
Manuscript submitted to Website: http://AIMsciences.org
AIMS’ Journals
Volume X, Number 0X, XX 200X pp. X–XX

GLOBAL CLASSICAL SOLUTIONS CLOSE TO EQUILIBRIUM

TO THE VLASOV-FOKKER-PLANCK-EULER SYSTEM
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Abstract. We are concerned with the global well-posedness of a two-phase
flow system arising in the modelling of fluid-particle interactions. This sys-

tem consists of the Vlasov-Fokker-Planck equation for the dispersed phase
(particles) coupled to the incompressible Euler equations for a dense phase
(fluid) through the friction forcing. Global existence of classical solutions to

the Cauchy problem in the whole space is established when initial data is a
small smooth perturbation of a constant equilibrium state, and moreover an
algebraic rate of convergence of solutions toward equilibrium is obtained under
additional conditions on initial data. The proof is based on the macro-micro

decomposition and Kawashima’s hyperbolic-parabolic dissipation argument.
This result is generalized to the periodic case, when particles are in the torus,
improving the rate of convergence to exponential.

1. Introduction. Fluid-particle interaction systems have been proposed to de-
scribe the behavior of sprays, aerosols or more generically two phase flows where
one phase (disperse) can be considered as a suspension of particles onto the other
one (dense) thought as a fluid. In many of these applications, the assumption that
particles are solid non-deformable spheres suspended on the fluid leads to simplified
but meaningful models [2]. This kind of systems have been used in sedimentation
of solid grain by external forces [1], for fuel-droplets in combustion theory [28] and
biosprays in medicine [3, 22] for instance.

The particles behavior is obtained via the evolution of the statistical distribution
of particles in phase space, where the only forces taken into account on particles are
the friction forces due to the fluid and an stochastic term of fluctuations around the
fluid velocity. This kinetic modelling of the particle phase, as in [6, 4, 7], leads to
the Vlasov-Fokker-Planck equation coupled with some fluid equation with a friction
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term due to the action/reaction principle. Here, we will model the fluid by the
incompressible Euler system. The resulting system reads as

∂tF + ξ · ∇xF = ∇ξ · ((ξ − u)F +∇ξF ), (1)

∇x · u = 0, (2)

∂tu+ u · ∇xu+∇xp =

∫
R3

(ξ − u)F dξ, (3)

with

F (0, x, ξ) = F0(x, ξ), u(0, x) = u0(x).

Here, the unknowns are F = F (t, x, ξ) ≥ 0 for t > 0, x ∈ R3, ξ ∈ R3, denoting the
density distribution function of particles in the phase space, and u = u(t, x) ∈ R3

and p = p(t, x) ∈ R for t > 0, x ∈ R3, denoting respectively the velocity field and
pressure of the fluid. Initial data F0 = F0(x, ξ) and u0 = u0(x) for x ∈ R3, ξ ∈ R3

are given with the compatible condition

∇x · u0(x) = 0. (4)

The above system describes the motion of the interactive particle and fluid subject
to a mutual friction forcing proportional to the relative velocity ξ − u; see [28, 6].
In what follows, we shall call (1), (2) and (3) by the Vlasov-Euler-Fokker-Planck
system (VEFP for simplicity).

Previous work related to the mathematical analysis of coupled kinetic-fluid sys-
tems in the sense above can be traced back to [17] where global existence and large
time behavior of solutions to the Vlasov-Stokes system was obtained. In [17], the
fluid is assumed to be viscous and incompressible and its velocity satisfies the Stokes
equations with the same friction forcing as in (3). When the motion of the fluid is
described by the incompressible Navier-Stokes equations, [14, 15] considered hydro-
dynamic limits of the Vlasov-Navier-Stokes system in different regimes, [9, 12, 8]
dealt with similar singular perturbation problems, and [5] recently gave a proof
of global existence of weak solutions on the periodic domain. [21, 20] provided
a detailed study of the global existence and asymptotic analysis for the coupled
system of the Vlasov-Fokker-Planck equation with the compressible Navier-Stokes
equations in R3, and [13] also proved global existence of classical solutions near equi-
librium for the incompressible model. In the framework of the inviscid compressible
flow under friction forces, existence of smooth solutions for short time was proved
in [4] when there is no Brownian effect in the kinetic equation, and stability and
asymptotic analysis were discussed in [7] when the velocity diffusion is considered.

The goal of this paper is to prove the global existence of classical solutions to the
Cauchy problem of the VEFP system for initial data which is a small perturbation
around the following spatially homogeneous steady states F ≡ M, u ≡ 0, P ≡ 0,
where

M = M(ξ) =
1

(2π)3/2
exp

(
−|ξ|2/2

)
,

which has been normalized to have zero bulk velocity and unit density and temper-
ature. Compared with some existing results, although the fluid is inviscid, solutions
close to equilibrium are shown to be asymptotically stable under smooth perturba-
tions. From the later proof, this essentially results from the coupling term friction
forcing through which the dissipation of the momentum component of the kinetic
distribution can be transferred to the damped fluid velocity field. For the above
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purpose, let us reformulate the Cauchy problem in the framework of perturbations.
Set

F = M +M1/2f,

so that the reformulated Cauchy problem reads

∂tf + ξ · ∇xf + u · ∇ξf − 1

2
u · ξf − u · ξM1/2 = Lf, (5)

∇x · u = 0, (6)

∂tu+ u · ∇xu+∇xp+ u(1 + a) = b, (7)

with initial data

f(0, x, ξ) = f0(x, ξ) ≡ M−1/2(F0 −M), u(0, x) = u0(x), (8)

where L is the linearized Fokker-Planck operator defined by

Lf =
1

M1/2
∇ξ ·

[
M∇ξ

(
f

M1/2

)]
,

and a = af , b = bf depending on f are the moments of f defined by

af (t, x) =

∫
R3

M1/2f(t, x, ξ) dξ, bf (t, x) =

∫
R3

ξM1/2f(t, x, ξ) dξ. (9)

Theorem 1.1. Let (4) and F0 = M +M1/2f0 ≥ 0 hold. Suppose that ∥f0∥L2
ξ(H

3
x)
+

∥u0∥H3 is small enough. Then, the Cauchy problem (5)-(7) and (8) admits a unique
global classical solution (f(t, x, ξ), u(t, x)) satisfying

f ∈ C 0([0,∞); L2
ξ(H

3
x)), u ∈ C 0([0,∞); H3),

F = M +M1/2f ≥ 0,

sup
t≥0

(∥f(t)∥L2
ξ(H

3
x)

+ ∥u(t)∥H3) ≤ C(∥f0∥L2
ξ(H

3
x)

+ ∥u0∥H3).

Moreover, for any given ε > 0 which is close to zero, if ∥f0∥L2
ξ(H

3
x∩L1

x)
+ ∥u0∥H3∩L1

is sufficiently small, the solution (f, u) enjoys the time-decay:

∥f(t)∥L2
ξ(H

3
x)

+ ∥u(t)∥H3 ≤ Cε(1 + t)−
3
4+ε(∥f0∥L2

ξ(H
3
x∩L1

x)
+ ∥u0∥H3∩L1) (10)

for any t ≥ 0, where Cε depends only on ε and Cε may blow up as ε tends to zero.

The main novelty we develop in this paper is the use of a refined energy method
to take advantage of the damping of the velocity field in the Euler equation due to
the kinetic part. This is the reason why we do not need a viscosity term in the fluid
equation compared to [13], see remark 1 at the end of Section 3. Energy methods
have been used for collisional kinetic equations [16, 10] and for other nonlinearly
coupled Fokker-Planck equations and systems as in [19, 11]. The rest of this paper
is organized as follows. In the next section, we start by giving an elementary
observation for computing the dissipation of the linearized Fokker-Planck operator
on the basis of a macro-micro decomposition, and also we introduce some notations
used in the later proof. The global existence and rate of convergence of solutions
are respectively obtained in the end of Section 2 and Section 3. We adapt our proof
to the periodic in space case in Section 4 and eventually give a few technical lemmas
in Section 5.
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2. Global existence. In what follows, our analysis is based on the reformulated
Cauchy problem (5)-(8). To obtain the global existence, the most important point
is to obtain the uniform-in-time a priori estimates. Then, we will construct an
approximation scheme allowing use to show short-time existence of the smooth
solutions for which the a priori estimates become real estimates, and finally we will
show that due to the uniform-in-time estimates, we can extend the solutions to all
times. We now first introduce some notations and set some basic properties of the
operators involved.

2.1. Preliminaries. Let ν(ξ) = 1 + |ξ|2 and denote | · |ν by

|g|2ν =

∫
R3

[
|∇ξg(ξ)|2 + ν(ξ)|g(ξ)|2

]
dξ, g = g(ξ).

The operator L satisfies that there is a positive constant λ0 > 0 such that

−
∫
R3

gLg dξ ≥ λ0|{I−P0}g|2ν ,

for any g = g(ξ), where P0g = agM1/2. Generally, u or b are not integrable in
time-space. To control them in a smart way, an idea from the recent paper [11]
can be employed. Let us define the velocity orthogonal projection P : L2

ξ →
Span{M1/2, ξ1M

1/2, ξ2M
1/2, ξ3M

1/2} by

P := P0 +P1,

P0g := agM1/2,

P1g := bg · ξM1/2.

Decompose Lg as

Lg = L{I−P}g + LPg = L{I−P}g −P1g. (11)

Notice that since L is self-adjoint,

⟨−L{I−P}g, g⟩ = ⟨−{I−P}g,Lg⟩ = ⟨−{I−P}g,L{I−P}g −P1g⟩
= ⟨−L{I−P}g, {I−P}g⟩ ≥ λ0|{I−P}g|2ν . (12)

Therefore,

⟨−Lg, g⟩ ≥ λ0|{I−P}g|2ν + |bg|2. (13)

We introduce some conventions for later use. C denotes some positive (generally
large) constant and λ denotes some positive (generally small) constant, where both
C and λ may take different values in different places. In addition, A ∼ B means
λ1A ≤ B ≤ 1

λ1
A for a generic constant λ1 > 0. For an integrable function g : R3 →

R, its Fourier transform ĝ = Fg is defined by

ĝ(k) = Fg(k) =

∫
R3

e−ix·kg(x) dx, x · k =:
3∑

j=1

xjkj ,

for k ∈ R3. For simplicity, we use ∥ · ∥ to denote L2 norm over L2
x or L2

x,ξ if no
confusion arises. We use ⟨·, ·⟩ to denote the inner product over the Hilbert space
L2
ξ , i.e.

⟨g, h⟩ =
∫
R3

g(ξ)h(ξ) dξ, g, h ∈ L2
ξ .
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Define

∥g∥2ν =

∫∫
R3×R3

[
|∇ξg(x, ξ)|2 + ν(ξ)|g(x, ξ)|2

]
dξdx, g = g(x, ξ).

For q ≥ 1, we also define

Zq = L2
ξ(L

q
x) = L2(R3

ξ ; L
q(R3

x)), ∥g∥Zq =

(∫
R3

(∫
R3

|g(x, ξ)|q dx
)2/q

dξ

)1/2

.

For brevity, we introduce norms ∥(·, ·)∥Hm , ∥(·, ·)∥Zq with the integer m ≥ 0 and
q ≥ 1 by

∥(f, u)∥2Hm = ∥f∥2L2
ξ(H

m
x ) + ∥u∥2Hm , ∥(f, u)∥Zq = ∥f∥Zq + ∥u∥L1 ,

for f = f(x, ξ) and u = u(x), and we set L2 = H0 as usual. Finally, for a multiple
index α = (α1, · · · , αn), we denote ∂α = ∂α

x = ∂α1
x1

∂α2
x2

∂α3
x3

. The length of α is
|α| = α1 + · · ·+ αn. For simplicity, we also use ∂i to denote ∂xi for each i = 1, 2, 3.

2.2. Uniform-in-time a priori estimates. In this subsection, let us assume that
(5)-(8) admits a solution (f, u) with enough regularity and fast decaying at infinity
over [0, T ] with T > 0. We begin with a technical lemma useful in the subsequent
estimates.

