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Abstract

In this paper, we are concerned with a model arising from biology, which is a coupled
system of the chemotaxis equations and the viscous incompressible fluid equations through
transport and external forcing. The global existence of solutions to the Cauchy problem
is investigated under certain conditions. Precisely, for the Chemotaxis-Navier-Stokes
system over three space dimensions, we obtain global existence and rates of convergence on
classical solutions near constant states. When the fluid motion is described by the simpler
Stokes equations, we prove global existence of weak solutions in two space dimensions for
cell density with finite mass, first-order spatial moment and entropy provided that the
external forcing is weak or the substrate concentration is small.

Keywords: chemotaxis-fluid interaction; chemotaxis; Stokes equations; global solution; energy
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1 Introduction

Chemotaxis is a biological process, in which cells (e.g. bacteria) move towards a chemically more
favorable environment. For example, bacteria often swim towards higher concentration of oxygen
to survive. The chemical substrate can be produced or consumed by the cells, where we are only
interested in the latter in this paper which corresponds to the repulsive case for the substrate. A
typical model describing chemotaxis are the Keller-Segel equations derived by Keller and Segel [21]
which have become one of the best-studied models in mathematical biology. On the other hand, in
nature cells often live in a viscous fluid so that cells and chemical substrates are also transported
with fluid, and meanwhile the motion of the fluid is under the influence of gravitational forcing
generated by aggregation of cells. Generally, the motion of the fluid is determined by the well-known
incompressible Navier-Stokes equations or Stokes equations. Thus, this kind of cell-fluid interaction
becomes more complicated since it not only consists of chemotaxis and diffusion, but also includes
transport and viscous fluid dynamics. In particular, it is interesting and important in biology to study
some phenomenon of sedimentation on the basis of the coupled cell-fluid model.

Recently, to describe the coupled biological phenomena mentioned above, the authors in [30]
proposed the following model:

∂tn+ u · ∇n = δ∆n−∇ · (χ(c)n∇c),

∂tc+ u · ∇c = µ∆c− k(c)n,

∂tu+ u · ∇u+∇P = ν∆u− n∇φ,

∇ · u = 0, t > 0, x ∈ Ω.

(1.1)

Here, the unknowns are n = n(t, x) : R+×Ω→ R+, c = c(t, x) : R+×Ω→ R+, u(t, x) : R+×Ω→ R3

or R2 and P = P (t, x) : R+ ×Ω→ R, denoting the cell density, substrate concentration, velocity and
pressure of the fluid, respectively. Ω ⊂ R3 or R2 is a spatial domain where the cells and the fluid move
and interact. Constants δ, µ and ν are the corresponding diffusion coefficients for the cells, substrate
and fluid. χ(c) is the chemotactic sensitivity and k(c) is the consumption rate of the substrate by the
cells. φ = φ(t, x) is a given potential function. We remark that the model (1.1) has been compared
numerically with the experiment in [30], and it was also used in [27]. Similar models were investigated
in [28] and [17].

As usual, in order for the system (1.1) to be well-posed, it should be supplemented with some
initial conditions

(n, c, u)|t=0 = (n0(x), c0(x), u0(x)), x ∈ Ω, (1.2)

and some proper boundary conditions. See [30] and references therein for the discussions on the
boundary conditions if Ω is a bounded domain. In the sequel we shall take Ω = R2 or R3 in order to
consider the well-posedness for the Cauchy problem (1.1)-(1.2) over the whole space. Moreover, we
shall also consider the simplified Chemotaxis-Stokes system taking the following form

∂tn+ u · ∇n = δ∆n−∇ · (χ(c)n∇c),

∂tc+ u · ∇c = µ∆c− k(c)n,

∂tu+∇P = ν∆u− n∇φ,

∇ · u = 0, t > 0, x ∈ Ω,

(1.3)

where compared with (1.1), the nonlinear convective term u · ∇u is ignored in the fluid equation of
(1.3).
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It can be seen from (1.1) or (1.3) that the coupling of chemotaxis and fluid is realized through
both the transport of cells and chemical substrates u ·∇n, u ·∇c and the external force −n∇φ exerted
on the fluid by cells. Here, for the external force, it can be produced by different physical mechanism
such as gravity, centrifugal, electric or magnetic forces. One example in the case of gravity is

φ = ax1,

for a constant a ∈ R depending on the ratio of the fluid mass density to the cell density and the
gravity acceleration. Another example is the centrifugal force φ satisfying

0 ≤ φ(x) = φ(|x|)→ 0 as |x| → ∞.

In this paper, we are only interested in the case of the centrifugal force with φ decaying in x with
some rates at infinity.

Throughout this paper, we also assume the following conditions:

(A)


(i) δ > 0, µ > 0, ν > 0;

(ii) n0(x) ≥ 0, c0(x) ≥ 0,∇ · u0(x) = 0 for all x ∈ Ω;

(iii) χ(·), k(·) and φ(·, ·) are smooth with k(0) = 0 and k′(c) ≥ 0 for all c ∈ R.

Notice that the above assumption implies that c preserves the nonnegativity of the initial data by
the maximum principle, and moreover, k(c) ≥ 0 holds for c ≥ 0, that is the case of consumption of
chemical substrates. Thus, the interaction force caused by the oxygen is repulsive but not attractive
as in the classical Keller-Segel system. Later, we shall point out some special properties that the
Keller-Segel system enjoys when k(c) takes the negative sign. We further remark that if the fluid
coupling is neglected, i.e. u = 0, then the system obtained is similar to a drift-diffusion model in the
context of semiconductor, see [24].

The aim of this paper is to obtain some global existence results for the Cauchy problem on the
above systems (1.1) and (1.3) under the assumption (A) and some additional conditions on the initial
data and on the functions χ(c), k(c), φ. It should be pointed out that these results could also hold over
the smooth bounded domain Ω with homogeneous boundary conditions. Precisely, the first result of
this paper is Theorem 2.1 which states the global existence of classical solutions to the Cauchy problem
on the system (1.1) and (1.2) over Ω = R3 provided that the initial datum (n0, c0, u0) is a small smooth
perturbation of the constant state (n∞, 0, 0) with n∞ ≥ 0, and the potential function φ depending on
t, x decays in x at infinity uniformly in time. The proof is based on some uniform a priori estimates
combined with the local existence as well as the standard continuity argument. Moreover, the time-
decay rates in Lp-norms for perturbations are obtained in Theorem 2.2, where Lp energy methods
and spectral analysis are used in the proof. Here, the method of proving the optimal time-decay rate
by combining the energy estimates and spectral analysis is actually the one recently developed by [11]
in the study of the nonlinear Boltzmann equation.

The second result is Theorem 3.1 about the global existence of weak solutions to the Cauchy
problem on the system (1.3) with large initial data (1.2) in some functional spaces over Ω = R2. In
fact, the existence of global weak solution is obtained when initial density n0 has finite mass, first-
order spatial moment and entropy under the additional condition that the strength of the nonnegative
time-independent potential function φ is weak or c0 is small in some sense. The main part in the proof
is to derive some uniform a priori estimates by constructing some proper free energy functionals. To
explain this more, let us here skip the coupling of fluid, that is to consider the repulsive chemotaxis
system in the case of the consumption of chemical substrate:{

∂tn = δ∆n−∇ · (χ(c)n∇c),

∂tc = µ∆c− k(c)n, t > 0, x ∈ Ω.
(1.4)
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Define the instant free energy functional E(n(t), c(t)) by

E(n(t), c(t)) =
∫

Ω

n lnndx+
1
2

∫
Ω

|∇Ψ(c)|2dx,

where Ψ(c) is given by

Ψ(c) =
∫ c

0

(
χ(s)
k(s)

)1/2

ds.

Then, for any smooth solution (n, c) to the system (1.4),

d

dt
E(n(t), c(t)) +D(n(t), c(t)) = 0 (1.5)

holds for any t ≥ 0, where the dissipation rate D(n(t), c(t)) is given by

D(n(t), c(t)) = δ

∫
Ω

|∇n|2

n
dx+

∫
Ω

χ′(c)k(c) + χ(c)k′(c)
2χ(c)

n|∇Ψ|2dx

+µ
∫

Ω

∣∣∣∣∣∇2Ψ− d

dc

√
k(c)
χ(c)
∇Ψ⊗∇Ψ

∣∣∣∣∣
2

dx

−µ
2

∫
Ω

d2

dc2

(
k(c)
χ(c)

)
|∇Ψ|4dx.

Thus, under the condition that

χ(c) > 0,
d

dc
(χ(c)k(c)) > 0,

d2

dc2

(
k(c)
χ(c)

)
< 0,

D(n(t), c(t)) becomes a nonnegative functional and hence the free energy E(n(t), c(t)) is non-increasing
in time t. When the equations are coupled with the fluid, the additional terms from the trans-
port u · ∇n, u · ∇c and the force −n∇φ turn out to be controlled by the total dissipation rate
Dtotal(n(t), c(t), u(t)) if the potential function φ is small in an appropriate sense. Furthermore, the
boundedness of the entropy ‖n lnn‖L1 in finite time is proved together with the boundedness of first-
order spatial moment ‖

√
1 + x2n‖L1 . Instead of smallness of external forcing ∇φ, if it is assumed that

k′(0) > 0 and ‖c0‖L∞ is small enough, then by taking proper linear combination, one can also find a
non-increasing free energy functional and thus uniform a priori estimates also follow.

Now we mention some work related to issues discussed in this paper. Firstly, since the model
system (1.1) is proposed by [30] for the study of the biology of chemotaxis, let us recall some important
mathematical characters on the classical chemotaxis system, the Keller-Segel model, for which one of
the simple versions takes the form{

∂tn = ∆n− χ∇ · (n∇c),

−∆c = n, t > 0, x ∈ Ω = R2,
(1.6)

where χ has been supposed to be a positive constant, k(c) ≡ −1 takes the minus sign, and other
constants are normalized to have unit values. Readers can refer to the surveys [18, 19] for a summary
results on the above system and even more general Keller-Segel system. Here, it should be emphasized
that compared with the system (1.4) under the assumption (A) which particularly implies k(c) ≥ 0,
the classical Keller-Segel system (1.6) exposes some different phenomena especially such as critical
mass and blow-up. Precisely, the elementary computations for (1.6) show

d

dt

∫
R2
|x|2n(t, x)dx = 4‖n0‖L1

(
1− χ‖n0‖L1

8π

)
.
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Thus, the situations leading to the different properties of solutions are basically divided into three
cases:

‖n0‖L1 <
8π
χ

(subcritical), ‖n0‖L1 =
8π
χ

(critical), ‖n0‖L1 >
8π
χ

(supercritical),

where under some conditions, solutions to (1.6) blow up in finite time for the supercritical case while
solutions exist globally in time for the subcritical case. The further literature on the Keller-Segel
model is indeed huge and thus out of the scope of this paper; see recent work [1, 2, 5] and references
therein.

Next, let us mention some work [31, 9, 10, 29, 12, 15], which are more connected to the results
obtained in this paper. The identity (1.5), which plays a key role in the derivation of the uniform a
priori estimates, is inspired by the proof of [31] in the case of bounded domain over R2. Notice that
from the late proof, the derivation of the identity (1.5) does not depend on the spatial dimension. For
a chemotaxis model motivated by angiogenesis, [9] and [10] proved global existence of weak solutions in
high space dimensions for the case when k(c) = cm with m ≥ 1 by controlling the Lp-norm of density
n(t, x). For the same model in one-dimensional space, the global existence of classical solutions was
studied in [29] and [12] over the bounded interval of R when χ(c) = c−α and k(c) = cm with α and
m taking different values, and was later generalized in [15] to the full line R with χ(c) = 1

1+c and
k(c) = c.

On the other hand, more attention has recently been focused on some coupled kinetic-fluid system
firstly introduced in [4] which describe the interaction of two phases: the disperse phase of particles
and dense phase of fluid. For that, refer to [16, 6, 26, 25, 13, 3, 14] for the study of the Vlasov-Fokker-
Planck equation coupled with the compressible or incompressible Navier-Stokes or Stokes equations,
where the main tool used to prove the global existence of weak solutions or hydrodynamical limit is
the existing entropy inequality. It should also be pointed out that the models for chemotaxis can be
justified as an asymptotic limit of some kinetic models, cf. [8, 7]. Thus, it is interesting to establish
the asymptotic validity of the coupled chemotaxis-fluid system from the kinetic level [13].

Finally, the fluid dynamic equations such as the Navier-Stokes or Stokes equations have a much
longer history, see [22, 23] and references therein for the detailed mathematical theory.

