [P,D(t)]u = Ku2 + PD(t)u−D(t)u1,

one can obtain (2.46) and (2.48). Here we have used the following identities:

∂β
x∂β

ξ Ku2 = K∂β
x∂β

ξ u2 − [K, ∂β
ξ ]∂β

xu2,

and
PD(t)u = PD(t)u1 + PD(t)ν1−(k−1/2)+

{
ν(k−1/2)+−1u2

}
.

Finally (2.49) follows from the linear combination of (2.46)-(2.48). It is obvious that (2.50)
holds from the equivalent forms (2.51) and (2.52) of H3,k(t) and D3,k(t). This completes the
proof of the corollary.

So far, based on the energy estimates on the linearized equation (2.1) only, we can obtain a
standard energy inequality only with the first order derivatives of the macroscopic component
u1 as an error term. In fact, by a proper linear combination of (2.40) and (2.49) with k = 1
yields

Theorem 2.1. Under the assumptions (A1)-(A2), if δ > 0 is small enough, then there is an
energy functional H(t) and a corresponding dissipation rate D(t) such that for any t ≥ 0,

d

dt
H(t) + cD(t) ≤ C‖∇xu1‖2, (2.55)
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and
H(t) ≤ CD(t), (2.56)

where

H(t) ∼ ‖νu2‖2 +
∑

Λ1(β)

‖ν∂β
xu‖2 +

∑
Λ2(β)

‖∂t∂
β
xu‖2

+
∑

Λ3(β,γ)

‖ν∂β
x∂γ

ξ u2‖2 +
∑

Λ4(β,γ)

‖∂t∂
β
x∂γ

ξ u2‖2,

D(t) ∼ ‖ν3/2u2‖2 +
∑

Λ1(β)

‖ν3/2∂β
xu2‖2 +

∑
Λ2(β)

‖ν1/2∂t∂
β
xu2‖2

+
∑

Λ3(β,γ)

‖ν3/2∂β
x∂γ

ξ u2‖2 +
∑

Λ4(β,γ)

‖ν1/2∂t∂
β
x∂γ

ξ u2‖2

+
∑

Λ1(β)

‖∂β
xu1‖2 +

∑
Λ2(β)

‖∂t∂
β
xu1‖2.

It is noticed that in H(t), the power of the velocity weight function for the time derivatives is
one less than that for others. Thus one can eliminate those terms involving the time derivatives
by the equation. In fact, at first by u2 = u− u1, it holds that∑

Λ4(β,γ)

‖∂t∂
β
x∂γ

ξ u2‖2 ≤
∑

Λ4(β,γ)

‖∂t∂
β
x∂γ

ξ u‖2 +
∑

Λ4(β,γ)

‖∂t∂
β
x∂γ

ξ u1‖2,

where it further follows that∑
Λ4(β,γ)

‖∂t∂
β
x∂γ

ξ u1‖2 ≤
∑

Λ2(β)

‖∂t∂
β
xu1‖2 ≤

∑
Λ2(β)

‖∂t∂
β
xu‖2.

Then by the equation (2.1), one has

∂tu = −ξ · ∇xu− E1 · ∇ξu− νu2 + Ku2 + ξ · E2u,

which implies that∑
Λ2(β)

‖∂t∂
β
xu‖2 ≤ C‖νu2‖2 +

∑
Λ1(β)

‖ν∂β
xu‖2,

∑
Λ4(β,γ)

‖∂t∂
β
x∂γ

ξ u‖2 ≤ C‖νu2‖2 +
∑

Λ1(β)

‖ν∂β
xu‖2 +

∑
Λ3(β,γ)

‖ν∂β
x∂γ

ξ u2‖2.

Thus we have proved the following proposition.

Proposition 2.2. Under the assumptions of Theorem 2.1, H(t) has the equivalent form:

H(t) ∼ ‖νu2‖2 +
∑

Λ1(β)

‖ν∂β
xu‖2 +

∑
Λ3(β,γ)

‖ν∂β
x∂γ

ξ u2‖2

∼
∑

1≤|β|≤`

‖∂β
xu1‖2 +

∑
0≤|α|≤`

‖ν∂α
x,ξu2‖2.
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2.4 Optimal decay rates

(i) Estimates based on the spectral analysis. Set

B = −ξ · ∇x + L.

Then from [27], one has

Proposition 2.3. The linear operator B generates a semigroup eBt which enjoys the decay in
time estimates

‖∇m
x eBtg‖ ≤ C(1 + t)−σq,m

(
‖g‖Zq + ‖∇m

x g‖
)
, (2.57)

for any integer m ≥ 0 and any function g = g(x, ξ), where q ∈ [1, 2] and the decay rate is
measured by

σq,m =
n

2

(
1
q
− 1

2

)
+

m

2
. (2.58)

Note that in terms of the linear operator B, (2.1) can be rewritten as

∂tu = Bu− E1 · ∇ξu + ξ · E2u.

Then the solution to the initial value problem (2.1) and (2.2), with s = 0 for brevity, can be
written in the mild form

u(t) = eBtu0 +
∫ t

0
eB(t−s) {−E1 · ∇ξu + ξ · E2u} (s)ds. (2.59)

Based on the above mild form and Proposition 2.3, one has the following lemma.

Lemma 2.10. Assume that there is a constant δ > 0 such that∥∥∥(1 + |x|)Ei(t, x)
∥∥∥

L∞t,x
+
∥∥∥|x|Ei(t, x)

∥∥∥
L∞t

“
L

2q/(2−q)
x

” ≤ δ,

where i = 1, 2 and 1 ≤ q ≤ 2. Then it holds that

‖∇xu(t)‖ ≤ Cλ0(1 + t)−σq,1

+Cδ

∫ t

0
(1 + t− s)−σq,1(‖∇xu1(s)‖+ ‖ν∇xu2(s)‖+ ‖∇ξ∇xu2(s)‖)ds, (2.60)

where λ0 is given by
λ0 = ‖u0‖Zq + ‖∇xu0‖. (2.61)

Proof. For simplicity, set
G = −E1 · ∇ξu + ξ · E2u.

Then applying (2.57) to (2.59) yields

‖∇xu(t)‖ ≤ Cλ0(1 + t)−σq,1 + Cδ

∫ t

0
(1 + t− s)−σq,1

(
‖G(s)‖Zq + ‖∇xG(s)‖

)
ds.

Furthermore, one has

‖G(s)‖Zq ≤

∥∥∥∥∥‖|x|E1‖L
2q/(2−q)
x

∥∥∥∥∇ξu

|x|

∥∥∥∥
L2

x

+ Cν ‖|x|E2‖L
2q/(2−q)
x

∥∥∥∥ u

|x|

∥∥∥∥
L2

x

∥∥∥∥∥
L2

ξ

≤ Cδ
(
‖∇ξ∇xu(s)‖L2

ξ(L2
x) + ‖ν∇xu(s)‖L2

ξ(L2
x)

)
≤ Cδ

(
‖∇xu1(s)‖+ ‖ν∇xu2(s)‖+ ‖∇ξ∇xu2(s)‖

)
.
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Similarly it holds that

‖∇xG(s)‖ ≤

∥∥∥∥∥‖|x|∇xE1‖L∞x

∥∥∥∥∇ξu

|x|

∥∥∥∥
L2

x

+ ‖E1‖L∞x
‖∇x∇ξu‖L2

x

+Cν ‖|x|∇xE2‖L∞x

∥∥∥∥ u

|x|

∥∥∥∥
L2

x

+ Cν ‖E2‖L∞x
‖∇xu‖L2

x

∥∥∥∥∥
L2

ξ

≤ Cδ
(
‖∇xu1(s)‖+ ‖ν∇xu2(s)‖+ ‖∇ξ∇xu2(s)‖

)
.

Thus (2.60) is proved. This completes the proof of the lemma.

