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Abstract. In this paper, we study the Cauchy problem for the Boltzmann
equation with an external force and the Vlasov-Poisson-Boltzmann system in

infinite vacuum. The global existence of solutions is first proved for the Boltz-

mann equation with an external force which is integrable with respect to time in
some sense under the smallness assumption on initial data in weighted norms.

For the Vlasov-Poisson-Boltzmann system, the smallness assumption on initial

data leads to the decay of the potential field which in turn gives the global
existence of solutions by the result on the case with external forces and an

iteration argument. The results obtained here generalize those previous works

on these topics and they hold for a class of general cross sections including the
hard-sphere model.

1. Introduction. For a rarefied gas in the whole space R3
x, let f(t, x, v) be the

distribution function for particles at time t ≥ 0 with location x = (x1, x2, x3) ∈ R3
x

and velocity v = (v1, v2, v3) ∈ R3
v. In the presence of an external force, the time

evolution of f is governed by the Boltzmann equation as a fundamental equation
in statistical physics,

∂tf + v · ∇xf + E · ∇vf = J(f, f), (1.1)

with initial data
f(0, x, v) = f0(x, v). (1.2)

Here E = E(t, x, v) is the external force. The collision operator J(f, f) describing
the binary elastic collision takes the form:

J(f, f) = Q(f, f)− fR(f), (1.3)

with
Q(f, f)(t, x, v) =

∫
D

B(θ, |v − v1|)f(t, x, v′)f(t, x, v′1) dεdθdv1, (1.4)
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and
fR(f)(t, x, v) = f(t, x, v)

∫
D

B(θ, |v − v1|)f(t, x, v1) dεdθdv1. (1.5)

Here (v, v1) and (v′, v′1) are the pre-collision and post-collision velocities respectively,
satisfying

v′ = v − 〈v − v1, w〉w, v′1 = v1 + 〈v − v1, w〉w, (1.6)
by conservation of momentum and energy. ε and θ are, respectively, the polar and
azimuthal angles when the relative velocity v− v1 is taken as the z-direction in the
spherical coordinates. B(θ, |v − v1|) is the cross section characterizing the collision
of the gas particles from some physical setting with various interaction potentials.
D = [0, 2π]× [0, π/2]×R3

v is the integration domain of the variables (ε, θ, v1).
For the Vlasov-Poisson-Boltzmann system, E = E(t, x) independent of v is the

self-induced force coupled with the distribution f(t, x, v) by

E(t, x) = ∇xφ(t, x), 4xφ(t, x) = ρ(t, x) =
∫
R3

f(t, x, v) dv. (1.7)

Here, we normalize the physical constant in the Poisson equation to be unity without
loss of generality in our discussion.

Throughout this paper, we assume that the cross section B is nonnegative and
continuous in its arguments and satisfies the following condition:∣∣∣∣B(θ, |v − v1|)

sin θ cos θ

∣∣∣∣ ≤ C
1 + |v − v1|
|v − v1|δ

, 0 ≤ δ < 1. (1.8)

In particular, the case of hard-sphere model where

B(θ, |v − v1|) = C|v − v1| sin θ cos θ, (1.9)

satisfies (1.8) when δ = 0.

Now we review some previous works on the related topics and then give the main
ideas in this paper. Some general knowledge on these topics can be found in the
literature on the Boltzmann equation and the Vlasov-Poisson-Boltzmann system,
such as [7, 8, 30]. The Cauchy problem and the initial boundary value problem for
the Boltzmann equation in the absence of the external force have been extensively
studied, see [11, 19, 20, 22, 24, 25, 27, 28] and references therein. To concentrate
on the problems considered in this paper, in the following, we mainly mention some
works on the Cauchy problem for the Boltzmann equation in infinite vacuum in the
presence of a force field. In this direction, the first local existence theorem was given
by Glikson [13, 14]. When the initial data can be arbitrarily large, the local existence
of solutions to the Cauchy problem (also to the initial boundary value problem)
was obtained by Asano [1]. Then Bellomo-Lachowicz-Palzewski-Toscani [5] gave
a general framework on the global existence of mild solutions and also illustrated
their theorem by using an example where the strength of the force is integrable
in time in some sense up to subtraction of a constant. For classical solutions, the
first existence result was obtained by Guo [17] for some rather soft potential when
the external force is small and decays in time with some rates. In terms of the
method used, this can be viewed as an extension of the well-known existence result
by Illner-Shinbrot [19] on the Boltzmann equation in the absence of external forces.
The global existence of mild solutions with arbitrary strong external forces was
recently proved by Duan-Yang-Zhu in [12] under a constructive condition on the bi-
characteristics. For solutions near a global Maxwellian, Ukai-Yang-Zhao [29] proved
the stability of stationary Maxwellian solutions to the Boltzmann equation with an
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external force through the energy method. For this, please refer to some related
results in [15, 16, 22] where the nonlinear energy method was used in the study on
many aspects of the Boltzmann equation near a global Maxwellian or a solution
profile.

For the Vlasov-Poisson-Boltzmann system, the large time asymptotic behavior
of weak solutions with some extra regularity was studied by Desvillettes-Dolbeault
[10]. The global existence of DiPerna-Lions renormalized solutions with arbitrary
amplitude to the initial boundary value problem was given by Mischler [23]. Guo [17]
obtained the global classical solutions in infinite vacuum for some soft potentials.
The global existence of solutions near a global Maxwellian was also studied by Guo
[16] and Yang-Zhao-Yu [31] respectively for the space periodic data and the Cauchy
problem. Moreover, Bardos-Degond [2] considered the Vlasov-Poisson system near
vacuum and used the dispersive property of the density to prove the global existence
of smooth solutions for small initial data. See also [3, 6] for the other interesting
topics.

In this paper, for the Cauchy problem of the Boltzmann equation with an external
force and the Vlasov-Poisson-Boltzmann system in infinite vacuum, we prove the
global existence of solutions. First, for the Boltzmann equation with an external
force which is integrable with respect to time in some sense under the smallness
assumption on the initial data in weighted norms, the global existence of the mild
and classical solutions will be given by a contraction mapping argument. Then,
based on the dispersive property of the local density, we obtain the global existence
of classical solutions to the Vlasov-Poisson-Boltzmann system in infinite vacuum. In
fact, the smallness assumption on initial data leads to the decay of the potential field
which in turn gives the global existence of solutions by the result on the case with
external forces and an iteration argument. Notice that here the results generalize
those previous works on these topics and they hold for a class of general cross
sections including the hard-sphere model.

In the proof, we use some known results given by previous works, like Lemmas
2.1-2.4 from [4, 26]. The key estimate in the analysis is∣∣∣∣∫ t

0

J(f, g)#(s, x, v)ds

∣∣∣∣ ≤ Chα(|x|)mβ(|v|)|||f ||| · |||g|||,

for the cross section B satisfying (1.8) and the external force E = E(t, x) integrable
in time in some sense, see Subsection 2.1 for details. Here the integration is along the
bi-characteristics. For the case with external forces, this estimate yields the global
existence by the contraction mapping theorem. For the Vlasov-Poisson-Boltzmann
system, Lemmas 2.14 and 2.15 are the generalization of those corresponding results
in [2] and they lead to the proof of the dispersive property of the density function
which in turn gives the integrability of external forces in the approximate solution
sequence.

The rest of the paper is organized as follows. In Section 2, we consider the
Boltzmann equation with an external force in infinite vacuum. Based on some
preliminary estimates given in Subsection 2.1, the global existence of the mild and
classical solutions will be proved in Subsections 2.2 and 2.3 respectively. For the use
in the study of the Vlasov-Poisson-Boltzmann system, in Subsection 2.4, we study
characteristics generated by the external force E = E(t, x) and generalize some
results in [2] to deal with the pointwise estimates of a function f(t, x, v) defined
in some Banach spaces with weight function defined through the characteristics.
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Based on the global existence of solutions to the Boltzmann equation with external
forces, we study the Vlasov-Poisson-Boltzmann system in infinite vacuum in Section
3. As in [17], we will construct the approximate solution sequence in Subsection 3.1
and then obtain its compactness and convergence in Subsection 3.2. Finally, the
existence and uniqueness of solutions will be given in Subsection 3.3.

Notation. Throughout this paper, Ci, Ci(·) and Ci(·, ·), i ∈ N, denote the generic
positive constants and may vary in different places. For any function f = f(t, x, v),
we shall denote by ‖f(t, ·, ·)‖p and ‖f(t, x, ·)‖p (1 ≤ p ≤ ∞) the usual Lp norms.
Suppose that U is an open subset in Rn, n ≥ 1 and 0 < λ ≤ 1. The following
function spaces are used. C0(U) denotes the space of all real, continuous functions
on U . C0

b (U) denotes the space of all real, bounded and continuous functions on
U . C(Ū) denotes the space of all real, bounded and uniformly continuous functions
on U . The definition of the function spaces Ck(U), Ck

b (U) and Ck(Ū), k ≥ 1
follows similarly. In the proof, we also need the usual Hölder continuous function
spaces C0,λ(U) and C0,λ(Ū) which consist of locally and uniformly λ-order Hölder
continuous functions respectively.