The rest of this paper is organized as follows. In Section 2, we consider the chemotaxis system
coupled with the Navier-Stokes equations, and we prove global existence and convergence rates of
classical solutions near constant states. In Section 3, we prove global existence of weak solutions to
the coupled chemotaxis-Stokes equations under two different assumptions for weak forces or small
initial concentration of c.

2 The coupled Chemotaxis-Navier-Stokes equations

2.1 Global classical solutions near constant states

As mentioned before, we consider in this section the Cauchy problem on the coupled Chemotaxis-
Navier-Stokes equations in R3:

∂tn+ u · ∇n = δ∆n−∇ · (χ(c)n∇c),

∂tc+ u · ∇c = µ∆c− k(c)n,

∂tu+ u · ∇u+∇P = ν∆u− n∇φ,

∇ · u = 0, t > 0, x ∈ R3,

(2.1)

with initial data
(n, c, u)|t=0 = (n0(x), c0(x), u0(x)), x ∈ R3, (2.2)

where it is supposed to hold that

(n0(x), c0(x), u0(x))→ (n∞, 0, 0) as |x| → ∞,
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for some constant n∞ ≥ 0. The goal of this section is to prove the global existence of classical
solutions to the above Cauchy problem when initial data is a small smooth perturbation near the
constant steady state (n∞, 0, 0), and moreover, obtain the rates of convergence of solutions towards
this steady state in some functional spaces.

For simplicity of presentation later, let us take change of variables n = σ+n∞ and P̄ = P +n∞φ
so that the Cauchy problem (2.1) and (2.2) is reformulated as

∂tσ + u · ∇σ − δ∆σ = −∇ · (χ(c)σ∇c)− n∞∇ · (χ(c)∇c),

∂tc+ u · ∇c− µ∆c+ k′(0)(σ + n∞)c = −(k(c)− k′(0)c)(σ + n∞),

∂tu+ u · ∇u+∇P̄ − ν∆u = −σ∇φ,

∇ · u = 0, t > 0, x ∈ R3,

(2.3)

with
(σ, c, u)|t=0 = (σ0(x), c0(x), u0(x))→ (0, 0, 0) as |x| → ∞, (2.4)

where σ0 = n0 − n∞. The first result of this section about the global existence of classical solutions
is stated as follows. Here and in the sequel, for simplicity, ∂α means the spatial derivatives ∂αx with
multi-index α, ∇j means all the spatial derivatives of j-order for integer j ≥ 0, and ‖·‖ always denotes
the L2-norm without confusion.

Theorem 2.1. Let n∞ ≥ 0 be a constant, and the assumption (A) hold with n0(x) ≡ σ0(x)+n∞ ≥ 0
for x ∈ R3, and

sup
t,x

(1 + |x|)|φ(t, x)|+
∑

1≤|α|≤3

sup
t,x
|∂αφ(t, x)| <∞. (2.5)

Furthermore, suppose that ‖(σ0, c0, u0)‖H3 is sufficiently small. Then, the Cauchy problem (2.3) and
(2.4) admits a unique classical solution (σ, c, u) satisfying that

n(t, x) ≡ σ(t, x) + n∞ ≥ 0, c(t, x) ≥ 0, t ≥ 0, x ∈ R3,

and there are constants λ > 0, C such that

‖(σ, c, u)(t)‖2H3 + λ

∫ t

0

∫
R3

(σ + n∞)

k(c)c+ k′(0)
∑

1≤|α|≤3

|∂αc(s)|2
 dxds

+λ
∫ t

0

‖∇(σ, c, u)(s)‖2H3ds ≤ C‖(n0, c0, u0)‖2H3 (2.6)

holds for any t ≥ 0.

Remark 2.1. The assumption (2.5) in Theorem 2.1 shows that the potential function φ(t, x) of the
external force field depending on both t and x need not be small and also need not decay in time,
which is essentially caused by the fact that φ(t, x) only appears in the linear coupling term −n∇φ in
the fluid equation. From the later proof, the spatial decay of φ with rate (1 + |x|)−1 can be replaced
the integrability condition φ ∈ L3(R3). Finally, we should emphasize again that the condition in (A)
that k(c) is non-decreasing in c plays a key role in obtaining the Lyapunov-type inequality (2.6) for
the stability of solution, and as shown in the next section later, it also plays an important role in
considering the global existence of weak solutions (cf. Theorem 3.1) or global classical solutions with
large smooth data (cf. Proposition 3.1).

The second result of this section is concerned with the time-decay rates of the obtained classical
solutions near constant steady states.
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Theorem 2.2. Let n∞ = 0, and let all conditions in Theorem 2.1 hold. The solution (σ, c, u) to
the Cauchy problem (2.3)-(2.4) obtained in Theorem 2.1 enjoys the following time-decay estimates.
Assume that σ0, c0 ∈ L1(R3). Then, for any 1 ≤ p <∞, it holds that

‖σ(t)‖Lp ≤ C‖σ0‖L1∩Lp(1 + t)−
3
2 (1− 1

p ), (2.7)

‖c(t)‖|Lp ≤ C‖c0‖L1∩Lp(1 + t)−
3
2 (1− 1

p ), (2.8)

for any t ≥ 0. If it is further assumed that u0 ∈ Lq(R3) and

φ ∈ L∞(R+;L2q/(2−q)(R3))

with 1 < q < 6/5, then it holds that

‖u(t)‖ ≤ C(‖u0‖Lq∩H3 +K0)(1 + t)−
3
2 ( 1
q−

1
2 ), (2.9)

for any t ≥ 0, where K0 is defined by

K0 = ‖(σ0, c0)‖L1∩H3 + ‖σ0‖L1∩L2‖c0‖L1∩L2 .

Remark 2.2. Due to time-decay estimates on the high-order derivatives of (n, c, u) (cf. (2.41) and
(2.47)) in the proof of Theorem 2.2, the time-decay rates of L∞-norms for (n, c, u) can also follow
from Sobolev inequalities. When n∞ > 0, the proof of Theorem 2.2 can be modified to obtain similar
time-decay estimates, which we shall not pursuit in this paper for brevity. For that, a further remark
will be given at the end of this section in order to explain it only at the level of linearization.

2.2 Uniform a priori estimates

Theorem 2.1 will be proved by combining the local existence and some uniform a priori estimates as
well as the continuation argument. In this subsection, we devote ourselves to the proof of uniform a
priori estimates. For this purpose, for any 0 < T ≤ ∞, let us denote the space

X(0, T ) = {(σ, c, u) : σ, c, u ∈ C0([0, T );H3(R3)) ∩ C1([0, T );H1(R3)),
∇σ,∇c,∇u ∈ L2([0, T ];H3(R3))}.

Lemma 2.1 (a priori estimates). Let all conditions in Theorem 2.1 hold. Suppose that the Cauchy
problem (2.3) and (2.4) has a solution (σ, c, u) in X(0, T ) with

sup
0≤t≤T

‖(σ, c, u)(t)‖H3 ≤ ε (2.10)

for 0 < ε ≤ 1. Then n(t, x) ≡ σ(t, x) + n∞ ≥ 0, c(t, x) ≥ 0 hold for any 0 ≤ t ≤ T , x ∈ R3.
Furthermore, there are ε0 > 0, C0 > 0 and λ0 > 0 such that for any ε ≤ ε0,

‖(σ, c, u)(t)‖2H3 + λ0

∫ t

0

∫
R3

(σ + n∞)

k(c)c+ k′(0)
∑

1≤|α|≤3

|∂αc(s)|2
 dxds

+λ0

∫ t

0

‖∇(σ, c, u)(s)‖2H3ds ≤ C0‖(n0, c0, u0)‖2H3 (2.11)

holds for any 0 ≤ t ≤ T .

Proof. By the Sobolev imbedding theorem, from (2.10), one has

sup
0≤t≤T

‖(σ, c, u)‖W 1,∞ ≤ Cε. (2.12)
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The original equations (2.1)1-(2.1)2 can be rewritten as

∂tn+∇ · (δ∇n+ n(u+ χ(c)∇c)) = 0,
∂tc+ u · ∇c = µ∆c− k′(ξ)nc,

where ξ = ξ(t, x) is between 0 and c(t, x). Thus, by the assumption A1, the maximum principle
implies

n(t, x) ≥ 0, 0 ≤ c(t, x) ≤ ‖c‖L∞ ≤ Cε ≤ C,

for any 0 ≤ t ≤ T , x ∈ R3.
To prove (2.11), we divide it into two steps. In the first step, we deal with the zero-order estimates.

For (2.3)2 on c, it holds that

1
2
d

dt

∫
R3
c2dx+ µ

∫
R3
|∇c|2dx+

∫
R3
k(c)c(σ + n∞)dx = 0. (2.13)

For (2.3)1 on n, it follows from integration by parts and the Cauchy-Schwarz inequality that

1
2
d

dt

∫
R3
σ2dx+

δ

2

∫
R3
|∇σ|2dx ≤ 1

δ
(‖n‖2L∞x + n2

∞)‖χ(c)‖2L∞x

∫
R3
|∇c|2dx

≤ C

δ
(1 + n2

∞) max
0≤c≤C

|χ(c)|2
∫

R3
|∇c|2dx. (2.14)

For (2.3)3 on u, one can use the Hardy’s inequality [22]∫
R3

|n|2

|x|2
dx ≤ C‖∇n‖2

to get
1
2
d

dt

∫
R3
|u|2dx+

ν

2

∫
R3
|∇u|2dx ≤ C

ν

(
sup
t,x
|x||φ(t, x)|

)2 ∫
R3
|∇n|2dx. (2.15)

By choosing the constants d1 > 0, d2 > 0 large enough such that

d1µ

2
≥ C

δ
(1 + n2

∞) max
0≤c≤C

|χ(c)|2, d2δ

4
≥ C

ν

(
sup
t,x
|x||φ(t, x)|

)2

,

the linear combination of (2.13), (2.14) and (2.15) yields

1
2
d

dt

∫
R3

(
|u|2 + d2σ

2 + d1d2c
2
)
dx+

ν

2

∫
R3
|∇u|2dx+

d2δ

4

∫
R3
|∇σ|2dx

+
d1d2µ

2

∫
R3
|∇c|2dx+ d1d2

∫
R3
k(c)c(σ + n∞)dx ≤ 0. (2.16)

For the second step, we make estimates on the high-order derivatives of (σ, c, u). Take α with
1 ≤ |α| ≤ 3. Applying ∂α to (2.3)2, multiplying by ∂αc and then integrating, one has

1
2
d

dt

∫
R3
|∂αc|2dx+ µ

∫
R3
|∇∂αc|2dx+ k′(0)

∫
R3

(σ + n∞)|∂αc|2dx

=
∑
β<α

Cαβ

∫
R3
∂α−βu · ∇∂αc∂βcdx− k′(0)

∑
β<α

Cαβ

∫
R3
∂α−βσ∂βc∂αcdx

−
∫

R3
∂α[(k(c)− k′(0)c)σ]∂αcdx− n∞

∫
R3
∂α(k(c)− k′(0)c)∂αcdx,



Chemotaxis-Fluid Equations 9

where from the Cauchy-Schwarz inequality, (2.10) and (2.12), the right hand side is bounded by

Cε
∑

1≤|β|≤4

∫
R3
|∂αc|2dx.

Then, since ε > 0 can be small enough, after summation over 1 ≤ |α| ≤ 3, one has

1
2
d

dt

∑
1≤|α|≤3

∫
R3
|∂αc|2dx +

µ

2

∑
1≤|α|≤3

∫
R3
|∇∂αc|2dx

+ k′(0)
∑

1≤|α|≤3

∫
R3

(σ + n∞)|∂αc|2dx ≤ Cε‖∇c‖2. (2.17)

Similarly, it follows from (2.3)1 that

1
2
d

dt

∫
R3
|∂ασ|2dx+ δ

∫
R3
|∇∂ασ|2dx

=
∑
β<α

Cαβ

∫
R3
∂α−βu · ∇∂ασ∂βσdx+

∫
R3
∂α(χ(c)σ∇c) · ∇∂ασdx

+n∞
∫

R3
∂α(χ(c)∇c) · ∇∂ασdx,

which is bounded by

δ

4

∫
R3
|∇∂ασ|2dx+ Cε2

∑
1≤|β|≤4

∫
R3
|∂βσ|2dx+ C(n2

∞ + 1)
∑
|β|≤3

∫
R3
|∇∂βc|2dx.