(ii) Optimal decay rates. Combining Theorem 2.1 and Lemma 2.10 gives the optimal decay
rates.

Lemma 2.11. Assume
n ≥ 3, 1 ≤ q <

2n

n + 2
. (2.62)

Under the assumptions of Theorem 2.1 and Lemma 2.10, if δ > 0 is small enough, then it holds
that √

H(t) ≤ C(1 + t)−σq,1

{√
H(0) + ‖u0‖Zq

}
, (2.63)

and
‖u(t)‖ ≤ C(1 + t)−σq,0

{√
H(0) + ‖u0‖Zq∩L2

}
. (2.64)

Proof. Define
M(t) = sup

0≤s≤t

{
(1 + s)2σq,1H(s)

}
. (2.65)

Notice that M(t) is non-decreasing and

‖∇xu1(s)‖+ ‖ν∇xu2(s)‖+ ‖∇ξ∇xu2(s)‖ ≤ C
√

H(s) ≤ C(1 + s)−σq,1
√

M(t) (2.66)

for any 0 ≤ s ≤ t. Then (2.60) with (2.66) implies that for any t ≥ 0,

‖∇xu1(t)‖ ≤ ‖∇xu(t)‖

≤ Cλ0(1 + t)−σq,1 + Cδ

∫ t

0
(1 + t− s)−σq,1(1 + s)−σq,0ds

√
M(t)

≤ C(1 + t)−σq,1

(
λ0 + δ

√
M(t)

)
, (2.67)

since σq,1 > 1 from (2.58) and (2.62).
On the other hand, by the Gronwall inequality, (2.55) together with (2.56) gives

H(t) ≤ e−ctH(0) + C

∫ t

0
e−c(t−s)‖∇xu1(s)‖2ds,

for some constant c > 0. Then, further using (2.67) yields

H(t) ≤ e−ctH(0) + C

∫ t

0
e−c(t−s)(1 + s)−2σq,1ds

(
λ2

0 + δ2M(t)
)

≤ C(1 + t)−2σq,1

(
H(0) + λ2

0 + δ2M(t)
)
.
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Hence for any t ≥ 0,

sup
0≤s≤t

{
(1 + s)2σq,1H(s)

}
≤ C

(
H(0) + λ2

0 + δ2M(t)
)
,

i.e.,
M(t) ≤ C

(
H(0) + λ2

0 + δ2M(t)
)
.

Then if δ > 0 is small enough, one has

M(t) ≤ C
(
H(0) + λ2

0

)
. (2.68)

Recalling the definitions (2.61) and (2.65) of λ0 and M(t), (2.68) gives (2.63).
Finally it follows from (2.57) and (2.63) that

‖u(t)‖ ≤ C(1 + t)−σq,0‖u0‖Zq∩L2 + C

∫ t

0
(1 + t− s)−σq,0‖G(s)‖Zq∩L2ds

≤ C(1 + t)−σq,0‖u0‖Zq∩L2 + Cδ

∫ t

0
(1 + t− s)−σq,1

√
H(s)ds

≤ C(1 + t)−σq,0‖u0‖Zq∩L2

+Cδ

∫ t

0
(1 + t− s)−σq,0(1 + s)−σq,1ds

(√
H(0) + ‖u0‖Zq

)
≤ C(1 + t)−σq,0

(√
H(0) + ‖u0‖Zq∩L2

)
.

Thus (2.64) is proved. This completes the proof of the lemma.

(iii) Decay estimates on the solution operator U(t, s). For any number k, define a norm
[[·]]0,k and a seminorm [[·]]1,k over the Sobolev space H`(Rn

x × Rn
ξ ) by

[[u]]0,k =
∑

0≤|α|≤`

‖νk∂α
x,ξu‖, (2.69)

[[u]]1,k =
∑

1≤|β|≤`

‖∂β
xPu‖+

∑
0≤|α|≤`

‖νk∂α
x,ξ{I−P}u‖, (2.70)

where u = u(x, ξ). Notice that
[[u]]0,k ∼ [[u]]1,k + ‖u‖. (2.71)

Theorem 2.2. Suppose that
(i) the integers n ≥ 3, ` ≥ 2 and the number 1 ≤ q < 2n

n+2 ;
(ii) there a constant δ > 0 such that∑

0≤|β|≤`

∥∥∥(1 + |x|)∂β
xEi(t, x)

∥∥∥
L∞t,x

+
∑

0≤|β|≤`−1

∥∥∥(1 + |x|)∂t∂
β
xEi(t, x)

∥∥∥
L∞t,x

≤ δ,

and ∥∥∥|x|Ei(t, x)
∥∥∥

L∞t

“
L

2q/(2−q)
x

” ≤ δ,

where i = 1, 2.
Then for any k ≥ 1, there exist constants δ0 > 0 and C0 > 0 such that for any δ ≤ δ0, the

linear solution operator U(t, s), −∞ < s ≤ t < ∞, corresponding to the linear equation (2.1)
satisfies the decay in time estimates

[[U(t, s)u0]]m,k ≤ C0(1 + t− s)−σq,m([[u0]]m,k + ‖u0‖Zq), m = 0, 1, (2.72)

for any u0 = u0(x, ξ), where the constant C0 depends only on n, `, q, k and δ0.
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Proof. It suffices to consider the case when s = 0. We now prove (2.87) by induction for k ≥ 1.
When k = 1, (2.72) follows from Proposition 2.2, Lemma 2.11 and (2.71).

Now suppose that (2.72) holds for some k ≥ 1. We claim that it also holds for k + ε with
any 0 ≤ ε ≤ 3/2. First consider the case of m = 0. Notice that u = U(t, 0)u0 satisfies

∂tu + νu + ξ · ∇xu + E1 · ∇ξu = Ku + ξ · E2u.

Then recalling the equation (2.41) and then applying the estimate (2.45) with φ = Ku, one has

d

dt

∑
0≤|α|≤`

Cα‖νk+ε∂α
x,ξu‖2 + c

∑
0≤|α|≤`

‖νk+ε+1/2∂α
x,ξu‖2 ≤ C

∑
0≤|α|≤`

‖νk+ε−1/2∂α
x,ξKu‖2,(2.73)

where by Lemma 2.9 and the inductive assumption, it holds that∑
0≤|α|≤`

‖νk+ε−1/2∂α
x,ξKu‖2 ≤ C[[u]]20,k ≤ C(1 + t)−2σq,0

(
[[u0]]0,k + ‖u0‖Zq

)2
. (2.74)

Thus by the Gronwall inequality, (2.73) and (2.74) implies (2.72) with m = 0 for k + ε.
Next consider the case of m = 1. Notice that the following equivalent property also holds

[[u]]1,k ∼
∑

Λ1(β)

∥∥∥νk∂β
xu
∥∥∥+

∥∥∥νk{I−P}u
∥∥∥+

∑
Λ3(β,γ)

∥∥∥νk∂β
x∂γ

ξ {I−P}u
∥∥∥ .

Thus from Corollary 2.5, similarly (2.72) with m = 1 holds for k + ε. The details of the proof
are omitted for brevity. Hence (2.72) with m = 0 or 1 holds for any k ≥ 1. This completes the
proof of the theorem.

Remark 2.1. In the above theorem, the external force needs not to have time decay. Rather,
it may be time independent, time periodic, or even bounded in time, though it should be small.
In the case when the force is a small perturbation of some stationary potential force, i.e. in the
form

F (t, x) = −∇xφ(x) + E(t, x),

where φ(x) → 0 as |x| → ∞, we can have the same optimal decay estimates as (2.72) for the
linearized equation derived by setting

f = M̃ + M1/2u,

where
M̃ = ρ̃(x)M, ρ̃(x) = e−φ(x).