2. Boltzmann equation with external force.

2.1. Preliminaries. As in the previous work, to prove the global existence of so-
lutions to the Boltzmann equation in infinite vacuum, it is better to rewrite the
equation along the bi-characteristics. For any (x, v) ∈ R3

x × R3
v, the forward bi-

characteristics is defined by
dXt(x, v)

dt
= V t(x, v),

dV t(x, v)
dt

= E(t, Xt(x, v), V t(x, v)),

(Xt, V t)t=0 = (x, v).
(2.1)

Then the mild form of the Boltzmann equation becomes

f#(t, x, v) = f0(x, v) exp
{
−
∫ t

0

R(f)#(θ, x, v) dθ

}
+
∫ t

0

Q(f, f)#(s, x, v) exp
{
−
∫ t

s

R(f)#(θ, x, v) dθ

}
ds, (2.2)

where as usual h#(t, x, v) = h(t,Xt(x, v), V t(x, v)) for any function h(t, x, v). On
the other hand, for any fixed (t, x, v) ∈ R+

t × R3
x × R3

v, we can also define the
backward bi-characteristics by

dX(s; t, x, v)
ds

= V (s; t, x, v),
dV (s; t, x, v)

ds
= E(s,X(s; t, x, v), V (s; t, x, v)),

(X(s; t, x, v), V (s; t, x, v))s=t = (x, v),
(2.3)

so that the Boltzmann equation can also be rewritten as

f(t, x, v) = f0(X(0; t, x, v), V (0; t, x, v))

× exp
{
−
∫ t

0

R(f)(θ, X(θ; t, x, v), V (θ; t, x, v))dθ

}
+
∫ t

0

Q(f, f)(s,X(s; t, x, v), V (s; t, x, v))

× exp
{
−
∫ t

s

R(f)(θ, X(θ; t, x, v), V (θ; t, x, v))dθ

}
ds. (2.4)
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Notice that if the mapping (Xs, V s) : R3
x ×R3

v → R3
x ×R3

v is one-to-one and onto
for any s > 0, then

(Xs, V s)(X(0; t, x, v), V (0; t, x, v)) = (X(s; t, x, v), V (s; t, x, v))

for any (t, x, v) ∈ R+
t ×R3

x×R3
v and s ∈ [0, t]. In this case, the equations (2.2) and

(2.4) are equivalent.
To apply the contraction mapping theorem for the existence, we now introduce

some function spaces as in [5]. For any f = f(t, x, v) and f0 = f0(x, v), define

|||f ||| = sup
t,x,v

|f#(t, x, v)|
hα(|x|)mβ(|v|)

, |f0|α,β,0 = sup
x,v

|f0(x, v)|
hα(|x|)mβ(|v|)

, (2.5)

where the weight functions hα and mβ have algebraic decay rates in the form of

hα(|x|) = (1 + |x|2)−α, α > 0 and mβ(|v|) = (1 + |v|2)−β , β > 0. (2.6)

Notice that even though the norm ||| · ||| depends on E, α and β, in the sequel, we
omit them in the notation for simplicity without any confusion.

Set

L0(E,α, β) = {f : f ∈ L∞(R+
t ×R3

x ×R3
v) with |||f ||| < ∞},

and
C0(E,α, β) = {f : f ∈ C0

b (R+
t ×R3

x ×R3
v) with |||f ||| < ∞}.

Then both (L0(E,α, β), ||| · |||) and (C0(E,α, β), ||| · |||) are Banach spaces. We
remark that both L0(E,α, β) and C0(E,α, β) depend on the force field E because
the norm ||| · ||| is defined along the bi-characteristics; see (2.1), (2.5) and the
definition of f#. For the proof of the existence of classical solutions, we also need
a norm including derivatives with respect to x and v, as in [17], by

|||f |||E = |||f |||+ |||∇xf |||+ |||(1 + t)−1∇vf ||| (2.7)

and
|f0|α,β,1 = |f0|α,β,0 + |∇xf0|α,β,0 + |∇vf0|α,β,0. (2.8)

Similarly, set

L1(E,α, β) = {f : f,∇xf, (1 + t)∇vf ∈ L∞(R+
t ×R3

x ×R3
v) with |||f |||E < ∞}

and

C1(E,α, β) = {f : f,∇xf,∇vf ∈ C0(R+
t ×R3

x ×R3
v) with |||f |||E < ∞},

so that (L1(E,α, β), ||| · |||E) and (C1(E,α, β), ||| · |||E) are Banach spaces.
For later use, we now list some useful inequalities from papers [4, 5, 26]. Inter-

ested readers please refer to these papers for proofs.

Lemma 2.1. For any α > 0 and (x, y) ∈ R3 ×R3, we have

(1 + |y|+ |y|2)−α ≤ hα(|x|)
hα(|x + y|)

≤ (1 + |y|+ |y|2)α,

and
hα(|x|)hα(|y|) ≤ 2αhα(|x + y|).

Lemma 2.2. For any α > 0, t ∈ R+, x ∈ R3 and (u, v) ∈ R3×R3 with 〈u, v〉 = 0,
we have

hα(|x+tu|)hα(|x+tv|) ≤ hα(|x|) {hα(|x + tu|) + hα(|x + tv|) + hα(|x + t(u + v)|)} .
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Lemma 2.3. For any α > 1/2, x ∈ R3 and (u, v) ∈ R3 ×R3 with 〈u, v〉 = 0, we
have ∫ ∞

0

hα(|x + tu|)hα(|x + tv|) dt ≤ Chα(|x|)
∫ ∞

0

hα(t min{|u|, |v|}) dt.

Lemma 2.4. For any α > 1/2, we have

sup
x,u

∫ ∞

0

|u|hα(|x + su|) ds ≤ C1(α).

Lemma 2.5. If the cross section B satisfies (1.8) with 0 ≤ δ < 1, then the following
integrals are bounded:

sup
v

∫
D

B(θ, |v − v1|)
|v − v1| sin θ cos θ

mβ(|v1|) dεdθdv1 ≤ C2(β, δ)

for any β > 3/2, and

sup
v

∫
D

B(θ, |v − v1|)
|v − v1| sin θ cos θ

mβ(|v′|)mβ(|v′1|)
mβ(|v|)

dεdθdv1 ≤ C3(β, δ)

for any β > (3− δ)/2.

2.2. Mild solution. In this subsection, we will prove the global existence and
uniqueness of the mild solution to the Cauchy problem (1.1)-(1.2) in the Banach
spaces L0(E,α, β) and C0(E,α, β) if initial data is sufficiently small under some
condition on the external force E.

To apply the contraction mapping theorem, for any f = f(t, x, v), let’s denote the
function on the right hand of (2.4) by (Tf)(t, x, v). Furthermore, throughout this
subsection, we assume that the external force E = E(t, x, v) satisfies the following
two conditions:

(A1): Both the forward and backward bi-characteristic equations (2.1) and (2.3)
have global-in-time smooth solutions for any (x, v) ∈ R3

x ×R3
v and (t, x, v) ∈

R+
t ×R3

x ×R3
v, respectively.

(A2): There exists some constant ε0 > 0 such that∫ ∞

0

‖E(t, ·, ·)‖∞ dt ≤ ε0. (2.9)

Notice that ε0 need not be small.
The existence result on the mild solution is stated as follows.

Theorem 2.1. Let the parameters in the weight functions hα(|x|) and mβ(|v|)
satisfy α > 1/2 and β > 3/2. Suppose that the cross section B satisfies (1.8)
with 0 ≤ δ < 1 and the external force E satisfies (A1) and (A2) with ε0 > 0. If
0 ≤ f0(x, v) ∈ L∞(R3

x ×R3
v) with |f0|α,β,0 ≤ δ0 where δ0 > 0 is sufficiently small,

then there exists a unique solution 0 ≤ f(t, x, v) ∈ L0(E,α, β) satisfying (2.4) with
|||f ||| ≤ 2δ0. Furthermore, if β > 2 − δ/2 and 0 ≤ f0(x, v) ∈ C0(R3

x × R3
v) with

|f0|α,β,0 ≤ δ0 where δ0 > 0 is sufficiently small, then there exists a unique solution
0 ≤ f(t, x, v) ∈ C0(E,α, β) satisfying (2.4) with |||f ||| ≤ 2δ0.