Then one has
1
2
d

dt

∑
1≤|α|≤3

∫
R3
|∂ασ|2dx+

δ

2

∑
1≤|α|≤3

∫
R3
|∇∂ασ|2dx

≤ Cε2
∫

R3
|∇σ|2dx+ C(n2

∞ + 1)
∑
|β|≤3

∫
R3
|∇∂βc|2dx. (2.18)

For ∂αu, it follows from (2.3)3 that

1
2
d

dt

∫
R3
|∂αu|2dx+ ν

∫
R3
|∇∂αu|2dx

=
∑
β<α

∑
ij

Cαβ

∫
R3
∂α−βui∂

α∂iuj∂
βujdx+

∫
R3
∂α(∇σφ) · ∂αudx,

which is bounded by

ν

4

∫
R3

(|∇∂αu|2 + |∂αu|2)dx + Cε2
∑

1≤|β|≤3

∫
R3
|∂βu|2dx

+ C sup
t
‖φ(t)‖2

W 3,∞
x

∑
|β|≤3

∫
R3
|∇∂βσ|2dx.

Thus one has
1
2
d

dt

∑
1≤|α|≤3

∫
R3
|∂αu|2dx+

ν

2

∑
1≤|α|≤3

∫
R3
|∇∂αu|2dx

≤ (
ν

4
+ Cε2)

∫
R3
|∇u|2dx+ C sup

t
‖φ(t)‖2

W 3,∞
x

∑
|β|≤3

∫
R3
|∇∂βσ|2dx. (2.19)
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Now, by choosing d3, d4 large enough such that

d3

4
≥ C sup

t
‖φ(t)‖2

W 3,∞
x

,
µd4

4
≥ Cd3(n2

∞ + 1),

then the linear combination (2.17)× d4 + [(2.18)× d3 + (2.19)] leads to

1
2
d

dt

∑
1≤|α|≤3

Cα

∫
R3
|∂α(σ, c, u)|2dx+ λ

∑
2≤|α|≤4

∫
R3
|∂α(σ, c, u)|2dx

+λk′(0)
∑

1≤|α|≤3

∫
R3

(σ + n∞)|∂αc|2dx ≤ C
∫

R3
|∇(σ, c, u)|2dx, (2.20)

for some positive constants Cα and λ. Therefore (2.11) follows from the further linear combination of
(2.16) and (2.20) and the time integration over [0, T ]. This completes the proof of Proposition 2.1.

2.3 Proof of local and global existence

This subsection is devoted to the proof of Theorem 2.1. We construct the solution sequence (nj , cj , uj)j≥0

by solving iteratively the Cauchy problems on the following linear equations

∂tn
j+1 + uj · ∇nj+1 = δ∆nj+1 −∇ · (χ(cj)nj∇cj+1),

∂tc
j+1 + uj · ∇cj+1 = µ∆cj+1 − k′(0)njcj+1 − [k(cj)− k′(0)cj ]nj+1,

∂tu
j+1 + uj · ∇uj+1 +∇P j+1 = ν∆uj+1 − nj∇φ,

∇ · uj+1 = 0, t > 0, x ∈ R3,

with
(nj+1, cj+1, uj+1)|t=0 = (n0, c0, u0), x ∈ R3,

for j ≥ 0, where (n0, c0, u0) ≡ (n∞, 0, 0) is set at initial step. In terms of the perturbation σj =
nj − n∞, the above Cauchy problems are reformulated as

∂tσ
j+1 − δ∆σj+1 + n∞χ(0)∆cj+1 = −uj · ∇σj+1 −∇ · (χ(cj)σj∇cj+1)

−n∞∇ · ([χ(cj)− χ(0)]∇cj+1),

∂tc
j+1 − µ∆cj+1 + n∞k

′(0)cj+1 = −uj · ∇cj+1 − k′(0)σjcj+1

−[k(cj)− k′(0)cj ](n∞ + σj+1),

∂tu
j+1 +∇P j+1 − ν∆uj+1 = −uj · ∇uj+1 − σj∇φ,

∇ · uj+1 = 0, t > 0, x ∈ R3,

(2.21)

with
(σj+1, cj+1, uj+1)|t=0 = (σ0, c0, u0), x ∈ R3,

for j ≥ 0, , where (σ0, c0, u0) ≡ (0, 0, 0) holds. In what follows, let us write W j = (nj , cj , uj) and
W0 = (σ0, c0, u0) for simplicity. Then, one has

Lemma 2.2. Let all conditions in Theorem 2.1 hold. There are constants ε1 > 0, T1 > 0, M1 > 0
such that if ‖W0‖H3 ≤ ε1, then for each j ≥ 0, W j ∈ C([0, T1];H3) is well-defined and

sup
0≤t≤T1

‖W j(t)‖H3 ≤M1, j ≥ 0. (2.22)
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Furthermore, (W j)j≥0 is a Cauchy sequence in the Banach space C([0, T1];H3), the corresponding
limit function denoted by W belongs to C([0, T1];H3) with

sup
0≤t≤T1

‖W (t)‖H3 ≤M1, (2.23)

and W = (σ, c, u) is a solution over [0, T1] to the Cauchy problem (2.3)-(2.4). Finally, the Cauchy
problem (2.3)-(2.4) admits at most one solution in C([0, T1];H3) satisfying (2.23).

Proof. First of all, we prove (2.22) by induction. The trivial case is j = 0 since W 0 = 0 by the
assumption at initial step. Suppose that it is true for j ≥ 0 with M1 > 0 small enough to be
determined later. To prove it for j + 1, we need some energy estimates on W j+1. From (2.21)1, it
holds for any |α| ≤ 3 that

1
2
d

dt
‖∂ασj+1‖2 + δ‖∇∂ασj+1‖2

= −
∫

R3
∂α(uj · ∇σj+1)∂ασj+1dx+ n∞χ(0)

∫
R3
∇∂αcj+1 · ∇∂ασj+1dx

+
∫

R3
∂α[χ(cj)σj∇cj+1]∇∂ασj+1dx+ n∞

∫
R3
∂α[(χ(cj)− χ(0))∇cj+1]∇∂ασj+1dx,

where the r.h.s. is further bounded by

C‖uj‖H3‖∇σj+1‖2H3 + C‖∇∂αcj+1‖‖∇∂ασj+1‖
+C‖σj‖H3‖∇cj+1‖H3‖∇σj+1‖H3 + C‖cj‖H3‖∇cj+1‖H3‖∇σj+1‖H3 .

Then, after taking summation over |α| ≤ 3 and using the Cauchy inequality, one has

1
2
d

dt
‖σj+1‖2H3 + λ‖∇σj+1‖2H3

≤ C‖∇cj+1‖2H3 + C‖(σj , cj , uj)‖2H3‖∇(σj+1, cj+1)‖2H3 . (2.24)

Similarly from (2.21)2 and (2.21)3, one has

1
2
d

dt
‖cj+1‖2H3 + λ‖∇cj+1‖2H3

≤ C‖cj‖2H3 + C‖(σj , cj , uj)‖2H3‖∇(σj+1, cj+1)‖2H3 , (2.25)

and

1
2
d

dt
‖uj+1‖2H3 + λ‖∇uj+1‖2H3 ≤ C‖σj‖2H3 + C‖uj‖2H3‖∇uj+1‖2H3 . (2.26)

Taking the linear combination of inequalities (2.24), (2.25) and (2.26), one has

1
2
d

dt
(‖σj+1‖2H3 + d‖cj+1‖2H3 + ‖uj+1‖2H3) + λ‖∇(σj+1, cj+1, uj+1)‖2H3

≤ C‖(σj , cj)‖2H3 + C‖(σj , cj , uj)‖2H3‖∇(σj+1, cj+1, uj+1)‖2H3 , (2.27)

for some constant d > 0 large enough. Further, after taking time integration, it holds that

‖W j+1(t)‖2H3 + λ

∫ t

0

‖∇W j+1(s)‖2H3ds ≤ C‖W0‖2H3 + C

∫ t

0

‖W j(s)‖2H3ds

+C
∫ t

0

‖W j(s)‖2H3‖∇W j+1(s)‖2H3ds,
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which from the inductive assumption implies

‖W j+1(t)‖2H3 + λ

∫ t

0

‖∇W j+1(s)‖2H3ds ≤ Cε21 + CM2
1T1 + CM2

1

∫ t

0

‖∇W j+1(s)‖2H3ds,

for any 0 ≤ t ≤ T1. Now, one can take properly small constants ε1 > 0, T1 > 0 and M1 > 0 such that

‖W j+1(t)‖2H3 + λ

∫ t

0

‖∇W j+1(s)‖2H3ds ≤M2
1 , (2.28)

for any 0 ≤ t ≤ T1. This implies that (2.22) holds true for j + 1 if so for j. Hence (2.22) is proved for
all j ≥ 0.

Next, define the equivalent energy functional E(W j+1(t)) by

E(W j+1(t)) = ‖σj+1‖2H3 + d‖cj+1‖2H3 + ‖uj+1‖2H3 ,

where the constant d > 0 is given in (2.27). Similar to prove (2.27), one has

|E(W j+1(t))− E(W j+1(s))| =
∣∣∣∣∫ t

s

d

dθ
E(W j+1(θ))dθ

∣∣∣∣
≤ C

∫ t

s

‖W j(θ)‖2H3dθ + C

∫ t

s

(1 + ‖W j(θ)‖2H3)‖∇W j(θ)‖2H3dθ

≤ CM2
1 (t− s) + C(1 +M2

1 )
∫ t

s

‖∇W j(θ)‖2H3dθ,

for any 0 ≤ s ≤ t ≤ T1. Here, the time integral in the second term on the r.h.s. is finite due to
(2.28), and hence E(W j+1(t)) is continuous in t for each j ≥ 0. On the other hand, from (2.25) and
(2.26), the same argument can be applied to cj+1 and uj+1 so that both ‖cj+1(t)‖2 and ‖uj+1(t)‖2
are continuous in t, and so is ‖σj+1(t)‖2. Therefore, ‖W j(t)‖2H3 is continuous in time for each j ≥ 1.

In order to consider the convergence of the sequence (W j)j≥0, let us take the difference of (2.21)
for j and j − 1 so that it gives

∂t(σj+1 − σj)− δ∆(σj+1 − σj) + n∞χ(0)∆(cj+1 − cj)

= −uj · ∇(σj+1 − σj)− (uj − uj−1) · ∇σj

−∇ · [χ(cj)σj∇(cj+1 − cj)]−∇ · [(χ(cj)σj − χ(cj−1)σj−1)∇cj ]

−n∞∇ · ([χ(cj)− χ(0)]∇(cj+1 − cj))− n∞∇ · ([χ(cj)− χ(cj−1)]∇cj),

∂t(cj+1 − cj)− µ∆(cj+1 − cj) + n∞k
′(0)(cj+1 − cj)

= −uj · ∇(cj+1 − cj)− (uj − uj−1) · ∇cj − k′(0)σj(cj+1 − cj)− k′(0)(σj − σj−1)cj

−
∫ cj

0

∫ η
0
k′′(θ)dθdη(σj+1 − σj)−

∫ cj
cj−1

∫ η
0
k′′(θ)dθdησj ,

∂t(uj+1 − uj) +∇P j+1,j − ν∆(uj+1 − uj)

= −uj · ∇(uj+1 − uj)− (uj − uj−1) · ∇uj − (σj − σj−1)∇φ,

∇ · (uj+1 − uj) = 0, t > 0, x ∈ R3.

By using the same energy estimates as before, one has

1
2
d

dt
E(W j+1 −W j) + λ‖∇(W j+1 −W j)‖2H3 ≤ C‖W j −W j−1‖2H3

+C‖W j −W j−1‖2H3‖∇(W j ,W j−1)‖2H3 + C‖(W j ,W j−1)‖2H3‖∇(W j+1 −W j)‖2H3 .
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The further time integration gives

‖W j+1(t)−W j(t)‖2H3 + λ

∫ t

0

‖∇(W j+1(s)−W j(s))‖2H3ds

≤ C(1 +M2
1 )T1 sup

0≤s≤T1

‖W j(s)−W j−1(s)‖2H3 + CM2
1

∫ t

0

‖∇(W j+1(s)−W j(s))‖2H3ds,

for any 0 ≤ t ≤ T1, which by smallness of T1 and M1 implies that there is a constant λ < 1 such that

sup
0≤t≤T1

‖W j+1(t)−W j(t)‖H3 ≤ λ sup
0≤t≤T1

‖W j(t)−W j−1(t)‖H3 , (2.29)

for any j ≥ 1. It can be seen from the above inequality that (W j)j≥0 is a Cauchy sequence in the
Banach space C([0, T1];H3). Thus the limit function

W = W 0 + lim
m→∞

m∑
j=0

(W j+1 −W j)

indeed exists in C([0, T1];H3), and satisfies

sup
0≤t≤T1

‖W (t)‖H3 ≤ sup
0≤t≤T1

lim inf
j→∞

‖W j(t)‖H3 ≤M1.