Lemma 2.1. There exist positive constants C, such as for any f, g ∈ H3(R3) and
any multi-index γ ∈ N3 verifying 1 ≤ |γ| ≤ 3 we have

∥f∥L∞(R3) ≤ C∥∇xf∥1/2L2(R3)
∥∇2

xf∥
1/2

L2(R3)
, (14)

∥fg∥H2(R3) ≤ C∥f∥H2(R3)∥∇xg∥H2(R3), (15)

∥∂γ
x(fg)∥L2(R3) ≤ C∥∇xf∥H2(R3)∥∇xg∥H2(R3). (16)

Proof. We start with (14). For all R > 0, decomposing the frequency space in
{|k ≤ R} and {|k| > R} we have by Hölder’s inequality∫

R3

|f̂(k)| dk ≤ 4π

[
R∥kf̂∥L2(R3) +

1

R
∥k2f̂∥L2(R3)

]
.

Choosing R = ∥k2f̂∥1/2
L2(R3)

∥kf̂∥−1/2

L2(R3)
and applying then the inverse Fourier trans-

form concludes the proof of (14).

Now for (15), using Leibnitz formula, it is enough to bound the following terms
∂α−βf∂βg, where α and β are multi-indices verifying |α| ≤ 2 and β ≤ α, (meaning
βi ≤ αi for all i ∈ {1, 2, 3}). We use (14) and Sobolev’s embeddings, in the two
following cases

• |β| ≤ 1 and

∥∂α−βf∂βg∥L2(R3) ≤ ∥∂α−βf∥L2(R3)∥∂βg∥L∞(R3) ≤ C∥f∥H2(R3)∥∇xg∥H2(R3),

• β = α and ∥f∂αg∥L2(R3) ≤ ∥f∥L∞(R3)∥∂αg∥L2(R3) ≤ C∥f∥H2(R3)∥∇xg∥H2(R3).

For the last inequality, let us work in Fourier variable again. We denote by |γ| =
γ1 + γ2 + γ3 and for all k = (k1, k2, k3) ∈ R3, kγ := kγ1

1 kγ2

2 kγ3

3 . We have by Young’s
inequality (|γ| ̸= 0):

|kγ | ≤ γ1
|γ|

|k1||γ| +
γ2
|γ|

|k2||γ| +
γ3
|γ|

|k3||γ|.
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Hence, we have for all k and η in R3

|kγ | ≤ C
3∑

i=1

{
|ki − ηi||γ| + |ηi||γ|

}
,

for some constant C. Hence :

1

C

∣∣f̂ ⋆ ĝ(k)kγ
∣∣ ≤ 3∑

i=1

{∫
R3

|f̂(k − η)ĝ(η)(ki − ηi)
|γ|| dη +

∫
R3

|f̂(k − η)ĝ(η)η
|γ|
i | dη

}

=

3∑
i=1

{Φi(f, g)(k) + Φi(g, f)(k)} ,

where the last obvious notation is justified by a change of variable. We now observe

that up to a constant ∥f̂∥L1(R3) and ∥f∥L∞(R3) are equal. In our case they are both
finite by (14), hence by Hölder’s inequality

|Φi(g, f)|2(k) ≤ ∥f̂∥L1

∫
R3

|f̂(k − η)||ĝ(η)|2|ηi|2|γ| dη,

which implies integrating on k and by symmetry that,

∥Φi(g, f)∥L2(R3) + ∥Φ(g, f)∥L2(R3) ≤ ∥f̂∥L1(R3)∥k
|γ|
i ĝ∥L2(R3) + ∥ĝ∥L1(R3)∥k

|γ|
i f̂∥L2(R3),

to conclude

∥kγ f̂ ⋆ ĝ∥L2(R3) ≤ D
3∑

i=1

[
∥ĝ∥L1(R3)∥k

|γ|
i f̂∥L2(R3) + ∥f̂∥L1(R3)∥k

|γ|
i ĝ∥L2(R3)

]
.

After applying inverse Fourier transform and using (14), (16) is proved.

The first step is to produce energy estimates for obtaining the dissipation of the
kinetic equation on the basis of the coercivity property (13) of −L.

Lemma 2.2. For smooth solutions of the system (5)-(7), we have

1

2

d

dt
(∥f∥2 + ∥u∥2) + λ0∥{I−P}f∥2ν + ∥u− b∥2

≤ C∥u∥H2∥{I−P}f∥2ν + C∥u∥H1∥u− b∥2 + C∥u∥H1∥∇x(a, b)∥2 (17)

for any 0 ≤ t ≤ T and any T > 0 with C and λ0 not depending on T .

Proof. By using (6) and (11), the direct energy integration of (5) and (7) and then
their summation give

1

2

d

dt
(∥f∥2 + ∥u∥2) +

∫
R3

⟨−L{I−P}f, f⟩ dx+ ∥u− b∥2

=

∫
R3

1

2
u · ⟨ξf, f⟩ dx−

∫
R3

a|u|2 dx. (18)

Using the macro-micro decomposition f = Pf + {I−P}f , one can compute

⟨ξf, f⟩ = ⟨ξ, |Pf |2⟩+ 2⟨ξPf, {I−P}f⟩+ ⟨ξ, |{I−P}f |2⟩,
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and further ⟨ξ, |Pf |2⟩ = 2ab. We deduce∫
R3

1

2
u · ⟨ξf, f⟩ dx−

∫
R3

a|u|2 dx

= −
∫
R3

au · (u− b) dx+

∫
R3

u · ⟨ξPf, {I−P}f⟩ dx

+
1

2

∫
R3

u · ⟨ξ, |{I−P}f |2⟩ dx.

Then, using Young’s, Sobolev’s and Cauchy-Schwarz’s inequalities,∫
R3

1

2
u · ⟨ξf, f⟩ dx−

∫
R3

a|u|2 dx

≤ ∥a∥L6∥u∥L3∥u− b∥L2 + C∥u∥L3∥(a, b)∥L6∥{I−P}f∥
+C∥u∥L∞∥{I−P}f∥2ν

≤ C(∥∇u∥H1 + ∥u∥H1)∥{I−P}f∥2ν + C∥u∥H1∥u− b∥2L2

+C∥u∥H1∥∇x(a, b)∥2L2 .

By plugging the last inequality into (18), then (17) follows due to (12).

Lemma 2.3. For smooth solutions of the system (5)-(7), we have

1

2

d

dt

∑
1≤|α|≤3

(∥∂αf∥2 + ∥∂αu∥2) + λ0

∑
1≤|α|≤3

(∥{I−P}∂αf∥2ν + ∥∂α(u− b)∥2)

≤ C∥∇xu∥H2(
∑

1≤|α|≤3

∥{I−P}∂αf∥2ν + ∥∇x(a, b, u− b)∥2H2) , (19)

for any 0 ≤ t ≤ T and any T > 0 with C and λ0 not depending on T .

Proof. Take α with 1 ≤ |α| ≤ 3. The energy integration of α-order for (5) and (7)
and their summation give

1

2

d

dt
(∥∂αf∥2 + ∥∂αu∥2) +

∫
R3

⟨−L∂α{I−P}f, ∂αf⟩ dx+ ∥∂α(u− b)∥2

= −
∫
R3

⟨[∂α, u · ∇ξ]f, ∂
αf⟩ dx+

1

2

∫
R3

⟨∂α(u · ξf), ∂αf⟩ dx

−
∫
R3

∂α(u · ∇xu) · ∂αu dx−
∫
R3

∂α(ua) · ∂αu dx =

4∑
i=1

Ii, (20)

where [A,B] means the commutator AB−BA for two operators, and Ii (1 ≤ i ≤ 4)
denote the corresponding terms on the r.h.s. of the above equation. We easily get
the bounds

I1 = −
∫
R3

⟨∂α[u · ∇ξf ], ∂
αf⟩ dx =

∫
R3

⟨∂α[uf ],∇ξ∂
αf⟩ dx ≤ ∥∂α(uf)∥ · ∥∇ξ∂

αf∥,

I2 =
1

2

∫
R3

⟨∂α(u · ξf), ∂αf⟩ dx =
1

2

∫
R3

⟨∂α[uf ], ξ∂αf⟩ dx ≤ 1

2
∥∂α(uf)∥ · ∥ξ∂αf∥,

I4 = −
∫
R3

∂α(ua) · ∂αu dx ≤ ∥∂α(ua)∥ · ∥∂αu∥.
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Since 1 ≤ |α| ≤ 3 we may use inequality (16) of Lemma 2.1 successively to obtain :

I1 ≤ C∥∇xu∥H2∥∇xf∥L2
ξ(H

2
x)
∥∇ξ∂

αf∥,
I2 ≤ C∥∇xu∥H2∥∇xf∥L2

ξ(H
2
x)
∥ξ∂αf∥,

I4 ≤ C∥∇xu∥H2∥∇xa∥H2∥∂αu∥.

Due to (6), I3 is computed by

I3 = −
∑
β<α

Cα
β

∫
R3

(∂α−βu · ∇x∂
βu) · ∂αu dx ≤ C∥∇xu∥2H2∥∂αu∥, (21)

where the final inequality follows that for β < α,

∫
R3

(∂α−βu · ∇x∂
βu) · ∂αu dx ≤


∥∂αu∥L2∥∇xu∥L∞∥∂αu∥L2 (|β| = 0)

∥∂α−βu∥L3∥∇x∂
βu∥L6∥∂αu∥L2 (|β| = 1)

∥∂α−β∥L∞∥∇x∂
βu∥L2∥∂αu∥L2 (|β| ≥ 2)

and Sobolev inequalities were further used. Putting estimates on Ii (1 ≤ i ≤ 4) into
(20) and taking summation over 1 ≤ |α| ≤ 3, then (19) follows.

Corollary 1. For smooth solutions of the system (5)-(7), it holds that

1

2

d

dt

∑
|α|≤3

(∥∂αf∥2 + ∥∂αu∥2) + λ0

∑
|α|≤3

(∥{I−P}∂αf∥2ν + ∥∂α(u− b)∥2)

≤ C∥u∥H3

∑
|α|≤3

(∥{I−P}∂αf∥2ν + ∥∂α(u− b)∥2) + ∥∇x(a, b)∥2H2

 (22)

for any 0 ≤ t ≤ T and any T > 0 with C and λ0 not depending on T .

The goal of the second step in the energy estimates is to obtain the energy dis-
sipation rate ∥∇x(a, b)∥2H2 . For this purpose, we shall firstly derive the following
coupled hyperbolic-parabolic system satisfied by a and b which are coefficient func-
tions of Pf :

∂ta+∇x · b = 0, (23)

∂tbi + ∂ia+
∑
j

∂jΓij({I−P}f) = −bi + ui(1 + a), (24)

∂ibj + ∂jbi − (uibj + ujbi) = −∂tΓij({I−P}f) + Γij(ℓ+ r), (25)

for 1 ≤ i, j ≤ 3, where Γij is the moment functional defined by Γij(g) = ⟨(ξiξj −
1)M1/2, g⟩, for any g = g(ξ), and ℓ, r denote

ℓ = −ξ · ∇x{I−P}g + L{I−P}g,

r = −u · ∇ξ{I−P}g + 1

2
u · ξ{I−P}g.

In fact, it is straightforward to get (23) and (24) by multiplying (5) by M1/2 and
ξiM

1/2 (1 ≤ i ≤ 3) and then taking velocity integration over R3. To obtain (25),
let us rewrite (5) as

∂tPf + ξ · ∇xPf + u · ∇ξPf − 1

2
u · ξPf − u · ξM1/2 +P1f = −∂t{I−P}f + ℓ+ r,
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and then apply Γij to it so that (25) follows, where (23) was also used. Define a
temporal functional E0(f(t)) by

E0(f(t)) =
∑
|α|≤2

∑
ij

∫
R3

∂α(∂ibj + ∂jbi)∂
αΓij({I−P}f) dx

−
∑
|α|≤2

∫
R3

∂αa∂α∇x · b dx, (26)

The following lemma is in the same spirit of Kawashima’s hyperbolic-parabolic dis-
sipation estimates [18]. At the level of linearization, it corresponds to the estimate
(50) which we shall prove later.