To prove Theorem 2.1, we list the following lemmas which follow directly from
(2.1), (2.3) and the assumption (A2) on E, see also the following Remark 2.1.
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Lemma 2.6. Suppose that the external force E satisfies (A1) and (A2) with ε0 > 0.
Then we have that for any t ≥ 0, s ≥ 0 and (x, v) ∈ R3

x ×R3
v,

|V t(x, v)− V s(x, v)| ≤ ε0,∣∣∣∣1t
∫ t

0

V s(x, v)ds− v

∣∣∣∣ ≤ ε0,

∣∣∣∣1t
∫ t

0

V s(x, v)ds− V t(x, v)
∣∣∣∣ ≤ 2ε0.

In terms of the backward bi-characteristics, we have that for any (t, x, v) ∈ R+
t ×

R3
x ×R3

v and 0 ≤ s1, s2 ≤ t,

|V (s1; t, x, v)− V (s2; t, x, v)| ≤ ε0,∣∣∣∣1t
∫ t

0

V (s; t, x, v)ds− V (0; t, x, v)
∣∣∣∣ ≤ ε0,

∣∣∣∣1t
∫ t

0

V (s; t, x, v)ds− v

∣∣∣∣ ≤ 2ε0.

By Lemmas 2.1-2.5, the pointwise estimates on the gain term Q(f, f) and the
loss term fR(f) in the Boltzmann equation are given by the following two lemmas.

Lemma 2.7. Let α > 0 and β > 0. Suppose that the cross section B satisfies (1.8)
with 0 ≤ δ < 1 and the external force E satisfies (A1) and (A2) with ε0 > 0. Then
for any f = f(t, x, v) and g = g(t, x, v), we have∣∣∣∣∫ t

0

Q(f, g)#(s, x, v) ds

∣∣∣∣ ≤ A(t, x, v)|||f ||| · |||g|||.

Here A(t, x, v) is defined by

A(t, x, v) = C4(α, β, ε0) sup
|a|≤2ε0

∫ t

0

∫
D

B(θ, |v − v1 − a|)hα(|y|)hα(|y1|)

×mβ(|v′|)mβ(|v′1|) dεdθdv1ds,

where {
y = x + su‖, y1 = x + su⊥, v′ = v − u‖, v′1 = v − u⊥,
u‖ = 〈v − v1, ω〉ω, u⊥ = v − v1 − u‖.

Furthermore, if α > 1/2 and β > (3− δ)/2, then for any (t, x, v) ∈ R+
t ×R3

x ×R3
v,

A(t, x, v) ≤ C5(α, β, δ, ε0)hα(|x|)mβ(|v|).

Lemma 2.8. Under the same conditions on the cross section and the external force
as in Lemma 2.7, for any g = g(t, x, v), we have∣∣∣∣∫ t

0

R(g)#(s, x, v) ds

∣∣∣∣ ≤ B(t, x, v)|||g|||.

Here B(t, x, v) is defined by

B(t, x, v) = C6(α, β, ε0) sup
|a|≤2ε0

∫ t

0

∫
D

B(θ, |v − v1 − a|)hα(|x + s(v − v1)|)

mβ(|v1|) dεdθdv1ds.

Furthermore, if α > 1/2 and β > 3/2, then for any (t, x, v) ∈ R+
t ×R3

x ×R3
v,

B(t, x, v) ≤ C7(α, β, δ, ε0).

Thus, for any f = f(t, x, v) and g = g(t, x, v), we have∣∣∣∣∫ t

0

f#R(g)#(s, x, v) ds

∣∣∣∣ ≤ C7(α, β, δ, ε0)hα(|x|)mβ(|v|)|||f ||| · |||g|||.



8 R.J. DUAN, T. YANG AND C.J. ZHU

Remark 2.1. In the absence of external forces, Lemmas 2.7 and 2.8 were proved
by Toscani and Bellomo in [26]. On the other hand, when the external force satisfies
(A1) and (A2), Bellomo etc. [5] obtained the same estimates as in Lemmas 2.7 and
2.8 by using the following exponential and algebraic weight functions

hα(|x|) = exp{−α|x|2} and mβ(|v|) = (1 + |v|2)−β .

Following the argument in [5], it is straightforward to obtain Lemmas 2.7 and 2.8
for the algebraic weight functions so that we omit their proofs.

Based on Lemmas 2.6, 2.7 and 2.8, we have the following lemma.

Lemma 2.9. Let α > 1/2 and β > 3/2. Suppose that the cross section B satisfies
(1.8) with 0 ≤ δ < 1 and the external force E satisfies (A1) and (A2) with ε0 > 0.
Then we have that for any f ≥ 0 and g ≥ 0,{ |||Tf ||| ≤ |f0|α,β,0 + C5(α, β, δ, ε0)|||f |||2,

|||Tf −Tg||| ≤ C8(α, β, δ, ε0)(|||f |||+ |||g|||+ |||Tg|||)|||f − g|||,
(2.10)

where C8(α, β, δ, ε0) = 2C5(α, β, δ, ε0) + C7(α, β, δ, ε0).

Proof. Since f ≥ 0, it follows from the definition (1.5) of the operator R that∫ t

s

R(f)#(θ, x, v)dθ ≥ 0, (2.11)

for any 0 ≤ s ≤ t. Thus, by Lemma 2.7, we have from the representation of T that

|(Tf)#(t, x, v)| ≤ |f0(x, v)|+ C5(α, β, δ, ε0)hα(|x|)mβ(|v|)|||f |||2,

which gives (2.10)1.
Next, for (2.10)2, we first have the time evolution of Tf −Tg as follows

∂t(Tf −Tg) + v · ∇x(Tf −Tg) + E · ∇v(Tf −Tg) + (Tf −Tg)R(f)
= Q(f − g, f) + Q(g, f − g)− (Tg)R(f − g),

with initial data (Tf −Tg)(0, x, v) = 0. Thus by expressing the above equation in
the integral form as in (2.2) and then using (2.11) together with Lemmas 2.7 and
2.8, we have (2.10)2. This completes the proof of the lemma.

In the next lemma, we will show that Tf is continuous if both f0 and f are
continuous under some conditions on the weight functions.

Lemma 2.10. Let α > 1/2 and β > 2 − δ/2. Suppose that the cross section B
satisfies (1.8) with 0 ≤ δ < 1 and the external force E satisfies (A1) and (A2) with
ε0 > 0. If 0 ≤ f0 ∈ C0(R3

x ×R3
v) and 0 ≤ f ∈ C0(R+

t ×R3
x ×R3

v) with |||f ||| < ∞.
Then it holds that

0 ≤ Tf ∈ C0(R+
t ×R3

x ×R3
v).

Proof. As in [17], first notice that Q(f, g) and R(g) can be written as

Q(f, g)(t, x, v) =
∫

D

B(θ, |u|)f(t, x, v − u‖)g(t, x, v − u⊥) dεdθdu,

R(f)(t, x, v) =
∫

D

B(θ, |u|)f(t, x, v − u) dεdθdu.
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Set

Q(f(t1, x1, v1), g(t2, x2, v2)) =
∫

D

B(θ, |u|)f(t1, x1, v1 − u‖)

×g(t2, x2, v2 − u⊥) dεdθdu,

R(f)(t1, x1, v1) =
∫

D

B(θ, |u|)f(t1, x1, v1 − u) dεdθdu.

Hence, Lemmas 2.1 and 2.6 give

|B(θ, |u|)f(t1, x1, v1 − u‖)g(t2, x2, v2 − u⊥)|

≤ B(θ, |u|)|||f ||| · |||g|||mβ(|V (0; t1, x1, v1 − u‖)|)mβ(|V (0; t2, x2, v2 − u⊥)|)

≤ (1 + ε0 + ε2
0)

2βB(θ, |u|)|||f ||| · |||g|||mβ(|v1 − u‖)|)mβ(|v2 − u⊥|)

≤ 8β(1 + ε0 + ε2
0)

2β |||f ||| · |||g|||
mβ(|v1|)mβ(|v2|)

1 + |u|
|u|δ

mβ(|u|).

Similarly, we have

|B(θ, |u|)f(t1, x1, v1 − u)| ≤ 2β(1 + ε0 + ε2
0)

β |||f |||
mβ(|v1|)

1 + |u|
|u|δ

mβ(|u|).

Since 0 ≤ δ < 1 and β > 2− δ/2, i.e., 2β + (δ − 1) > 3, we have∫
R3

1 + |u|
|u|δ

mβ(|u|) du ≤ C9(β, δ).

Therefore, if f, g ∈ C0(R+
t ×R3

x ×R3
v) where |||f |||, |||g||| < ∞, it follows from the

dominated convergence theorem that both functions Q(f(t1, x1, v1), g(t2, x2, v2))
and R(f)(t1, x1, v1) are continuous with respect to (ti, xi, vi) ∈ R+

t × R3
x × R3

v,
i = 1, 2.