Finally, suppose that W and W̃ are two solutions in C([0, T1];H3) satisfying (2.23). By applying
the same process as in (2.29) to prove the convergence of (W j)j≥0, one has

sup
0≤t≤T1

‖W (t)− W̃ (t)‖H3 ≤ λ sup
0≤t≤T1

‖W (t)− W̃ (t)‖H3

for the constant λ < 1. Hence, W = W̃ holds. This proves the uniqueness and thus completes the
proof of Lemma 2.2.

Proof of Theorem 2.1: Choose a positive constant

M = min{ε0, ε1},

where ε0 > 0 and ε1 > 0 are given in Lemma 2.1 and Lemma 2.2, respectively. Further choose initial
data W0 = (σ0, c0, u0) such that

‖W0‖H3 ≤ M

2
√

1 + C0

,

where C0 > 0 is given in Lemma 2.1. Define the lifespan of solutions to the Cauchy problem (2.3)-(2.4)
by

T = sup{t; sup
0≤s≤t

‖W (s)‖H3 ≤M}.

Since
‖W0‖H3 ≤ M

2
√

1 + C0

≤ M

2
< M ≤ ε1,

then T > 0 holds true from the local existence result Lemma 2.2 and the continuation argument. If
T is finite, it follows from the definition of T that

sup
0≤s≤T

‖W (s)‖H3 = M,

which is a contradiction to the fact from uniform a priori estimates that

sup
0≤s≤T

‖W (s)‖H3 ≤
√
C0‖W0‖ ≤

M
√
C0

2
√

1 + C0

≤ M

2
.
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Therefore, T =∞. This implies that the local solution W (t) obtained in Lemma 2.2 can be extent to
infinite time. Thus, the Cauchy problem (2.3)-(2.4) admits a solution W = (σ, c, u) in C([0,∞);H3)
with σ + n∞ ≥ 0 and c ≥ 0, and uniqueness of solutions also follows from Lemma 2.2. Finally, (2.6)
follows from (2.11). This completes the proof of Theorem 2.1.

2.4 Proof of rates of convergence

Throughout this subsection, we suppose that n∞ = 0, all conditions in Theorem 2.1 hold and also

‖(σ, c, u)(t)‖2H3 + λ

∫ t

0

∫
R3
σ

k(c)c+ k′(0)
∑

1≤|α|≤3

|∂αc(s)|2
 dxds

+λ
∫ t

0

‖∇(σ, c, u)(s)‖2H3ds ≤ Cε

for any t ≥ 0, where ε > 0 is a small constant. For later use, let us define the rate index γp,q by

γp,q =
3
2

(
1
q
− 1
p

)
,

for any 1 ≤ q ≤ p ≤ ∞.

Proof of Theorem 2.2: It is divided into three steps corresponding to the estimates of the time-
decay rates for c, σ and u, respectively.

Time-decay of c. When n∞ = 0, (2.3)2 also reads

∂tc+ u · ∇c− µ∆c+ k(c)σ = 0. (2.30)

Take 2 ≤ p <∞. Multiplying the above equation by pcp−1 and then integrating, one has

d

dt

∫
R3
cpdx+

4µ(p− 1)
p

∫
R3
|∇cp/2|2dx ≤ 0. (2.31)

Notice that since k(c) ≥ 0 and σ ≥ 0, (2.30) also gives

‖c(t)‖L1 ≤ ‖c0‖L1 (2.32)

for any t ≥ 0. Thus (2.8) can be proved by using the method in [20]. Here, for completeness, we give
the proof of (2.8). Let α > 0. Multiplying (2.31) by (1 + t)α and taking integration over [0, t], one has

(1 + t)α‖c(t)‖pLp +
4µ(p− 1)

p

∫ t

0

(1 + s)α‖∇cp/2(s)‖2ds

≤ ‖c0‖pLp + α

∫ t

0

(1 + s)α−1‖c(s)‖pLpds. (2.33)

Recalling the interpolation inequality

‖f‖Lp ≤ C‖∇|f |p/2‖
2γp,q

1+pγp,q ‖f‖
1

1+pγp,q
Lq

for any 2 ≤ p <∞ and 1 ≤ q ≤ p, one has

α

∫ t

0

(1 + s)α−1‖c(s)‖pLpds

≤ C
∫ t

0

(1 + t)α−1‖∇cp/2‖2pγp,1/(1+pγp,q)‖c(s)‖p/(1+pγp,1)

L1 ds

≤ η
∫ t

0

(1 + s)α‖∇cp/2(s)‖2ds+
C

η

∫ t

0

(1 + s)α−pγp,1−1‖c(s)‖pL1ds

≤ η
∫ t

0

(1 + s)α‖∇cp/2(s)‖2ds+
C

η
‖c0‖pL1(1 + t)α−pγp,1 , (2.34)
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for any η > 0, where the Young inequality pγp,1/(1 + pγp,1) + 1/(1 + pγp,1) = 1 and (2.32) were used
and α > pγp,1 was supposed. Therefore, (2.8) for 2 ≤ p <∞ follows from (2.33) and (2.34) by taking
η > 0 small enough. (2.8) for 1 ≤ p < 2 follows from the interpolation inequality

‖c‖Lp ≤ ‖c‖2/p−1
L1 ‖c‖2(p−1)/p.

Time-decay of σ. Recall the equation of σ when n∞ = 0:

∂tσ + u · σ − δ∆σ = −∇ · (χ(c)σ∇c).

Similar as in (2.31), for 2 ≤ p <∞, one has

d

dt
‖σ(t)‖pLp +

4δ(p− 1)
p

‖∇σp/2(t)‖2 ≤ p(p− 1)
∫

R3
χ(c)∇c · σp−1∇σdx

≤ C‖∇c‖L3‖σp/2‖L6‖σp/2−1∇σ‖
≤ C‖∇c‖H1‖∇σp/2‖2

≤ Cε‖∇σp/2‖2,

which implies by the smallness of ε that

d

dt
‖σ(t)‖pLp +

4δ(p− 1)
p

‖∇σp/2(t)‖2 ≤ 0.

Since ‖σ(t)‖L1 ≤ ‖σ0‖L1 for any t ≥ 0, (2.7) for any 1 ≤ p <∞ similarly follows.

Time-decay of u. In order to obtain the time-decay rate of u, we first consider the time-decay of
high-order derivatives of (σ, c). The high-order energy estimates (2.17) and (2.18) give

d

dt
‖∇(σ, c)‖2H2 + λ‖∇(σ, c)‖2H3 ≤ C‖∇(σ, c)‖2. (2.35)

One can use the spectral analysis of the classical heat operator to get the time-decay of ‖∇(σ, c)‖2.
For this purpose, one can write σ, c as

σ(t) = eδ∆tσ0 +
∫ t

0

eδ∆(t−s)(−u · ∇σ −∇ · (χ(c)σ∇c))ds, (2.36)

c(t) = eµ∆tc0 +
∫ t

0

eµ∆(t−s)(−u · ∇c− k(c)σ)ds. (2.37)

Recall
‖∂meλ∆tf‖ ≤ C‖f‖Lp∩Hm(1 + t)−γ2,p−m/2, (2.38)

for 1 ≤ p ≤ 2 and integer m ≥ 0. Then, for 1 ≤ p ≤ 2, applying (2.38) to (2.36) and (2.37), one has

‖∇σ(t)‖ ≤ C‖σ0‖Lp∩H1(1 + t)−γ2,p−1/2

+C
∫ t

0

(1 + t− s)−5/4(‖u · ∇σ‖L1∩H1 + ‖χ(c)σ∇c‖L1∩H2)ds

≤ C‖σ0‖Lp∩H1(1 + t)−γ2,p−1/2

+Cε
∫ t

0

(1 + t− s)−5/4‖∇(σ, c)(s)‖H1ds, (2.39)
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and

‖∇c(t)‖ ≤ C‖c0‖Lp∩H1(1 + t)−γ2,p−1/2

+C
∫ t

0

(1 + t− s)−5/4(‖u · ∇c‖L1∩H1 + ‖k(c)σ‖L1∩H1)ds

≤ C‖c0‖L1∩H1(1 + t)−γ2,p−1/2 + Cε

∫ t

0

(1 + t− s)−5/4‖∇c(s)‖H1ds

+C(1 + t)−5/4‖c0‖L1∩L2‖σ0‖L1∩L2 . (2.40)

Define the high-order energy E(t) and its weighted norm E∞(t) by

E(t) = ‖∇(σ, c)(t)‖2H2 , E∞(t) = sup
0≤s≤t

(1 + s)2γ2,p+1E(s).

Then, (2.39) and (2.40) implies

‖∇(σ, c)(t)‖ ≤ C(1 + t)−γ2,p−1/2(Kp + ε
√
E∞(t)),

where Kp is denoted by

Kp = ‖(σ0, c0)‖Lp∩H1 + ‖σ0‖L1∩L2‖c0‖L1∩L2 .

Therefore, by the Gronwall inequality, it follows from (2.35) that

E(t) ≤ E(0)e−λt + C

∫ t

0

e−λ(t−s)‖∇(σ, c)(s)‖2ds

≤ C(E(0) +K2
p + εE∞(t))(1 + t)−2γ2,p−1,

which implies
E∞(t) ≤ C(E(0) +K2

p + εE∞(t)),

for any t ≥ 0. Since ε > 0 is small enough, E∞(t) is uniformly bounded in time and hence, from the
definition of E∞(t), it holds that

‖∇(σ, c)(t)‖H2 ≤ C(‖∇(σ0, c0)‖H2 +Kp)(1 + t)−γ2,p−1/2, (2.41)

for any 1 ≤ p ≤ 2 and any t ≥ 0.
Next, we use the same method to deal with the time-decay of high-order derivatives of u. Define

the projection operator P by
P = I−∇∆−1∇·,

where I is the identity. Applying P to (2.3)3 yields

∂tu− ν∆u = −P(u · ∇u)−P(σ∇φ). (2.42)

Notice that P∇(σφ) = 0, and hence

P(σ∇φ) = −P(φ∇σ).

(2.42) can be written as

u(t) = eν∆tu0 +
∫ t

0

eν∆(t−s)(−P(u · ∇u) + P(φ∇σ))ds.

Let 1 < p ≤ 2 and 1 < q ≤ p with q close to 1. Then, it holds that

‖∇u(t)‖ ≤ C‖u0‖Lp∩H1(1 + t)−γ2,p−1/2

+C
∫ t

0

(1 + t− s)−γ2,q−1/2(‖P(u · ∇u)‖Lq∩H1 + ‖P(φ∇σ)‖Lq∩H1)ds (2.43)
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From the Riesz inequality, ‖Pf‖Lr ≤ C‖f‖Lr holds for any 1 < r <∞, and thus one has

‖P(u · ∇u)‖Lq∩H1 + ‖P(∇σφ)‖Lq∩H1 ≤ C‖u · ∇u‖Lq∩H1 + C‖φ∇σ‖Lq∩H1 .

Here, for H1-norm, it holds that

‖u · ∇u‖H1 ≤ Cε‖∇u‖H1 ,

‖φ∇σ‖H1 ≤ C‖∇σ‖H1 sup
t
‖φ(t)‖W 1,∞ ,

and for Lq-norm, it follows from the Hölder inequality that

‖u · ∇u‖Lq ≤ ‖∇u‖ · ‖u‖L2q/(2−q) ≤ C‖∇u‖ · ‖u‖H2 ≤ Cε‖∇u‖,
‖φ∇σ‖Lq ≤ ‖∇σ‖ sup

t
‖φ(t)‖L2q/(2−q) ,

which imply that

‖P(u · ∇u)‖Lq∩H1 + ‖P(φ∇σ)‖Lq∩H1 ≤ Cε‖∇u‖H1 + Cφ‖∇σ‖H1 , (2.44)

where Cφ only depends on the L∞(R+;L2q/(2−q)(R3) ∩W 1,∞(R3))-norm of φ. Thus, (2.43) together
with (2.41) and (2.44) give

‖∇u(t)‖ ≤ C(‖u0‖Lp∩H1 +K0)(1 + t)−γ2,p−1/2

+Cε
∫ t

0

(1 + t− s)−γ2,q−1/2‖∇u(s)‖H1ds. (2.45)

From the high-order energy estimates, it holds that

d

dt
‖∇(σ, c, u)(t)‖2H2 + λ‖∇(σ, c, u)(t)‖2H3 ≤ C‖∇(σ, c, u)‖2. (2.46)

Therefore, similarly as before, by using (2.41), it follows from (2.45) and (2.46) that

‖∇(σ, c, u)(t)‖H2 ≤ C(‖u0‖Lp∩H3 +K0)(1 + t)−γ2,p−1/2. (2.47)

Then, similarly to (2.45), one has

‖u(t)‖ ≤ C‖u0‖Lp∩L2(1 + t)−γ2,p

+C
∫ t

0

(1 + t− s)−γ2,q (ε‖∇u(s)‖+ Cφ‖∇σ(s)‖)ds. (2.48)

Since 1 < p < 6/5 implies γ2,p + 1/2 > 1, then (2.9) follows from (2.47) and (2.48). This completes
the proof of Theorem 2.2.