In this case, the linear equation is

∂tu + ξ · ∇xu + F · ∇ξu−
1
2
ξ · Fu = ρ̃(x)Lu. (2.75)

If the same assumptions of Theorem 2.2 hold for F (t, x) and φ(x) itself is also small in some
Sobolev space, then the energy estimate similar to (2.13) still holds. For the estimates on the
macroscopic component u1, we consider the equation (2.75) which can be rewritten as

∂tu−Bu = −F · ∇ξu +
1
2
ξ · Fu + (ρ̃− 1)Lu,

where the right hand side can be regarded as a source term. Thus the decay estimate (2.72) is
valid for the solution operator corresponding to (2.75) and can be used for the nonlinear problem
considered in Section 3.
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3 Applications to the nonlinear equation

3.1 Basic estimates

First from the definition (2.69) of the norm [[·]]0,k, Corollary 2.2 and ∂β
x∂β

ξ Ku = K∂β
x∂β

ξ u −
[K, ∂β

ξ ]∂β
xu, we have

Lemma 3.1. Let k be any number. For any u = u(x, ξ), it holds that

[[Ku]]0,k ≤ C[[u]]0,(k−1)+ ,

where C is some constant.

Lemma 3.2. For any u = u(x, ξ) and v = v(x, ξ), it holds that

‖Γ(u, v)‖Z1 ≤ C
(
‖νu‖‖v‖+ ‖u‖‖νv‖

)
,

where C is some constant.

The proof of the above lemma can be found in [28]. Finally we give a lemma on the estimates
on the nonlinear term Γ in the norm [[·]]0,k.

Lemma 3.3. Let k ≥ 0 and k0 ≤ 1. Suppose that ` ≥ [n/2] + 2. Then for any u = u(x, ξ) and
v = v(x, ξ), it holds that

[[Γ(u, v)]]0,k−k0 ≤ C([[u]]0,k+1−k0 [[v]]0,k + [[u]]0,k[[v]]0,k+1−k0), (3.1)

where C is some constant.

Proof. Write

Γ(u, v) =
1
2
{Γ1(u, v) + Γ1(v, u)− Γ2(u, v)− Γ2(v, u)} ,

with

Γ1(u, v) =
∫

Rn×Sn−1

|(ξ − ξ∗) · ω|M1/2
∗ u(ξ′)v(ξ′∗)dξ∗dω,

Γ2(u, v) =
∫

Rn×Sn−1

|(ξ − ξ∗) · ω|M1/2
∗ u(ξ)v(ξ∗)dξ∗dω.

It is obvious that (3.1) holds if it does for each Γj , j = 1, 2.
First consider Γ1. As in [14], after taking change of variable z = ξ − ξ∗, Γ1 can be rewritten

as
Γ1(u, v)(ξ) =

∫
Rn×Sn−1

|z · ω|M1/2(ξ − z)u(ξ′)v(z′)dzdω, (3.2)

where

ξ′ = ξ − z‖, z′ = ξ − z⊥,

with z‖ = (z · ω)ω, z⊥ = z − z‖. Applying ∂α
x,ξ = ∂β

x∂γ
ξ with 0 ≤ |α| ≤ ` and α = β + γ to (3.2)

yields

∂α
x,ξΓ1(u, v)(ξ) =

∑
β1+β2=β

Cβ
β1

∂γ
ξ

∫
Rn×Sn−1

|z · ω|M1/2(ξ − z)(∂β1
x u)(ξ′)(∂β2

x v)(z′)dzdω

=
∑

β1+β2=β
γ1+γ21+γ22=γ

Cβ
β1

Cγ
γ1

Cγ−γ1
γ21

∫
Rn×Sn−1

|z · ω|∂γ1

ξ M1/2(ξ − z)(∂β1
x ∂γ21

ξ u)(ξ′)(∂β2
x ∂γ22

ξ v)(z′)dzdω.
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Notice that for any γ1, ∣∣∣∂γ1

ξ M1/2(ξ − z)
∣∣∣ ≤ CM1/4(ξ − z).

Then

|∂α
x,ξΓ1(u, v)(ξ)| ≤ C

∑
α1+α2≤α

∫
Rn×Sn−1

|z · ω|M1/4(ξ − z)|∂α1
x,ξu(ξ′)| |∂α2

x,ξv(z′)|dzdω. (3.3)

Without loss of generality, suppose |α1| ≤ |α|/2 in (3.3). Then by integrating (3.3) over Rn
x with

respect to the space variable and using the Sobolev inequality, one has

‖∂α
x,ξΓ1(u, v)(ξ)‖L2

x
≤ C

∑
|α1|≤|α|/2

Γα1(ξ), (3.4)

where

Γα1(ξ) =
∫

Rn×Sn−1

|z · ω|M1/4(ξ − z)‖∇x∂α1
x,ξu(ξ′)‖H1

x
‖∂α2

x,ξv(z′)‖L2
x
dzdω.

Noting that for any k ≥ 0,

νk(ξ′)νk(z′) = νk(ξ − z‖)ν
k(ξ − z⊥) ≥ Cνk(ξ), (3.5)

where the constant C > 0, then for each α1, one has

νkΓα1(ξ) ≤ C

∫
Rn×Sn−1

|z · ω|M1/4(ξ − z)‖νk∇x∂α1
x,ξu(ξ′)‖H1

x
‖νk∂α2

x,ξv(z′)‖L2
x
dzdω

≤ C

{∫
Rn×Sn−1

|z|2M1/2(ξ − z)dzdω

}1/2

×
{∫

Rn×Sn−1

[
‖νk∇x∂α1

x,ξu(ξ′)‖H1
x
‖νk∂α2

x,ξv(z′)‖L2
x

]2
dzdω

}1/2

≤ Cν(ξ)
{∫

Rn×Sn−1

[
‖νk∇x∂α1

x,ξu(ξ′)‖H1
x
‖νk∂α2

x,ξv(z′)‖L2
x

]2
dzdω

}1/2

.

Taking further integration over Rn
ξ with respect to the velocity variable gives

‖νk−k0Γα1‖2
L2

ξ
≤ C

∫
Rn×Sn−1

ν2−2k0(ξ)‖νk∇x∂α1
x,ξu(ξ′)‖2

H1
x
‖νk∂α2

x,ξv(z′)‖2
L2

x
dξdzdω

≤ C

∫
Rn×Sn−1

[
ν2−2k0(ξ′) + ν2−2k0(z′)

]
×‖νk∇x∂α1

x,ξu(ξ′)‖2
H1

x
‖νk∂α2

x,ξv(z′)‖2
L2

x
dξ′dz′dω,

where we have used the inequality (3.5) since 2−2k0 ≥ 0 and taken change of variables (ξ, z) →
(ξ′, z′), whose Jacobian is unity. Hence∥∥∥νk−k0Γα1

∥∥∥2

L2
ξ

≤ C
(
[[u]]20,k+1−k0

[[v]]20,k + [[u]]20,k[[v]]20,k+1−k0

)
. (3.6)

Thus combining (3.4) and (3.6) implies that (3.1) holds for Γ1.
Finally it is more straightforward to carry out the estimates on Γ2(u, v) in a similar way.

The details are omitted. This completes the proof of the lemma.
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3.2 Global existence for the Cauchy problem

In this subsection, we consider the global existence and decay rates of the solution to the Cauchy
problem for the nonlinear Boltzmann equation:

∂tu + ξ · ∇xu + F · ∇ξu−
1
2
ξ · Fu = Lu + Γ(u) + S̃, (3.7)

u(t, x, ξ)|t=0 = u0(x, ξ), (3.8)

where u = u(t, x, ξ), (t, x, ξ) ∈ R+ × Rn × Rn, and S̃ is given by (1.5).
The main result is stated as follows.

Theorem 3.1. Suppose that
(B1) the integers n ≥ 3, ` ≥ [n/2] + 2;
(B2) the functions F = F (t, x), S = S(t, x, ξ) and u0 = u0(x, ξ) satisfy

F ∈ Ci
b

(
R+

t ;H`−i(Rn
x)
)

, i = 0, 1, S ∈ C0
b

(
R+

t ;H`(Rn
x × Rn

ξ )
)

,

u0 ∈ H`(Rn
x × Rn

ξ ).