Now from the representation of the mapping T, it is easy to see that Tf ≥ 0
if f0 ≥ 0 and f ≥ 0. On the other hand, if f0 ≥ 0 and f ≥ 0 are continuous, the
above argument combined with the continuity of the backward bi-characteristics
[X(s; t, x, v), V (s; t, x, v)] yields the continuity of Tf in (t, x, v) over R+

t ×R3
x×R3

v.
Hence, it completes the proof of the lemma.

Finally, at the end of this subsection, we give the proof of Theorem 2.1.

Proof of Theorem 2.1. First, for the existence of solutions in the space L0(E,α, β),
it is sufficient to show that T is a contraction mapping from SL0 to SL0 if δ0 > 0
is sufficiently small, where

SL0 = {f : f ≥ 0, f ∈ L0(E,α, β), |||f ||| ≤ 2δ0}
is a closed subset of the Banach space L0(E,α, β). It is a standard argument from
the representation of the mapping T and Lemma 2.9. Furthermore, if β > 2− δ/2
and 0 ≤ f0(x, v) ∈ C0(R3

x ×R3
v) with |f0|α,β,0 ≤ δ0, then it follows from Lemma

2.10 that Tf ∈ C0(R+
t ×R3

x ×R3
v). Hence, T is also a contraction mapping from

SC0 to SC0 if δ0 is sufficiently small, where

SC0 = {f : f ≥ 0, f ∈ C0(E,α, β), |||f ||| ≤ 2δ0}
is a closed subset of the Banach space C0(E,α, β). The proof of Theorem 2.1 is
then completed.
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2.3. Classical solution. In this subsection, we will prove the global existence of
classical solutions to the Cauchy problem (1.1)-(1.2) in the Banach spaces L1(E,α, β)
and C1(E,α, β) by using the similar approach as that used in Subsection 2.2.

Here we need the following stronger assumption on the external force field E =
E(t, x, v):

(B1): E(·, ·, ·) ∈ C0
b (R+

t ×R3
x×R3

v) and ∇xE(t, ·, ·), ∇vE(t, ·, ·) ∈ C0
b (R3

x×R3
v)

for any fixed t > 0.
(B2): There exist constants ε0 > 0 and 0 < ε1 < 1 such that

∫ ∞

0

‖E(t, ·, ·)‖∞dt ≤ ε0,∫ ∞

0

‖∇vE(t, ·, ·)‖∞dt +
∫ ∞

0

(1 + t)‖∇xE(t, ·, ·)‖∞dt ≤ ε1.

(2.12)

The global existence result on the classical solutions can be stated as follows.

Theorem 2.2. Let α > 1/2 and β > 3/2. Suppose that the cross section B satisfies
(1.8) with 0 ≤ δ < 1 and the external force E satisfies (B1) and (B2) with ε0 > 0
and 0 < ε1 < 1. If 0 ≤ f0(x, v) ∈ W 1,∞(R3

x ×R3
v) with |f0|α,β,1 ≤ δ1 where δ1 > 0

is sufficiently small, then there exists a unique solution 0 ≤ f(t, x, v) ∈ L1(E,α, β)
satisfying (2.4) with |||f |||E ≤ 2δ1/(1 − ε1). Furthermore, if β > 2 − δ/2 and
0 ≤ f0(x, v) ∈ C1(R3

x ×R3
v) with |f0|α,β,1 ≤ δ1 where δ1 > 0 is sufficiently small,

then there exists a unique solution 0 ≤ f(t, x, v) ∈ C1(E,α, β) satisfying (2.4) with
|||f |||E ≤ 2δ1/(1− ε1).

Remark 2.2. The assumption (B1) on the external force E guarantees that both
the forward and backward bi-characteristic equations (2.1) and (2.3) have unique C1

solutions globally in time, which are C1 differentiable with respect to the initial data
(x, v) and (t, x, v) respectively. As in [17], the condition (2.12)2 in the assumption
(B2) requires the integrability of the external force to balance ∇vf(t, x, v) which
may grow linearly in time when estimating the derivatives.

Similar to the proof of Theorem 2.1, let’s define

SL1 = {f : f ≥ 0, f ∈ L1(E,α, β), |||f |||E ≤ 2δ1/(1− ε1)},
SC1 = {f : f ≥ 0, f ∈ C1(E,α, β), |||f |||E ≤ 2δ1/(1− ε1)},

which are the closed subsets of L1(E,α, β) and C1(E,α, β) respectively. We will
prove that if δ1 > 0 is sufficiently small, then T is a contraction mapping both on
the closed subsets SL1 and SC1 respectively. For this purpose, we need a series of
lemmas.

To the end, fix any f, g ∈ SL1 and denote F = Tf and G = Tg. First |||F |||E is
estimated as follows.

Lemma 2.11. Let α > 1/2 and β > 3/2. Suppose that the cross section B satisfies
(1.8) with 0 ≤ δ < 1 and the external force E satisfies (B1) and (2.12)1 with ε0 > 0.
Then we have

|||F ||| ≤ |f0|α,β,0 + C5(α, β, δ, ε0)|||f |||2, (2.13)

|||∇xF ||| ≤ |∇xf0|α,β,0 + |||(1 + t)−1∇vF |||
∫ ∞

0

(1 + s)‖∇xE(s, ·, ·)‖∞ ds

+ {2C5(α, β, δ, ε0)|||f |||+ C7(α, β, δ, ε0)|||F |||} |||∇xf |||, (2.14)
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and
|||(1 + t)−1∇vF ||| ≤ |∇vf0|α,β,0 + |||∇xF |||+ {2C5(α, β, δ, ε0)|||f |||

+C7(α, β, δ, ε0)|||F |||}|||(1 + t)−1∇xf |||

+|||(1 + t)−1∇vF |||
∫ ∞

0

‖∇vE(s, ·, ·)‖∞ ds. (2.15)

Proof. The estimate (2.13) follows immediately from Lemma 2.9. To prove (2.14)
and (2.15), since F = Tf , we have

∂tF + v · ∇xF + E(t, x, v) · ∇vF + FR(f) = Q(f, f).

By taking xi and vi derivatives of the above equation, we have

∂t(∂xiF ) + v · ∇x(∂xiF ) + E(t, x, v) · ∇v(∂xiF ) + (∂xiF )R(f)

= Q(∂xi
f, f) + Q(f, ∂xi

f)− {(1 + t)∂xi
E} ·

{
(1 + t)−1∇vF

}
− FR(∂xi

f)

and
∂t(∂viF ) + v · ∇x(∂viF ) + E(t, x, v) · ∇v(∂viF ) + (∂viF )R(f)

= (1 + t)Q((1 + t)−1∂vi
f, f) + (1 + t)Q(f, (1 + t)−1∂vi

f)− ∂xi
F

−(1 + t)∂viE · {(1 + t)−1∇vF} − (1 + t)FR((1 + t)−1∂vif).
Thus the proof of this lemma follows by integrating the above two equations along
the forward bi-characteristics as in (2.2), summing them over i = 1, 2, 3 respectively
and then using Lemmas 2.7 and 2.8 together with (2.11).

A direct consequence of Lemma 2.11 is the following corollary.

Corollary 2.1. Suppose that the assumptions of Lemma 2.11 hold. If the external
force E satisfies (2.12)2 with 0 < ε1 < 1, then we have

|||F |||E ≤ 1
1− ε1

|f0|α,β,1 +
(

2C5(α, β, δ, ε0)
1− ε1

|||f |||+ C7(α, β, δ, ε0)
1− ε1

|||F |||
)
|||f |||E .

Next, we estimate |||F −G|||E . Similar to Lemma 2.9 and Corollary 2.1, we have
the following lemma with its proof omitted for brevity.

Lemma 2.12. Let α > 1/2 and β > 3/2. Suppose that the cross section B satisfies
(1.8) with 0 ≤ δ < 1 and the external force E satisfies (B1) and (B2) with ε0 > 0
and 0 < ε1 < 1. Then we have

|||F −G|||E ≤ 1
1− ε1

λ(|||f |||E , |||g|||E , |||G|||)|||f − g|||E ,

where λ = λ(s1, s2, s3) is a polynomial function with positive coefficients depending
only on α, β, δ and ε0, and satisfying

λ(s1, s2, s3) → 0 as |s1|+ |s2|+ |s3| → 0.

Finally, we will show that Tf is nonnegative and continuously differentiable if
the initial data f0 and f is nonnegative and continuously differentiable.