We conclude this section with a remark on the time-decay rates of solutions when n∞ > 0 as
mentioned in Remark 2.2. In fact, the linearized part of the system (2.3) reads

∂tσ − δ∆σ + n∞∆c = 0,
∂tc− µ∆c+ n∞k

′(0)c = 0,
∂tu+∇P − ν∆u = −σ∇φ,
∇ · u = 0,

for t ≥ 0 and x ∈ R3. Thus, if k′(0) > 0 holds, then c decays exponentially in time, and otherwise it
decays like a heat kernel. Moreover, the time-decay of c in turn leads us to obtain the time-decay of
σ and then u for which the decay rate in time is algebraic.
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3 The coupled Chemotaxis-Stokes equations

3.1 Global weak solutions with large data

In this section, we are concerned with the Cauchy problem on the coupled Chemotaxis-Stokes equations
in Ω = R2: 

∂tn+ u · ∇n = δ∆n−∇ · (χ(c)n∇c),

∂tc+ u · ∇c = µ∆c− k(c)n,

∂tu+∇P = ν∆u− n∇φ,

∇ · u = 0, t > 0, x ∈ R2,

(3.1)

with initial data
(n, c, u)|t=0 = (n0(x), c0(x), u0(x)), x ∈ R2. (3.2)

Notice that throughout this section, we shall suppose that the spatial domain is two dimensional and
the study in the case of three space dimensions are left for future. Instead of the perturbation theory
in the presence of convective terms developed in Section 2, in what follows we shall consider the non-
perturbation existence theory for the above Cauchy problem when the initial cell density n0(x) has
finite mass. Actually, under some conditions, the global existence of weak solutions can be established
provided that the strength of the potential function φ is weak or the initial substrate concentration
c0(x) is small in some sense.

First of all, let us give the definition of weak solutions.

Definition 3.1. (n, c, u) is called a weak solution to the Cauchy problem (3.1)-(3.2) if the following
two conditions hold:

(i) n(t, x) ≥ 0, c(t, x) ≥ 0, t ≥ 0, x ∈ R2, and for any T > 0,
n(1 + |x|+ | lnn|) ∈ L∞(0, T ;L1(R2)), ∇

√
n ∈ L2(0, T ;L2(R2)),

c ∈ L∞(0, T ;L1(R2) ∩ L∞(R2) ∩H1(R2)), ∇c ∈ L2(0, T ;L2(R2)),√
n|∇c| ∈ L2(0, T ;L2(R2)),

u ∈ L∞(0, T ;L2(R2)), ∇u ∈ L2(0, T ;L2(R2));

(3.3)

(ii) ∀ϕ ∈ C∞0 ([0,∞)× R2),∫ ∞
0

∫
R2
n(∂tϕ+ δ∆ϕ)dxdt+

∫ ∞
0

∫
R2
nu · ∇ϕdxdt

+
∫ ∞

0

∫
R2
χ(c)n∇c · ∇ϕdxdt+

∫
R2
n0(x)ϕ(0, x)dx = 0, (3.4)∫ ∞

0

∫
R2
c(∂tϕ+ µ∆ϕ)dxdt+

∫ ∞
0

∫
R2
cu · ∇ϕdxdt

−
∫ ∞

0

∫
R2
k(c)nϕdxdt+

∫
R2
c0(x)ϕ(0, x)dx = 0, (3.5)

and ∀ ϕ̃ ∈ C∞0 ([0,∞)× R2) with ∇ · ϕ̃ = 0,∫ ∞
0

∫
R2
u · (∂tϕ̃+ ν∆ϕ̃)dxdt−

∫ ∞
0

∫
R2
n∇φ · ϕ̃dxdt+

∫
R2
u0(x) · ϕ(0, x)dx = 0. (3.6)

Next, to state the global existence results, the following assumptions are needed:

(B1) χ(c) > 0, χ′(c) ≥ 0, k′(c) > 0, d2

dc2

(
k(c)
χ(c)

)
< 0;
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(B2) φ = φ(x) ≥ 0, x ∈ R2, ∇φ ∈ L∞(R2), and

sup
x∈R2

w(x)|∇φ(x)|+ sup
x∈R2

w2(x)|∇2φ(x)| (3.7)

is small, where w(x) = (1 + |x|)(1 + ln(1 + |x|));

(B3) (n0, c0, u0) satisfies

n0(1 + |x|+ φ(x) + | lnn0|) ∈ L1(R2),
c0 ∈ L1(R2) ∩ L∞(R2), ∇Ψ(c0) ∈ L2(R2), u0 ∈ L2(R2),

and ‖c0‖L4 is small, where

Ψ(c) =
∫ c

0

√
χ(s)
k(s)

ds. (3.8)

If the size of φ is not small as described in the assumption (B2), we postulate another class of
assumptions in which smallness of c0 in L∞ is essential:

(C1) k′(c) > 0;

(C2) φ = φ(x) ≥ 0, x ∈ R2, ∇φ ∈ L∞(R2), and

sup
x∈R2

w(x)|∇φ(x)|+ sup
x∈R2

w2(x)|∇2φ(x)| <∞,

where w(x) is given in (3.7);

(C3) (n0, c0, u0) satisfies

n0(1 + |x|+ φ(x) + | lnn0|) ∈ L1(R2),
c0 ∈ L1(R2) ∩ L∞(R2) ∩H1(R2), u0 ∈ L2(R2),

and ‖c0‖L∞ is small.

Now, the main result of this section is stated in the following

Theorem 3.1. Under the assumptions (A)(B1)(B2)(B3) or (A)(C1)(C2)(C3), the Cauchy prob-
lem (3.1)-(3.2) admits a global weak solution (σ, c, u).

The proof of Theorem 3.1 will be carried out as follows. In the next subsection, on the basis of
two classes of different assumptions given in Theorem 3.1, for any smooth solutions to the Cauchy
problem (3.1)-(3.2), we derive some Lyapunov inequalities in order to obtain the natural a priori
bounds uniformly in time described in (i) of Definition 3.1. And then, Theorem 3.1 is proved in
Subsection 3.3 due to the usual approximation and compactness argument. Precisely, to establish a
complete proof, we firstly regularize initial data (nε0, c

ε
0, u

ε
0) with nε0 ∈ L2(R2), cε0 ∈ H1(R2)∩L∞(R2)

and uε0 ∈ H2(R2) for ε > 0. Then, we obtain the global existence of solutions to the corresponding
Cauchy problem with the prescribed regularized initial data by designing a mapping over a proper
functional space and further applying the Schauder fixed point theorem with the help of the Aubin-
Lions compactness method. Finally, based on the obtained a priori estimates, we deal with the
existence of weak solutions by passing to the limit ε→ 0 so as to conclude the proof of Theorem 3.1.
Here, we remark that Lemma 3.1 and Lemma 3.2 about the uniform a priori estimates also hold for
higher space dimensions, and two space dimensions play a key role in the compactness argument when
passing to the limit.
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3.2 Uniform a priori estimates

The main goal of this subsection is to provide some uniform a priori estimates on any smooth solution
to the Cauchy problem (3.1)-(3.2) under the assumptions (A) and (B1)(B2)(B3) or (C1)(C2)(C3).
One can achieve this goal if the strength of the potential function φ is weak or L∞-norm of c0 is small.

Lemma 3.1 (case of weak force). Under assumptions (A)(B1)(B2)(B3), any smooth solution
(n, c, u) to the Cauchy problem (3.1)-(3.2) satisfies that

n(t, x) ≥ 0, c(t, x) ≥ 0, t ≥ 0, x ∈ R2; (3.9)
‖n(t)‖L1 ≡ ‖n0‖L1 , t ≥ 0; sup

t≥0
‖c(t)‖Lp ≤ ‖c0‖Lp , for any 1 ≤ p ≤ ∞, (3.10)

and

E1(t) +
∫ t

0

D1(s)ds ≤ E1(0), (3.11)

for any t ≥ 0, where the temporal free energy functional E1(t) and its dissipation rate D1(t) are given
by

E1(t) =
∫

R2

(
n lnn+

1
2
|∇Ψ(c)|2 +

1
λ1µν

nφ+
1

2λ1µν
|u|2
)
dx,

D1(t) =
δ

2

∫
R2

|∇n|2

n
dx+

λ0

2

∫
R2
n|∇Ψ|2dx+

λ1µ

2

∫
R2
|∇Ψ|4dx+

1
2λ1µ

∫
R2
|∇u|2dx

+µ
∑
ij

∫
R2

∣∣∣∣∣∂i∂jΨ− d

dc

√
k(c)
χ(c)

∂iΨ∂jΨ

∣∣∣∣∣
2

dx,

with constants λ0 > 0 and λ1 > 0 depending only ‖c0‖∞. Moreover, (n, c, u) satisfies (3.3) for any
finite T > 0.

Proof. Firstly, it is straightforward to obtain (3.9) and (3.10) as before. To prove the Lyapunov
inequality (3.11), we claim that the following two identities hold:

d

dt

∫
R2

(
n lnn+

1
2
|∇Ψ(c)|2

)
dx+ δ

∫
R2

|∇n|2

n
dx

+
∫

R2

χ′(c)k(c) + χ(c)k′(c)
2χ(c)

n|∇Ψ|2dx+ µ
∑
ij

∫
R2

∣∣∣∣∣∂i∂jΨ− d

dc

√
k(c)
χ(c)

∂iΨ∂jΨ

∣∣∣∣∣
2

dx

−µ
2

∫
R2

d2

dc2

(
k(c)
χ(c)

)
|∇Ψ|4dx = −

∑
ij

∫
R2
∂iuj∂iΨ∂jΨdx, (3.12)

and

d

dt

∫
R2

(
nφ+

1
2
|u|2
)
dx+ ν

∫
R2
|∇u|2dx = δ

∫
R2
n∆φdx+

∫
R2

√
k(c)χ(c)n∇Ψ · ∇φdx, (3.13)

for any t ≥ 0. In fact, the identity (3.13) directly follows from the equations (3.1)1 and (3.1)3 and
integration by parts. Here, notice that φ is independent of time t, and the definition (3.8) of Ψ was
used. To prove (3.12), by the definition (3.8) and the equation (3.1)2 of c, Ψ = Ψ(c) satisfies

∂tΨ + u · ∇Ψ = µ

[
∆Ψ +

d

dc

√
k(c)
χ(c)
|∇Ψ|2

]
− n

√
k(c)χ(c).
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Applying ∇ to the above equation, multiplying it by ∇Ψ and then integrating, one has

1
2
d

dt

∫
R2
|∇Ψ|2dx+ µ

∫
R2
|∇2Ψ|2dx+ µ

∫
R2

d

dc

√
k(c)
χ(c)
|∇Ψ|2∆Ψdx

= −
∑
ij

∫
R2
∂iuj∂iΨ∂jΨdx+

∫
R2

√
k(c)χ(c)n∆Ψdx. (3.14)

On the other hand, as before, it follows from (3.1)1 that

d

dt

∫
R2
n lnndx+ δ

∫
R2

|∇n|2

n
dx =

∫
R2
χ(c)∇c · ∇ndx

=
∫

R2

√
k(c)χ(c)∇Ψ · ∇ndx,

which by the further integration by parts, gives

d

dt

∫
R2
n lnndx+ δ

∫
R2

|∇n|2

n
dx

= −
∫

R2

√
k(c)χ(c)n∆Ψdx−

∫
R2

d

dc

√
k(c)χ(c)

√
k(c)
χ(c)

n|∇Ψ|2dx, (3.15)

Adding (3.15) to (3.14), one has

d

dt

∫
R2

(
n lnn+

1
2
|∇Ψ|2

)
dx+ δ

∫
R2

|∇n|2

n
dx+ µ

∫
R2
|∇2Ψ|2dx

+µ
∫

R2

d

dc

√
k(c)
χ(c)
|∇Ψ|2∆Ψdx+

∫
R2

d

dc

√
k(c)χ(c)

√
k(c)
χ(c)

n|∇Ψ|2dx

= −
∑
ij

∫
R2
∂iuj∂iΨ∂jΨdx, (3.16)

where from the assumptions (A) and (B1), it holds that

d

dc

√
k(c)χ(c)

√
k(c)
χ(c)

=
χ′(c)k(c) + χ(c)k′(c)

2χ(c)
> 0.