(B3) there are constants δ > 0, k ≥ 1 and κ > 1 such that F and u0 are bounded in the
sense that ∑

0≤|β|≤`

∥∥∥(1 + |x|)∂β
xF (t, x)

∥∥∥
L∞t,x

+
∑

0≤|β|≤`−1

∥∥∥(1 + |x|)∂t∂
β
xF (t, x)

∥∥∥
L∞t,x

+
∥∥∥|x|F (t, x)

∥∥∥
L∞t (L2

x)
≤ δ, (3.9)

[[u0]]0,k+1/2 + ‖u0‖Z1 ≤ δ, (3.10)

and moreover, F and S decay in time in the sense that

‖F (t)‖H`
x∩L1

x
≤ δ(1 + t)−κ, (3.11)

[[M−1/2S(t)]]0,k−1/2 +
∥∥∥M−1/2S(t)

∥∥∥
Z1

≤ δ(1 + t)−κ. (3.12)

Then there are constants δ1 > 0 and C1 > 0 such that for any δ ≤ δ1, the Cauchy problem
(3.7)-(3.8) corresponding to (1.1) has a unique global classical solution

u ∈ Ci
b

(
R+

t ;H`−i(Rn
x × Rn

ξ )
)

, i = 0, 1, (3.13)

which satisfies

sup
t≥0

(1 + t)2κ0 [[u(t)]]20,k +
∫ ∞

0
[[u(s)]]20,k+1/2ds ≤ C2

1 , (3.14)

where C1 can be also taken as C1 = C ′
1δ for another constant C ′

1 independent of δ, and κ0 is
given by { 1

2 < κ0 < κ− 1
2 if σ1,0 ≥ κ− 1

2 ,

κ0 = σ1,0 if σ1,0 < κ− 1
2 .

(3.15)

Furthermore, it holds that ∑
0≤|α|≤`−1

∥∥∥νk−1∂t∂
α
x,ξu(t)

∥∥∥ ≤ Cδ(1 + t)−κ0 , (3.16)

for some constant C.
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In order to prove the above theorem, we introduce a function set S(C1) by

S(C1) =
{

u = u(t, x, ξ)
∣∣∣ u ∈ C0

b

(
R+

t ;H`(Rn
x × Rn

ξ )
)

, |||u|||k,κ0 ≤ C1

}
,

where C1 > 0 is some constant to be determined later, and the norm ||| · |||k,κ0 is defined by

|||u|||2k,κ0
= sup

t≥0
(1 + t)2κ0 [[u(t)]]20,k +

∫ ∞

0
[[u(s)]]20,k+1/2ds.

Clearly, S(C1) is a complete metric space with the metric induced by the norm ||| · |||k,κ0 . Under
some conditions, the solution to (3.7)-(3.8) will be obtained by applying the contraction mapping
theorem to find a fixed point in S(C1) for some nonlinear mapping Ψ, where Ψ is defined by

Ψ(u) = U(t, 0)u0 +
∫ t

0
U(t, s){Γ(u(s), u(s)) + S̃(s)}ds. (3.17)

Thus one has to estimate the time integral in (3.17) in terms of the norm ||| · |||k,κ0 . For this,
in what follows, given a function φ = φ(t, x, ξ), we will first consider the estimate on the general
time integral

(Tφ)(t, x, ξ) =
∫ t

0
U(t, s)φ(s, x, ξ)ds.

This time integral can be written as two parts again by the Duhamel’s formula. In fact, define
the solution operator U1(t, s) for any 0 ≤ s ≤ t in the sense that for any v0 = v0(x, ξ), v =
v(t, x, ξ) = U1(t, s)v0 denotes the solution to the following initial value problem:

∂tv + νv + ξ · ∇xv + F · ∇ξv −
1
2
ξ · Fv = 0,

v(t, x, ξ)|t=s = v0(x, ξ).

Note that L = −ν + K. Then again by the Duhamel’s formula, the solution operator U(t, s)
can be rewritten as

U(t, s) = U1(t, s) + U2(t, s), 0 ≤ s ≤ t,

where

U2(t, s) =
∫ t

s
U(t, τ)KU1(τ, s)dτ.

Thus we further define

(Tjφ)(t, x, ξ) =
∫ t

0
Uj(t, s)φ(s, x, ξ)ds, j = 1, 2.

Then
Tφ = T1φ + T2φ.

The following estimates follow.

Lemma 3.4. Suppose (3.9). If δ > 0 is small enough, then one has

(1 + t)2m[[T1φ(t)]]20,k +
∫ t

0
(1 + s)2m[[T1φ(s)]]20,k+1/2ds

≤ C

∫ t

0
(1 + s)2m[[φ(s)]]20,k−1/2ds, (3.18)
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for any m ≥ 0 and any k, and

(1 + t)2m‖T1φ(t)‖2
Z1

+
∫ t

0
(1 + s)2m‖T1φ(s)‖2

Z1
ds

≤ C

∫ t

0
(1 + s)2m

(
[[φ(s)]]20,k−1/2 + ‖φ(s)‖2

Z1

)
ds, (3.19)

for any m ≥ 0 and any k ≥ 1/2.

Proof. For simplicity, write w = T1φ, which by the definitions of T1 and U1(t, s), satisfies the
following Cauchy problem with zero initial data:

∂tw + νw + ξ · ∇xw + F · ∇ξw − 1
2
ξ · Fw = φ, (3.20)

w(t, x, ξ)|t=0 = 0. (3.21)

By (2.45), one has the energy inequality

d

dt
J0,k[w(t)] + cJ0,k+1/2[w(t)] ≤ C[[φ(t)]]20,k−1/2, (3.22)

for any k, where to the end, the nonlinear functional J0,k[·] is defined by

J0,k[w(t)] ∼ [[w(t)]]0,k. (3.23)

After integration, (3.22) implies

J0,k[w(t)] +
∫ t

0
J0,k+1/2[w(s)]ds ≤ C

∫ t

0
[[φ(s)]]20,k−1/2ds. (3.24)

On the other hand, multiplying (3.22) by (1 + t)2m with m ≥ 0 and further integrating it gives

(1 + t)2mJ0,k[w(t)] + c

∫ t

0
(1 + s)2mJ0,k+1/2[w(s)]ds

≤ 2m

∫ t

0
(1 + s)m−1J0,k[w(s)]ds + C

∫ t

0
(1 + s)2m[[φ(s)]]20,k−1/2ds

≤ c

2

∫ t

0
(1 + s)mJ0,k+1/2[w(s)]ds + C

∫ t

0
J0,k+1/2[w(s)]ds

+C

∫ t

0
(1 + s)2m[[φ(s)]]20,k−1/2ds. (3.25)

Then (3.25) together with (3.23) and (3.24) yields (3.18).
Next consider the estimate (3.19) in the norm ‖ · ‖Z1 . It can be based on the explicit form

for the solution w from (3.20)-(3.21):

w(t, x, ξ) =
∫ t

0
e−ν(ξ)(t−s) {F · ∇ξw − ξ/2 · Fw + φ} (s, x− (t− s)ξ, ξ)ds,

which implies

‖w(t, ξ)‖L1(Rn
x) ≤ C

∫ t

0
e−ν0(t−s)

(
‖∇ξ∇xw(s, ξ)‖L2(Rn

x)

+ν‖∇xw(s, ξ)‖L2(Rn
x) + ‖φ(s, ξ)‖L1(Rn

x)

)
ds.
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Further taking the norm ‖ · ‖L2(Rn
ξ ) gives