Lemma 2.4. For smooth solutions of the system (5)-(7), it holds that

d

dt
E0(f(t)) + λ∥∇x(a, b)∥2H2 ≤ C(∥{I−P}f∥2L2

ξ(H
3
x)

+ ∥u− b∥2H2)

+C∥u∥2H2

[
∥∇x(a, b)∥2H2 + ∥∇x{I−P}f∥2L2

ξ(H
2
x)

]
, (27)

for any 0 ≤ t ≤ T and any T > 0 with C and λ not depending on T .

Proof. Take α with |α| ≤ 2. Notice∑
ij

∥∂α(∂ibj + ∂jbi)∥2 = 2∥∇x∂
αb∥2 + 2∥∇x · ∂αb∥2. (28)

On the other hand, it follows from (25) that

∑
ij

∥∂α(∂ibj + ∂jbi)∥2

=
∑
ij

∫
R3

∂α(∂ibj + ∂jbi)∂
α[(uibj + ujbi)− ∂tΓij({I−P}f) + Γij(ℓ+ r)] dx

=− d

dt

∑
ij

∫
R3

∂α(∂ibj + ∂jbi)∂
αΓij({I−P}f) dx

+
∑
ij

∫
R3

∂α(∂i∂tbj + ∂j∂tbi)∂
αΓij({I−P}f) dx

+
∑
ij

∫
R3

∂α(∂ibj + ∂jbi)∂
α[(uibj + ujbi) + Γij(ℓ+ r)] dx.

(29)

Using (24) to replace the time derivative of b, one has

∑
ij

∫
R3

∂α(∂i∂tbj + ∂j∂tbi)∂
αΓij({I−P}f) dx

=− 2
∑
ij

∫
R3

∂α∂tbi∂
α∂jΓij({I−P}f) dx

=2
∑
ij

∫
R3

∂α[∂ia+
∑
m

∂mΓim({I−P}f)− (ui − bi)− uia]∂
α∂jΓij({I−P}f) dx.
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Hence, using Young’s inequality and inequality (15) of Lemma 2.1 one gets :∑
ij

∫
R3

∂α(∂i∂tbj + ∂j∂tbi)∂
αΓij({I−P}f) dx

≤ ϵ∥∇xa∥2H2 + Cϵ∥∇x{I−P}f∥2L2
ξ(H

2
x)

+ C(∥u− b∥2H2 + ∥u∥2H2∥∇xa∥2H2),

where 0 < ϵ ≤ 1 is arbitrary to be chosen later. The final term on the r.h.s. of (29)
is estimated by∑

ij

∫
R3

∂α(∂ibj + ∂jbi)∂
α[(uibj + ujbi) + Γij(ℓ+ r)] dx ≤ 1

2

∑
ij

∥∂α(∂ibj + ∂jbi)∥2

+ C
∑
ij

(∥∂α(uibj + ujbi)∥2 + ∥∂αΓij(ℓ)∥2 + ∥∂αΓij(r)∥2).

Using again (15) it further holds that∑
ij

∥∂α(uibj + ujbi)∥2 ≤ C∥u⊗ b∥2H2 ≤ C∥u∥2H2∥∇xb∥2H2 ,

and since the moment functional appearing in Γij can absorb any velocity derivative
and any velocity weight we have also∑

ij

∥∂αΓij(ℓ)∥2 ≤ C∥{I−P}f∥2L2
ξ(H

3
x)
,

∑
ij

∥∂αΓij(r)∥2 ≤ C∥u∥2H2∥∇x{I−P}f∥2L2
ξ(H

2
x)
.

Putting all the above estimates into (29) and then taking summation over |α| ≤ 2,
due to (28), one has

d

dt

∑
|α|≤2

∑
ij

∫
R3

∂α(∂ibj + ∂jbi)∂
αΓij({I−P}f) dx+ 2∥∇xb∥2H2 + 2∥∇x · b∥2H2

≤ ϵ∥∇xa∥2H2 + Cϵ∥∇x{I−P}f∥2L2
ξ(H

2
x)

+ C∥u− b∥2H2 + ∥{I−P}f∥2L2
ξ(H

3
x)

+C∥u∥2H2(∥∇x(a, b)∥2H2 + ∥∇x{I−P}f∥2L2
ξ(H

2
x)
). (30)

On the other hand, take again α with |α| ≤ 2 and calculate

∥∂α∇xa∥2 =
∑
i

∫
R3

∂α∂ia∂
α∂ia dx

=
∑
i

∫
R3

∂α∂ia∂
α[−∂tbi + (ui − bi)−

∑
j

∂jΓij({I−P}f) + uia] dx

= − d

dt

∑
i

∫
R3

∂α∂ia∂
αbi dx+

∑
i

∫
R3

∂α∂i∂ta∂
αbi dx

+
∑
i

∫
R3

∂α∂ia∂
α[(ui − bi)−

∑
j

∂jΓij({I−P}f) + uia] dx.

So finally, we get

∥∂α∇xa∥2 =
d

dt

∑
i

∫
R3

∂αa∂α∇x · b dx+
∑
i

∫
R3

∂α∂i∂ta∂
αbi dx

+
∑
i

∫
R3

∂α∂ia∂
α[(ui − bi)−

∑
j

∂jΓij({I−P}f) + uia] dx. (31)
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Here, ∂ta can be replaced by the mass conservation law (23) so as to obtain∑
i

∫
R3

∂α∂i∂ta∂
αbi dx = −

∫
R3

∂α∂ta∂
α∇x · b dx = ∥∂α∇x · b∥2.

The last term is estimated by∑
i

∫
R3

∂α∂ia∂
α
[
(ui − bi)−

∑
j

∂jΓij({I−P}f) + uia
]
dx

≤ 1

2
∥∇x∂

αa∥2 + C(∥u− b∥2H2 + ∥∇x{I−P}f∥2L2
ξ(H

2
x)

+ ∥u∥2H2∥∇xa∥2H2),

where we used (15) another time. Then, after taking summation over |α| ≤ 2, it
follows from (31) that

− d

dt

∑
|α|≤2

∫
R3

∂αa∂α∇x · b dx+
1

2
∥∇xa∥2H2

≤∥∇x · b∥2H2 + C(∥u− b∥2H2 + ∥∇x{I−P}f∥2L2
ξ(H

2
x)

+ ∥u∥2H2∥∇xa∥2H2).

(32)

Now adding (30) to (32), we get :

d

dt
E0(f(t)) + 2∥∇xb∥2H2 + ∥∇x · b∥2H2 +

[
1

2
− ϵ

]
∥∇xa∥2H2

≤ C(∥{I−P}f∥2L2
ξ(H

3
x)

+ ∥u− b∥2H2)

+ C∥u∥2H2

[
∥∇x(a, b)∥2H2 + ∥∇x{I−P}f∥2L2

ξ(H
2
x)

]
.

Hence, (27) follows after taking ϵ = 1
4 for instance.

Combining estimates obtained in the above two steps, one can finish the proof
of uniform-in-time a priori estimates as follows. Define a total temporal energy
functional E(f, u) and corresponding dissipation rate D(f, u) by

E(f(t), u(t)) = ∥(f(t), u(t))∥2H3 + κ1E0(f(t)), (33)

D(f(t), u(t)) =
∑
|α|≤3

(∥∂α{I−P}f∥2ν + ∥∂α(u− b)∥2) + ∥∇x(a, b, u)∥2H2 , (34)

where κ1 > 0 is a small constant to be chosen later. For the sake of clarity, let
us introduce further notation:

K(f, u) :=
∑
|α|≤3

{
∥{I−P}∂αf∥2ν + ∥∂α(u− b)∥2

}
+ ∥∇x(a, b)∥2H2 ,

so that we can rewrite (22) as

1

2

d

dt
∥(f, u)∥2H3+λ0

[
K(f, u)− ∥∇x(a, b)∥2H2

]
≤ C∥u∥H3K(f, u) ≤ C∥u∥2H3K(f, u) + κ2K(f, u), (35)

for a small constant κ2 to be fixed later. Obviously we have ∥ · ∥L2
ξ(L

2
x)

≤ ∥ · ∥ν and

∥ · ∥H2
x
≤ ∥ · ∥H3

x
hence (27) implies

d

dt
E0(f(t)) + λ∥∇x(a, b)∥2H2 ≤ C

[
K(f, u)− ∥∇x(a, b)∥2H2

]
+ C∥u∥2H3K(f, u). (36)
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Finally, by adding 2×(35) to κ1×(36) we obtain

d

dt
E(f(t), u(t)) + min(2λ0 − Cκ1, κ1λ)K(f, u) ≤ 2κ2K(f, u) + C∥u∥2H3K(f, u),

so picking first κ1 and then κ2 small enough we have E(f(t), u(t)) ∼ ∥(f(t), u(t))∥2H3

and

d

dt
E(f(t), u(t)) + λK(f, u) ≤ C∥u∥2H3K(f, u). (37)

Now notice

∥∇xu∥2H2 ≤ 2∥∇x(u− b)∥2H2 + 2∥∇xb∥2H2 ≤ 2K(f, u),

and D(f, u) = K(f, u) + ∥∇xu∥2H2 , so that by adding κ3∥∇xu∥2H2 to both sides in
(37) with κ3 small enough we have

d

dt
E(f(t), u(t)) + κ3D(f(t), u(t)) ≤ C∥u(t)∥2H3D(f(t), u(t)), (38)

for any 0 ≤ t ≤ T and any T > 0 with C and κ3 not depending on T , which is the
desired uniform-in-time estimate for the global existence.

2.3. Approximating Scheme & Global Existence. We are now going to prove
first the existence of local regular solutions for which all the previous computations
will be rigorous. These estimates will allow us to prove that the solution is in fact
global at the end of this subsection. Let us introduce X = W1,∞([0, T ]; H2(R3)

)
∩

L∞([0, T ]; H3(R3)
)
and

ST =

(f, u, p)

∣∣∣∣∣∣∣∣
f ∈ L∞([0, T ]; L2

ξ(H
3
x)
)
∩ C 1

x,t ∩ C 2
ξ , a

f , bf ∈ X

u ∈ X ∩ C 1([0, T ]× R3)

∇x · u = 0, f ≥ 0, p ∈ C 0
(
[0, T ]; H3(R3)

)
 .

Let us consider the iterative Cauchy problem, initialized by (u0, F 0) = (u0,M +
M1/2f0):

∂tF
n+1 + ξ · ∇xF

n+1 = ∇ξ · (ξFn+1 +∇ξF
n+1)− γn[un ⋆ τn] · ∇ξF̃n,

F̃n := M +M1/2
[
ρn ⋆ (M−1/2(Fn −M))

]
,

∇x · un+1 = 0,

∂tu
n+1 + un · ∇xu

n+1 +∇xp
n+1 =

∫
R3

(ξ − un+1)Fn dξ,

un+1(0) = u0, Fn+1(0) = M +M1/2(ρn ⋆ f0)γ
n,

where γn is some tensorial cut-off function γn(x, ξ) := θ
(
x
n

)
θ
(

ξ
n

)
= σnµn, θ

being a smooth function with support in the unit ball and τn(x) and ρn(x, ξ) are
standard mollifiers. In particular, (γn)n, (σ

n)n, (µ
n)n are bounded in the Schwartz

class S (R3). Considering un
⋆ := un ⋆ τn and fn

⋆ := fn ⋆ ρn, it reads in terms of



GLOBAL CLASSICAL SOLUTIONS TO VFPE SYSTEM 13

perturbations as:

∂tf
n+1 + ξ · ∇xf

n+1 + γnun
⋆ · ∇ξf

n
⋆ − 1

2
γnun

⋆ · ξfn
⋆ − γnun

⋆ · ξM1/2 = Lfn+1, (39)

∇x · un+1 = 0, (40)

∂tu
n+1 + un · ∇xu

n+1 +∇xp
n+1 + un+1(1 + an) = bn, (41)

un+1(0) = u0, fn+1(0) = (ρn ⋆ f0)γ
n, (42)

Lemma 2.5. There exists δ0 > 0 and T0 > 0 such as for ∥(f0, u0)∥H3 ≤ δ0, the
previous sequence (fn, un) is well-defined and bounded in L∞([0, T0];H3

)
. (un) is

furthermore bounded in W1,∞
(
[0, T0]; H

2(R3)
)
.