Noticing the identity

∇ · (|∇Ψ|2∇Ψ) = |∇Ψ|2∆Ψ +∇(|∇Ψ|2) · ∇Ψ,

it follows from integration by parts that

µ

∫
R2

d

dc

√
k(c)
χ(c)
|∇Ψ|2∆Ψdx = −µ

∫
R2

d2

dc2

√
k(c)
χ(c)

√
k(c)
χ(c)
|∇Ψ|4dx

−2µ
∑
ij

∫
R2

d

dc

√
k(c)
χ(c)

∂iΨ∂jΨ∂i∂jΨdx.
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Therefore, it holds that

µ

∫
R2
|∇2Ψ|2dx+ µ

∫
R2

d

dc

√
k(c)
χ(c)
|∇Ψ|2∆Ψdx

= µ
∑
ij

∫
R2

(
|∂i∂jΨ|2 − 2

d

dc

√
k(c)
χ(c)

∂iΨ∂jΨ∂i∂jΨ−
d2

dc2

√
k(c)
χ(c)

√
k(c)
χ(c)
|∂iΨ|2|∂jΨ|2

)
dx

= µ
∑
ij

∫
R2

∣∣∣∣∣∂i∂jΨ− d

dc

√
k(c)
χ(c)

∂iΨ∂jΨ

∣∣∣∣∣
2

dx− 1
2
µ

∫
R2

d2

dc2
k(c)
χ(c)
|∇Ψ|4dx, (3.17)

where we used the identity(
d

dc

√
k(c)
χ(c)

)2

+
d2

dc2

√
k(c)
χ(c)

√
k(c)
χ(c)

=
1
2
d2

dc2

(
k(c)
χ(c)

)
.

Thus, putting (3.17) into (3.16) yields the desired identity (3.12).
Now, based on the identities (3.12) and (3.13), one can prove the Lyapunov inequality (3.11). In

fact, let us denote cM = ‖c0‖L∞ and define

λ0 = min
0≤c≤cM

χ′(c)k(c) + χ(c)k′(c)
2χ(c)

,

λ1 = min
0≤c≤cM

−1
2
d2

dc2

(
k(c)
χ(c)

)
,

where by the assumptions (A) and (B1), λ0 > 0 and λ1 > 0 hold true. Thus from the identity (3.12)
and the Cauchy-Schwarz inequality, one has

d

dt

∫
R2

(
n lnn+

1
2
|∇Ψ(c)|2

)
dx+ δ

∫
R2

|∇n|2

n
dx+ λ0

∫
R2
n|∇Ψ|2dx

+µ
∑
ij

∫
R2

∣∣∣∣∣∂i∂jΨ− d

dc

√
k(c)
χ(c)

∂iΨ∂jΨ

∣∣∣∣∣
2

dx+
λ1µ

2

∫
R2
|∇Ψ|4dx

≤ 1
2λ1µ

∫
R2
|∇u|2dx. (3.18)

Take εφ > 0 and suppose

sup
x
w(x)|∇φ(x)|+ sup

x
w2(x)|∆φ(x)| ≤ εφ.

Then similarly, from (3.13), one has

d

dt

∫
R2

(
nφ+

1
2
|u|2
)
dx+ ν

∫
R2
|∇u|2dx

≤ δεφ
∫

R2

∣∣∣∣ √nw(x)

∣∣∣∣2 dx+ εφ

(
sup

0≤c≤cM
k(c)χ(c)

)1/2 ∫
R2

√
n

w(x)
·
√
n|∇Ψ|dx

≤
(
δεφ +

sup0≤c≤cM k(c)χ(c)
2λ0λ1µν

ε2φ

)∫
R2

|∇n|2

n
dx+

λ0λ1µν

2

∫
R2
n|∇Ψ|2dx, (3.19)

where one used the Hardy inequality over R2∫
R2

∣∣∣∣ √nw(x)

∣∣∣∣2 dx ≤ C ∫
R2
|∇
√
n|2dx ≤ C

∫
R2

|∇n|2

n
dx
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for w(x) = (1 + |x|)(1 + ln(1 + |x|)). One can choose εφ > 0 small enough such that

1
λ1µν

(
δεφ +

sup0≤c≤cM k(c)χ(c)
2λ0λ1µν

ε2φ

)
≤ δ

2
.

Therefore, (3.11) follows by multiplying (3.19) by 1/(λ1µν) and then adding it to (3.18). Thus (3.11)
is proved.

Finally, we prove that (n, c, u) satisfies (3.3) for any finite T > 0. The key point is to obtain the
bound of the first-order spatial moment of n(t, x). For this purpose, multiplying (3.1)1 by the smooth
function 〈x〉 = (1 + |x|2)1/2 and taking integration, one has

d

dt

∫
R2
〈x〉ndx =

∫
R2
nu · ∇〈x〉dx+ δ

∫
R2
n∆〈x〉dx+

∫
R2

√
k(c)χ(c)n∇Ψ · ∇〈x〉dx.

Next, we estimate each term on the r.h.s. of the above identity. Notice that ‖∇〈x〉‖L∞ and ‖∆〈x〉‖L∞
are finite constants. For the first term, it follows from the Cauchy-Schwarz inequality, Sobolev in-
equality and the mass conservation for n that∫

R2
nu · ∇ϕdx ≤ ‖∇〈x〉‖L∞‖n‖L2‖u‖L2 ≤ C‖

√
n‖2L4‖u‖L2 ≤ C‖

√
n‖L2‖∇

√
n‖L2‖u‖L2

≤ ε‖∇
√
n‖2 +

C‖n0‖L1

ε
‖u‖2,

where ε > 0 is a small constant to be chosen later. For the second term, it is straightforward to use
the mass conservation for n to obtain

δ

∫
R2
n∆〈x〉dx ≤ δ‖∆ϕ‖L∞‖n‖L1 ≤ Cδ‖n0‖L1 .

For the third term, it follows from the Cauchy-Schwarz inequality that∫
R2

√
k(c)χ(c)n∇Ψ · ∇〈x〉dx ≤ ε‖

√
n∇Ψ‖2 +

C

ε

(
sup

0≤c≤cM
χ(c)

)
‖
√
k(c)n‖2.

Collecting the above estimates, it therefore holds that

d

dt

∫
R2
〈x〉ndx ≤ Cδ‖n0‖L1 +

C

ε

(
sup

0≤c≤cM
χ(c)

)
‖k(c)n‖L1 +

C‖n0‖L1

ε
‖u‖2L2

+ε
(
‖∇
√
n‖2L2 + ‖

√
n∇Ψ‖2

)
. (3.20)

On the other hand, recall from the proof of (3.11) that for the free energy functional E1(t) and the
corresponding non-negative dissipation rate D1(t), one has

d

dt
E1(t) +D1(t) ≤ 0, (3.21)

for any t ≥ 0. Now, let us define a modified temporal functional E+
1 (t) from E1(t) by

E+
1 (t) = E1(t) + Λ

∫
R2
〈x〉ndx, (3.22)

where Λ > 0 is a large constant to be chosen later. We claim that as long as Λ > 0 is large enough, it
holds that

E+
1 (t) ∼

∫
R2

[
n(| lnn|+ 〈x〉+ φ(x)) + |∇Ψ(c)|2 + |u|2

]
dx, (3.23)
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where A ∼ B means that C1B ≤ A ≤ C2B holds for two generic constants C1 > 0 and C2 > 0. In
fact, this follows from the identity∫

R2
n lnndx =

∫
R2
n| lnn|dx− 2

∫
R2
n ln

1
n
χn≤1dx,

and the estimate

0 ≤
∫

R2
n ln

1
n
χn≤1dx =

∫
R2
n ln

1
n
χe−〈x〉≤ndx+

∫
R2
n ln

1
n
χn≤e−〈x〉dx

≤
∫

R2
〈x〉ndx+ C

∫
R2
n1/2χn≤e−〈x〉dx

≤
∫

R2
〈x〉ndx+ C

≤
(

1 +
C

‖n0‖L1

)∫
R2
〈x〉ndx,

where ‖n0‖L1 > 0 has been assumed without loss of generality and the mass conservation law for n
was also used. Then, one can fix the constant Λ > 0 in (3.22) large enough, depending only on the
total mass ‖n0‖L1 of cells, such that (3.23) holds. Recall the definition of D1(t) in Lemma 3.1. Then,
by letting ε > 0 small enough, the linear combination of (3.20) and (3.21) yields

d

dt
E+

1 (t) +
1
2
D1(t)

≤ CΛδ‖n0‖L1 +
CΛ
ε

(
sup

0≤c≤cM
χ(c)

)
‖
√
k(c)n‖2 +

CΛ‖n0‖L1

ε
E+

1 (t), (3.24)

for any t ≥ 0, where (3.23) was used. Recall that from the equation (3.1)2, it follows that

‖c(t)‖L1 +
∫ t

0

‖k(c)n‖L1ds ≤ ‖c0‖L1 ,

for any t ≥ 0. Then, applying the Gronwall inequality to (3.24), one has

E+
1 (t) ≤ E+

1 (0)e
CΛT
ε ‖n0‖L1

+
∫ t

0

[
CΛδ‖n0‖L1 +

CΛ
ε

(
sup

0≤c≤cM
χ(c)

)
‖k(c)n‖L1

]
ds e

CΛT
ε ‖n0‖L1

≤
[
E+

1 (0) + CΛδ‖n0‖L1T +
CΛ
ε
‖c0‖L1 sup

0≤c≤cM
χ(c)

]
e
CΛT
ε ‖n0‖L1 ,

for any 0 ≤ t ≤ T . Therefore, the time integration of (3.24) gives

E+
1 (t) +

∫ t

0

D1(s)ds ≤ C(n0, c0, u0, T ) (3.25)

for any 0 ≤ t ≤ T , where C(n0, c0, u0, T ) is a finite constant depending only on T and bounds of
(n0, c0, u0) appearing in the assumption (B3). Finally, similarly as before, from (3.1)2, one has

‖c(t)‖2 + 2µ
∫ t

0

‖∇c(s)‖ds ≤ ‖c0‖2, (3.26)

for any t ≥ 0. Notice

|∇Ψ(c)|2 =
χ(c)
k(c)
|∇c|2 ≥ λ3|∇c|2, (3.27)
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where from the assumptions (A) and (B1), λ3 is a positive constant defined by

λ3 =
min0≤c≤cM χ(c)
max0≤c≤cM k(c)

> 0.

Hence, (3.3) follows from (3.25), (3.26) and (3.27). This completes the proof of Lemma 3.1.

Lemma 3.2 (case of small c0). Under assumptions (A)(C1)(C2)(C3), any smooth solution (n, c, u)
to the Cauchy problem (3.1)-(3.2) satisfies that

n(t, x) ≥ 0, c(t, x) ≥ 0, t ≥ 0, x ∈ R2;
‖n(t)‖L1 ≡ ‖n0‖L1 , t ≥ 0; sup

t≥0
‖c(t)‖Lp ≤ ‖c0‖Lp , for any 1 ≤ p ≤ ∞,

and

E2(t) + λ

∫ t

0

D2(s)ds ≤ C(‖n0 lnn0‖L1 + ‖c0‖2H1 + ‖u0‖2L2), (3.28)

for any t ≥ 0, where the free energy functional E2(t) and its dissipation rate D2(t) are given by

E2(t) =
∫

R2
n(lnn+ λφ)dx+ λ(‖c‖2H1 + ‖u‖2)

D2(t) = ‖∇
√
n‖2 + ‖∇c‖2H1 + ‖

√
nc‖2 + ‖

√
n∇c‖2 + ‖∇u‖2,

with λ > 0 a small constant. Moreover, (n, c, u) also satisfies (3.3) for any finite T > 0.

