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ABSTRACT. The paper aims at investigating two types of decay structure for
linear symmetric hyperbolic systems with non-symmetric relaxation. Precisely,
the system is of the type (p,q) if the real part of all eigenvalues admits an
upper bound —c|¢|?P /(1 + [£]2)?, where c is a generic positive constant and &
is the frequency variable, and the system enjoys the regularity-loss property
if p < g. It is well known that the standard type (1,1) can be assured by
the classical Kawashima-Shizuta condition. A new structural condition was
introduced in [33] to analyze the regularity-loss type (1,2) system with non-
symmetric relaxation. In the paper, we construct two more complex models
of the regularity-loss type corresponding to p = m —3, ¢ = m —2 and p =
(3m — 10)/2, ¢ = 2(m — 3), respectively, where m denotes phase dimensions.
The proof is based on the delicate Fourier energy method as well as the suitable
linear combination of series of energy inequalities. Due to arbitrary higher
dimensions, it is not obvious to capture the energy dissipation rate with respect
to the degenerate components. Thus, for each model, the analysis always
starts from the case of low phase dimensions in order to understand the basic
dissipative structure in the general case, and in the mean time, we also give
the explicit construction of the compensating symmetric matrix K and skew-
symmetric matrix S.
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1. INTRODUCTION

In the paper, we consider the Cauchy problem on the following linear symmetric
hyperbolic system with relaxation (cf. [5]):

(1.1) us + Ay + Lpu =0

with

(1.2) U|t=0 = ug.

Here u = u(t,x) = (u1, -+ ,um)(t,7) € R™ over t > 0, x € R is an unknown

function, ug = uo(x) € R™ over € R is a given function, and A,, and L,, are
m X m real constant matrices. In general we assume A,, is symmetric and L,,
is degenerately dissipative in the sense of 1 < dim (ker L,,,) < m — 1. As pointed
out in [33], for a general linear degenerately dissipative system it is interesting to
study its decay structure under additional conditions on the coefficient matrices
and further investigate the corresponding time-decay property of solutions to the
Cauchy problem at the linear level. The purpose of the paper is to present two
concrete models of A,, and L,,, which do not satisfy the dissipative condition in
[33], to derive the decay structure of the corresponding linear systems. We remark
that the similar issue has been extensively investigated in Villani [37] for an infinite-
dimensional dynamical system, for instance, in the content of kinetic theory.

In what follows let us explain the motivation of dealing with the problem consid-
ered here. More generally one may consider the system in multidimensional space
R™:

n
(1.3) A% uy + Z A{nuwj + Lyu =0,

j=1

where u = u(t,z) € R™ over t > 0, x € R™. When the degenerate relaxation matrix
L,, is symmetric, Umeda-Kawashima-Shizuta [36] proved the large-time asymptotic
stability of solutions for a class of equations of hyperbolic-parabolic type with appli-
cations to both electro-magneto-fluid dynamics and magnetohydrodynamics. The
key idea in [36] and the later generalized work [31] that first introduced the so-
called Kawashima-Shizuta (KS) condition is to construct the compensating matrix
to capture the dissipation of systems over the degenerate kernel space of L,,. The
typical feature of the time-decay property of solutions established in those work
is that the high frequency part decays exponentially while the low frequency part
decays polynomially with the same rate as the heat kernel. To precisely state these
results, we apply Fourier transform to (1.3) (or (1.1)). Then we can obtain

(1.4) A Gy + €| A (W) + Lyt = 0,

where ¢ € R™ denote the Fourier variable of z € R, w = £/[¢] € S™7!, and
A (w) = Z;.l:l AJ,w;. Moreover we prepare some notations. Given a real matrix
X, we use X and X?¥ to denote the symmetric and skew-symmetric parts of X,
respectively, namely, X = (X + X7T)/2 and XY = (X — XT)/2. Then the decay
result in [36, 31] is stated as follows.

Proposition 1.1 (Decay property of the standard type ([36, 31])). Consider (1.3)
with the following condition:
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Condition (A)g: A%, is real symmetric and positive definite, AJ, for each
1 < j < n is real symmetric, and L,, is real symmetric and nonnegative
definite with the nontrivial kernel.

For this problem, assume that the following condition hold:
Condition (K): There is a real compensating matriz K(w) € C(S"~1)
with the properties: K(—w) = —K (), (K(w)A%)? = —K(w)A?Y, and
[K(w)Am ()] >0 on kerL,,
for each w € S~ 1.
Then the Fourier image 4 of the solution u to the equation (1.3) with initial data
u(0,x) = ug(x) satisfies the pointwise estimate:
(15) [a(t, )] < Cem i (£)
where (&) = |€?/(1 + |£]?). Furthermore, let s > 0 be an integer and suppose
that the initial data ug belong to H* N L'. Then the solution u satisfies the decay
estimate:

(1.6) 105 u(t)l|ze < C(L+ )74 lug| 2 + Ce™ |0 uoll 2

for k < s. Here C and c are positive constants.

)

Under the conditions (A)p and (K), we can construct the following energy in-
equality:

d
—F D <
7 +cD <0,
where
(1.7) E = (A% a,a) — ald] §(iK (w) A 4, 0) _ kP [a|? + |(I — P)al?
. m 1+|§|2 m ) 1+|£‘2 )

« and ¢ are suitably small constants, and P denotes the orthogonal projection onto
ker L,,.