Proof. Some parts of the proof have been placed in the Appendix for the sake of
clarity. Let us verify by induction that there exist, for all n, global classical solutions
to the system (39)-(42), all belonging to ST (but the kinetic part is not necessarily
positive at this stage). Take (fn, un, pn) ∈ ST (except the positivity condition).
The existence of fn+1 ∈ L2

ξ(H
3
x) is a direct consequence of Lemma 5.5 in Appendix

and then af
n+1

, bf
n+1 ∈ X is straightforward. As for un+1 and pn+1, Lemma 5.3

of the Appendix applies directly. Since all the equations are verified strongly and
given the regularity of the solution, we are now able to compute several estimates in
a rigorous way. As done in (20) but including this time the case α = 0, the energy
integration of α-order (39), (40) and (41), and their summation give

1

2

d

dt
(∥∂αfn+1∥2 + ∥∂αun+1∥2) +

∫
R3

⟨−L∂αfn+1, ∂αfn+1⟩ dx+ ∥∂αun+1∥2

=

I1,n︷ ︸︸ ︷
−
∫
R3

⟨∂α
[
σnun

⋆ ·
[
∇ξ(f

n
⋆ µ

n)− fn
⋆ ∇ξµ

n
]]
, ∂αfn+1⟩ dx

I2,n︷ ︸︸ ︷
−
∫
R3

∂α(un+1an) · ∂αun+1 dx

I3,n︷ ︸︸ ︷
−
∫
R3

∂α(un · ∇xu
n+1) · ∂αun+1 dx +

I4,n︷ ︸︸ ︷
1

2

∫
R3

⟨∂α(γnun
⋆ · ξfn

⋆ ), ∂
αfn+1⟩ dx

+

∫
R3

∂αbn · ∂αun+1 dx+

∫
R3×R3

∂αfn+1µnM1/2ξ · ∂α(σnun
⋆ (x)) dξ dx.

Using (13) we hence have

1

2

d

dt
(∥∂αfn+1∥2 + ∥∂αun+1∥2) + λ0∥{I−P}∂αfn+1∥2ν + ∥∂αun+1∥2 + ∥∂αbn+1∥2

≤
4∑

i=1

Ii,n +

∫
R3

∂αbn · ∂αun+1 dx+

∫
R3

|∂αbn+1||∂α[σnun
⋆ ]| dx,

and since for any function g(x, ξ), ∥Pg∥ν , ∥bg∥ and ∥ag∥ are all smaller than C∥g∥
for some constant C, σn is bounded in S (R3) and ∥∂βun

⋆∥ ≤ ∥∂αun∥ for all β ∈ N3,
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we deduce

1

2

d

dt
(∥∂αfn+1∥2 + ∥∂αun+1∥2) + λ0∥∂αfn+1∥2ν + ∥∂αun+1∥2

≤
4∑

i=1

Ii,n + C(∥∂αun+1∥2 + ∥un∥2H3 + ∥∂αfn∥2 + ∥∂αfn+1∥2).

Now for I1,n, I4,n put (if necessary use integration by parts) operators ∇ξ and ξ·
on fn+1 (except for the term fn

⋆ ∇ξµ
n) and apply Young to obtain

|I1,n|+ |I2,n|+ |I4,n| ≤ C∥∂α(γnun
⋆f

n
⋆ )∥2 + C∥∂α(σnun

⋆ · fn
⋆ ∇ξµ

n)∥2 + λ0

2
∥∂αfn+1∥2ν

+ C∥∂α(un+1an)∥2 + ∥∂αun+1∥2.

Since (γn)n, (σ
n)n and (µn)n are all bounded in S (R3), and ∥∂βg⋆∥ ≤ ∥∂βg∥ for

any convolution operation and any β, we have, using Lemma 2.1,

|I1,n|+ |I2,n|+ |I4,n| ≤C∥un∥2H3∥fn∥2L2
ξ(H

3
x))

+
λ0

2
∥∂αfn+1∥ν

+ C
{
1 + ∥fn∥2L2

ξ(H
3
x)

}
∥un+1∥2H3 .

Finally I3,n is equal to zero whenever α = 0, so that we can use directly what we
have done in (21) (notice that the term [un · ∇x∂

αun+1] · ∂αun+1 in the expansion
is still zero) and get

|I3,n| ≤ C∥un∥H3∥un+1∥2H3 .

We have finally, summing over α

d

dt
∥(fn+1, un+1)∥2H3 +min(λ0, 2)

∑
|α|≤3

{
∥∂αfn+1∥2ν + ∥∂αun+1∥2

}
≤ C1(1 + ∥(fn, un)∥2H3)∥(fn+1, un+1)∥2H3 + C2(1 + ∥(fn, un)∥2H3)∥(fn, un)∥2H3 .

Denote

An(t) := ∥(fn, un)∥2H3 ,

Bn(t) :=
∑
|α|≤3

{
∥∂αfn+1∥2ν + ∥∂αun+1∥2

}
.

We have obviously An(t) ≤ Bn(t) and furthermore from the previous inequality

An+1(t) + λ

∫ t

0

Bn+1(s)ds ≤An+1(0) + C1

∫ t

0

(1 +An(s))An+1(s)ds

+ C2

∫ t

0

(1 +An(s))An(s)ds, (43)

where An+1(0) = ∥(f0, u0)∥2H3 is independent of n. Define successively

K := C1/λ, δ0 := K/3,

T0 := min

{
1

2C1
,

K − 2δ0
2C2K(1 +K)

}
> 0.

Let us prove the following property by induction on n: if ∥(f0, u0)∥H3 ≤ δ0, then:[
P (p) : Mp := sup

t∈[0,T0]

Ap(t) ≤ K
]
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holds for all p ∈ N. P (0) is obviously satisfied, let us suppose P (n) is true. We
have then by (43), for t ∈ [0, T0]:

An+1(t) + λ

∫ t

0

Bn+1(s)ds ≤ δ0 + C1T0Mn+1 + C1T0MnMn+1 + C2T0Mn(1 +Mn)

≤ δ0 + C1T0Mn+1 + C1T0KMn+1 + C2T0K(1 +K)

since C1K = λ, for t ∈ [0, T0], we have also

An+1(t) + λ

∫ t

0

[Bn+1(s)−An+1(s)] ds ≤ δ0 + CT0Mn+1 + C(Mn +M2
n)T0 ,

and noting that Bn+1(s)−An+1(s) ≥ 0, we conclude

Mn+1 ≤ δ0 + C1T0Mn+1 + C2K(1 +K)T0,

and since 2C1T0 ≤ 1, we have:

Mn+1 ≤ 2δ0 + 2C2K(1 +K)T0 ≤ K,

because of the definition of T0.

Finally the bound of (un) in W1,∞
(
[0, T0]; H

2(R3)
)
is a direct consequence of the

previous bound, using the fluid equation, after applying the Leray projection (see
the appendix section for the precise definition) to get rid of the pressure function.

Lemma 2.6. There exists a subsequence (uσ(n))n and u ∈ C 0
(
[0, T0]; H

2(R3)
)
such

as ∥uσ(n) − u∥
L∞
(
[0,T0];H2

loc(R3)
) −→
n→∞

0.

Proof. Consider, an exhaustive family of increasing balls centered in 0, of ra-
dius m ∈ N∗: (Bm)m. Given m, the injection H3(Bm) ↪→ H2(Bm) is compact.

We know from Lemma 2.5 that (un)n is bounded in W1,∞
(
[0, T0]; H

2(Bm)
)

and

L∞([0, T0]; H
3(Bm)

)
, hence the family (un)n is equicontinuous in C 0

(
[0, T0]; H

2(Bm)
)

and pointwisely (in time) relatively compact. We may hence apply Ascoli’s theorem

to obtain the convergence of a subsequence in C 0
(
[0, T0]; H

2(Bm)
)
. We also extract

to have almost everywhere convergence. Since the previous extractions are count-
able, we may extract diagonally a subsequence following the exhaustive sequence
of balls. In such a way, for a fixed ball Bm the sequence (still) denoted (un)n con-

verges to some um in C 0
(
[0, T0]; H

2(Bm)
)
. All the functions are continuous hence

all the um are equal in their domain of definition and we may define pointwisely
a limit function u on Bm as the common value of all the (uk)k≥m on this ball, for

all m ∈ N∗. By construction u ∈ C 0
(
[0, T ]; H2(Bm)

)
for all m and the sequence

of corresponding norms is bounded: u ∈ C 0
(
[0, T0]; H

2(R3)
)
. Since the sequence is

exhaustive, we have strong convergence in L∞([0, T0]; H
2
loc(R3)

)
.

Lemma 2.7. There exists δ1 > 0 such as if ∥(f0, u0)∥H3 ≤ δ1 then the Cauchy
problem (5)-(7) with initial data verifying (8) has a unique global and classical
solution defined on R+, belonging to (f, u, p) ∈ St for all t > 0.

Proof. With ∥(f0, u0)∥H3 ≤ δ0, by Lemma 2.5 we now that (fn, un)n is (up to a
subsequence) weakly-⋆ convergent in L∞([0, T0];H3) and so is (un)n in the space

W1,∞
(
[0, T0]; H

2(R3)
)
. Let us note (f, u) the limit. Together with the strong
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convergence given by Lemma 2.6 we can pass to the limit and prove that (f, u) is
a weak solution of (5)-(7) and (8). Using Lemma 5.2 of the appendix we obtain
that u is in fact a strong regular solution. Using then the uniqueness of solutions
for the Vlasov-Fokker-Planck [23], we finally have that f is also regular and strong
solution of the equation. Until now we have just obtained local solution on some
interval [0, T0] but since it is regular we may use all the a priori estimates that we
performed earlier. In particular, we have (38), i.e.

d

dt
E(f(t), u(t)) + κ3D(f(t), u(t)) ≤ C∥u(t)∥2H3D(f(t), u(t)),

with C and κ3 independent of T0. Now, define

ϵ = min{δ0,
√
κ3/(2C)},

and let initial data (f0, u0) be small enough such that

E(f0, u0) ≤ δ1 :=
ϵ

2(1 + C)
.

Denote

T⋆ = sup

t ∈ R∗
+

∣∣∣∣∣∣
∃(f, u, p) ∈ St verifying (5)− (7) and (8) on [0, t]

and sup
0≤s≤t

E(f(s), u(s)) ≤ ε

 .

Note first that the uniqueness on any interval is a direct consequence of the previous
estimates since the solutions are regular, therefore in what follow (f(t), u(t)) is well-
defined. Since ∥(f0, u0)∥H3 ≤ ϵ/2 ≤ δ0, it follows from the previous study that T⋆

is well-defined (since E(·) and ∥ · ∥H3 are equivalent). Furthermore by definition of
ε, E(f(t), u(t)) is a decreasing function of time on [0, T⋆[: the right hand side term
of (38) can be absorbed due to

C∥u(t)∥2H3 ≤ C∥(f(t), u(t))∥2H3 ≤ Cϵ2 ≤ κ3

2
,

hence, for t ∈ [0, T⋆[, E(f(t), u(t)) ≤ ε/2. Let us check that if T⋆ < ∞, then by
local existence our solution is in fact defined at least on some interval [0, T⋆ + η].
Indeed, the time of existence T0 is granted as soon as the initial data is in the ball
B(0, δ0) of H3, which is the case for (f(t), u(t)) for t < T⋆. Then, one could take
the couple (f(t), u(t)) (t sufficiently close to T⋆) as admissible initial condition and
obtain local existence from t to some t+ T0 > T⋆. Pasting this extension with the
previous solution defined on [0, T⋆], we get some (at least) weak solution on the
whole interval [0, T⋆ + η]. We may then use the positive fundamental solution of
the Fokker-Planck equation with a field given in [23] to have all the regularity that
we need. We are in position to use the previous result since the only assumption
required in [23] is to have a field in L∞([0, T ];W1,∞(R3)

)
, and this is still the case

here, even after the “pasting operation”. In that way we can prove first that the
kinetic part f is regular in time and positive, then we treat the fluid equation as
before to finally extend the global strong solution on [0, T⋆ + η] by uniqueness.