‖w(t)‖Z1 ≤ C

∫ t

0
e−ν0(t−s)G(s)ds, (3.26)

where for simplicity, we used the notion

G(s) = ‖∇ξ∇xw(s)‖+ ‖ν∇xw(s)‖+ ‖φ(s)‖Z1 . (3.27)

From (3.26), we claim that for any m ≥ 0,

(1 + t)2m‖w(t)‖2
Z1

+
∫ t

0
(1 + s)2m‖w(s)‖2

Z1
ds ≤ C

∫ t

0
(1 + s)2mG(s)2ds. (3.28)

In fact, on one hand, by the Hölder inequality, it is easy to see from (3.26) that

‖w(t)‖2
Z1
≤ C

∫ t

0
e−2ν0(t−s)(1 + s)−2mds

∫ t

0
(1 + s)2mG(s)2ds

≤ C(1 + t)−2m

∫ t

0
(1 + s)2mG(s)2ds. (3.29)

On the other hand, again by (3.26), one has∫ t

0
(1 + s)2m‖w(s)‖2

Z1
ds ≤

∫ t

0
(1 + s)2m

[∫ s

0
e−ν0(s−τ)G(τ)dτ

]2

ds. (3.30)

By the Schwarz inequality, it holds that[∫ s

0
e−ν0(s−τ)G(τ)dτ

]2

≤
∫ s

0
e−ν0(s−τ)(1 + τ)−2mdτ

∫ s

0
e−ν0(s−τ)(1 + τ)2mG(τ)2dτ

≤ C(1 + s)−2m

∫ s

0
e−ν0(s−τ)(1 + τ)2mG(τ)2dτ,

which together with (3.30) gives∫ t

0
(1 + s)2m‖w(s)‖2

Z1
ds ≤ C

∫ t

0

∫ s

0
e−ν0(s−τ)(1 + τ)2mG(τ)2dτds

= C

∫ t

0
dτ(1 + τ)2mG(τ)2

∫ t

τ
e−ν0(s−τ)ds

≤ C

∫ t

0
(1 + τ)2mG(τ)2dτ. (3.31)

Thus (3.28) follows from (3.29) and (3.31). Furthermore, notice from (3.27) and k ≥ 1/2 that

G(s)2 ≤ C
(
‖∇ξ∇xw(s)‖2 + ‖ν∇xw(s)‖2 + ‖φ(s)‖2

Z1

)
≤ C

(
[[w(t)]]20,k+1/2 + ‖φ(s)‖2

Z1

)
,

which by (3.18), implies∫ t

0
(1 + s)2mG(s)2ds ≤ C

∫ t

0
(1 + s)2m

(
[[w(t)]]20,k+1/2 + ‖φ(s)‖2

Z1

)
ds

≤ C

∫ t

0
(1 + s)2m

(
[[φ(t)]]20,k−1/2 + ‖φ(s)‖2

Z1

)
ds. (3.32)

With the notion w = T1φ, combining (3.28) and (3.32) leads to (3.19). This completes the proof
of the lemma.
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Lemma 3.5. Suppose (3.9). If δ > 0 is small enough, then one has

(1 + t)2m[[T2φ(t)]]20,k +
∫ t

0
[[T2φ(s)]]20,k+1/2ds

≤ C

∫ t

0
(1 + s)2m

(
[[φ(s)]]20,k−1/2 + ‖φ(s)‖2

Z1

)
ds, (3.33)

for any 1/2 < m ≤ σ1,0 and any k ≥ 1.

Proof. First fix some m and k with 1/2 < m ≤ σ1,0 and k ≥ 1. Set z = T2φ for simplicity. By
the definitions of Ti and Ui(t, s), i = 1, 2, note that

z(t) = T2φ(t) =
∫ t

0
U2(t, s)φ(s)ds =

∫ t

0
U(t, s)KT1φ(s)ds.

Then by Theorem 2.2 and Lemma 3.4, it holds that

[[z(t)]]20,k ≤ C

∣∣∣∣∫ t

0
(1 + t− s)−σ1,0 ([[KT1φ(s)]]0,k + ‖KT1φ(s)‖Z1) ds

∣∣∣∣2
≤ C

∣∣∣∣∫ t

0
(1 + t− s)−σ1,0([[T1φ(s)]]0,k−1 + ‖T1φ(s)‖Z1)ds

∣∣∣∣2
≤ C

∫ t

0
(1 + t− s)−2σ1,0(1 + s)−2mds

×
∫ t

0
(1 + s)2m

(
[[T1φ(s)]]20,k+1/2 + ‖T1φ(s)‖Z1

)2
ds

≤ C(1 + t)−2m

∫ t

0
(1 + s)2m

(
[[φ(s)]]20,k−1/2 + ‖φ(s)‖2

Z1

)
ds. (3.34)

On the other hand, z = z(t, x, ξ) is the solution to the following initial value problem with zero
initial data:

∂tz + νz + ξ · ∇xz + F · ∇ξz −
1
2
ξ · Fz = Kz + KT1φ,

z(t, x, ξ)|t=0 = 0.

This means that
z = T1(Kz + KT1φ).

Use (3.18) with m = 0 to deduce∫ t

0
[[z(s)]]20,k+1/2ds ≤ C

∫ t

0
[[Kz + KT1φ]]20,k−1/2ds

≤ C

∫ t

0
[[z(s)]]20,k−3/2ds + C

∫ t

0
[[T1φ(s)]]20,k−3/2ds,

where further, it holds from (3.34) that∫ t

0
[[z(s)]]20,k−3/2ds ≤

∫ t

0
[[z(s)]]20,kds

≤ C

∫ t

0
(1 + s)−2mds sup

0≤s≤t

∫ s

0
(1 + τ)2m

(
[[φ(τ)]]20,k−1/2 + ‖φ(τ)‖2

Z1

)
dτ

≤ C

∫ t

0
(1 + τ)2m

(
[[φ(τ)]]20,k−1/2 + ‖φ(τ)‖2

Z1

)
dτ,
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and again from (3.18) with m = 0 that∫ t

0
[[T1φ(s)]]20,k−3/2ds ≤

∫ t

0
[[T1φ(s)]]20,k+1/2ds ≤ C

∫ t

0
[[φ(s)]]20,k−1/2ds.

Then, ∫ t

0
[[z(s)]]20,k+1/2ds ≤ C

∫ t

0
(1 + s)2m

(
[[φ(s)]]20,k−1/2 + ‖φ(s)‖2

Z1

)
ds. (3.35)

Thus (3.33) follows from (3.34) and (3.35). This completes the proof of the lemma.

Corollary 3.1. Suppose (3.9). If δ > 0 is small enough, then one has

(1 + t)2m[[Tφ(t)]]20,k +
∫ t

0
[[Tφ(s)]]20,k+1/2ds

≤ C

∫ t

0
(1 + s)2m

(
[[φ(s)]]20,k−1/2 + ‖φ(s)‖2

Z1

)
ds,

for any 1/2 < m ≤ σ1,0 and any k ≥ 1.