For the nonlinear system, the global existence of small-amplitude classical solu-
tions was proved by Hanouzet-Natalini [11] in one space dimension and by Yong [38]
in several space dimensions, provided that the system is strictly entropy dissipative
and satisfies the KS condition. And later on, the large time behavior of solutions
was obtained by Bianchini-Hanouzet-Natalini [3] and Kawashima-Yong [17] basing
on the analysis of the Green function of the linearized problem. Those results show
that solutions to such nonlinear system will not develop singularities (e.g., shock
waves) in finite time for small smooth initial perturbations, cf. [5, 19]. Notice that
the L2-stability of a constant equilibrium state in a one-dimensional system of dis-
sipative hyperbolic balance laws endowed with a convex entropy was also studied
by Ruggeri-Serre [29]. Moreover, it would be an interesting and important topic to
study the relaxation limit of general hyperbolic conservation laws with relaxations,
see [4, 16] and reference therein.

Recently it has been found that there exist physical systems which violate the KS
condition but still have some kind of time-decay properties. For instance, for the
dissipative Timoshenko system [13, 14] and the Euler-Maxwell system [7, 35, 34],
the linearized relaxation matrix L,, has a nonzero skew-symmetric part while it
was still proved that solutions decay in time in some different way. Besides those,
there are two related works dealing with general partially dissipative hyperbolic



4 Y. UEDA, R.-J. DUAN, AND S. KAWASHIMA

systems with zero-order source when the KS condition is not satisfied. Beauchard-
Zuazua [2] first observed the equivalence of the KS condition with the Kalman rank
condition in the context of the control theory. They extended the previous analysis
to some other situations beyond the KS condition, and established the explicit
estimate on the solution semigroup in terms of the frequency variable and also the
global existence of near-equilibrium classical solutions for some nonlinear balance
laws without the KS condition. In the mean time, Mascia-Natalini [25] also made
a general study of the same topic for a class of systems without the KS condition.
The typical situation considered in [25] is that the non-dissipative components are
linearly degenerate which indeed does not hold under the KS condition (see also
[15]). Notice that both in [2] and [25], the rate of convergence of solutions to the
equilibrium states for the nonlinear Cauchy problem is still left unknown.

In [33], the same authors of this paper introduced a new structural condition
which is a generalization of the KS condition, and also analyzed the corresponding
weak dissipative structure called the regularity-loss type for general systems with
non-symmetric relaxation which includes the Timoshenko system and the Euler-
Maxwell system as two concrete examples. Precisely, one has the following result.

Proposition 1.2 (Decay property of the regularity-loss type ([33])). Consider (1.3)
with the condition:
Condition (A): A% is real symmetric and positive definite, Al for each
1 < j < n is real symmetric, while L., is not necessarily real symmetric
but is nonnegative definite with the nontrivial kernel.

For this problem, assume the previous condition (K) and the following condition
hold:

Condition (S): There is a real matriz S such that (SA%)T = SAY,, and
[SLp)™ + [Lin]® >0 on C™,  ker ([SLp] + [Li]Y) = ker Ly,
and moreover, for each w € S,
(1.8) i[SAp (W)™ >0 on  ker[L,]¥.

Then the Fourier image G of the solution u to the equation (1.3) with initial data
u(0,x) = uo(x) satisfies the pointwise estimate:

(1.9) ja(t, £)] < Ce™ X ag(€)],

where A(€) := [£]?/(1+|€]*)%. Moreover, let s > 0 be an integer and suppose that the
initial data ug belong to H* N LY. Then the solution u satisfies the decay estimate:

(1.10) |05 u()lze < C+ )72 ugl| 11 + C(1+ )~ uo| 2
for k+ 1€ <s. Here C and c are positive constants.

Observe that A(¢) in (1.9) behaves as |£[? as || — 0 but behaves as 1/[¢|? as
|¢€] — oo. Thus those estimates (1.9) and (1.10) are weaker than (1.5) and (1.6),
respectively. In particular, the decay estimate (1.9) is said to be of the regularity-
loss type. Similar decay properties of the regularity-loss type have been recently
observed for several interesting systems. We refer the reader to [13, 14, 23] (cf.
[1, 28]) for the dissipative Timoshenko system, [7, 35, 34] for the Euler-Maxwell
system, [12, 18] for a hyperbolic-elliptic system in radiation gas dynamics, [20, 21,
22, 24, 32] for a dissipative plate equation, and [6, 9] for various kinetic-fluid models.
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In fact, one can show that Proposition 1.1 can be regarded as a corollary of
Proposition 1.2 after replacing (1.8) in condition (S) by a stronger condition:

i[SAn(W)]* >0 on C™.
for each w € S"~1. The key point for the proof of (1.9) is to derive the matrices S
and K (w) such that the coercive estimate:
(1.11) K (w) A (W)]¥ 4+ [SLy]™ + [Lp]™ >0 on C™
holds true for suitably small 6 > 0. Indeed, under the conditions (A), (S) and (K),

the estimate (1.11) is satisfied. Then, using (1.11), we get the following energy
equality

d
1.12 —F D <
( ) o +cD <0,
where
/A0~ s a1 oAA_Oé2|§| 0 4
s B = (A0 + e (<5Amu,u> ey K(w)Amu,u>),
: 2
1
JoJ L (= PYa® + (I - Pyaf,

(1+[7)? 1+ [¢[?
a7 and ag are suitably small constants, and P and P; denote the orthogonal pro-
jections onto ker L,,, and ker [L,,]*Y. Interested readers may refer to [33] for more
details of this issue and also for the construction of S and K (w) for the Timoshenko
system and the Euler-Maxwell system. Therefore, those conditions in Proposi-
tion 1.2 are generalizations of the classical KS conditions. We finally remark that
it should be interesting to further investigate the nonlinear stability of constant
equilibrium states of the system of the regularity-loss type under the structural
condition postulated in Proposition 1.2.

Inspired by the previous work [33], the goal of the paper is to construct much
more complex models (1.1) with given A,, and L,, such that they enjoy some
new dissipative structure of the regularity-loss type. Here we recall a notion of the
uniform dissipativity of the system (1.1) introduced in [33]. Consider the eigenvalue
problem for the system (1.1):

(A, +iAm + Lin)¢ = 0,
where 7 € C and ¢ € C™. The corresponding characteristic equation is given by
(1.14) det(nAY, +iA,, + L) = 0.
The solution 1 = n(i€) of (1.14) is called the eigenvalue of the system (1.1).