By continuity E(f(T⋆), u(T⋆)) ≤ ε/2 so that E(f(t), u(t)) remains strictly less
than ε on some interval [T⋆, T⋆ + η′]. This contradicts the definition of T⋆ which
is therefore infinite. This shows the global-in-time existence in our main Theorem
1.1.
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Corollary 2. Take δ1 as in Lemma 2.7 and (f0, u0) verifying ∥(f0, u0)∥H3 ≤ δ1.
Then the unique solution to the system (5)-(8) verifies

d

dt
E(f(t), u(t)) + λD(f(t), u(t)) ≤ 0,

for some fixed constant λ > 0. In particular the energy E(f(t), u(t)) is a non-
increasing function.

3. Rate of convergence. In order to study the time-decay of solutions obtained
in last section, we firstly consider the linearized Cauchy problem

∂tf + ξ · ∇xf − u · ξM1/2 = Lf + Sf ,

∇x · u = 0,

∂tu+∇xp+ (u− b) = 0,

f |t=0 = f0, u|t=0 = u0.

(44)

Here, the non-homogeneous source Sf takes the form

Sf = ∇ξ ·G− 1

2
ξ ·G+ h,

for G = (Gi), Gi = Gi(t, x, ξ) ∈ R, (1 ≤ i ≤ 3) and h = h(t, x, ξ) ∈ R, where it is
supposed that

P0Gi ≡ 0 (1 ≤ i ≤ 3), Ph ≡ 0

for all t ≥ 0 and x ∈ R3. We first note that this coupled linearized problem is
well-posed in L2.

Proposition 1. There is a well-defined linear semigroup Et : L2 −→ L2, t ≥ 0,
such that for any given (f0, u0) ∈ L2 with ∇x ·u0 = 0, then Et(f0, u0) is the unique
distributional solution to (44) with Sf = 0. Moreover, for any given (f0, u0) ∈ L2

with ∇x · u0 = 0, the unique distributional solution to (44) satisfies

(f(t), u(t)) = Et(f0, u0) +

∫ t

0

Et−s(Sf (s), 0) ds. (45)

Proof. The well-posedness part follows the same guidelines as in the local existence
theorem in the previous section but simpler due to its linearity. We do not repeat
here the whole argument, but one needs to define smooth approximations by regu-
larizing the initial data and splitting the coupling term as in the system (39)-(42).
The passing to the limit is trivial in this case, moreover the solutions are strong
for initial smooth compactly supported data. Due to standard regularization pro-
cedures, it is enough to show the propagation of the L2-norm for smooth compactly
supported initial data. Taking (f ϵ(t), uϵ(t)) = Et(f

ϵ
0 , u

ϵ
0), a direct computation

shows
1

2

d

dt
(∥f ϵ∥2 + ∥uϵ∥2) +

∫
R3

⟨−L{I−P}f ϵ, f ϵ⟩ dx+ ∥uϵ − bϵ∥2 = 0 ,

implying
∥Et(f

ϵ
0 , u

ϵ
0)∥L2 ≤ ∥(f ϵ

0 , u
ϵ
0)∥L2

for all t ≥ 0 and all ϵ > 0. Passing to the limit in the regularization parameter ϵ
leads trivially to the stated propagation. Finally, the variation-of-constants formula
(45) for problem (44) is again direct by approximation procedures.

We can now show the following uniform estimates on solutions of (44).
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Theorem 3.1. Let 1 ≤ q ≤ 2 and (f0, u0) ∈ L2 with ∇x · u0 = 0. For any α, α′

with α′ ≤ α and m = |α− α′|,

∥∂αEt(f0, u0)∥L2 ≤ C(1 + t)−σq,m(∥∂α′
(f0, u0)∥Zq + ∥∂α(f0, u0)∥L2), (46)

and∥∥∥∥∂α

∫ t

0

Et−s(Sf (s), 0)ds

∥∥∥∥2
L2

≤C

∫ t

0

(1 + t− s)−2σq,m∥∂α′
(G(s), ν−1/2h(s))∥2Zq

ds

+C

∫ t

0

(1 + t− s)−2σq,m∥∂α(G(s), ν−1/2h(s))∥2L2ds,

(47)

hold for t ≥ 0, where C is a positive constant depending only on m, q and

σq,m =
3

2

(
1

q
− 1

2

)
+

m

2
.

Proof. By Fourier transforming (44) in x, one has
∂tf̂ + iξ · kf̂ − û · ξM1/2 = Lf̂ +∇ξ · Ĝ− 1

2
ξ · Ĝ+ ĥ,

ik · û = 0,

∂tû+ ikp̂+ û− b̂ = 0.

(48)

By taking the inner product of the first equation in (48) with the conjugate of f̂
and integrating in ξ, its real part gives

1

2
∂t∥f̂∥2L2

ξ
+ Re

∫
R3

(−L{I−P}f̂ |{I−P}f̂) dξ + |̂b|2 − Re (û|̂b)

= Re

∫
R3

(∇ξ · Ĝ− 1

2
ξ · Ĝ|{I−P}f̂) dξ +Re

∫
R3

(ĥ|{I−P}f̂) dξ,

where we used the observation

∇ξ ·G− 1

2
ξ ·G ⊥ RangP

due to P0G = 0. Then, the coercivity of −L, integration by parts in ξ and Cauchy-
Schwarz inequality further imply

1

2
∂t∥f̂∥2L2

ξ
+ λ0|{I−P}f̂ |2ν + |̂b|2 − Re(û|̂b) ≤ C(∥Ĝ∥2 + ∥ν−1/2ĥ∥2).

Similarly, from the last two equations in (48) we infer 1
2∂t|û|

2 + |û|2 −Re(̂b|û) = 0,
that together in the previous estimate shows

1

2
∂t(∥f̂∥2L2

ξ
+ |û|2) + λ0|{I−P}f̂ |2ν + |û− b̂|2 ≤ C(∥Ĝ∥2 + ∥ν−1/2ĥ∥2). (49)

Next, we consider the estimates on a, b. Since PSf = 0, then similar to get
(23)-(25), corresponding to the system (44), one has

∂ta+∇x · b = 0,

∂tbi + ∂ia+
∑
j

∂jΓij({I−P}f) = ui − bi,

∂ibj + ∂jbi = −∂tΓij({I−P}f) + Γij(ℓ+ Sf ),

where ℓ still denotes

ℓ = −ξ · ∇x{I−P}f + L{I−P}f.
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Taking the Fourier transform in x gives
∂tâ+ ik · b̂ = 0,

∂tb̂i + ikiâ+
∑
j

ikjΓij({I−P}f) = ûi − b̂i,

ikib̂j + ikj b̂i = −∂tΓij({I−P}f̂) + Γij(ℓ̂+ Ŝf ).

By using the same proof as in Lemma 2.4, we conclude that there exist λ > 0 and
C > 0 such that

∂tRe{
∑
ij

(ikib̂j+ikj b̂i|Γij({I−P}f̂))− (â|ik · b̂)}+ λ|k|2(|â|2 + |̂b|2)

≤ C((1 + |k|2)∥{I−P}f̂∥2L2
ξ
+ |û− b̂|2) + C(∥Ĝ∥2 + ∥ν−1/2ĥ∥2).

By setting

E1(f̂) =
1

1 + |k|2
∑
ij

(ikib̂j + ikj b̂i|Γij({I−P}f̂))− 1

1 + |k|2
(â|ik · b̂),

it follows that

∂t ReE1(f̂)+
λ|k|2

1 + |k|2
|(â, b̂, û)|2 ≤ C(∥{I−P}f̂∥2L2

ξ
+|û− b̂|2)+C(∥Ĝ∥2+∥ν−1/2ĥ∥2).

(50)

Now, given t ≥ 0 and k ∈ R3, define the functional EF (f̂ , û) by

EF (f̂ , û) = (∥f̂∥2L2
ξ
+ |û|2) + κ4Re E1(f̂)

for a small constant κ4 > 0 to be chosen later. Firstly, let κ4 > 0 be small enough

such that EF (f̂ , û) ∼ ∥f̂∥2
L2

ξ
+ |û|2 since

|E1(f̂)| ≤ C(∥f̂∥2L2
ξ
+ |û|2)

holds for all t ≥ 0 and k ∈ R3. By making κ4 > 0 further small enough, the linear
combination 2×(49) + κ4×(50) gives

∂t EF (f̂ , û)+λ(|{I−P}f̂ |2ν + |û− b̂|2)+ λ|k|2

1 + |k|2
|(â, b̂, û)|2 ≤ C(∥Ĝ∥2 + ∥ν−1/2ĥ∥2),

which also implies

∂tEF (f̂ , û) +
λ|k|2

1 + |k|2
EF (f̂ , û) ≤ C(∥Ĝ∥2 + ∥ν−1/2ĥ∥2).

It follows from Gronwall’s inequality that

EF (f̂ , û) ≤ e
− λ|k|2

1+|k|2
tEF (f̂0, û0) +

∫ t

0

e
− λ|k|2

1+|k|2
(t−s)

(∥Ĝ(s)∥2 + ∥ν−1/2ĥ(s)∥2) ds.

As in [18] or [11, Theorem 3.1], the further k-integration yields the desired time-
decay estimates (46) and (47) by setting homogeneous source Sf = 0 and zero initial
data (f0, u0) = 0, respectively.

We now need two technical lemmas for the later proof.
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Lemma 3.2. Given any 0 < β1 ̸= 1 and β2 > 1,∫ t

0

(1 + t− s)−β1(1 + s)−β2 ds ≤ C(1 + t)−min{β1,β2}

for all t ≥ 0.

Proof. Denote

J(t) =

∫ t

0

(1 + t− s)−β1(1 + s)−β2 ds.

Let us divide the time integral into two parts s ∈ (0, t/2) and s ∈ (t/2, t), then it is
easy to check that

J(t) ≤
(
1 +

t

2

)−β1
∫ t/2

0

(1 + s)−β2 ds+

(
1 +

t

2

)−β2
∫ t

t/2

(1 + t− s)−β1 ds

=

(
1 +

t

2

)−β1
∫ t/2

0

(1 + s)−β2 ds+

(
1 +

t

2

)−β2
∫ t/2

0

(1 + s)−β1 ds .

If β1 > 1, we use that (1 + s)−βi , i = 1, 2, are integrable on (0,∞) to conclude. If
0 < β1 < 1, we again use that (1 + s)−β2 is integrable in (0,∞) to infer∫ t

0

(1 + t− s)−β1(1 + s)−β2 ds ≤ C
[
(1 + t)−β1 + (1 + t)−β1+1−β2

]
yielding the desired estimate.

Lemma 3.3. Let γ > 1 and g1, g2 ∈ C 0(R+,R+) with g1(0) = 0. For A ∈ R+,
define BA := {y ∈ C 0(R+,R+)

∣∣ y ≤ A + g1(A)y + g2(A)y
γ , y(0) ≤ A}. Then,

there exists a constant A0 ∈ (0,min{A1, A2}) such that for any 0 < A ≤ A0,

y ∈ BA =⇒ sup
t≥0

y(t) ≤ 2A.

Proof. One can fix A0 ∈ (0,min{A1, A2}) such that

sup
0≤A≤A0

[
g1(A) + g2(A)(2A)

γ−1
]
≤ 1

3

due to γ > 1 and assumptions on functions gi(·), i = 1, 2. Take 0 < A ≤ A0. Define

t⋆ = sup

{
t ≥ 0 such that sup

0≤s≤t
y(t) ≤ 2A

}
.