Proof. It suffices to prove the Lyapunov inequality (3.28) since the rest estimates can be obtained
similarly as in the proof of Lemma 3.1. To the end, we still denote cM = ‖c0‖L∞ . Firstly, similarly
as before, from (3.1)1, it holds that

d

dt

∫
R2
n lnndx + δ

∫
R2

|∇n|2

n
dx =

∫
R2
χ(c)∇c · ∇ndx

≤ δ

2

∫
R2

|∇n|2

n
dx+

1
2δ

max
0≤c≤cM

|χ(c)|2
∫

R2
n|∇c|2dx,

which implies that

d

dt

∫
R2
n lnndx+

δ

2

∫
R2

|∇n|2

n
dx ≤ 1

2δ
max

0≤c≤cM
|χ(c)|2

∫
R2
n|∇c|2dx. (3.29)

From (3.1)2, it follows that

1
2
d

dt

∫
R2
|c|2dx+ µ

∫
R2
|∇c|2dx+

∫
R2
k(c)cndx = 0, (3.30)

and

1
2
d

dt

∫
R2
|∇c|2dx+ µ

∫
R2
|∇2c|2dx+ min

0≤c≤cM
k′(c)

∫
R2
n|∇c|2dx

≤ η
∫

R2
n|∇c|2dx+

1
4η

∫
R2
|k(c)|2 |∇n|

2

n
dx+

µ

2

∫
R2
|∇2c|2dx+

1
2µ

∫
R2
|∇u|2c2dx,

for any η > 0, where it is noticed that

min
0≤c≤cM

k′(c) > 0
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due to the assumption (C1). By taking η = 1
2 min0≤c≤cM k′(c), one has

d

dt

∫
R2
|∇c|2dx+ µ

∫
R2
|∇2c|2dx+ min

0≤c≤cM
k′(c)

∫
R2
n|∇c|2dx

≤ max0≤c≤cM |k(c)|2

min0≤c≤cM k′(c)

∫
R2

|∇n|2

n
dx+

c2M
µ

∫
R2
|∇u|2dx. (3.31)

Let λ4 > 0 be such that

λ4 min
0≤c≤cM

k′(c) =
1
2δ

max
0≤c≤cM

|χ(c)|2 + 1,

and then let cM be small enough due to the assumption (C3), such that

λ4
max0≤c≤cM |k(c)|2

min0≤c≤cM k′(c)
≤ δ

4
,

where k(0) = 0 from the assumption (A) was used. Thus, multiplying (3.31) by λ4 and adding it to
(3.29) gives

d

dt

∫
R2

(n lnn+ λ4|∇c|2)dx + λ4µ

∫
R2
|∇2c|2dx+

∫
R2
n|∇c|2dx

+
δ

4

∫
R2

|∇n|2

n
dx ≤ λ4c

2
M

µ

∫
R2
|∇u|2dx,

which further combining with (3.30) yields

d

dt

∫
R2

(n lnn+ λ4|∇c|2 + |c|2)dx+ µmin{λ4, 2}
∫

R2
(|∇c|2 + |∇2c|2)dx

+ min{1, 2 min
0≤c≤cM

k′(c)}
∫

R2
n(|c|2 + |∇c|2)dx+

δ

4

∫
R2

|∇n|2

n
dx

≤ λ4c
2
M

µ

∫
R2
|∇u|2dx. (3.32)

Similarly as before, from (3.1)3, it holds that

d

dt

∫
R2

(
nφ+

1
2
|u|2
)
dx+ ν

∫
R2
|∇u|2dx = δ

∫
R2
n∆φdx+

∫
R2
χ(c)n∇c · ∇φdx

≤ δ sup
x
w(x)2|∆φ(x)|

∫
R2

|∇n|2

n
dx

+
1
2

sup
x
w(x)|∇φ(x)| sup

0≤c≤cM
|χ(c)|

(∫
R2

|∇n|2

n
dx+

∫
R2
n|∇c|2dx

)
. (3.33)

Therefore, multiplying (3.33) by a small constant λ5 > 0, adding it to (3.32) and then taking cM small
enough, one has

d

dt

∫
R2

[n lnn+ λ4|∇c|2 + |c|2 + λ5(nφ+
1
2
|u|2)]dx

+µmin{λ4, 2}
∫

R2
(|∇c|2 + |∇2c|2)dx+ min{1

2
, min
0≤c≤cM

k′(c)}
∫

R2
n(|c|2 + |∇c|2)dx

+
δ

8

∫
R2

|∇n|2

n
dx+

λ5ν

2

∫
R2
|∇u|2dx ≤ 0,

for any t ≥ 0. Hence, (3.28) follows by further taking the time integral of the above inequality. This
completes the proof of Lemma 3.2.
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3.3 Proof of global existence

In this subsection, we devote ourselves to the proof of Theorem 3.1 by three steps.

Step 1 Construction of the regularized solutions. Given initial data (n0, c0, u0) satisfying the assump-
tion of Theorem 3.1, let (nε0, c

ε
0, u

ε
0) for ε > 0 be a smooth approximation of (n0, c0, u0), where

nε0 ∈ L2(R2), cε0 ∈ H1(R2) ∩ L∞(R2), uε0 ∈ H2(R2), (3.34)

and

nε0(x) ≥ 0, cε0(x) ≥ 0, ∇ · uε0(x) = 0, x ∈ R2, (3.35)
nε0(1 + |x|2 + | lnnε0|) ∈ L1(R2), (3.36)

hold, and it is further supposed that one has the convergence

nε0 → n0 in L1(R2), cε0 → c0 in Lp(R2) (1 ≤ p <∞), cε0 ⇀ c0 in w*-L∞(R2), (3.37)
∇cε0 → ∇c0 in L2(R2), uε0 → u0 in L2(R2), (3.38)

as ε tends to zero. Consider the Cauchy problem

∂tn
ε + uε · ∇nε = δ∆nε −∇ · (χ(cε)nε∇cε),

∂tc
ε + uε · ∇cε = µ∆cε − k(cε)nε,

∂tu
ε +∇P ε = ν∆uε − nε∇φ,

∇ · uε = 0, t > 0, x ∈ R2,

(3.39)

with the prescribed-above initial data

(nε, cε, uε)|t=0 = (nε0(x), cε0(x), uε0(x)), x ∈ R2. (3.40)

Now, one can state the global existence result for the regularized solutions with large initial data.

Proposition 3.1. Suppose that either assumptions (A)(B1)(B2)(B3) or (A)(C1)(C2)(C3) hold.
Fix ε > 0. Let (3.34), (3.35) and (3.36) hold. Then, for any finite T > 0, the Cauchy problem
(3.39)-(3.40) admits one solution (nε, cε, uε) with nε(t, x) ≥ 0, cε(t, x) ≥ 0, 0 ≤ t ≤ T , x ∈ R2, and

nε ∈ C([0, T ];L2(R2)) ∩ L2(0, T ;H1(R2)),
cε ∈ C([0, T ];H1(R2)) ∩ L2(0, T ;H2(R2)) ∩ L∞((0, T )× R2),
uε ∈ C([0, T ];H2(R2)) ∩ L2(0, T ;H3(R2)).

Proof. Fix T > 0. For this time we shall skip the parameter ε > 0 in (3.39)-(3.40) for simplicity.
Denote H = L2(R2) and

V = {ρ ∈ H1(R2); ‖|x|2ρ‖L1 <∞},
Y (0, T ) = {ρ ∈ L2(0, T ;V ); ∂tρ ∈ L2(0, T ;V ′), ρ(t, x) ≥ 0, 0 ≤ t ≤ T, x ∈ R2},

where V ′ is the dual of V . Define a mapping T : Y (0, T ) ⊂ L2(0, T ;H) → L2(0, T ;H) as follows.
Given 0 ≤ ñ ∈ Y (0, T ), n =: T [ñ] is obtained by iteratively solving three Cauchy problems:

(i) Solve u =: T1[ñ] to be the solution to the Cauchy problem∂tu+∇P = ν∆u− ñ∇φ,
∇ · u = 0,
u|t=0 = u0.



28 R.-J. Duan, A. Lorz and P. Markowich

Actually, u can be given by

u(t) = G(t) ∗ u0 +
∫ t

0

G(t− s) ∗P(−ñ∇φ)ds,

where P is the divergence-free projection operator in R2, G(t, x) = (4πt)−1e−
|x|2
4t is the Green function

associated to the heat equation in R2 and ∗ denotes the space convolution. By the standard energy
estimates on the Stokes system and the Hardy inequality over R2, it follows that

‖u(t)‖2H2 + λ

∫ t

0

(‖∇u‖2H2 + ‖∂tu‖2)ds ≤ ‖u0‖2H2 + C(Mφ)
∫ t

0

‖ñ‖2H1ds, (3.41)

for any 0 ≤ t ≤ T , where Mφ denotes the bound of φ:

Mφ = sup
x∈R2

w(x)|∇φ(x)|+ sup
x∈R2

w2(x)|∇2φ(x)|,

and C(·) is a nondecreasing continuous function with C(0) = 0. Therefore, one has

uε ∈ C([0, T ];H2(R2)) ∩ L2(0, T ;H3(R2)), (3.42)

where the continuity follows from the similar proof as that of Lemma 2.2.

(ii) Solve c =: T2[ñ] to be the solution to the Cauchy problem{
∂tc+ u · ∇c = µ∆c− k(c)ñ,
c|t=0 = c0,

(3.43)

where u = T1[ñ] is given in (i). For that, define the iterative scheme by

∂tc
j+1 + u · ∇cj = µ∆cj+1 − k(cj)ñ,

for j ≥ 0, where c0 ≡ 0 has been set. Notice that cj+1 can be written as

cj+1(t) = G(t) ∗ c0 +
∫ t

0

∇G(t− s) ∗ (u(s)cj(s))ds−
∫ t

0

G(t− s)(k(cj(s))ñ(s))ds,

for any 0 ≤ t ≤ T .
The convergence of the sequence (cj)j≥0 is verified as follows. Without loss of generality we may

suppose c0 ∈ H2(R2). Take T0 > 0 small enough. Similar to the proof in Subsection 2.3, we use
induction to prove that there are constants λ > 0, M > 0 such that

‖cj(t)‖H2 + λ

∫ t

0

‖∇cj‖2H3ds ≤M (3.44)

for any j ≥ 0 and 0 ≤ t ≤ T0. In fact, suppose that (3.44) is true for some j ≥ 0. Firstly, the Sobolev
inequality shows

sup
0≤t≤T0,x∈R2

|cj(t, x)| ≤ CM.

Then, the zero-order energy estimate on cj+1 gives

1
2
d

dt
‖cj+1‖2 + µ‖∇cj+1‖2 ≤

∫
R2
|ucj · ∇cj+1|dx+

∫
R2
|k(cj)ñcj+1|dx

≤ µ

2
‖∇cj+1‖2 + C‖u‖2L∞‖cj‖2 + ‖cj+1‖2 + C‖ñ‖2,
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which from the Gronwall inequality leads to

sup
0≤t≤T0

‖cj+1(t)‖2 ≤ e2T0(‖c0‖2 + CM‖u‖2L∞(0,T ;H2)T0 + C‖ñ‖2L2(0,T0;L2))

and further∫ T0

0

‖∇cj+1(s)‖2ds ≤ (1 + 2e2T0)(‖c0‖2 + CM‖u‖2L∞(0,T ;H2)T0 + C‖ñ‖2L2(0,T0;L2)).

For the first-order energy estimate, it is straightforward to get

‖∇cj+1(t)‖2 + λ

∫ t

0

‖∇2cj+1(s)‖2ds ≤ ‖∇c0‖2 + CM‖u‖2L∞(0,T ;H2)T0 + C‖ñ‖2L2(0,T0;L2)

for any 0 ≤ t ≤ T0. The second-order energy estimate gives

1
2
d

dt
‖∇2cj+1‖2 + λ‖∇3cj+1‖2 ≤ C‖∇(u · ∇cj)‖2 + C‖∇(k(cj)ñ)‖2,

where it further holds that

‖∇(u · ∇cj)‖2 ≤ C‖∇u∇cj‖2 + C‖u · ∇2cj‖2 ≤ C‖∇u‖2‖∇cj‖2L∞ + C‖u‖2L∞‖∇2cj‖2

≤ Cκ‖∇u‖4‖∇cj‖2 + κ‖∇3cj‖2 + C‖u‖2H2‖∇2cj‖2,

for some small constant κ > 0 to be chosen later, and

‖∇(k(cj)ñ)‖2 ≤ C‖∇ñ‖2 + C‖∇cj‖2L4‖ñ‖2L4 ≤ C‖∇ñ‖2 + C‖∇cj‖2H1‖ñ‖2H1 .