Definition 1.3. The system (1.1) is called uniformly dissipative of the type (p,q)
if the eigenvalue n = n(i€) satisfies
Rn(i€) < —cl¢* /(1 +|¢*)
for all € € R™, where ¢ is a positive constant and (p, q) is a pair of positive integers.
Note that as proved in [33, Theorem 4.2], one has R 7(i€) < —cA(§) whenever
the pointwise estimates in the form of (1.5) or (1.9) hold true. Therefore, we can

determine the type (p,¢q) for a uniformly dissipative system (1.1) in terms of the
function A(§) obtained from the pointwise estimate on @(t,£):

(1.15) [a(t,€)] < Cem O ag(€)].
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For example, under the assumption in Propositions 1.1 or 1.2, the system (1.1)
is uniformly dissipative of the type (1,1) or (1,2), respectively. Notice that the
regularity-loss type corresponds to the situation when p is strictly less than g¢, i.e.,
p<q.

Historically, Shizuta-Kawashima [32] showed that, under the condition (A)g, the
strict dissipativity Rn(i€) < 0 for £ # 0 is equivalent to the uniform dissipativity
of the type (1,1). Moreover, they showed the pointwise estimate (1.5) by using
only one compensating skew-symmetric matrix K(w) (see (1.7)). On the other
hand, the authors formulated in [33] a class of systems whose dissipativity is of the
type (1,2) and got Proposition 1.2. Notice that, in this cace, we need to use one
compensating symmetric matrix S and one compensating skew-symmetric matrix
K(w) to get the desired pointwise estimate (1.9) (see (1.13)). We note that the
dissipative Timoshenko system and the Euler-Maxwell system studied in [13] and
[34], respectively, are included in the class of systems with the type (1,2) which
was formulated in [33]. However, to get the optimal dissipative estimate for these
two examples, we need to use one S and two different K (w) (see [26, 34]).

On the other hand, more complicated concrete models are found in these years.
Indeed, Mori-Kawashima [27] considered the Timoshenko-Cattaneo system with
heat conduction and showed that its dissipativity is of the type (2,3). Moreover,
they proved the optimal dissipative estimate by using four different S and four
different K (w). This means that Proposition 1.2 and the class formulated in [33]
is not enough to analyze the dissipativity of general systems (1.3), and we have to
study other concrete models.

In this paper, we will present a study of two concrete models of the system (1.1)
related to the above general issue. For the Model I, one has

p=m— 3a qg=m — 2)
see (2.2) in Theorem 2.1. While for the Model II, we let m be even and one has

1
p:§(3m—10), q:2(m_3)a

see (3.2) in Theorem 3.1. In both cases we see p < ¢ and hence two models that we
consider are of the regularity-loss type. Compared with the energy inequality (1.12),
the energy inequalities of the Model I and II are much more complicated. More
precisely, to control the dissipation term, we must employ a lot of compensating
symmetric matrices and skew-symmetric matrices whose numbers depend on the
dimension m of the coefficient matrices. Therefore we can not apply Proposition
1.2 to the Model I and II, and need direct calculations (see in Section 2 and 3).
The proof of the estimate in the form of (1.15) is based on the Fourier energy
method, and in the mean time we also give the explicit construction of matrices .S
and K as used in Proposition 1.2. As seen later on, a series of energy estimates
are derived and their appropriate linear combination leads to a Lyapunov-type
inequality of the time-frequency functional equivalent with |i(,£)|?, which hence
implies (1.15). The most difficult point is that it is priorly unclear to justify whether
one choice of (p, ¢) is optimal; see more discussions in Section 4.1. For that purpose,
we also present an alternative approach to find out the value of (p, ¢) for both Model
I and Model II, and the detailed strategy of the approach is to be given later on.
The rest of the paper is organized as follows. In Section 2 and Section 3, we
study Model I and Model II, respectively. In each section, for the given model, we
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first state the main results on the dissipative structure and the decay property of
the system (1.1), give the proof by the energy method in the case m = 6 which
indeed corresponds to some existing physical models, show the proof in the general
case m > 6 still using the energy method, and finally give the explicit construction
of matrices S and K. The matrices S and K constructed in Subsection 2.3 and
3.3 have a very important role in obtaining the coercive estimate similar to (1.11).
Consequently, by employing these matrices, we can derive the desired pointwise
estimates through (2.47) and (3.63) to be verified later on. In the last Section 4, we
provide another approach to justify the dissipative structure of the system (1.1).

Notations. For a nonnegative integer k, we denote by 0¥ the totality of all the
k-th order derivatives with respect to @ = (z1, -+ ,z,). Let 1 < p < oco. Then
L? = LP(R™) denotes the usual Lebesgue space over R™ with the norm || - ||z».
For a nonnegative integer s, H®* = H*(R") denotes the s-th order Sobolev space
over R™ in the L? sense, equipped with the norm || - ||z=. We note that L? = HO.
Finally, in this paper, we use C or ¢ to denote various positive constants without
confusion.

2. MoDEL I

2.1. Main result I. In this section, we consider the Cauchy problem (1.1), (1.2)
with coefficient matrices given by

01 00 0 001
10 00 0 000
00 0alo O 0o 000 O
0 0a 0w 0 1000 ______
(21) Am: 0 CL5:O ae ’ Lm: :0 ’
0‘(16 !
| |
O [ Ao, O [ 0
1 a77l O 1 /y

where integer m > 6 is even, v > 0, and all elements a; (4 < j <'m) are nonzero.
We note that the system (1.1), (2.1) with m = 6 is the Timoshenko system with
the heat conduction via Cattaneo law (cf. [10, 30]). For this problem, we can derive
the following decay structure.