Now we are in a position to prove the global existence of the solution to the Cauchy problem
for the nonlinear Boltzmann equation.
Proof of Theorem 3.1. First we prove that there is a proper constant C1 > 0 such that Ψ
is a contraction mapping from S(C1) to itself, and thus it has a fixed point in S(C1) which is a
unique solution to the Cauchy problem (3.7)-(3.8). For this purpose, we start with a claim that
there is a constant C such that for any u, v ∈ S(C1),

|||Ψ(u)|||k,κ0 ≤ Cδ + C|||u|||2k,κ0
, (3.36)

|||Ψ(u)−Ψ(v)|||k,κ0 ≤ C|||u + v|||k,κ0 |||u− v|||k,κ0 . (3.37)

In fact, recall the definition (3.17) of Ψ, and then it is straight to compute

|||U(t, 0)u0|||2k,κ0
≤ sup

t≥0
(1 + t)2κ0 [[U(t, 0)u0]]20,k +

∫ ∞

0
[[U(s, 0)u0]]20,k+1/2ds

≤ C sup
t≥0

(1 + t)2κ0−2σ1,0 [[u0]]20,k + C

∫ ∞

0
(1 + s)−2σ1,0ds[[u0]]20,k+1/2

≤ C[[u0]]20,k+1/2 ≤ Cδ2, (3.38)

where we used (3.10), and the inequalities κ0 ≤ σ1,0 and 2σ1,0 > 1 since n ≥ 3. Furthermore,
noticing from (3.15) and n ≥ 3 that 1/2 < κ0 ≤ σ1,0, one can apply Corollary 3.1 with m = κ0

to obtain ∣∣∣∣∣∣∣∣∣∣∣∣∫ t

0
U(t, s)Γ(u(s), u(s))ds

∣∣∣∣∣∣∣∣∣∣∣∣2
k

≤ C

∫ ∞

0
(1 + s)2κ0

(
[[Γ(u(s), u(s))]]20,k−1/2 + ‖Γ(u(s), u(s))‖2

Z1

)
ds

≤ C

∫ ∞

0
(1 + s)2κ0 [[u(s)]]20,k+1/2[[u(s)]]20,kds

≤ C

∫ ∞

0
[[u(s)]]20,k+1/2ds sup

s≥0
(1 + s)2κ0 [[u(s)]]20,k

≤ C|||u|||2k,κ0
, (3.39)
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where Lemma 3.3 was used. Since (3.11) and (3.12) together with (1.5) imply

[[S̃(s)]]0,k−1/2 + ‖S̃(s)‖Z1 ≤ Cδ(1 + s)−κ,

similarly applying Corollary 3.1 with m = κ0 yields∣∣∣∣∣∣∣∣∣∣∣∣∫ t

0
U(t, s)S̃(s)ds

∣∣∣∣∣∣∣∣∣∣∣∣2
k

≤ C

∫ ∞

0
(1 + s)2κ0

(
[[S̃(s)]]20,k−1/2 + ‖S̃(s)‖2

Z1

)
ds

≤ Cδ2

∫ ∞

0
(1 + s)2κ0−2κds

≤ Cδ2, (3.40)

where by (3.15), κ0 < κ − 1/2 was used. Thus by (3.17), combining (3.38), (3.39) and (3.40)
proves (3.36). For (3.37), notice that since Γ is bilinear,

Γ(u, u)− Γ(v, v) = Γ(u + v, u− v).

Then it holds that

Ψ(u)−Ψ(v) =
∫ t

0
U(t, s)Γ(u + v, u− v)(s)ds,

which similar to the proof of (3.39), implies (3.37).
Now suppose u, v ∈ S(C1). Then based on (3.36) and (3.37), it is easy to see that

Ψ(u),Ψ(v) ∈ C0
b

(
R+

t ;H`(Rn
x)
)

,

with estimates

|||Ψ(u)|||k,κ0 ≤ Cδ + CC2
1 ,

|||Ψ(u)−Ψ(v)|||k,κ0 ≤ 2CC1|||u− v|||k,κ0 .

If δ ≤ δ1 with δ1 > 0 small enough, then there is a constant C1 > 0 depending only on δ1 and
C such that

Cδ + CC2
1 ≤ C1, 2CC1 < 1.

Thus Ψ(u),Ψ(v) ∈ S(C1) and

|||Ψ(u)−Ψ(v)|||k,κ0 ≤ µ|||u− v|||k,κ0 , µ = 2CC1 < 1.

Therefore Ψ is a contraction mapping over S(C1). Thus there is a unique fixed point u in S(C1)
as a mild solution to the Cauchy problem (3.7)-(3.8). Then (3.13) with i = 0 and (3.14) are
proved. In addition, it is obvious that C1 can be also taken as C1 = C ′

1δ for another constant
C ′

1 independent of δ.
Finally the time-differentiability (3.13) with i = 1 of the solution u and the estimate (3.16)

directly follow from the equation. This completes the proof of the theorem.

3.3 Existence of time periodic solution

In this Subsection, we are concerned with the existence of the time periodic solution to the
nonlinear Boltzmann equation

∂tu + ξ · ∇xu + F · ∇ξu−
1
2
ξ · Fu = Lu + Γ(u) + S̃, (3.41)
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where u = u(t, x, ξ), (t, x, ξ) ∈ R× Rn × Rn, and S̃ is given by (1.5).
Roughly speaking, our goal is to show that if the time dependent external force F and source

S are time periodic with period T , then the equation (3.41) should have a time periodic solution
with the same period under some additional assumptions. When the space dimension n ≥ 5,
this can be achieved by making use of the decay in time property of the linearized equation
which is established in Section 2.

Precisely, the main result is stated as follows.

Theorem 3.2. Suppose that
(C1) the integers n ≥ 5, ` ≥ [n/2] + 2;
(C2) the functions F = F (t, x) and S = S(t, x, ξ) are time periodic with period T , satisfying

F ∈ Ci
b

(
Rt;H`−i(Rn

x)
)

, i = 0, 1, S ∈ C0
b

(
Rt;H`(Rn

x × Rn
ξ )
)

;

(C3) there are constants δ > 0 and k ≥ 1 such that F and S are bounded in the sense that∑
0≤|β|≤`

∥∥∥(1 + |x|)∂β
xF (t, x)

∥∥∥
L∞t,x

+
∑

0≤|β|≤`−1

∥∥∥(1 + |x|)∂t∂
β
xF (t, x)

∥∥∥
L∞t,x

+
∥∥∥|x|F (t, x)

∥∥∥
L∞t (L2

x)
≤ δ, (3.42)

sup
t∈R

{
‖F (t)‖H`

x∩L1
x

+ [[M−1/2S(t)]]0,k−1/2 +
∥∥∥M−1/2S(t)

∥∥∥
Z1

}
≤ δ. (3.43)

Then there are constants δ2 > 0 and C2 > 0 such that for any δ ≤ δ2, the equation (3.41)
corresponding to (1.1) has a unique time periodic solution

u∗ ∈ Ci
b

(
Rt;H`−i(Rn

x × Rn
ξ )
)

, i = 0, 1,

with the same period T , which satisfies

sup
0≤t≤T

[[u∗(t)]]20,k +
∫ T

0
[[u∗(t)]]20,k+1dt ≤ C2

2 , (3.44)

where precisely, C2 can be chosen as C2 = C ′
2δ with C ′

2 independent of δ. Furthermore, it holds
that

sup
0≤t≤T

[[u∗(t)]]0,k+1/2 + sup
0≤t≤T

∑
0≤|α|≤`−1

∥∥∥νk−1∂t∂
α
x,ξu

∗(t)
∥∥∥ ≤ Cδ, (3.45)

for some constant C.

In order to prove Theorem 3.2, we shall use the arguments developed in [26] to deal with the
existence of the periodic solution. Define

Φ(u) =
∫ t

−∞
U(t, s){Γ(u(s), u(s)) + S̃(s)}ds.

Suppose that Φ has a unique fixed point ū(t). Then if S̃(t) is time periodic with period T ,
so is ū(t) as in [26]. Furthermore, ū(t) is a desired time periodic solution provided that it is
differentiable with respect to time t. Thus it suffices to find the fixed point of Φ in a proper
complete metric space. We choose it as S(C2) defined by

S(C2) =

{
u = u(t, x, ξ)

∣∣∣∣∣u is time periodic with period T ,
u ∈ C0

b

(
Rt;H`(Rn

x × Rn
ξ )
)

, |||u|||k,∗ ≤ C2

}
,
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where C2 > 0 is some constant to be determined later, and

|||u|||2k,∗ = sup
0≤t≤T

[[u(t)]]20,k +
∫ T

0
[[u(s)]]20,k+1ds.

As before, we first consider some general estimates on a linear operator T∗ given by

T∗φ(t) =
∫ t

−∞
U(t, s)φ(s)ds,

for any φ = φ(t, x, ξ).