Lemma 2.13. Let α > 1/2 and β > 2 − δ/2. Suppose that the cross section B
satisfies (1.8) with 0 ≤ δ < 1 and the external force E satisfies (B1) and (2.12)1
with ε0 > 0. If 0 ≤ f0 ∈ C1(R3

x ×R3
v) and 0 ≤ f ∈ C1(E,α, β) with |||f |||E < ∞,

then
0 ≤ Tf ∈ C1(E,α, β).
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Proof. By Lemma 2.10, Q(f, f)(t, x, v) is continuous in (t, x, v) over R+
t ×R3

x×R3
v.

In fact, we claim that Q(f, f)(t, x, v) is C1 in (x, v) over R3
x × R3

v for any t > 0.
Fix any (t, x, v) ∈ R+

t ×R3
x ×R3

v, as in [17], for any h ∈ R with h 6= 0, we have

1
h

[Q(f, f)(v + hei)−Q(f, f)(v)]

= Q

(
f(v + hei)− f(v)

h
, f(v)

)
+ Q

(
f(v),

f(v + hei)− f(v)
h

)
= (1 + t)Q

(
(1 + t)−1∂vi

f(v̄), f(v)
)

+ (1 + t)Q
(
f(v), (1 + t)−1∂vi

f(v̄)
)
,

where ei is a unit vector in R3, v̄ is the vector between v and v + hei through
the mean value theorem and f(v) represents f(t, x, v) for simplicity. The similar
equation holds for the variable x. Thus our claim follows from the dominated
convergence theorem. Moreover, by the same method, we have that R(f)(t, x, v) is
continuous in (t, x, v) over R+

t ×R3
x ×R3

v and C1 in (x, v) over R3
x ×R3

v for any
t > 0.

Now recall the representation of Tf and the inequality (2.11). Notice that Tf ≥
0 if f0 ≥ 0 and f ≥ 0, and that the bi-characteristics [X(s; t, x, v), V (s; t, x, v)]
is C1 in (t, x, v) over R+

t × R3
x × R3

v. Hence, the differentiability of f0 and the
dominated convergence theorem give that Tf , ∇xTf and ∇vTf are continuous in
(t, x, v) over R+

t × R3
x × R3

v. Finally, from Corollary 2.1, we have |||Tf |||E < ∞
and thus Tf ∈ C1(E,α, β). The proof of Lemma 2.13 is then completed.

Therefore, by the standard contraction argument as in the proof of Theorem 2.1
together with Lemmas 2.11-2.13 and Corollary 2.1, we end the proof of Theorem
2.2.

2.4. Characteristics and pointwise estimates. In this subsection, we will give
some properties of the backward bi-characteristics and some pointwise estimates
on the functions in the Banach space L1(E,α, β) for later use in the study of the
Vlasov-Poisson-Boltzmann system. For this purpose, throughout this subsection,
the external force E = E(t, x) depending only on t and x is supposed to satisfy the
following assumption:

(E): E(·, ·) ∈ C0
b (R+

t ×R3
x) and ∇xE(t, ·) ∈ C0

b (R3
x) for any fixed t > 0 with

the bound ∫ ∞

0

(1 + t)‖∇xE(t, ·)‖∞dt ≤ ε1, ε1 > 0. (2.16)

The following two lemmas on the bi-characteristics [X(s; t, x, v), V (s; t, x, v)] are
analogous to those given in [2], where the external force E(t, x) satisfies a stronger
assumption than (E), that is,

‖∇xE(t, ·)‖∞ ≤ C(1 + t)−5/2, (2.17)

for some sufficiently small constant C > 0 and any t ≥ 0. It is obvious that (2.17)
implies (2.16). Since the proofs are easy to be modified, we omit them for brevity.

Lemma 2.14. Suppose that the external force E = E(t, x) satisfies the assumption
(E) with 0 < ε1 < 1/4. Then for any (t, x, v) ∈ R+

t ×R3
x ×R3

v and any s ∈ [0, t],
we have ∣∣∣∣∂X

∂v
(s; t, x, v)− (s− t)Id

∣∣∣∣+ ∣∣∣∣∂V

∂v
(s; t, x, v)− Id

∣∣∣∣ ≤ 4ε1(t− s),
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and ∣∣∣∣∂X

∂x
(s; t, x, v)− Id

∣∣∣∣+ ∣∣∣∣∂V

∂x
(s; t, x, v)

∣∣∣∣ ≤ 2ε1,

where Id denotes the identity matrix in R3.

Lemma 2.15. Suppose that the external force E = E(t, x) satisfies the assumption
(E) where ε1 > 0 is sufficiently small. Then

(i) for any (t, x, v) ∈ R+
t ×R3

x ×R3
v and s ∈ [0, t], we have∣∣∣∣det

(
∂X

∂v
(s; t, x, v)

)∣∣∣∣ ≥ (t− s)3

2
.

(ii) for any fixed (s, t, x) ∈ R+
t ×R+

t ×R3
x with 0 ≤ s < t, the mapping

v 7−→ X(s; t, x, v)

is one-to-one from R3 to R3.

Now we use Lemma 2.15 to obtain some pointwise estimates for a function f =
f(t, x, v) in the Banach space L1(E,α, β), which play an important role in the proof
of the construction of the approximate solution sequence for the Vlasov-Poisson-
Boltzmann system in the next section. These estimates essentially come from the
dispersive property of functions in L1(E,α, β) with respect to x and v.

Theorem 2.3. Suppose that α > 3/2, β > 3/2 and the external force E = E(t, x)
satisfies the assumption (E) with ε1 > 0 being sufficiently small. Moreover, suppose
that ∫ ∞

0

‖E(t, ·)‖∞dt ≤ ε0, ε0 > 0.

Let 1 ≤ p ≤ ∞ and 0 < T < ∞. Then for any function f = f(t, x, v) ∈ L1(E,α, β),
we have that

f ∈ L∞((0, T );W 1,p(R3
x ×R3

v)) ∩ L∞((0, T )×R3
x;W 1,p(R3

v))

with the following estimates

‖f(t, ·, ·)‖p + ‖∇xf(t, ·, ·)‖p + (1 + t)−1‖∇vf(t, ·, ·)‖p ≤ C10(α, β, ε0)|||f |||E , (2.18)

‖f(t, x, ·)‖p + ‖∇xf(t, x, ·)‖p+ (1 + t)−1‖∇vf(t, x, ·)‖p

≤ C11(α, β, ε0)|||f |||E(1 + t)−3/p, (2.19)

for 0 ≤ t < ∞ and x ∈ R3
x.

Proof. In fact, it suffices to obtain the L∞ and L1 estimates in the spaces R3
x×R3

v

and R3
v respectively, which yield the Lp estimates by the interpolation.

We only prove (2.19) since (2.18) can be proved similarly. Fix any 0 ≤ t < ∞
and x ∈ R3

x, the estimate (2.19) when p = ∞ comes directly from the definition of
|||f |||E . Next, consider the case when p = 1 as follows. Notice that

‖f(t, x, ·)‖1 ≤ |||f |||
∫
R3

hα(|X(0; t, x, v)|)mβ(|V (0; t, x, v)|)dv.

It follows from Lemmas 2.1 and 2.6 that

‖f(t, x, ·)‖1 ≤ C(β, ε0)|||f |||
∫
R3

mβ(|v|)dv ≤ C(β, ε0)|||f |||. (2.20)
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When t ≥ 1, by the change of variable X(0; t, x, v) = v̄, we have from Lemma 2.15
that

‖f(t, x, ·)‖1 ≤ |||f |||
∫
R3

hα(|X(0; t, x, v)|)dv

= |||f |||
∫
R3

hα(|v̄|)
∣∣∣∣det

(
∂X

∂v
(0; t, x, v)

)∣∣∣∣−1

dv̄

≤ C(α)|||f |||t−3. (2.21)
Combining (2.20) and (2.21) yields

‖f(t, x, ·)‖1 ≤ C(α, β, ε0)|||f |||(1 + t)−3, t ≥ 0, x ∈ R3
x.

Similarly, we can obtain the estimates on ∇xf and ∇vf . Thus (2.19) is proved.
The proof of Theorem 2.3 is completed.

3. Vlasov-Poisson-Boltzmann system.

3.1. Approximate solution sequence. From now on, we consider the global
existence of solutions to the Cauchy problem (1.1), (1.2) and (1.7) for the Vlasov-
Poisson-Boltzmann system. Let’s first construct the approximate solution sequence
{[fn+1, En+1]}∞n=0 by the following iterative scheme as in [17]:

∂tf
n+1 + v · ∇xfn+1 + En(t, x) · ∇vfn+1 = J(fn+1, fn+1),

En+1(t, x) = ∇xφn+1(t, x), ∆xφn+1(t, x) = ρn+1 =
∫
R3

fn+1(t, x, v)dv,

fn+1(0, x, v) = f0(x, v), n = 0, 1, 2, . . .