Theorem 2.1. The Fourier image 4 of the solution u to the Cauchy problem (1.1)-
(1.2) with (2.1) satisfies the pointwise estimate:

(2.2) li(t, )] < Ce™ MO aq(¢)],

where N(&) := &20m=3) /(1 4 £2)™=2. Purthermore, let s > 0 be an integer and
suppose that the initial data uy belong to H* N L*. Then the solution u satisfies the
decay estimate:

23)  oFu®)re < OO+ )T E D fug | 1 + CL+ 1)~ |0 ol 2
for k+1¢<s. Here C and c are positive constants.

We remark that the estimates (2.2) and (2.3) with m = 6 is not optimal. Indeed,
Mori-Kawashima [27] showed more sharp estimates.

The decay estimate (2.3) is derived by the pointwise estimate (2.2) in Fourier
space immediately. Thus readers may refer to the same authors’ paper [33] (see
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also [8]) and we omit the proof of (2.3) for brevity. In order to make the proof more
precise, we first consider the special case m = 6 in Section 2.2, and then generalize
it to the case m > 6 in Section 2.3. The proof of (2.2) is given in the following two
subsections.

2.2. Energy method in the case m = 6. In this subsection we first consider the
case m = 6. In such case, the system (1.1) with (2.1) is described as

Opty + i€lg + g = 0,
Otia + il = 0,
Oytiz +i€ayty = 0,
Oy + i€(astiz + asts) — iy = 0,
Oilig + ié(a51}4 + aﬁﬂg) =0,
Oyl + iagtis + yiig = 0.
For this system we are going to apply the energy method to derive Theorem 2.1 in
the case m = 6. The proof is organized by the following three steps.
Step 1. We first derive the basic energy equality for the system (2.4) in the
Fourier space. We multiply the all equations of (2.4) by @ = (i1, Gz, U3, U4, Us, Ug)
respectively, and combine the resultant equations. Then we obtain
6 5
Zﬁjﬁtaj + 2Z§§R(ﬂ1’§2) + 24& Z CLj+1§R(ﬂj’lij+1) + 2iIm(ﬁ4§1) + ’Ylﬂ6|2 =0.
j=1 j=3

Thus, taking the real part for the above equality, we arrive at the basic energy
equality

1, N
(25) §8t|U|2 + "y‘uG‘Q =0.
Here we use the simple relation 9;(a3) = 2R(a;, ;) for any j. Next we create the
dissipation terms.

Step 2. We first construct the dissipation for 4;. We multiply the first and fourth
equations in (2.4) by —dy4 and —;, respectively. Then, combining the resultant
equations and taking the real part, we have

(2.6) —O0yR(a1tis) + |a]* — |Ga]® — £ R(itits) + as€ R(it103) 4 as€ R(itads) = 0.

On the other hand, we multiply the second and third equations in (2.4) by —a4ls
and —ayts, respectively. Then, combining the resultant equations and taking the
real part, we have

fa48t§R(ﬂ2ﬁ3) - 61,46~ %(Zﬁl’ag) + aif %(Z’Ilgﬁ4) =0.
Therefore, combining the above two equalities, we obtain
(27) — 8,5%(&1@4 + a4ﬁ217¢3) + |'LAL1‘2 — ‘ﬁ4|2
+ (ai - 1)§ %(Zﬁgé@) + as& %(Zﬁﬂ?%) =0.

Furthermore, we multiply the second equation and fifth equation in (2.4) by —1s
and —us, respectively. Then, combining the resultant equations and taking the real
part, we have

(28) 73255)%(’&2171,5) — f%(lﬁ1ﬁ5) + as€ m(lﬁg’lil) + ag€ %(2@2&6) =0.
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Finally, multiplying (2.7) and (2.8) by a? and —as(a3 — 1), respectively, and com-
bining the resultant equations, we have
(29) 8tE1 + a§(|ﬁ1|2 — "LAL4‘2)
+ (15(&?1 + ag — 1)6 %(Zﬁl’z%) — a5a6(a421 — 1)5 %(l'&Qﬁﬁ) = 0,
where we have defined that F; := f%{ag(ﬂlfm + ayliots) — as(a3 — 1)11265}.
Next, we multiply the first and second equations in (2.4) by —ifts and i,

respectively. Then, combining the resultant equations and taking the real part, we
have

(2.10) §0iEy + €(|iaf” — |in|*) + & R(itiatla) = 0,
where Ey := —R(it11z). Therefore, by Young inequality, the above equation be-
comes
1 1
(2.11) §O0LE + §§2|ﬂ2|2 < &l |* + §|ﬁ4|2-

We multiply the third and fourth equations in (2.4) by i€asty and —ifasts,
respectively. Then, combining the resultant equations and taking the real part, we
have

as€O R (itiztig) + a3€%(|as|? — |@a]?) + asas€® R(zis) + asé R(idaz) = 0.
On the other hand, we multiply the second and third equations in (2.27) by —a4is

and —ayls, respectively. Then, combining the resultant equations and taking the
real part, we have

—a48t§R(zl2ﬁ3) —aqé %(2’&1’(53) + aif %(Zﬂ2ﬁ4) =0.
Finally, combining the above two equations, we get
(212) at{ng + Fl} + ai£2(|ﬁ3|2 — "&4‘2) + (140,552 %(ﬁg’ég,) + aig %(Z’LAL217L4) =0.

where E3 := asR(itizti4) and ) := —asR(ii203). By using Young inequality, we
can obtain the following inequality:

1 . R 1 . A
(213) O {EE3+ F1} + §ai§2|U3|2 < a3&%ugl® + §a§€2|us\2 + az|€]|az]| .