Notice t⋆ > 0 since y(0) ≤ A and y(t) is continuous. We claim t⋆ = ∞. Otherwise,
t⋆ > 0 is finite. Thus, from the definition of t⋆, y(t⋆) = 2A and y(t) ≤ 2A for any
0 ≤ t ≤ t⋆. The latter implies that for 0 ≤ t ≤ t⋆,

y(t) ≤ A+ g1(A)y(t) + g2(A)[y(t)]
γ ≤ A+ sup

0≤A≤A0

[
g1(A) + g2(A)(2A)γ−1

]
y(t)

which by the choice of A0, further gives

sup
0≤t≤t⋆

y(t) ≤ 1

1− sup
0≤A≤A0

[
g1(A) + g2(A)(2A)

γ−1
]A ≤ 3

2
A < 2A.

This is a contradiction to y(t⋆) = 2A. Therefore, t⋆ = ∞ follows.
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Proof of the rate of convergence part in the main Theorem 1.1: By
definition of E0 in (26), we have

E0(f(t)) ≤ C(∥∇xb∥2H2 + ∥{I−P}f∥2H2 + ∥a∥2H2),

which implies the following by the definitions of E(f(t), u(t)) and D(f(t), u(t)) in
(33) and (34)

E(f(t), u(t)) ≤ C(∥{I−P}f∥2H3 + ∥a∥2H3 + ∥b∥2H3 + ∥u∥2H2)

≤ C(D(f(t), u(t)) + ∥(f(t), u(t))∥2L2).

¿From Corollary 2, we have the existence of λ such as

d

dt
E(f(t), u(t)) + λD(f(t), u(t)) ≤ 0,

so that we finally infer the existence of λ and C such as

d

dt
E(f(t), u(t)) + λE(f(t), u(t)) ≤ C∥(f(t), u(t))∥2L2 .

Gronwall’s inequality gives

E(f(t), u(t)) ≤ e−λtE(f0, u0) + C

∫ t

0

e−λ(t−s)∥(f(s), u(s))∥2L2ds. (51)

Next, we use the mild form of the system (5)-(7) to estimate the above zero-order
energy. Indeed, the system (5)-(7) can written as

(f(t), u(t)) = Et(f0, u0) +

∫ t

0

Et−s(Sf (s), Su(s))ds,

where

Sf = −u · ∇ξf − 1

2
u · ξf, Su = −P {u · ∇xu+ au} .

Here, P is the Leray projector given in (60) in the Appendix. One can decompose
Sf as

Sf = −u · ∇ξ{I−P0}f − 1

2
u · ξ{I−P0}f − u · ∇ξP0f − 1

2
u · ξP0f

= ∇ξ ·G− 1

2
ξ ·G+ u · aξM1/2,

with G =: −u{I−P0}f . So, (f(t), u(t)) can be rewritten as the sum of three terms

(f(t), u(t)) = Et(f0, u0) +

∫ t

0

Et−s(∇ξ ·G(s)− 1

2
ξ ·G(s), 0) ds

+

∫ t

0

Et−s(u · aξM1/2, 0) ds+

∫ t

0

Et−s(0,−P {u · ∇xu+ au}) ds

= I1(t) + I2(t) + I3(t) + I4(t).

By applying (46) to I1(t) and I3(t), one has

∥I1(t)∥L2 ≤ C(1 + t)−
3
4 ∥(f0, u0)∥Z1∩L2 ,

and

∥I3(t)∥L2 ≤ C

∫ t

0

(1 + t− s)−
3
4 ∥u · aξM1/2∥Z1∩L2 ds

≤ C

∫ t

0

(1 + t− s)−
3
4 E(f(s), u(s)) ds,
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where Hölder and Sobolev inequalities were used. For I2(t), since P0G = 0, one
can apply (47) to it to compute

∥I2(t)∥2L2 ≤ C

∫ t

0

(1 + t− s)−
3
2 ∥u{I−P0}f∥2Z1∩L2ds

≤ C

∫ t

0

(1 + t− s)−
3
2 [E(f(s), u(s))]2ds,

where again Hölder and Sobolev inequalities were used. Now, for any given 0 < ε <
1
4 using (46) with q = 3/(3− 2ε), we deduce

∥I4(t)∥L2 ≤ C

∫ t

0

(1 + t− s)−
3
4+ε∥P {u · ∇xu+ au} ∥Lq∩L2 ds .

Using the Calderon-Zygmund Theorem for Riesz transforms [26], the Leray projec-
tion operator in (60) is continuous on Lq for all 1 < q < ∞, and thus there exists
Cε such that

∥P {u · ∇xu+ au} ∥Lq∩L2 ≤ Cε∥u · ∇xu+ au∥Lq∩L2 ≤ Cε∥u · ∇xu+ au∥L1∩L2

where interpolation inequality was used. We remark finally that

∥u · ∇xu+ au∥L1∩L2 ≤ CE(f, u),
and thus

∥I4(t)∥L2 ≤ Cε

∫ t

0

(1 + t− s)−
3
4+εE(f(s), u(s)) ds .

Therefore, it holds

∥(f(t), u(t))∥2L2 ≤ 2
4∑

i=1

∥Ii(t)∥2L2

≤ C(1 + t)−
3
2 ∥(f0, u0)∥2Z1∩L2

+C

∫ t

0

(1 + t− s)−
3
2 [E(f(s), u(s))]2ds

+C

[∫ t

0

(1 + t− s)−
3
4 E(f(s), u(s))ds

]2
+Cε

[∫ t

0

(1 + t− s)−
3
4+εE(f(s), u(s)) ds

]2
. (52)

Define
E∞(t) = sup

0≤s≤t
(1 + s)

3
2−2εE(f(s), u(s)). (53)

Fix a constant δ < 1/3 close enough to 1/3. Using (53) and that E(f(t), u(t)) and
E∞(t) are non-increasing in time, we get∫ t

0

(1 + t− s)−
3
4+εE(f(s), u(s)) ds

=

∫ t

0

(1 + t− s)−
3
4+ε[E(f(s), u(s))] 23+δ[E(f(s), u(s))] 13−δ ds

≤ [E∞(t)](
2
3+δ)[E(f0, u0)]

( 1
3−δ)

×
∫ t

0

(1 + t− s)−
3
4+ε(1 + s)−( 3

2−2ε)( 2
3+δ) ds.
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Since δ < 1/3 is close to 1/3, we deduce from Lemma 3.2 that∫ t

0

(1 + t− s)−
3
4+εE(f(s), u(s)) ds ≤ C(1 + t)−

3
4+ε[E∞(t)](

2
3+δ)[E(f0, u0)]

( 1
3−δ).

Let us also remark that the third term in the r.h.s. of (52) is also trivially estimated
by the above quantity. Similarly, using Lemma 3.2 it holds that∫ t

0

(1 + t− s)−
3
2 [E(f(s), u(s))]2ds ≤ E∞(t)E(f0, u0)

∫ t

0

(1 + t− s)−
3
2 (1 + s)−

3
2+2εds

≤ CE∞(t)E(f0, u0)(1 + t)−
3
2+2ε.

Thus, one has from (52) that

∥(f(t), u(t))∥2L2 ≤ Cε(1 + t)−
3
2+2ε

{
∥(f0, u0)∥2Z1∩L2

+ E(f0, u0)E∞(t) + [E(f0, u0)]
2( 1

3−δ)[E∞(t)]2(
2
3+δ)

}
.

Plugging this into the r.h.s. of (51), multiplying the resulting inequality by (1 +

t)
3
2−2ε and using again Lemma 3.2 replacing e−λ(t−s) by (1 + t − s)−β1 with β1 >

3
2 − 2ε and the fact that E∞(t) is non-increasing in time, we conclude

(1 + t)
3
2−2εE(f(t), u(t)) ≤ Cε

{
∥(f0, u0)∥2Z1∩H3 + E(f0, u0)E∞(t)

+ [E(f0, u0)]
2( 1

3−δ)[E∞(t)]2(
2
3+δ)

}
for any t ≥ 0, which implies that

E∞(t) ≤ Cε{∥(f0, u0)∥2Z1∩H3 + E(f0, u0)E∞(t) + [E(f0, u0)]
2( 1

3−δ)[E∞(t)]2(
2
3+δ)}.

Since ∥(f0, u0)∥2Z1∩H3 and E(f0, u0) ∼ ∥(f0, u0)∥2H3 are small enough and 1 < 2( 23 +

δ) < 2, then

y(t) ≤ A [1 + y(t)] + C
1−2( 1

3−δ)
ε A2( 1

3−δ)y(t)2

for all t ≥ 0, with y(t) = E∞(t) and A = Cε∥(f0, u0)∥2Z1∩H3 . A direct application
of Lemma 3.3 implies

E∞(t) ≤ 2A = 2Cε∥(f0, u0)∥2Z1∩H3

holds uniformly in time. Recalling the definition (53) of E∞(t), (10) follows and the
proof of Theorem 1.1 is completed.

Remark 1. [Adding Viscosity] The same theorem applies directly by adding viscos-
ity to the system (1)-(3). More precisely, if we consider the Navier-Stokes-Vlasov-
Fokker-Planck system as in [13]:

∂tF + ξ · ∇xF = ∇ξ · ((ξ − u)F +∇ξF ),

∇x · u = 0,

∂tu+ u · ∇xu+∇xp = µ∆xu+

∫
R3

(ξ − u)Fdξ,

where the constant µ > 0 is the viscosity of the fluid, then all estimates in Sections
2 and 3 can be made independently on µ > 0. Therefore, Theorem 1.1 holds
for the Navier-Stokes-Vlasov-Fokker-Planck system for any µ > 0. Moreover, the
constructed solutions in Theorem 1.1 are their weak limits as µ → 0.
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4. The periodic case. In this section, we are concerned with the case when the
spatial domain is periodic. Precisely, consider the Cauchy problem over the Torus
T3: 

∂tF + ξ · ∇xF = ∇ξ · ((ξ − u)F +∇ξF ),

∇x · u = 0,

∂tu+ u · ∇xu+∇xp =

∫
R3

(ξ − u)F dξ, t > 0, x ∈ T3, ξ ∈ R3

with F (0, x, ξ) = F0(x, ξ), u(0, x) = u0(x), x ∈ T3, ξ ∈ R3. Here, ∇x · u0 = 0.
Similarly as before, set F (t, x, ξ) = M +M1/2f(t, x, ξ) to obtain

∂tf + ξ · ∇xf + u · ∇ξf − 1

2
u · ξf − u · ξM1/2 = Lf,

∇x · u = 0,

∂tu+ u · ∇xu+∇xp+ u(1 + a) = b,

(54)

with initial data

f(0, x, ξ) = f0(x, ξ) ≡ M−1/2(F0 −M), u(0, x) = u0(x). (55)

Here, the moment functions a, b are defined in (9).

Theorem 4.1. Let ∇x · u0 = 0 and F0 ≡ M +M1/2f0 ≥ 0. Assume that
∥f0∥L2

ξ(R3;H3
x(T3)) + ∥u0∥H3(T3) is small enough and∫

T3

a0dx = 0,

∫
T3

(u0 + b0) dx = 0.

Then, the Cauchy problem (54)-(55) admits a unique global solution (f(t, x, ξ), u(t, x))
satisfying

f ∈ C 0([0,∞); L2
ξ(R3; H3

x(T3))), u ∈ C 0([0,∞); H3(T3)),

F = M +M1/2f ≥ 0,

∥f(t)∥L2
ξ(R3;H3

x(T3)) + ∥u(t)∥H3(T3) ≤ Ce−λt(∥f0∥L2
ξ(R3;H3

x(T3)) + ∥u0∥H3(T3))

for any t ≥ 0, where C > 0 and λ > 0 are some constants.