(3.1)

Set beginning condition E0(t, x) ≡ 0.
We claim that for each n, the solution [fn+1, En+1] to (3.1) is well-defined as

stated in the following theorem.

Theorem 3.1. Suppose that the cross section B satisfies (1.8) with 0 ≤ δ < 1.
Let α > 2, β > 4 − δ and δ1 > 0 be defined in Theorem 2.2. Fix any ε0 > 0
and ε1 ∈ (0, 1) with ε1 sufficiently small such that Lemma 2.15 holds, and let
C1 = 2/(1 − ε1). If 0 ≤ f0(x, v) ∈ W 1,∞(R3

x ×R3
v) with |f0|α,β,1 ≤ δ2 < δ1 where

δ2 > 0 is sufficiently small, then for each n = 0, 1, 2, . . . , the solution [fn+1, En+1]
to (3.1) is well-defined which satisfies (H1)n and (H2)n as follows:

(H1)n 0 ≤ fn+1(t, x, v) ∈ L1(En, α, β) with uniform bound

|||fn+1|||En ≤ C1δ2. (3.2)

(H2)n En(·, ·) ∈ C0
b (R+

t ×R3
x) and ∇xEn(t, ·) ∈ C0

b (R3
x) for any t > 0, and they

have the following uniform bound∫ ∞

0

‖En(t, ·)‖∞dt ≤ ε0 and
∫ ∞

0

(1 + t)‖∇xEn(t, ·)‖∞dt ≤ ε1. (3.3)

To prove the above theorem, we first borrow a lemma from [2].

Lemma 3.1. Let ρ(x) ∈ L1(R3) ∩W 1,∞(R3) and φ(x) = 1/|x| ∗ ρ. Then one has
the following estimates

‖φ‖∞ ≤ C‖ρ‖1/3
∞ ‖ρ‖2/3

1 , ‖∇xφ‖∞ ≤ C‖ρ‖2/3
∞ ‖ρ‖1/3

1 ,

‖D2
xφ‖∞ ≤ C(λ)‖ρ‖1−4λ

∞ ‖∇xρ‖3λ
∞‖ρ‖λ

1 ,

where 0 < λ < 1/4 and C(λ) is some positive constant depending only on λ.
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Based on Theorem 2.3 and Lemma 3.1, Theorem 3.1 can be proved as follows.

Proof of Theorem 3.1. We do it by induction. Since E0(t, x) ≡ 0, it is obvious
that (H1)0 and (H2)0 hold by Theorem 2.2. Suppose that (H1)n and (H2)n hold.
Then it suffices to prove (H2)n+1 because (H1)n+1 follows from Theorem 2.2 on the
Boltzmann equation with the external force En+1(t, x).

Under the assumptions (H1)n and (H2)n, it follows from Theorem 2.3 that for
any t ≥ 0 and 1 ≤ p ≤ ∞,

‖ρn+1(t, ·)‖p + ‖∇xρn+1(t, ·)‖p ≤ C12(α, β, ε0)C1δ2(1 + t)−3(1−1/p), (3.4)

where

ρn+1(t, x) =
∫
R3

fn+1(t, x, v)dv.

By Lemma 3.1, we have from (3.4) that

‖En+1(t, ·)‖∞ = ‖∇xφn+1(t, ·)‖∞ ≤ C13(α, β, ε0)C1δ2(1 + t)−2, (3.5)

‖∇xEn+1(t, ·)‖∞ = ‖D2
xφn+1(t, ·)‖∞ ≤ C14(α, β, ε0)C(λ)C1δ2(1+ t)−3(1−λ). (3.6)

If we choose δ2 > 0 sufficiently small such that

C13(α, β, ε0)C1δ2 ≤ ε0 and
C(λ)
1− 3λ

C14(α, β, ε0)C1δ2 ≤ ε1,

for some fixed λ ∈ (0, 1/4), then we have (3.3) from (3.5) and (3.6).
For the regularity of En+1, we claim that up to the possible re-definition on a set

of zero measure, En+1 and ∇xEn+1 are continuous, and what’s more, En+1(·, ·) ∈
C0

b (R+
t ×R3

x) and for any fixed t > 0, ∇xEn+1(t, ·) ∈ C0
b (R3

x). Indeed, notice that

W 1,∞((0, T )×R3
x ×R3

v) ↪→ C0,µ((0, T )×R3
x ×R3

v)

for some 0 < µ < 1. Since fn+1 ∈ W 1,∞((0, T ) × R3
x × R3

v), fn+1 is Hölder
continuous with the exponent µ, i.e., fn+1 ∈ C0,µ((0, T )×R3

x ×R3
v) after possibly

being re-defined on a set of zero measure. Recall (3.1) and

|fn+1(t, x, v)| ≤ C(β, ε0)C1δ2mβ(|v|).

By the dominated convergence theorem, we have that ρn+1(·, ·) ∈ C0(R+
t × R3

x).
Moreover, (3.4) shows that ρn+1(·, ·) ∈ C0

b (R+
t ×R3

x). On the other hand, for any
t > 0, x1 and x2, we have∣∣ρn+1(t, x1)− ρn+1(t, x2)

∣∣ ≤ |x1 − x2|
∫
R3

∣∣∇xfn+1(t, ξ, v)
∣∣ dv

≤ C(β, ε0)C1δ2|x1 − x2|,

where ξ ∈ R3 is between x1 and x2. Hence, ρn+1(t, ·) ∈ C0,1(R3
x) uniformly for all

t > 0. Since ∆xφn+1(t, x) = ρn+1(t, x), φn+1(t, ·) ∈ C2(R3
x) for any t > 0 so that

En+1(t, ·) = ∇xφn+1(t, ·) ∈ C1(R3
x) for any t > 0. Furthermore, (3.5) and (3.6)

show that En+1(t, ·) ∈ C1
b (R3

x) for any t > 0.
Finally, En+1(·, ·) = ∇xφn+1(·, ·) ∈ C0

b (R+
t ×R3

x) just comes from the continuity
and integrability of ρn+1. In fact, (3.4) gives

ρn+1 ∈ L∞(R+
t ;W 1,p(R3

x))

for any 1 ≤ p ≤ ∞ with the uniform bound C(α, β, ε0)C1δ2. Noticing that

En+1(t, x) = ∇xφn+1(t, x) =
∫
R3

y

|y|3
ρn+1(t, x− y)dy,
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then we have

|En+1(t, x)− En+1(t0, x0)|

=
∣∣∣∣∫

R3

y

|y|3
(
ρn+1(t, x− y)− ρn+1(t0, x0 − y)

)
dy

∣∣∣∣
≤

(∫
|y|≤r

+
∫
|y|≥r

)
1
|y|2

∣∣ρn+1(t, x− y)− ρn+1(t0, x0 − y)
∣∣ dy

≤
∫
|y|≤r

1
|y|2

∣∣ρn+1(t, x− y)− ρn+1(t0, x0 − y)
∣∣ dy +

2C(α, β, ε0)C1δ2

r2
.

Hence En+1(·, ·) ∈ C0(R+
t × R3

x). It then follows from (3.5) that En+1(·, ·) ∈
C0

b (R+
t ×R3

x). Thus the proof of Theorem 3.1 is completed.

3.2. Compactness and convergence. In this subsection, we will give the uniform
estimates and convergence of the approximate solution sequence {[fn, En]} in some
Sobolev spaces. First, the following lemma follows directly from Theorems 2.3 and
3.1 so that we omit its proof for brevity.

Lemma 3.2. Let 1 ≤ p ≤ ∞ and 0 < T < ∞. Under the conditions of Theorem
3.1, we have

(i) {fn(t, x, v)} is bounded in the space

L∞((0, T );W 1,p(R3
x ×R3

v)) ∩ L∞((0, T )×R3
x;W 1,p(R3

v)),

with uniform estimates

‖fn(t, ·, ·)‖p + ‖∇xfn(t, ·, ·)‖p + (1 + t)−1‖∇vfn(t, ·, ·)‖p ≤ C10(α, β, ε0)C1δ2,

and

‖fn(t, x, ·)‖p + ‖∇xfn(t, x, ·)‖p + (1 + t)−1‖∇vfn(t, x, ·)‖p

≤ C11(α, β, ε0)C1δ2(1 + t)−3/p,

for any t ≥ 0 and x ∈ R3
x.

(ii) {ρn(t, x)} is bounded in L∞(R+
t ;W 1,p(R3

x)) with uniform estimates

‖ρn(t, ·)‖p + ‖∇xρn(t, ·)‖p ≤ C12(α, β, ε0)C1δ2(1 + t)−3(1−1/p).