Multiplying the fourth equation and fifth equation in (2.27) by i¢asts and
—iasty, respectively, combining the resultant equations, and taking the real part,
then we have

(2.14) €0, By + a3€*(|aa]* — |as]*)
— asas€® R(t3hs) + asasé” R(tads) — asé R(itd1ds) = 0,

where Fy := asR(itis0s). Here, by using Young inequality, we obtain
1 .
(2.15)  €0,Fy + 5a§§2|u4|2

N 1 ~ ~ = A x
S a§€2|U5|2 + §a§§2|u6|2 + a4a5§2 ?R(U3U5) —+ (155 %(’LU1U5).

On the other hand, we multiply the fifth equation and the last equation in (2.4)
by i€agtig and —ifagls, respectively. Then, combining the resultant equations and
taking the real part, we obtain

acO R(itiste) + ag€’(|ts|* — |tg|*) — asacé® R(iats) + vaeé R(itisie) = 0.
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Using Young inequality, this yields

(2.16)  ag€d:R(itstg) + %a§§2|ﬁ5|2 < ag&®lag|* + %72|a6|2 + asag€® R(tatls).
Step 3. In this step, we sum up the energy inequalities derived in the previous
step, and then get the desired energy estimate. Throughout this step, 5; with j € N

denote the real numbers determined later. We first multiply (2.9) and (2.11) by &2
and (p, respectively. Then we combine the resultant equation, obtaining

3t{§2E1 + ,31§E2} + (a2 — B1)&%|a|® + %§2|ﬂ2|2
< (% + 267 |l — as (0 + a2 — 1)€* R i) + asas(aF — 1)¢* R(iiizic).
Moreover, combining (2.9), (2.13) and the above inequality, we have

{1+ &)Ey + B1EEy + (B3 + F1 }

. B2 1 .
+{a2 + (af — B1)E Hua* + 352\”“2\2 + 5ai§2|u3|2
P N 1 N S
< {a+ 5+ (@} + ad)g? Pl + a3 as | + a3 ¢l nlla)

—as(af + a? — )¢+ €2) R(i1as) + asag(al — D)E(L + €2) R(itats).

For this inequality, letting 5, suitably small and employing Young inequality, we
can get

(217) 0 {(1+ &)E1 + By + £B3 + Fu } + (1 + )| |* + 1€ (] + |as]?)
< C(1+&)aal* + C&2|as|?
+ |af + af = 1C|EPP|an s | + |a] — 1CIE[(1 + &%) az]| -

Similarly, multiplying (2.15) and (2.17) by 1+ &2 and B2£2, respectively. Then we
combine the resultant equation, obtainig

OB (1 + E)E1 + Bi1éEy + EFs + Fi) + £(1+ %) Ey }
+ Boc (L4 Eial? + Back(af? + i) + (503 — 520) €21 + €) i
< 08 il + 321 + )il + SaBE2(1 + )i
+ agas&® (1 + ) R(ais) + asé(1 + €2) R(idrus)
+ Bolaf + af — 1CIEP || |is| + Bala] — 1C|EP (1 + %) as| |-
Letting (o suitably small and using Young inequality derive that
(2.18) 0 { B (1 4+ E*)Ey + PréEa + {Es + F1) + £(1+ §)Ey}
+ (14 E)(|in]? + aa]*) + &' ([aa|* + [aa]*)
< CL+€)as]” + CE* (1 + €7) g |
+ad + a — 1|C€s|* + |a] — 1|CE[*(1 + €)% |aa||g|-
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If we assume that a2 — 1 = 0, the estimate (2.18) can be rewritten as

(219) 0 {Ba€® (1 +E) By + B1€Es + EBs + Fr) + £(1 + %) Eu}
+ € (L+ &) ([0 + |aal?) + c€*(Jaz|* + [as])
< C+8)as|* + CE* (1 + 7).
Then, multiplying (2.16) and the above inequality by (1 + £2)% and £3£2, respec-
tively, and combining the resultant equation, we have
0 B3 (B2€ (1 + €°)Er + BréEn + EB3 + F1) + E(1+ ) E) + (1 + €%)° Bs }
+ Bac€ (L + ) (Jan* + [@a]?) + B3c€® (| + [as])

+ (508 = B1C) (1 +€)is| < FaCE? (1 + ) ol

+ (B 4 577) (14 )Pt + asas€?(1 + €2)° (i)
Hence we arrive at
O { B3 (B2 (1 + E*) By + B1€Ey + EE3 + F1)
+E(L+ &) Es) + 61+ ) Es
+ M1+ (|t ]? + [aal*) + c&®(faal? + [@s]?) + c€?(1 + €)*|as [
< C(1+€%)ig|* + CE (1 + €2)*|aual||iig -

Moreover, we multiply (2.13) and (2.15) by £5,£% and 5, respectively, and com-
bining the resultant equations and the above inequality. Then, letting 5, and (s
suitably small, this yields

(2.20) O E + &' (1 + &)t |* + iz + £ (1 + )t
+ € (142 |aal* + €21+ €)% |as” < C(1 + &%) ag/?,
where we have defined
(221) E = Bofs (1 4+ E3)EL + B1B2BsE Ex + £ (B2Bs + Ba?) (EE3 + FY)
+&(B5(1+ %) + B56") Ea + £(1 + €)° Bs.
Finally, combining the basic energy (2.5) with the above estimate, this yields

(222) 051+l + 1} + (1 + €

6
+eaf? + e eI+ )Yy <.
=3
Thus, integrating the above estimate with respect to ¢, we obtain the following
energy estimate

t 6
(2.23) |ﬂ(t,£)|2+/0 {(7|a1|2+7|a2|2
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Here we used the following inequality

P

1
2.24 a2 < =lal? + —2

E < Cla|?

for suitably small ;. Furthermore the estimate (2.22) with (2.24) gives us the
following pointwise estimate

At £°

2.25 u(t, &) < Ce™° 4(0,&)|, A) = —5—-
(2.25) lat, §)| < |a(0,¢)] ©) it e

On the other hand, if we assume that a3 + a2 — 1 = 0, the estimate (2.18) is
rewritten as

OB ((L+ €3 E1 + B1€Es + B3 + Fy) + £(1 + €2)Ey}
(2.26) + &1+ &) (|1 ]? + ) + c€* () + |as]?)
< C(1+E)2us)? + C(1 + €2)ag|*.