Lemma 3.6. Suppose that φ is time periodic with period T and

φ0 =
∫ T

0

(
[[φ(t)]]20,k + ‖φ(s)‖2

Z1

)
dt < ∞.

Under the assumptions of Theorem 3.2, if δ > 0 is small enough, then T∗φ is well-defined, time
periodic with the same period T , and the following estimate holds

sup
0≤t≤T

[[T∗φ(t)]]20,k+1/2 +
∫ T

0
[[T∗φ(t)]]20,k+1dt ≤ Cφ0. (3.46)

Proof. For simplicity, set w = T∗φ. By Theorem 2.2, it holds that

[[w(t)]]0,k ≤ C

∫ t

−∞
(1 + t− s)−σ1,0G(s)ds = C

∞∑
j=0

Ij(t), (3.47)

where

G(s) = [[φ(s)]]0,k + ‖φ(s)‖Z1 , (3.48)

Ij(t) =
∫ t−jT

t−(j+1)T
(1 + t− s)−σ1,0G(s)ds. (3.49)

Since φ is time periodic with period T and so is G(s), one has from (3.49) that

I2
j (t) ≤

∫ t−jT

t−(j+1)T
(1 + t− s)−2σ1,0ds

∫ t−jT

t−(j+1)T
G2(s)ds

=
∫ T

0
(1 + (j + 1)T − r)−2σ1,0 dr

∫ T

0
G2(r)dr

≤ C(1 + jT )−2σ1,0‖G‖2
L2(0,T ),

which implies

∞∑
j=0

Ij(t) ≤ C

∞∑
j=0

(1 + jT )−σ1,0‖G‖L2(0,T ) ≤ C‖G‖L2(0,T ), (3.50)

where σ1,0 = n/4 > 1 was used because n ≥ 5. Then it follows from (3.47), (3.48) and (3.50)
that

[[w(t)]]20,k ≤ C‖G‖2
L2(0,T ) ≤ C

∫ T

0

(
[[φ(t)]]20,k + ‖φ(s)‖2

Z1

)
dt ≤ Cφ0. (3.51)
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Next, the periodicity of w directly follows from

w(t + T ) =
∫ t+T

−∞
U(t + T, s)φ(s)ds

=
∫ t

−∞
U(t + T, s + T )φ(s + T )ds

=
∫ t

−∞
U(t, s)φ(s)ds,

where we have used that for any −∞ < s ≤ t < ∞,

φ(s + T ) = φ(s), U(t + T, s + T ) = U(t, s).

Finally consider the estimate (3.46). Notice that w satisfies the initial value problem

∂t + νw + ξ · ∇xw + F · ∇ξw − 1
2
ξ · Fw = Kw + φ,

w(t, x, ξ)|t=0 = 0.

Recalling the equation (2.41) and the corresponding estimate (2.45), one has

[[w(t)]]20,k+1/2 + c

∫ T

0
[[w(t)]]20,k+1dt ≤ C

∫ T

0
[[Kw(t) + φ(t)]]20,kdt

≤ C

∫ T

0
[[Kw(t)]]20,kdt + Cφ0,

where further by Lemma 3.1 and (3.51), it holds that∫ T

0
[[Kw(t)]]20,kdt ≤

∫ T

0
[[w(t)]]20,k−1dt ≤ CT sup

0≤t≤T
[[w(t)]]20,k−1 ≤ Cφ0.

Thus (3.46) holds. This completes the proof of the lemma.

Proof of Theorem 3.2. Similar to the proof of Theorem 3.1, we first prove that there is a
constant C such that for any u, v ∈ S(C2) with some constant C2 to be determined laler,

|||Φ(u)|||k,∗ ≤ Cδ + C|||u|||2k,∗, (3.52)
|||Φ(u)−Φ(v)|||k,∗ ≤ C|||u + v|||k,∗|||u− v|||k,∗. (3.53)

Notice that (3.43) implies
[[S̃(t)]]0,k + ‖S̃(t)‖Z1 ≤ δ,

for any t ∈ R. Thus based on Lemma 3.6, (3.52) and (3.53) are proved similarly as before and
the details are omitted for brevity.

Hence the contraction mapping theorem can be applied over the complete metric space S(C2)
for a proper constant C2 > 0, provided that δ ≤ δ2 with δ2 > 0 small enough. Then there is a
unique fixed point u∗ in S(C2) for the nonlinear mapping Φ. Notice that it is obvious that C2

can be also chosen as C ′
2δ for some constant C ′

2 independent of δ.
Finally by u∗ = Φ(u∗), it follows from (3.46) and (3.52) that

sup
0≤t≤T

[[u∗(t)]]0,k+1/2 ≤ Cδ + C(C ′
2δ)

2 ≤ Cδ,

since δ ≤ δ2 with δ2 small enough. Further by the equation, the estimate (3.44) holds. Thus
this complete the proof of the theorem.
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3.4 Asymptotic stability of time periodic solution

In order to study the stability of the time periodic solution u∗, we shall consider the Cauchy
problem

∂tu + ξ · ∇xu + F · ∇ξu−
1
2
ξ · Fu = Lu + Γ(u) + S̃, (3.54)

u(t, x, ξ)|t=t0 = u0(x, ξ), (3.55)

for some t0 ∈ R, where u = u(t, x, ξ), (t, x, ξ) ∈ (t0,∞)× Rn × Rn. It it noticed that the initial
time t0 can be chosen arbitrarily. By putting

v = u− u∗,

the initial value problem (3.54) and (3.55) can be rewritten as

∂tv + ξ · ∇xv + F · ∇ξv −
1
2
ξ · Fv = Lv + Γ(v, v) + 2Γ(u∗, v), (3.56)

v(t, x, ξ)|t=t0 = v0(x, ξ), (3.57)

where
v0(x, ξ) ≡ u0(x, ξ)− u∗(t0, x, ξ).

Then we have the following result.

Theorem 3.3. Let all assumptions in Theorem 3.2 hold and u∗ be the corresponding time
periodic solution obtained. Moreover, suppose that u0 ∈ H`(Rn

x × Rn
ξ ) and there are constants

δ > 0 and k ≥ 2 such that
[[v0]]0,k + ‖v0‖Z1 ≤ δ.

Then there are constants δ3 > 0 and C3 > 0 such that for any δ ≤ δ3, the Cauchy problem
(3.56)-(3.57) has a unique global solution

v ∈ Ci
b

(
[t0,∞);H`−i(Rn

x × Rn
ξ )
)

, i = 0, 1, (3.58)

with bounds

sup
t≥t0

(1 + t− t0)2κ1 [[v(t)]]20,k +
∫ ∞

t0

(1 + s)2κ1 [[v(s)]]20,k+1/2ds ≤ C2
3 , (3.59)

where κ1 is some constant with

σ1,0/2 ≤ κ1 < σ1,0 − 1/2, (3.60)

and C3 can be also chosen as C2 = C ′
3δ with C ′

3 independent of δ. Furthermore it holds that

[[v(t)]]0,k ≤ Cδ(1 + t− t0)−σ1,0 , (3.61)

for some constant C.

To prove the above theorem, as before we first consider the decay in time estimates on the
linear solution operator Ũ(t, t0), −∞ < t0 ≤ t < ∞ corresponding to the nonlinear equation
(3.56). Here Ũ(t, t0) is defined in the sense that for any w0 = w0(x, ξ), then w = Ũ(t, t0)w0

denotes the solution to the following initial value problem

∂tw + ξ · ∇xw + F · ∇ξw − 1
2
ξ · Fw = Lw + 2Γ(u∗, w), (3.62)

w(t, x, ξ)|t=t0 = w0(x, ξ). (3.63)
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Lemma 3.7. Let all assumptions in Theorem 3.2 hold and u∗ be the corresponding time periodic
solution obtained. Moreover, let k ≥ 2. Then there exist constants δ4 > 0 and C4 such that for
any δ ≤ δ4, the linear solution operator Ũ(t, t0), −∞ < t0 ≤ t < ∞ satisfies the following decay
estimates

[[Ũ(t, t0)w0]]0,k ≤ C4(1 + t− t0)−σ1,0 ([[w0]]0,k + ‖w0‖Z1) , (3.64)

for any w0 = w0(x, ξ), where the constant C4 depends only on n, `, k and δ4.