(iii) {En(t, x)} is bounded in L∞(R+
t ;W 1,∞(R3

x)) with uniform estimates{
‖En(t, ·)‖∞ ≤ C13(α, β, ε0)C1δ2ε0(1 + t)−2,

‖∇xEn(t, ·)‖∞ ≤ C14(α, β, ε0)C(λ)C1δ2ε1(1 + t)−3(1−λ),

for 0 < λ < 1/4 and t ≥ 0.

Next we give the uniform estimates on ∂tf
n in the spaces Lp(R3

v) and Lp(R3
x ×

R3
v) respectively, which essentially come from ones on ∇xfn and ∇vfn. For this,

we need the pointwise estimate like∣∣F#(t, x, v)
∣∣ ≤ |||F |||hα(|x|)mβ(|v|)

for the collision term F (t, x, v) = J(fn, fn)(t, x, v). In fact, we will give a better
estimate so that the decay rate of J(fn, fn)#(t, x, v) with respect to time t is also
obtained.
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Lemma 3.3. Suppose that the conditions in Theorem 3.1 hold. Fix any γ with
2− δ/2 < γ < β − (2− δ/2). Then for any (t, x, v) ∈ R+

t ×R3
x ×R3

v, we have

|J(fn, fn)#(t, x, v)| ≤ C15(α, β, γ, δ, ε0)|||fn|||2

(1 + t)2
hα−1/2(|x|)mβ−γ−(1−δ)/2(|v|).

Proof. Fix (x, v) ∈ R3
x ×R3

v. By Lemmas 2.7 and 2.8, we have

|J(fn, fn)#(t, x, v)| ≤ C|||fn|||2 sup
|a|≤2ε0

{I1(a) + I2(a)} , (3.7)

where

I1(a) =
∫

D

B(θ, |u− a|)hα(|x + tu‖|)hα(|x + tu⊥|)

×mβ(|v − u‖|)mβ(|v − u⊥|)dεdθdu,

I2(a) =
∫

D

B(θ, |u− a|)hα(|x|)hα(|x + tu|)mβ(|v|)mβ(|v − u|)dεdθdu.

For fixed a ∈ R3 with |a| ≤ 2ε0, we first estimate I2(a) as follows:

I2(a) ≤ C(β, ε0)hα(|x|)mβ(|v|)
∫

D

B(θ, |u|)mβ(|v − u|)dεdθdu. (3.8)

Notice that ∫
R3

1 + |u|
|u|δ

mβ(|v − u|)du ≤ C(β, δ)(1 + |v|2)
1−δ
2 , (3.9)

where we have used 0 ≤ δ < 1, β > 3/2 and 2β − (1− δ) > 3 for β > 4− δ. Hence,
it follows from (3.8) and (3.9) that for any t ≥ 0,

I2(a) ≤ C(β, δ, ε0)hα(|x|)mβ−(1−δ)/2(|v|). (3.10)

Furthermore, when t ≥ 1, we can use the integration of hα(|x+ tu|) to get the decay
in time:

I2(a) ≤ hα(|x|)mβ(|v|)
t3−δ

∫
R3

1 + |u|
|u|δ

hα(|x + at + u|)du.

Similar to (3.9), we also have∫
R3

1 + |u|
|u|δ

hα(|x + at + u|)du ≤ C(α, δ, ε0)t1−δ(1 + |x|2)
1−δ
2 ,

where we have used 0 ≤ δ < 1, α > 3/2 and 2α− (1− δ) > 3 for α > 2. Hence, we
have that for any t ≥ 1,

I2(a) ≤ C(α, δ, ε0)
t2

hα−(1−δ)/2(|x|)mβ(|v|). (3.11)

Thus, combining (3.10) and (3.11) yields

I2(a) ≤ C(α, β, δ, ε0)
(1 + t)2

hα−(1−δ)/2(|x|)mβ−(1−δ)/2(|v|), (3.12)

for any t ≥ 0 and a ∈ R3 with |a| ≤ 2ε0.
I1(a) can be estimated similarly. In fact, by Lemmas 2.1 and 2.2, we have

mβ(|v − u‖|)mβ(|v − u⊥|) ≤ 3mβ−γ(|v|)mγ(|2v − u|),

and
hα(|x + tu‖|)hα(|x + tu⊥|) ≤ 3hα(|x|).
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Hence, as for (3.10), we have that for any t ≥ 0,

I1(a) ≤ Chα(|x|)mβ−γ(|v|)
∫

D

B(θ, |u− a|)mγ(|2v − u|)dεdθdu

≤ C(γ, δ, ε0)hα(|x|)mβ−γ−(1−δ)/2(|v|), (3.13)

where we have used 0 ≤ δ < 1, γ > 3/2 and 2γ − (1− δ) > 3 for γ > 2− δ/2.
When t ≥ 1, we claim that I1(a) decays like t−2. Indeed, by Lemma 2.2, we have

I1(a) ≤ hα(|x|)
∫

D

B(θ, |u− a|){hα(|x + tu‖|) + hα(|x + tu⊥|) + hα(|x + tu|)}

×mβ(|v − u‖|)mβ(|v − u⊥|)dεdθdu

=: I11(a) + I12(a) + I13(a),
(3.14)

where I1i, i = 1, 2, 3 denotes each term in the integral respectively.
Now we estimate I1i(a) (i = 1, 2, 3) as follows. First by (3.11), for I13(a), we

have

I13(a) ≤ C(α, β, δ, ε0)
t2

hα−(1−δ)/2(|x|)mβ(|v|). (3.15)

Second, for I11(a), we have

I11(a) ≤ 3hα(|x|)mβ−γ(|v|)
∫

D

B(θ, |u− a|)hα(|x + tu‖|)mγ(|2v − u|)dεdθdu

≤ Chα(|x|)mβ−γ(|v|)

×
∫
R3

∫ π
2

0

1 + |u− a|
|u− a|δ

hα(|t|u| cos θ − |x||)mγ(|2v − u|) sin θ cos θdθdu.

By using the change of variable z = t|u| cos θ − |x|, we have that I11(a) is bounded
by

Chα(|x|)mβ−γ(|v|)
∫
R3

∫ t|u|−|x|

−|x|

(1 + |u− a|)(z + |x|)
t2|u− a|δ|u|2

hα(|z|)mγ(|2v − u|)dzdu

≤ Chα(|x|)mβ−γ(|v|)
t2

∫
R3

1 + |u− a|
|u− a|δ|u|2

mγ(|2v − u|)du

×
(∫

R

|z|hα(|z|)dz + |x|
∫
R

hα(|z|)dz

)
≤

C(α)hα−1/2(|x|)mβ−γ(|v|)
t2

∫
R3

1 + |u− a|
|u− a|δ|u|2

mγ(|2v − u|)du,

(3.16)
where we have used 2α − 1 > 1 and 2α > 1 for α > 2. By Lemma 2.1, since
0 ≤ δ < 1 and 2γ > 3, we then have∫

R3

1 + |u− a|
|u− a|δ|u|2

mγ(|2v − u|)du

=

(∫
|u−a|≥|u|

+
∫
|u−a|<|u|

)
1 + |u− a|
|u− a|δ|u|2

mγ(|2v − u|)du

≤ C(γ, ε0)
∫
R3

1 + |u|
|u|δ+2

mγ(|2v − u|)du

≤ C(γ, δ, ε0). (3.17)
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Hence, from (3.16) and (3.17), we have that for any t ≥ 1,

I11(a) ≤ C(α, γ, δ, ε0)
t2

hα−1/2(|x|)mβ−γ(|v|). (3.18)

Finally, for I12(a), by the change of variable z = t|u| sin θ−|x|, the similar argument
leads to

I12(a) ≤ C(α, γ, δ, ε0)
t2

hα−1/2(|x|)mβ−γ(|v|). (3.19)

Thus, combining (3.13), (3.15), (3.18) and (3.19) yields

I1(a) ≤ C(α, β, γ, δ, ε0)
(1 + t)2

hα−1/2(|x|)mβ−γ−(1−δ)/2(|v|), (3.20)

for any t ≥ 0 and a ∈ R3 with |a| ≤ 2ε0.
Therefore, both (3.12) and (3.20) together with (3.7) end the proof of Lemma

3.3.

Remark 3.1. The similar estimate like (3.7) was obtained in [18] for the case
without external forces. Precisely, when the external force E(t, x) ≡ 0 and the
cross section B satisfies the inverse power law with the angular cut-off assumption,
i.e., ∣∣∣∣B(θ, |v − v1|)

sin θ cos θ

∣∣∣∣ ≤ C|v − v1|δ, −2 < δ ≤ 1,

the following decay estimate for the gain term Q(f, f) along the characteristics was
given in [18]:

|Q(f, f)(t, x + tv, v)| ≤ C|||f |||2

(1 + t)min{δ+3,2}h(α−δ)/2(|x|)mβ−2(|v|).