Proof. Let us only sketch the proof of uniform-in-time a priori estimates as follows.
First of all, the estimate (22) in Corollary 1 can be modified for the periodic case
as

1

2

d

dt

∑
|α|≤3

(∥∂αf∥2 + ∥∂αu∥2) + λ0

∑
|α|≤3

(∥{I−P}∂αf∥2ν + ∥∂α(u− b)∥2)

≤ C∥u∥H3

∑
|α|≤3

(∥{I−P}∂αf∥2ν + ∥∂α(u− b)∥2) + ∥(a, b)∥2H3

 . (56)

This is obtained by changing the estimates whenever pure Sobolev inequalities were
used by adding the zero-order terms in the energy. For instance, in the end of proof
of Lemma 2.2, we rewrite that bound by∫

T3

1

2
u · ⟨ξf, f⟩ dx−

∫
T3

a|u|2 dx

≤ ∥a∥L6∥u∥L3∥u− b∥L2 + C∥u∥L3∥(a, b)∥L6∥{I−P}f∥
+∥u∥L∞∥{I−P}f∥2ν

≤ C∥u∥H2∥{I−P}f∥2ν + C∥u∥H1∥u− b∥2L2 + C∥u∥H1∥(a, b)∥2H1 .



GLOBAL CLASSICAL SOLUTIONS TO VFPE SYSTEM 25

Analogously, it is done for the proof of Lemma 2.3. In a similar way, the estimate
(27) in Lemma 2.4 can be modified for the torus case as

d

dt
E0(f(t)) + λ∥∇x(a, b)∥2H2 ≤C(∥{I−P}f∥2L2

ξ(H
3
x)

+ ∥u− b∥2H3)

+C∥u∥2H3

[
∥(a, b)∥2H3 + ∥∇x{I−P}f∥2L2

ξ(H
3
x)

]
,

(57)

where E0(f(t)) is the same as in (26), with R3 replaced by T3. Now, we also define
E(f(t), u(t)) in the same way as in (33). Therefore, for properly chosen κ1 > 0 in
(33), from (56) and (57), one has E(f(t), u(t)) ∼ ∥(f, u)∥2H3 and

d

dt
E(f(t), u(t)) + λD(f(t), u(t))

≤C(∥u∥H3 + ∥u∥2H3)

∑
|α|≤3

∥{I−P}∂αf∥2ν + ∥u− b∥2H3 + ∥(a, b)∥2H3

 ,
(58)

where D(f(t), u(t)) is the same as in (34). Using the conservation laws in the
case of Torus

d

dt

∫
T3

adx = 0,
d

dt

∫
T3

(u+ b) dx = 0

due to the system (54), ∫
T3

adx = 0,

∫
T3

(u+ b) dx = 0

hold for any t > 0 since they hold initially by the assumptions in Theorem 4.1.
Thus, from the Poincaré inequality, one has

∥a∥L2 ≤ C∥∇xa∥L2 , ∥u+ b∥L2 ≤ C∥∇x(u+ b)∥L2 .

It further holds that

∥u∥L2 + ∥b∥L2 ≤ C(∥u+ b∥L2 + ∥u− b∥L2)

≤ C(∥∇x(u+ b)∥L2 + ∥u− b∥L2)

≤ C(∥∇x(b, u)∥L2 + ∥u− b∥L2).

Applying the above estimates to the inequality (58), one has

d

dt
E(f(t), u(t)) + λDT(f(t), u(t)) ≤ C(∥u∥H3 + ∥u∥2H3)DT(f(t), u(t)) (59)

with the definition

DT(f(t), u(t)) = D(f(t), u(t)) + ∥(a, b, u)∥2L2 .

Therefore, using the similar proof as in the case of R3, the global existence of
solutions to the Cauchy problem (54)-(55) stated as in Theorem 4.1 follows. Finally,
since E(f(t), u(t)) is small enough uniformly in time, (59) gives

d

dt
E(f(t), u(t)) + λDT(f(t), u(t)) ≤ 0.

Noticing E(f(t), u(t)) ≤ CDT(f(t), u(t)) in the torus case, it follows

d

dt
E(f(t), u(t)) + λE(f(t), u(t)) ≤ 0.

This implies the exponential decay of E(f(t), u(t)) ∼ ∥(f(t), u(t))∥2H3 in time.
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5. Appendix. In the sequel ⟨·, ·⟩ will denote the distribution bracket of D ′(R3)3

over D(R3)3. Let us introduce the sets

V :=
{
φ ∈ D(]0, T [×R3)3 |divx(φ) = 0

}
,

Λ :=
{
h ∈ D ′(]0, T [×R3)3 |φ ∈ V ⇒ ⟨h, φ⟩ = 0

}
.

Here and in the sequel, for clearness, we add a superscript in vector fields to show the
dimension of their ranges. Consider X = W1,∞([0, T ]; H2(R3)3

)
∩L∞([0, T ]; H3(R3)3

)
and Y =:= W1,∞([0, T ]; H2(R3)

)
∩ L∞([0, T ]; H3(R3)

)
. Then,

Π : X3 × Y −→ L∞([0, T ]; H2(R3)
)

(v, w, s, r) 7−→ ∂tv + w · ∇xv + v(r + 1)− s,

is a well-defined map since:

1. by Rademacher’s theorem v is a.e. differentiable, ∂tv ∈ L∞([0, T ]; H2(R3)3
)

and we have the corresponding integration formula.
2. H2(R3) is stable by product, hence all the other terms belong to the space

L∞([0, T ]; H2(R3)3
)
.

In the sequel P is the Leray projector on the closed space of L2(R3)3 formed by the
divergence-free functions. Recall its definition via Fourier transform

P(v) := F−1

(
v̂ − k · v̂

|k|2
k

)
. (60)

From now on we will only consider elements (v, w, s, r) of X3 × Y, with v and w
divergence-free vector flows. In such conditions we will say that v is a weak solution
of the system

∂tv + P{w · ∇xv + v(r + 1)− s} = 0 (61)

divx(v) = 0, (62)

if and only if Π(v, w, s, r) ∈ Λ, which is equivalent to satisfy (61)–(62) a.e. as
elements of L2(R3)3. We will say that v is a strong solution of (61)–(62) when v is
C 1([0, T0] × R3)3 and verifies the equalities for all (t, x) ∈]0, T [×R3. We may now
state the first result

Lemma 5.1. 1. If v ∈ C 0
(
[0, T ]; H3(R3)3

)
is a weak solution of (61)–(62) then

it is a strong solution.
2. For every strong solution there exists a real valued function q belonging to

C 0
(
[0, T ]; H3(R3

loc)
3
)

such that the following equation holds pointwisely in

]0, T [×R3:

∂tv + w · ∇xv + v(r + 1) +∇xq = s,

Proof.

1. P clearly maps continuously H2(R3)3 into itself. Since H3(R3) is a topological
algebra, the assumptions made on v, w, s and r insure us that w ·∇xv+ rv−s
lies in C 0

(
[0, T ]; H2(R3)3

)
. Thus, ∂tv is continuous in time with value in

H2(R3)3 ↪→ C 0(R3)3. Furthermore, v is continuous in time with values in
H3(R3) ↪→ C 1(R3)3. Eventually v ∈ C 1([0, T ]× R3)3 and since it verifies the
weak form of the equation, it verifies it pointwisely.
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2. In this case Π(v, w, s, r) ∈ C 0
(
[0, T ]; H2(R3)3

)
∩ Λ, so we may directly use

Lemma 5.4 below to get the existence of q ∈ C 0
(
]0, T [; H3(R3

loc)
3) such as

Π(v, w, s, r) = ∇xq, first as distributions and then as functions since both are
continuous. So we have for (t, x) ∈]0, T [×R3 that ∂tv + w · ∇xv + v(r + 1) +
∇xq = s.

Weak and strong solutions finally becomes one by the following lemma.

Lemma 5.2. Any weak solution v of (61)–(62) is in C 0
(
[0, T ]; H3(R3)3

)
.

Proof. We refer to [27], p.364, Proposition 1.4 for a complete proof (in a more
general framework), we will only give the main steps here. By interpolation v ∈
C 0
w

(
I; H3(R3)3

)
(weak topology). So one just need to prove that ∥v(t)∥H3(R3)3 is

continuous. For that apply a mollifier ρn on the equation and use the usual estimates
(using the divergence-free property of w) to obtain∣∣∣∥ρn ⋆ v(t2)∥2H3(R3)3 − ∥ρn ⋆ v(t1)∥2H3(R3)3

∣∣∣ ≤ C

∫ t2

t1

∥v(τ)∥2H3(R3)3dτ + C(t2 − t1),

for some constant C independent of n. ∥v(t)∥2
H3 is hence Lipschitz continuous and

the lemma is proved.

Lemma 5.3. Given v0 ∈ H3
div(R3)3, there exists a strong global solution to (61)–

(62) verifying v(0) = v0.

Proof. By the two previous lemmas we just need to build a weak solution. Consider
the Banach space H3

div(R3)3, closure of V in H3(R3)3. The Leray projector is again
a continuous endomorphism of H3

div(R3)3. Consider a sequence (ρn)n of mollifiers
(in space). Then, the Cauchy problem

∂tvn + P
{
ρn ⋆

[
w · ∇x[ρn ⋆ vn]

]
+ vn(r + 1)− s

}
= 0, (63)

vn(0) = v0, (64)

has clearly a unique, global, strong solution on [0, T ]. Indeed, since we have

∥ρn ⋆
[
w · ∇x[ρn ⋆ vn]

]
∥H3(R3)3 ≤ ∥ρn∥L1(R3)3∥w∥H3(R3)3∥∇xρn ⋆ vn∥H3(R3)3

≤ ∥ρn∥L1(R3)3∥w∥H3(R3)3∥∇xρn∥L1(R3)3∥vn∥H3(R3)3 ,

we see that the problem is just solving an affine ordinary differential equation

v̇n(t) = An(t)vn(t) + P(s),

for some continuous linear map of continuous operators An(t) which is known to
have global solutions. The rest of the proof is close to what is done in [27] (p.360-
363, theorem 1.2) but a bit simpler (linear), let us sketch briefly what will happen
:

• The sequence (vn)n is bounded in L∞([0, T0]; H
3
div(R3)3

)
.

Since the weak derivatives ∂α commutes with the strong one ∂t and with the
operator P which is continuous from H3

div(R3)3 to itself and self-adjoint, usual
estimates (using the divergence-free property of w) infer

∥vn(t)∥2H3
div(R3)3 ≤ ∥v0∥2H3

div(R3)3 +A0

∫ t

0

∥vn(τ)∥2H3
div(R3)3dτ,
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for some constant A0 independent of n. Grönwall’s lemma then insures that
(vn)n is bounded in the desired space and the associated weak−⋆ convergence
(of a subsequence) follows from Banach-Alaoglu’s theorem.

• The sequence (vn)n is bounded in W1,∞([0, T0]; H
2(R3)3

)
.

The previous item and the equation itself give us an estimate in terms of
C 1
(
[0, T0]; H

2
div(R3)3

)
norm, which as previously gives weak−⋆ compactness

in W1,∞([0, T0]; H
2(R3)3

)
.

• The limit is solution.
The strong equations (63)–(64) implies clearly for all n ∈ N∗, Π(vn, w, r, s) ∈
Λ, which is kept at the limit n → ∞.

The following lemma proves the classical existence of the pressure in our simple
case, see [24] for related results.

Lemma 5.4. Let h ∈ C 0
(
[0, T ]; H2(R3)3

)
∩Λ. Then there exists q belonging to the

space C 0
(
]0, T [; H3(R3

loc)) such as h = ∇xq.

Proof. Consider first the case where g ∈ L2(R3)3 verifies ⟨g, φ⟩ = 0 for all divergence-
free function φ, and let us prove g = ∇xq for some L2

loc(R3) scalar function. A
straightforward density argument implies P(g) = 0 and hence by the definition of P
(60)

ĝ =
k · ĝ
|k|2

k,

so one just need to prove that
k · ĝ
|k|2

∈ F(L2
loc(R3)) (in the tempered sense). But we

have

ĝ · k
|k|2

=
ĝ · k
|k|2

1|k|≤1 +
ĝ · k
|k|2

1|k|>1 ∈ L11/10(R3) + L2(R3),

where we used the Hölder inequality and the integrability of |k| 7→ |k|−22/91|k|≤1 in

R3. Now L2(R3) = F(L2(R3)) by isometry and L11/10(R3) ⊂ F(L11(R3)) by Riesz-
Thorin’s interpolation. So we indeed get the existence of q ∈ L11(R3) ⊂ L2

loc(R3)
such as g = ∇xq and since the previous inclusions are continuous we have the
estimate, for some constant C

∥q∥L2
loc(R3) ≤ C∥g∥L2(R3)3 .