Proof. Without loss of generality, it suffices to prove this lemma for t0 = 0. By (2.45) and
(3.45), for the equation (3.62) one has

d

dt
J0,k[w(t)] + cJ0,k+1/2[w(t)] ≤ C[[Kw(t) + 2Γ(u∗(t), w(t))]]0,k−1/2

≤ C[[w(t)]]20,k−3/2 + C[[u∗(t)]]20,k+1/2[[w(t)]]20,k+1/2

≤ C[[w(t)]]20,k−1 + Cδ2J0,k+1/2[w(t)],

where the nonlinear functional J0,k[·] is given by (3.23). Thus if δ > 0 is small enough, then

d

dt
J0,k[w(t)] + cJ0,k+1/2[w(t)] ≤ C[[w(t)]]20,k−1. (3.65)

On the other hand, by the Duhamel’s principle, w can be written as the mild form

w(t) = U(t, 0)w0 +
∫ t

0
U(t, s){2Γ(u∗(s), w(s))}ds,

which from Theorem 2.2, (3.45) and k ≥ 2, implies

[[w(t)]]0,k−1 ≤ C ([[w0]]0,k−1 + ‖w0‖Z1) (1 + t)−σ1,0

+Cδ

∫ t

0
(1 + t− s)−σ1,0 [[w(s)]]kds. (3.66)

Since σ1,0 > 1 from n ≥ 5, then similar to the proof of Lemma 2.11, combining (3.65) and (3.66)
yields (3.64) with t0 = 0. This completes the proof of the lemma.

Furthermore, define the linear mapping T̃ by

T̃φ(t) =
∫ t

0
Ũ(t, s)φ(s)ds, (3.67)

for any φ = φ(t, x, ξ). Then similar to Corollary 3.1, we have the following estimates.

Lemma 3.8. Under the assumptions of Lemma 3.7, if further δ > 0 is small enough, then one
has

(1 + t)2m[[T̃φ(t)]]20,k +
∫ t

0
(1 + s)2m[[T̃φ(s)]]20,k+1/2ds

≤
∫ t

0
(1 + s)2m

(
[[φ(s)]]20,k−1/2 + ‖φ(s)‖2

Z1

)
ds, (3.68)

for any 0 ≤ m < σ1,0 − 1/2.
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Proof. For simplicity, set z(t) = T̃φ(t). Fix some 0 ≤ m < σ1,0− 1/2. Then similar to the proof
of (3.65) in Lemma 3.7, one has

d

dt
J0,k[z(t)] + cJ0,k+1/2[z(t)] ≤ C[[z(t)]]20,k−1/2 + C[[φ(t)]]20,k−1/2. (3.69)

Further applying Lemma 3.7 to (3.67) gives

[[z(t)]]0,k−1/2 ≤ C

∫ t

0
(1 + t− s)−σ1,0

(
[[φ(s)]]0,k−1/2 + ‖φ(s)‖Z1

)
ds. (3.70)

Since σ1,0>1 and 0 ≤ m < σ1,0 − 1/2, then similar to the proof of (3.28), it follows from (3.70)
that

(1 + t)2m[[z(t)]]20,k−1/2 +
∫ t

0
(1 + t)2m[[z(t)]]20,k−1/2

≤ C

∫ t

0
(1 + s)2m

(
[[φ(s)]]20,k−1/2 + ‖φ(s)‖2

Z1

)
ds. (3.71)

Finally similar to the proof of (3.25), combining (3.69) and (3.71) gives (3.68). This completes
the proof of the lemma.

Now we are in a position to prove the asymptotical stability of the time periodic solution.
Proof of Theorem 3.3. The proof is almost the same as that for Theorem 3.1. In fact,
Without loss of generality, it suffices to prove Theorem 3.3 for t0 = 0. The corresponding
integral equation to solve is v(t) = Υ(v)(t) for any t ≥ 0, where the nonlinear mapping Υ is
given by

Υ(v)(t) = Ũ(t, 0)v0 +
∫ t

0
Ũ(t, s)Γ(v(s), v(s))ds.

By the contraction mapping theorem, the solution v will be obtained as a fixed point of Υ on
the complete metric space

S(C3) =
{

v = v(t, x, ξ)|v ∈ C0
b

(
R+

t ;H`(Rn
x × Rn

ξ )
)

, |||v|||k,κ1 ≤ C3

}
,

where κ1 is given by (3.60) and the norm ||| · |||k,κ1 is defined by

|||v|||k,κ1 = sup
t≥0

(1 + t)2κ1 [[v(t)]]20,k +
∫ ∞

0
(1 + s)2κ1 [[v(s)]]20,k+1/2ds.

In fact, based on Lemma 3.7 and Lemma 3.8 with m = κ1, as before it is easy to show that
there is a constant C such that for any u, v ∈ S(C3) with some constant C3 to be determined
later,

|||Υ(u)|||k,κ1 ≤ Cδ + C|||u|||2k,κ1
,

|||Υ(u)−Υ(v)|||k,κ1 ≤ C|||u + v|||k,κ1 |||u− v|||k,κ1 ,

where κ1 < σ1,0 − 1/2 was used. Thus if δ ≤ δ3 with δ3 > 0 small enough and C3 is chosen
properly, the unique fixed point v in S(C3) as a solution is found. Hence (3.58) with i = 0 and
(3.59) are proved. In addition, it is easy to see that the constant C3 can be chosen as C ′

3δ for
another constant C ′

3, and (3.58) with i = 1 follows from the equation.



42 R.J. Duan, S. Ukai, T. Yang and H.J. Zhao

Finally we consider the improved decay rate (3.61). From the mild form v = Υ(v) of the
solution v, it follows that

[[v(t)]]0,k−1/2 ≤ Cδ(1 + t)−σ1,0 + C

∫ t

0
(1 + t− s)−σ1,0 [[v(s)]]0,k+1/2[[v(s)]]0,k−1/2ds

≤ Cδ(1 + t)−σ1,0 + C

{∫ t

0
(1 + t− s)−2σ1,0(1 + s)−4κ1ds

}1/2

×
{∫ t

0
(1 + s)2κ1 [[v(s)]]20,k+1/2ds

}1/2

sup
s≥0

(1 + s)κ1 [[v(s)]]0,k

≤ Cδ(1 + t)−σ1,0 ,

since 4κ1 ≥ 2σ1,0 > 1. Furthermore, in terms of the equation (3.56) satisfied by v, then similar
to the proof of (3.69), one has

d

dt
J0,k[v(t)] + c[[v(t)]]20,k+1/2 ≤ C[[v(t)]]20,k−1/2 + C[[Γ(v(t), v(t))]]20,k−1/2

≤ Cδ2(1 + t)−2σ1,0 + C[[v(t)]]2k+1/2[[v(t)]]2k−1/2

≤ Cδ2(1 + t)−2σ1,0 + Cδ2[[v(t)]]2k+1/2,

which implies
d

dt
J0,k[v(t)] + cJ0,k+1/2[v(t)] ≤ Cδ2(1 + t)−2σ1,0 ,

since δ ≤ δ3 with δ3 > 0 small enough. Thus by the Gronwall’s inequality, it holds that

[[v(t)]]20,k ≤ CJ0,k[v(t)] ≤ Cδ2(1 + t)−2σ1,0 .

Hence (3.61) is proved. This completes the proof of the theorem.
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