Then, multiplying (2.16) and the above inequality by (1 + £2)? and [33¢2, respec-
tively, and combining the resultant equation, we have

N B3 (B (1 + E)EL + PréEs + (B3 + F1) + £(1+ E)Ey) + (1 + €)% E5}
+ Bac€ (1+ ) (> + |2a]?) + B3 (|l + s ]*) + (%aé — B ) (1 + €

< B5C(1 + €2)*)ag|? + (a§52 + %%) (14 €2)2) 6|2 + asac2(1 + €2)2 R(aatic).

Hence we arrive at

0 {Bs& (B2 (1 + ) Er + BréEa + EE3 + F)
+E(1+ %) Ea) +£(1+ %) Bs }
+ e (1 + )|l + Jaal?) + e€®(|azf® + [as]*) + (1 + €%)?|as|?
< C(1+ &) agl*.
Moreover, we multiply (2.13), (2.15) and (2.16) by 34£5, B5¢% and Bs€6, respectively,
and combine the resultant equations and the above inequality. Then, letting 5, and
Bs suitably small, this yields
0 {BaBsE (1 + E3)Er + B1B2B3E B + £(B2Bs + Ba&®) (EEs + Fy)
+E(B(L+€%) + BsE") By + E((1+€%)% + Bo€°) s }
+ €M (14 )| + c€ao]? + (1 + €2)|as)?
+ €M1+ )P aul® + (1 + €)%as > < C(1 + £2)*ae|*.
We note that this estimate is essentially the same as (2.20). Hence we can obtain
the energy estimate (2.23) and the pointwise estimate (2.25). Eventually, we arrive
at the estimate for both cases a3 — 1 =0 and a3 + a2 — 1 = 0. Moreover, by using

the similar argument, we can derive the same estimates in the case a% — 1 # 0,
a? + a2 —1# 0. Thus we complete the proof of Theorem 2.1 with m = 6.
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2.3. Energy method for model I. Inspired by the concrete computation in Sub-
section 2.2, we consider the more general case m > 6. Now, our system (1.1) with
(2.1) is described as

Oty + 1&tn + Uy = 0,

Optig + 1€y = 0,

Opiz + i€agty = 0,

Ortiy + i€(aqtiz + astis) — 41 = 0,

Oty +i€(ajuj 1+ ajp1tjpr) =0, j=5,- ,m~—1,

(2.27)

Oyl + 1€amUm—1 + Yl = 0.

We are going to apply the energy method to this system and derive Theorem 2.1.
The proof is organized by the following three steps.

Step 1. We first derive the basic energy equality for the system (1.1) in the Fourier
space. Taking the inner product of (1.1) with 4, we have

(G, 0) + i€(Apa, @) + (L@, @) = 0.
Taking the real part, we get the basic energy equality

190 . .
§a|u|2 + <Lmua U> =0,
and hence
1
(2.28) 5a,g|a|2 + 742, = 0.

Next we create the dissipation terms by the following two steps.
Step 2. For £ = 6,--- ,m — 1, we multiply the fifth equations with j = £ —1
and j = £ in (2.27) by i€asty and —iaeie—1, respectively. Then, combining the
resultant equations and taking the real part, we have
(2.29) k@R (itg—1tr) + az€(|ie—1]* — [ae]*)

— apag—18” R(—ot) + apar 16 R(ig—17p41) = 0.

Here, by using Young inequality, we obtain
1 . . 1 . L=
(2.30) 0B+ 5ai&lie|* < af€liul® + St 1 Cliea]® +acar 8 Rdu—sie)

for £ =6,--- ,m — 1, where we have defined E;_; = a&R(ity_117¢). On the other
hand, we multiply the fifth equation with j = m — 1 and the last equation in (2.27)
by t€am Uy, and —i€a,, Upm—1, respectively. Then, combining the resultant equations
and taking the real part, we obtain
(2.31)  amEOR(itim—17m) + a2, (|Um—1]* — |tm|?)

— U G162 R —2T) + Y& R(i0y 1) = 0.
Using Young inequality, this yields

1
(2.32) €0;Fp_1 + §afng?|am,1\2

1 _
< a2t |* + 572l + A 16> Rl —2im),
where we have defined E,, 1 = @ &R (il —1Um ).
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Step 3. We note that equations (2.27) with 1 < j < 5 are the same as the five
equations in (2.4). Thus we can adopt the useful estimates derived in Subsection
2.2. More precisely, we employ (2.13), (2.15) and (2.18) again.

For the estimate (2.18), if we assume that a2 — 1 = 0, we can obtain (2.19).
Then, multiplying (2.30) with £ = 6 and (2.19) by (1 + £2)? and 33£2, respectively,
and combining the resultant equation, we have

O B3 (Bo (1 + EX)Er + P1€Es + B3 + F1) + £(1+ €2)Ey) + £(1 + €2)°E5 )
+ B3t (1 + ) (|aa]? + |aal®) + Bsc®(Jaz]? + |as|?)

+ (502~ B0+ €V is]? < BOE L+ )l + a3E%(1 + €7

—_

+ 566352(1 + )% |* + asae®(1+ €2)° R(auds).
Hence we arrive at

O {BsE% (B (1 + E2) By + BréBs + EE3 + )

+E(1+E)Es) +E(1+E)°Es}

e 1+ €2) (a2 + [0al?) + (1 f? + s]?) + c€3(1 + €2)%) s ?