Hence, (3.7) is an extension of the above estimate to the case with the integrable
external force and more general cross section B.

Based on Lemma 3.3, we have the following two corollaries.

Corollary 3.1. Under the conditions in Lemma 3.3, we have for any (t, x, v) ∈
R+

t ×R3
x ×R3

v,∣∣(∂tf
n)#(t, x, v)

∣∣ ≤ C16(α, β, γ, δ, ε0)
(
|||fn|||2 +|||∇xfn|||+ |||(1 + t)−1∇vfn|||

)
×hα−1/2(|x|)mβ−γ−(1−δ)/2(|v|).

Corollary 3.2. Under the conditions in Lemma 3.3, we have
(i) {∂tf

n(t, x, v)} is bounded in the space L∞(R+
t ;Lp(R3

x × R3
v)) ∩ L∞(R+

t ×
R3

x;Lp(R3
x)) with uniform estimate

‖∂tf
n(t, ·, ·)‖p + (1 + t)3/p‖∂tf

n(t, x, ·)‖p ≤ C(α, β, γ, ε0)δ2,

for any 1 ≤ p ≤ ∞.
(ii) {∂tρ

n(t, x)} is bounded in L∞(R+
t ;Lp(R3

x)) with uniform estimate

‖∂tρ
n(t, ·)‖p ≤ C(α, β, γ, δ0)δ2(1 + t)−3(1−1/p),

for any 1 ≤ p ≤ ∞. Furthermore, if p ≥ 4/3, then {ρn(t, x)} is bounded in
W 1,p(R+

t ×R3
x) with uniform estimate

‖ρn(·, ·)‖p + ‖∂tρ
n(·, ·)‖p + ‖∇xρn(·, ·)‖p ≤ C(α, β, γ, δ0)δ2.
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Remark 3.2. Notice that the uniform L1 estimate on fn(t, x, v) over R3
v and

R3
x×R3

v can be also obtained by using the nonnegativity of fn(t, x, v) and directly
integrating the Boltzmann equation since∫

R3
J(fn, fn)dv = 0.

Based on Lemma 3.2 and Corollary 3.2, the convergence of the approximate
solution sequence [fn, En] can be obtained as follows. First, for the sequences {ρn}
and {φn}, by the standard arguments in the Sobolev space and the regularity of
the solution to the Poisson equation, we have the following two theorems and their
proofs are omitted.

Theorem 3.2. Suppose that the conditions of Theorem 3.1 hold. Let 0 < T < ∞.
(i) If 4 < p ≤ ∞ and 1 < q ≤ ∞, then there exists

ρ(t, x) ∈ C0,µ(R+
t ×R3

x) ∩W 1,p(R+
t ×R3

x) ∩ L∞((0, T ); W 1,q(R3
x)),

for some 0 < µ < 1 such that

ρn → ρ in C0(R+
t ×R3

x) as n →∞,

up to a subsequence. Furthermore, ρ(t, x) satisfies

‖ρ(t, ·)‖q + ‖∂tρ(t, ·)‖q + ‖∇xρ(t, ·)‖q ≤ C(1 + t)−3(1−1/q), (3.21)

for t ≥ 0. Here, for the first term ‖ρ(t, ·)‖q, q may also take 1.
(ii) There exists φ ∈ L∞(R+

t ; W 2,∞(R3
x)) such that

φn → φ in L∞(R+
t ; W 1,∞(R3

x)) as n →∞
up to a subsequence. Furthermore, for all (t, x) ∈ R+

t ×R3
x, it holds that

∆xφ(t, x) = ρ(t, x),

where φ(t, x) has the regularities

φ(·, ·), ∆xφ(·, ·) ∈ C0
b (R+

t ×R3
x) and φ(t, ·) ∈ C2,µ(R3

x) ∩ C2
b (R3

x)

for any t ≥ 0, and uniform estimates

(1 + t)‖φ(t, ·)‖∞ + (1 + t)2‖∇xφ(t, ·)‖∞ ≤ C,

(1 + t)3(1−λ)‖D2
xφ(t, ·)‖∞ ≤ C(λ),

for 0 < λ < 1/4 and t ≥ 0.

Remark 3.3. Let’s define E(t, x) = ∇xφ(t, x). Then it follows from (ii) of Theorem
3.2 that

En → E in L∞(R+
t ;W 1,∞(R3

x)),
up to a subsequence. Furthermore, E(·, ·) ∈ C0

b (R+
t ×R3

x) and E(t, ·) ∈ C1,µ(R3
x)∩

C1
b (R3

x) for any t > 0 with the following estimates

‖E(t, ·)‖∞ ≤ Cε0(1 + t)−2 and ‖∇xE(t, ·)‖∞ ≤ Cε1(1 + t)−3(1−λ), (3.22)

for some fixed 0 < λ < 1/4.

Theorem 3.3. Under the conditions of Theorem 3.1, for 0 < T < ∞, there exists

f(t, x, v) ∈ W 1,∞((0, T )×R3
x ×R3

v) ∩ C0,ν((0, T )×R3
x ×R3

v),

for some 0 < ν < 1, such that

fn → f in C0((0, T )×R3
x ×R3

v),
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∂fn ⇀ ∂f weakly-star in L∞((0, T )×R3
x ×R3

v),

up to a subsequence, where ∂ denote ∂t, ∂xi or ∂vi , i = 1, 2, 3. Furthermore,
f(t, x, v) satisfies

∂tf + v · ∇xf + E(t, x) · ∇vf = J(f, f), a.e. (t, x, v) ∈ (0, T )×R3
x ×R3

v,

E(t, x) = ∇xφ(t, x), ∆xφ(t, x) = ρ =
∫
R3

f(t, x, v)dv, (t, x) ∈ (0, T )×R3
x,

f(0, x, v) = f0(x, v), (x, v) ∈ R3
x ×R3

v.

3.3. Existence. In this final subsection, we will give the global existence and
uniqueness of solutions to the Cauchy problem of the Vlasov-Poisson-Boltzmann
system in infinity vacuum for the cross section B satisfying (1.8) including the
hard-sphere model.

Theorem 3.4. Suppose that the cross section B satisfies (1.8) with 0 ≤ δ < 1. Let
α > 2 and β > 4− δ. Fix any ε0 > 0 and ε1 ∈ (0, 1) with ε1 sufficiently small such
that Lemma 2.15 holds, and let C1 = 2/(1− ε1). If 0 ≤ f0(x, v) ∈ W 1,∞(R3

x ×R3
v)

with |f0|α,β,1 ≤ δ2 where δ2 > 0 is sufficiently small, then there exists a unique
solution [f(t, x, v), E(t, x)] to the Cauchy problem (1.1), (1.2) and (1.7) such that

(i) f ≥ 0, f ∈ C0,ν(R+
t ×R3

x×R3
v)∩W 1,∞(R+

loc×R3
x×R3

v) for some 0 < ν < 1,
and E(·, ·) ∈ C0

b (R+
t ×R3

x), E(t, ·) ∈ C1
b (R3

x) for any fixed t > 0 with the following
estimates

|||f |||E ≤ C1δ2,∫ ∞

0

‖E(t, ·)‖∞dt ≤ ε0 and
∫ ∞

0

(1 + t)‖∇xE(t, ·)‖∞dt ≤ ε1.

(ii) ρ and E satisfy the decay estimates (3.21) and (3.22) respectively.

Based on Theorems 3.1, 3.2 and 3.3, the global existence of the solution is ob-
tained by the uniform estimates on the approximate solution sequence and the
continuity argument. Finally, it is noticed that since the solution obtained in Theo-
rem 3.3 as a limit of an approximate sequence exists in the classical Sobolev space,
the uniqueness follows from the standard arguments and its proof is omitted for
brevity. Thus we are done.

Remark 3.4. Notice that Theorem 3.4 also holds when the Poisson equation has
a minus sign. That is when the equation (1.7) is replaced by

E(t, x) = ∇xφ(t, x), −4xφ(t, x) = ρ(t, x) =
∫
R3

f(t, x, v) dv.

In this case, the force is attractive in stead of repulsive. It is known that there exists
non-trivial stationary profile to this case in infinite vacuum. However, one can show
that the total mass of this kind of non-trivial profile in infinite vacuum can not be
arbitrarily small. Therefore, a sufficiently small perturbation of vacuum does not
generate such a non-trivial profile time asymptotically. Instead, the solution will
tend to zero as time approaches to infinity implied by the above analysis. On the
other hand, it will be very interesting as in [9, 21] to study the stability of the
non-trivial stationary solution profiles which is not in the scope of this paper.
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