Now take h as in the lemma and φ ∈ D(R3)3, with div(φ) = 0. φ is not really an
admissible test function for h ∈ Λ since it does not depend on time. But,

Ψ(t) :=

∫
R3

h(t, x) · φ(x) dx

is a continuous function of t ∈ [0, T ], since h ∈ C 0
(
[0, T ]; L2(R3)3

)
. And since

h ∈ Λ, we get by Fubini’s theorem that Ψ = 0 in D ′(]0, T [), hence Ψ(t) = 0 for all
t ∈ [0, T ].

We can hence apply the previous study with g := h(t) to obtain the existence
of q(t) ∈ L2

loc(R3), for all t ∈ [0, T ], such as h(t) = ∇xq(t). Furthermore q depends
linearly on h, so for s, t ∈ [0, T ] we have

∥q(t)− q(s)∥L2
loc(R3) ≤ C∥h(t)− h(s)∥L2(R3)3 ,
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and since h ∈ C 0
(
[0, T ]; H2(R3)3

)
we eventually have q ∈ C 0

(
[0, T ]; H3(R3

loc)).

Lemma 5.5. Consider the Fokker-Planck equation

∂tF + ξ · ∇xF −∇ξ · (ξF )−∆ξF = A, (65)

F (0, x, ξ) = F0(x, ξ), (66)

where A ∈ L∞([0, T ];C∞(R3 × R3)
)
∩ C 0

t,x,ξ and F0 −M ∈ C∞(R3 × R3) are both

compactly supported in space and velocity. Then the Cauchy problem (65)–(66) has
a unique classical solution belonging to C 1

(
[0, T ];C 0(R3 × R3)

)
. For each t0 > 0,

M−1/2(F −M) ∈ C 0
(
[t0, T ];S (R3×R3)

)
, and furthermore M−1/2(F −M) belongs

to L∞([0, T ]; L2
ξ(H

3
x)
)
.

Proof. By following directly the computations made in [25] (same notations), we
first describe the characteristics

Φt(x, ξ) := [Xt(x, ξ), Ẋt(x, ξ)] = [x+ ξ(1− e−t), ξe−t].

We have then (see [25]) an explicit formula describing the solution F of (65)–(66)

F (t,Φt(x, ξ)) = e3tH(t) ⋆ F0(x, ξ) +

∫ t

0

e3(t−s)[H(t− s) ⋆ A(s)]
(
Φs(x, ξ)

)
ds,

where the convolutions are acting on both variables x and ξ. Of course since M
solves the homogenous equation, we have also :

(F −M)(t,Φt(x, ξ)) = e3tH(t) ⋆ (F0 −M)(x, ξ)

+

∫ t

0

e3(t−s)[H(t− s) ⋆ A(s)]
(
Φs(x, ξ)

)
ds, (67)

The function H is the fundamental solution of some partial differential equations
with constant (in space and velocity) coefficients and in our case it takes the form
(directly taken from [25] again)

H(t, x, ξ) =
exp

(
− ν(t)|x|2+λ(t)|ξ|2+µ(t)(x·ξ)

4λ(t)ν(t)−µ2(t)

)
(2π)3(4λ(t)ν(t)− µ2(t))3/2

,

where

λ(t) = t+ 2(1− et) +
1

2
(e2t − 1), ν(t) =

1

2
(e2t − 1), µ(t) = (1− et)2.

A straightforward computation gives the ellipticity condition

4ν(t)λ(t)− µ2(t) = (et − 1)[(et + 1)2t+ 4(1− et)] ≥ 0,

so that (67) is clearly defined. For t0 > 0, F belongs to C 1
(
[t0, T ];S (R3 × R3)

)
is

a consequence of (67), as noticed in [25] (our source term is smooth and compactly
supported). To prove that it is still the case for M−1/2F , given (67), it is clearly
sufficient to prove that

• G : (t, x, ξ) 7→ exp
[
|ξ|2
4 e−2t

][
H(t)⋆(F0−M)

]
(x, ξ) ∈ C 0

(
[t0, T ];S (R3×R3)

)
,

• Bs : (t, x, ξ) 7→ exp
[
|ξ|2
4 e−2t

]
[H(t− s) ⋆ A(s)]

(
Φs(x, ξ)

)
∈ C 0

(
[t0, T ];S (R3 ×

R3)
)
, for t > s.
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The fundamental solution can also be written in a simpler form

H(t, x, ξ) = K(t)e−α(t)|x|2e−β(t)|ξ|2e−γ(t)x·ξ,

so that for all t > 0, x, y, ξ, ζ ∈ R3

H(t, x− y, ξ − ζ) = K(t)e−α(t)|x|2−β(t)|ξ|2−α(t)|y|2−β(t)|ζ|2e2α(t)x·ye2β(t)ξ·ζ

× e−γ(t)(x−y)·(ξ−ζ),

and hence for any multi-indices ℓ, p ∈ N3, we deduce

∂ℓ
x∂

p
ξH(t, x− y, ξ − ζ) = P t

ℓ,p(x, ξ, y, ζ)H(t, x− y, ξ − ζ),

for some polynomial function P t
ℓ,p. Now, by the basic property of the fundamental

solution, and since F0 is compactly supported in space and velocity, the fact that
G(t) is C∞(R3 × R3) for any fixed time is obvious, and

∂ℓ
x∂

p
ξG(t) =

∑
0≤k≤p

Qt
k(|ξ|) exp

[ |ξ|2
4

e−2t
]
[∂ℓ

x∂
k
ξH(t)] ⋆ (F0 −M)(x, ξ),

where Qt
k is a polynomial. And since F0 has its support in space and velocity

included in, say, Bx(0, R)× Bξ(0, R), we have

|[∂ℓ
x∂

k
ξH(t)] ⋆ (F0 −M)(x, ξ)| ≤ CF0R

t
ℓ,p(x, ξ)K(t)e−α(t)|x|2−β(t)|ξ|2

× e(2α(t)+γ(t))|x|Re(2β(t)+γ(t))|ξ|Re−γ(t)x·ξ,

where Rt
ℓ,p(x, ξ) is another polynomial (actually the one obtained by letting x =

ξ = (1, 1, 1) in P t
ℓ,p). Eventually we see that a sufficient condition to have G(t) in

S (R3 × R3) is that the quadratic form

qt(x, ξ) :=
ν(t)|x|2 + λ(t)|ξ|2 + µ(t)(x · ξ)

4λ(t)ν(t)− µ2(t)
− 1

4
|ξ|2e−2t

is positive definite. This is equivalent to

λ(t)(e2t − ν(t)) > −1

4
µ2(t),

which is obviously true with the definition of ν(t), so the eigenvalue keep its sign.
Furthermore, the determinant is still strictly positive because

1

4
e−2t <

1

ν(t)
.

The regularity in time for t > 0 is obvious. As for Bs, the same study applies since
Bs(t) ∈ S (R3×R3) is equivalent to Bs(t)◦Φ−s ∈ S (R3×R3) and all the previous
inequalities are true if we substitue t by t−s. The end of the lemma is proved in the
following way : since F0 is smooth, ∂tM

−1/2(F −M)(t, x, ξ) has a limit as t goes
to 0, and it is equal to M−1/2[−ξ · ∇xF0 +∇ξ · (ξF0) +∆ξF0 +A(0)] ∈ L2

ξ(H
3
x) and

hence M−1/2F ∈ L∞([0, ε]; L2
ξ(H

3
x))
)
, and hence for the whole interval [0, T ].
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Liquid jet generation and break-up, in “Numerical Methods for Hyperbolic and Kinetic Equa-
tions”, (eds. S. Cordier, Th. Goudon, M. Gutnic and E. Sonnendrucker Eds.) IRMA Lect.
Math. Theor. Phys. (EMS Publ. House) 7 (2005), 149–176.

[3] C. Baranger, L. Boudin, P.-E Jabin, S. Mancini, A modeling of biospray for the upper airways,

CEMRACS 2004—Mathematics and applications to biology and medicine, ESAIM Proc., 14,
(2005), 41–47.

[4] C. Baranger and L. Desvillettes, Coupling Euler and Vlasov equations in the context of sprays:
the local-in-time, classical solutions , J. Hyperbolic Differ. Equ., 3 (2006), no 1., 1–26.

[5] L. Boudin, L. Desvillettes, C. Grandmont and A. Moussa, Global existence of solutions for
the coupled Vlasov and Navier-Stokes equations, Differential Integral Equations, 22 (2009),
no. 11-12, 1247–1271.

[6] R. Caflisch and G.C. Papanicolaou, Dynamic theory of suspensions with Brownian effects,
SIAM J. Appl. Math., 43 (1983), 885–906.

[7] J.A. Carrillo and T. Goudon, Stability and asymptotic analysis of a fluid-particle interaction
model, Comm. Partial Differential Equations, 31 (2006), 1349–1379.

[8] K. Domelevo, Well-posedness of a kinetic model of dispersed two-phase flow with point-
particles and stability of travelling waves, Discrete Contin. Dyn. Syst. Ser. B, 2 (2002),
591–607.

[9] K. Domelevo and J.M. Roquejoffre, Existence and stability of raveling wave solutions in a

kinetic model of two-phase flows, Comm. Partial Differential Equations, 24 (1999), 61–108.
[10] R.-J. Duan, Stability of the Boltzmann equation with potential forces on Torus , Phys. D,

238 (2009), 1808–1820.
[11] R.-J. Duan, M. Fornasier and G. Toscani, A kinetic flocking model with diffusions, Comm.

Math. Phys., 300 (2010), no. 1, 95–145.
[12] T. Goudon, Asymptotic problems for a kinetic model of two-phase flow, Proc. Roy. Soc.

Edinburgh Sect. A, 131 (6) (2001), 1371–1384.

[13] T. Goudon, L. He, A. Moussa and P. Zhang, The Navier-Stokes-Vlasov-Fokker-Planck system
near equilibrium, SIAM J. Math. Anal., 42 (5) (2009), 2177–2202.

[14] T. Goudon, P.-E. Jabin and A. Vasseur, Hydrodynamic limit for the Vlasov-Navier-Stokes
equations. I. Light particles regime, Indiana Univ. Math. J., 53 (2004), 1495–1515.

[15] T. Goudon, P.-E. Jabin and A. Vasseur, Hydrodynamic limit for the Vlasov-Navier-Stokes
equations. II. Fine particles regime, Indiana Univ. Math. J., 53 (2004), 1517–1536.

[16] Y. Guo, The Boltzmann equation in the whole space, Indiana Univ. Math. J., 53 (2004),
1081–1094.

[17] K. Hamdache, Global existence and large time behaviour of solutions for the Vlasov-Stokes
equations, Japan J. Indust. Appl. Math., 15 (1998), 51–74.

[18] S. Kawashima, “Systems of a hyperbolic-parabolic composite type, with applications to the
equations of magnetohydrodynamics”, Ph.D thesis, Kyoto University, 1983.

[19] F.H. Lin, C. Liu and P. Zhang, On a micro-macro model for polymeric fluids near equilibrium,
Comm. Pure Appl. Math., 60 (2007), 838–866.

[20] A. Mellet and A. Vasseur, Asymptotic analysis for a Vlasov-Fokker-Planck/compressible
Navier-Stokes system of equations, Comm. Math. Phys., 281 (2008), 573–596.

[21] A. Mellet and A. Vasseur, Global weak solutions for a Vlasov-Fokker-Planck/Navier-Stokes
system of equations, Math. Models Methods Appl. Sci., 17 (2007), 1039–1063.
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