< CEA 1+ €2 (Jagf? + [ie]?) + CE2(1 + €2)? ]
Moreover, we multiply (2.13) and (2.15) by 84£% and B5£°, respectively, and com-
bining the resultant equations and the above inequality. Then, letting 54 and S5
suitably small, this yields
(2.33) OE + &1+ )|t | + c&Clao|” + €8 (1 + €2)|as|* + c€* (1 + €2)?|aa|?

+e2(1+€2)%as|” < O(1+ %) fae|* + CE (1 + €%)|ar .

where FE is defined in (2.21).

On the other hand, if we assume that a? + a2 — 1 = 0, we employ (2.26). Then,
multiplying (2.30) with £ = 6 and (2.26) by (1 + £2)? and 3£, respectively, and
combining the resultant equation, we have

O { Ba€? (B2 (1 + E%)Er + Bi€Ey + EE3 + F1) + £(1 + €%)Ey) + £(1 + €%)° Es }

+ Bac€t (L + ) (|an* + [aa?) + Bac€®(Jazf® + |as|?)
+ (%aé - /33C>§2(1 +E)?)is|* < BsC(1 4 &) ig|* + age?(1 + %)% |ag|?
+ %a?ﬁ(l + 2|07 + asac® (1 + €%)? R(Aate).
Hence we arrive at
N {BsE (B (1 + E*)Er + BréEs + EE3 + F)
+E(L+E)Ey) + (1 + )5
+ €M1+ ) (|t ]? + aal*) + c&®(Jaal? + [as]?) + c€?(1 + €2)?|as |
< C+ &) gl + CE(1+ €)% |ag .

Moreover, we multiply (2.13), (2.15) and (2.30) with £ = 6 by £,£¢, 35£5 and B6£6,
respectively, and combine the resultant equations and the above inequality. Then,
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letting 4, 85 and B suitably small, this yields

0e{ B2BsEH (1 + E2) By + B1B2BsE  Ba + (B3 + Bal?)(EE5 + )
+E(B3(14€) + B Ea+ E(1+ )% + o€ s }
+ e (14 )i * + c€®lan]? + c£°(1 + €%)|as |
+ (1 + )|l + €2 (1 + €)% as]* < O(1+ €2)*ag|* + CEX(1 + €)% ar |
Consequently, this estimate is essentially the same as (2.33). Moreover, by using

the similar argument, we can derive the same estimate in the case a3 — 1 # 1 and
ai+a2—1#0.

By using the estimate (2.33), we construct the desired estimate. We multiply
(2.30) with £ = 7 and (2.33) by (1 + £¢2)* and B7£2, respectively, and combine the
resultant equation. Moreover, letting (7 suitably small and using Young inequality,
we obtain

O {BrEE+ £+ €)' Eg} + c€®(1+ )] + c&®laa]” + c€3(1 + €7)]as|
+e€8(1+ €)% |au|? + c€* (1 + €2)3| 5] + c€2(1 + £2)*|ag |
< C(1+ €272 4+ CE2(1 + 2)Hag .

Eventually, by the induction argument with respect to j in (2.30), we can derive

(2.34) OiEm—2 + ch(m—5)(1 + §2)‘ﬂ1‘2 + CfQ(m_4)|ﬁ2|2
m—2

+e Y @mmITU( 4 2Y g,
=3

<O+ ED™ 3l 1|? + CE(1 + )™ 4|2
for m > 7. Here we define &,,_> as & = F and
gm72 = 577171525#173 + 6(1 + 52)m_4Em72; m > 8.

Now, multiplying (2.32) and (2.34) by (1 + £2)™~3 and f,,£2, respectively, and
making the appropriate combination, we get

(2.35)  0yEm_1 + €MV (A + 3|y |? + €2 iy |2
m—1
e eI+ Y20 < CO+ €)™ i .
j=3

Finally, combining (2.28) with (2.35), this yields

1
(2.36) at{§(1 + )™ 202 + ,6m+15m71} + e (14 )] |?

+ e NP+ ey (1462720, <0,
Jj=3
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Thus, integrating the above estimate with respect to ¢, we obtain the following
energy estimate

R t 52(771—4) . 52(7n—3) .
2 2 2
(2.37) |a(t, €)| +/0 {7(1+£2)m_3|m| +7(1+§2)m_2\u2\

m 52(1% J)

2 el Jdr < Clao, )P

j=
for m > 7. Here we have used the following inequality
1 Bm+1 .
< - 2 75}”{7 <C 2
| | 2‘ | + (1+€2)m72 1= |U‘|

for suitably small 8,,+1. Furthermore the estimate (2.35) with (2.36) gives us the
following pointwise estimate

52(m73)

for m > 7. Therefore, together with the proof in Subsection 2.2, (2.2) is proved,
and we then complete the proof of Theorem 2.1.

a(t, &) < Ce*O"a(0,€)|,  AE) =

2.4. Construction of the matrices K and S. In this section, inspired by the
energy method employed in Sections 2.2 and 2.3, we shall derive the matrices K
and S.

Based on the energy method of Step 2 in Subsection 2.2, we introduce the fol-
lowing m X m matrices:

0001 00 00 8888‘?
| |
0000‘0 0010‘0 0 0 000 O
00 00 0100
si=11 0 o0 C%=0 0 00 . S=|00000 |,
fffff T A L 017000
| |
|
O 0 O 0 0O |0
and hence

S = 7(15{@5 Sl + CL4SQ) — CL5( — 1)S3}

0 0 0 as 0
0 0 a4as O‘l*&i
0 asas 0 0 o O

Then, we multiply (1.4) by S and take the inner product with @. Furthermore,
taking the real part of the resultant equation, we obtain

(2.38) %at@a, @) + EG[SAn]™it, @) + ([SLon]¥ i, ) = 0,
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where
0 0 agas 0,02 0
0 0 0 a0 ag(1 —a?)
aas 0 0 oo o O
_— 0 a 0 0'0 0
SAm = =05 | == 20" %" 097 " 0 ’
0 0 0 000 0
|
|

The equality (2.38) is equivalent to (2.9). We note that the symmetric matrix
S1 + a4S2 is the key matrix for 4 x 4 Timoshenko system (see [13, 14]). The
symmetric matrix S is the one of the key matrix for the system (1.4).