Then, it follows that

‖∇2cj+1(t)‖2 + λ

∫ t

0

‖∇3cj+1‖2ds ≤ ‖∇2c0‖2 + CκM(1 + ‖u‖4L∞(0,T0;H2))T0

+C(1 +M)‖ñ‖2L2(0,T0;H1) + CκM.

for any 0 ≤ t ≤ T0. Collecting all the above estimates, using ñ ∈ Y (0, T ) and the estimate (3.41), and
then choosing properly small constants λ > 0, κ > 0, T0 > 0 and large constant M > 0, (3.44) is true
for j+1 and hence it holds for all j ≥ 0 by induction. Now, one can extract a convergent subsequence
of (cj)j≥0 so that its limit function c is indeed a solution to the Cauchy problem. The uniqueness
also holds from the Gronwall inequality. Iterating the above process, we prove the existence and
uniqueness of solutions over the whole time interval [0, T ] if additionally c0 ∈ H2(R2).

The rest is to derive uniform a priori estimates on c if c0 ∈ H1(R2)∩L∞(R2). Similarly as before,
if ‖c0‖L∞ is small, then from (3.43),

1
2
d

dt
‖c‖2H1 + λ‖∇c‖2H1 ≤ C‖c0‖L∞(‖∇ñ‖2 + ‖∇u‖2),

which gives

‖c(t)‖2H1 + λ

∫ t

0

‖∇c‖2H1ds ≤ C‖c0‖L∞
∫ T

0

(‖∇ñ‖2 + ‖∇u‖2)ds (3.45)

for all 0 ≤ t ≤ T . If ‖c0‖L4 is small, then from (3.43), we use the following estimate

1
2
d

dt
‖c‖2H1 + λ‖∇c‖2H1 ≤ C‖c0‖L∞‖∇u‖2 + C‖c0‖2L4‖∇ñ‖2,

which yields

‖c(t)‖2H1 + λ

∫ t

0

‖∇c‖2H1ds ≤ C‖c0‖L∞
∫ T

0

‖∇u‖2ds+ ‖c0‖2L4

∫ T

0

‖∇ñ‖2ds (3.46)
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for all 0 ≤ t ≤ T . Notice that one has

c ∈ C([0, T ];H1) ∩ L2(0, T ;H2) ∩ L∞((0, T )× R2). (3.47)

(iii) Solve n =: T3[ñ] to be the solution to the Cauchy problem{
∂tn+ u · ∇n = δ∆n−∇ · (χ(c)n∇c),
n|t=0 = n0,

(3.48)

where u = T1[ñ] and c = T2[ñ] are given in (i) and (ii), respectively. In fact, under the conditions (3.42)
and (3.47) for u and c, the existence and uniqueness for the linear second-order parabolic equation
(3.48) follows from the similar proof as in (ii), and thus their proof is omitted for simplicity. Here,
let us give some uniform estimate of n for compactness argument later. Firstly, from the Maximum
principle and n0 ≥ 0, one has n(t, x) ≥ 0 for any t ≥ 0 and x ∈ R2. Moreover, it holds that

1
2
d

dt
‖n‖2 + δ‖∇n‖2 =

∫
R2
nχ(c)∇c · ∇ndx ≤ C‖n‖Lp‖∇c‖

L
2p
p−2
‖∇n‖

≤ C‖n‖
2
p ‖∇c‖

L
2p
p−2
‖∇n‖

2p−2
p

≤ δ

2
‖∇n‖2 + Cp‖∇c‖p

L
2p
p−2
‖n‖2

≤ δ

2
‖∇n‖2 + Cp‖∇c‖p−2‖∇2c‖2‖n‖2

for 2 < p <∞, which from the Gronwall inequality and (3.47) implies

n ∈ C([0, T ];L2) ∩ L2(0, T ;H1) (3.49)

and

‖n(t)‖2 + λ

∫ t

0

‖∇n‖2ds ≤ ‖n0‖2

+Cp‖n0‖2e
Cp sup

0≤s≤T
‖∇c(s)‖p−2 R T

0 ‖∇
2c‖2ds

sup
0≤s≤T

‖∇c(s)‖p−2

∫ T

0

‖∇2c‖2ds. (3.50)

The moment estimate |x|2n ∈ L∞(0, T ;L1(R2)) follows from

d

dt

∫
R2
|x|2n(t, x)dx = 4δ

∫
R2
ndx+ 2

∫
R2
nu · xdx− 2

∫
R2
χ(c)n∇c · xdx

≤ 4δ‖n0‖L1 + (‖u
√
n‖2 + ‖χ(c)∇c

√
n‖2)

∫
R2
|x|2n(t, x)dx, (3.51)

and

‖u
√
n‖2 ≤ ‖u‖2L4‖

√
n‖2L4 ≤ C‖u‖2H1‖n‖, ‖χ(c)∇c

√
n‖2 ≤ C‖∇c‖2H1‖n‖ (3.52)

together with the Gronwall inequality and (3.42), (3.47) and (3.49). Finally, by dual argument, it is
also straightforward to verify ∂tn ∈ L2(0, T ;V ′).

Now, we are in a position to complete the proof of Proposition 3.1. Define T = T3 by n = T3[ñ].
From (i)(ii)(iii) above,

T : Y (0, T ) ⊂ L2(0, T ;H)→ Y (0, T ) ⊂ L2(0, T ;H)

is indeed well-defined and further T is continuous over Y (0, T ). Recall a compactness argument by
the following
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Lemma 3.3 (Aubin-Lions lemma). Let T > 0 and 1 < p < ∞, and let H be a Banach space and
V ⊆ H be a subspace compactly imbedded in H. If the sequence (fj)j≥1 is bounded in Lp(0, T ;V )
and (∂tfj)j≥1 is bounded in Lp(0, T ;V ′) uniformly in j ≥ 1, then (fj)j≥1 is relatively compact in
Lp(0, T ;H).

In our case, p = 2 and the functional spaces H,V, V ′ defined at the beginning satisfy the assumption
of Lemma 3.3. Therefore, from the above lemma, one can apply Schauder fixed point theorem to a
ball in Y (0, T ), and hence the Cauchy problem admits one solution in Y (0, T ). Notice that the ball
can be mapped into itself by T as long as the radius of the ball is sufficiently large and the smallness of
either Mφ, ‖c0‖L4 or ‖c0‖L∞ is assumed. In fact, for the bound of n in L2(0, T ;H1(R2)), this follows
from estimates (3.41), (3.45) or (3.46), and (3.50). For the bound of |x|2n in L∞(0, T ;L1(R2)), it
follows further from (3.51) and (3.52) and Gronwall inequality. It similarly holds for the bound of ∂tn
in L2(0, T ;V ′). The rest conclusions in Proposition 3.1 directly follow from (i)(ii)(iii). This completes
the proof of Proposition 3.1.

Step 2 A priori estimates on the regularized solutions uniformly in the regularization parameter. Under
assumptions (A)(B1)(B2)(B3) or (A)(C1)(C2)(C3), one can apply Lemma 3.1 and Lemma 3.2
respectively to the regularized solution (nε, cε, uε) with initial data satisfying (3.34), (3.35), (3.36)
(3.37) and (3.38) so that (3.3) (3.4), (3.5) and (3.6) hold for (nε, cε, uε):

• nε(t, x) ≥ 0, cε(t, x) ≥ 0, t ≥ 0, x ∈ R2, and for any T > 0,
nε(1 + |x|+ | lnnε|) ∈ L∞(0, T ;L1(R2)), ∇

√
nε ∈ L2(0, T ;L2(R2)),

cε ∈ L∞(0, T ;L1(R2) ∩ L∞(R2) ∩H1(R2)), ∇cε ∈ L2(0, T ;L2(R2)),√
nε|∇cε| ∈ L2(0, T ;L2(R2)),

uε ∈ L∞(0, T ;L2(R2)), ∇uε ∈ L2(0, T ;L2(R2)),

(3.53)

where all bounds in the corresponding spaces are independent of ε. Furthermore, in the case of weak
force, by Lemma 3.1 and (3.27),

∇cε ∈ L2(0, T ;L4(R2)),

while in the case of small c0, from Lemma 3.2,

∇cε ∈ L2(0, T ;H1(R2)).

• ∀ϕ ∈ C∞0 ([0,∞)× R2),∫ ∞
0

∫
R2
nε(∂tϕ+ δ∆ϕ)dxdt+

∫ ∞
0

∫
R2
nεuε · ∇ϕdxdt

+
∫ ∞

0

∫
R2
χ(cε)nε∇cε · ∇ϕdxdt+

∫
R2
nε0(x)ϕ(0, x)dx = 0, (3.54)∫ ∞

0

∫
R2
cε(∂tϕ+ µ∆ϕ)dxdt+

∫ ∞
0

∫
R2
cεuε · ∇ϕdxdt

−
∫ ∞

0

∫
R2
k(cε)nεϕdxdt+

∫
R2
cε0(x)ϕ(0, x)dx = 0, (3.55)

and ∀ ϕ̃ ∈ C∞0 ([0,∞)× R2) with ∇ · ϕ̃ = 0,∫ ∞
0

∫
R2
uε · (∂tϕ̃+ ν∆ϕ̃)dxdt−

∫ ∞
0

∫
R2
nε∇φ · ϕ̃dxdt+

∫
R2
uε0(x) · ϕ̃(0, x)dx = 0. (3.56)

Step 3 Passing to the limit. Let ε = εj with εj ↘ 0 as j → ∞. From Step 2, one has that up
to a subsequence, nε, cε, uε, respectively, converge to some functions n, c, u in distributions. In what
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follows, let us verify that (n, c, u) is indeed a weak solution to the Cauchy problem in the sense of
Definition 3.1.

Firstly, those a priori bounds independent of ε in (3.53) yield the weak convergence:

nε ⇀ n in w-Lp(0, T ;L1(R2)),
cε ⇀ c in w-Lp((0, T )× R2) ∩ Lp(0, T ;H1(R2)),

uε ⇀ u in w-Lp(0, T ;L2(R2)),

for any 1 ≤ p < ∞. Since (cε)ε>0 is uniformly bounded in H1(R2) for a.e. t ∈ [0, T ], then up to a
subsequence, (cε)ε>0 strongly converges to c in L2(R2

loc) over a rational dense subset of [0, T ]. Since
‖cε‖ is continuous in t, then by re-defining c, (cε)ε>0 strongly converges to c in L2(R2

loc) over [0, T ].
Since (cε)ε>0 is also uniformly bounded in Lp(R2) for 1 ≤ p ≤ ∞, then by Hölder inequality, (cε)ε>0

strongly converges to c in Lp(R2
loc) and hence in Lp((0, T )×R2

loc) for 1 ≤ p <∞. For the convergence
of (nε)ε>0, since (

√
nε)ε>0 is uniformly bounded in H1(R2) for a.e. t ∈ [0, T ], then similarly before,

up to a subsequence, (
√
nε)ε>0 strongly converges to

√
n̄ in L2(R2

loc) over [0, T ]. Since∫
Ωc

|nε − n̄|dx =
∫

Ωc

|(
√
nε)2 − (

√
n̄)2|dx

=
∫

Ωc

|
√
nε +

√
n̄| · |
√
nε −

√
n̄|dx

≤ C(‖nε‖L1 + ‖n̄‖L1)‖
√
nε −

√
n̄‖L2(Ωc)

for any compact subset Ωc of R2, (nε)ε>0 strongly converges to n̄ = n in L1((0, T ) × R2
loc). Notice

that from Sobolev inequality,∫
R2
|nε|pdx = ‖

√
nε‖2pL2p ≤ C(p)‖

√
nε‖2‖∇

√
nε‖2(p−1) ≤ C(p, ‖n0‖L1)‖∇

√
nε‖2(p−1),

for 1 ≤ p <∞, which implies that (nε)ε>0 is uniformly bounded in L
p
p−1 (0, T ;Lp(R2)) for 1 ≤ p <∞.

Further using the uniform boundedness of (nε)ε>0 in L∞(0, T ;L1(R2)), it follows that (nε)ε>0 is
actually uniformly bounded in Lp((0, T ) × R2) for 1 ≤ p ≤ 2 and thus (nε)ε>0 strongly converges
to n in Lp((0, T ) × R2

loc) for 1 ≤ p ≤ 2. Similarly, it follows that (uε)ε>0 strongly converges to u
in L2((0, T ) × R2

loc). These are enough to pass to the limit for all nonlinear terms in (3.54), (3.55)
and (3.56). Finally, due to the weak lower semi-continuity of norms and the convexity of functionals
n 7→

∫
R2 n lnndx and n 7→

∫
R2 |∇

√
n|2dx, one can obtain all bounds for the limit functions n, c, u

in the corresponding functional spaces given in (3.53). Therefore, (n, c, u) satisfies all conditions in
Definition 3.1. This completes the proof of Theorem 3.1.
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