On the other hand, we introduce the following m x m matrix:

0-100,
10 00!

00000

K =

Then, we multiply (1.4) by —i£K; and take the inner product with 4. Moreover,
taking the real part of the resultant equation, we have

1 ‘ ,
(2.39) — €0 (iR, @) + E([Ky A ™, @) — (K Lin]*it, @) = 0,
where
10 00, 0000
0 100 0001
. 0o 0000 v |0 0000
mTl o 000 o 0000

The equality (2.39) is equivalent to (2.10).
We next introduce the following m x m matrices:

00 00 0000
00 00 0010
00 01 6 01000
Ki=a1] g _10 ’ 4= 7% 50 00
,,,,,, . o000
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Then, we multiply (1.4) by —i{ K5 and Sy, and take the inner product with @, re-

spectively. Moreover, taking the real part of the resultant equations and combining
these, then we have

(2.40) %at<(s4 L GER ), 8 + E2([KyAn] ™, @) + ([SaLon]™ @, )
+E(i[SaAy — KaLn]™a, i) = 0,

where SyL,, = O and

000 0,0 000 0
000 010 00 0—g?!
00 a2 0 'ams; O 000 0'0
Kidp =00 0 =af 0 |, Sidn—EKilm=1|( o ¢ o
ooo0o0'o | |- k-

The equality (2.40) is equivalent to (2.12).
Similarly we introduce the following m X m matrix:

Then, we multiply (1.4) by —i€ K5 and take the inner product with @. Furthermore,
taking the real part of the resultant equation, we obtain

1
(2.41) _§§8t<iK5ﬂ, ) + E([K5Ap]¥ 0, @) — E(i[K5 Ly |V 0, @) = 0,
where
00 0 0,0 O 0 0 000
00 0 0: 0 0 0 0 000
00 0 0, 0 0 0 [
00 0 a?' 0 asa 0000‘0
KsA,, = 777777775\7727757677— KsL,,=1 0 0 000

The equality (2.41) is equivalent to (2.14).
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Based on the energy method of Step 2 in Subsection 2.3, we introduce the fol-
lowing m X m matrices:

0 0
0] Lo @)
0 0
0 0 0 10 - 0| ¢-1
Ke=ar g 0 -1 0 0 0 ¢
0 0
O S O
0 0
(-1 ¢

for £ =6,--- ,m — 1. Then, we multiply (1.4) by —iK, and take the inner product
with 4. Furthermore, taking the real part of the resultant equation, we obtain

1

(242) ~ SEOi 8) + €[ A Vi, 8) = 0

for { =6,--- ,m — 1, where
0 0 0 0
0 0 0 0

K A, = o --- 0 0 a? 0 apapyr 0 --- O £—-1
m 0 0 —ap_1ay 0 —a3 0 0 0 12

0 0 0 0
0 0 0 0

Moreover we have

1 )
2.43 — =80 (1 Ky, U +§2 K, Ap¥a,a) — EG[K Ly, |*Ya,4) =0,
2
where
0 0 O 0
KmAm = 0 0 0 ) KmLm = 0
0---0 0 a?, 0 0---0amy
0---0—-am_1am O —afn 0---0 0

The equalities (2.42) and (2.43) are equivalent to (2.29) and (2.31), respectively.
For the rest of this subsection, we construct the desired matrices. According

to the strategy of Step 3 in Subsection 2.2, we first combine (2.38) and (2.39).

More precisely, multiplying (2.38), (2.40) and (2.39) by (1 + ¢2), (1 + ¢2) and 6y,
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respectively, and combining the resultant equations, we obtain

%at<{(1 + &3S — (61 K1 + (14 &) Ky) }a, 0)
+ (L4 EN[SLy]¥ i, 0) + E([(61 Ky + (1 + E*) Ky) A )™ 0, 0)
+E+ ) [S AR, @) — EG[(6:1 K1 + (14 €2)Ky) Ly |V, 0)

Here we define S = S 4 S;. We next multiply (2.41) with £ = 6 and the above

equation by (14 ¢2)? and 822, respectively, and combining the resultant equations
we obtain

%3t<{52§2((1 + )8 —i(01 K1 + (1 + %) Ky)) — E(1 4 €)°Ks }a, 4)
+ 0262(1 + ED([SLp]¥ 11, 0) + 0263 (1 + E2)(i[S A )Y 1, 10)
)

+E2([(026(01 K1 + (14 %) Ka) + (1 + &) K5) A] ™,
— E(i[(0267 (01K + (14 €2)Ky) + (1 + %) K5) L™V, ) = 0.

Moreover, multiplying (2.42) and the above equation by (1+£2)3 and d3£2, respec-
tively, and combining the resultant equations, we get
SOBE 56 (1+ €S — i I + (14 €)Ky)
(14 €2 K) — (1 + €2 K )i, a)
+ 090381 (1+ E)([SLin]¥ 4, ) + 02056 (1 + ) (i[S A |V i, @)
+ E([(0562 (026 (01 K1 + (1 + E)Ky) + (1 + E)°K5) + (14 £°)° Ko ) A, )
— 638 (i[(028% (01 Ky + (1 + %) Ka) + (1 4 €)° K5 ) Ly |V i, 1) = 0.

Consequently, by the induction argument with respect to ¢ in (2.42), we have

(2.44) fat<{H5 2D (1 S 45/@}@,@

-3
+ H 5,2 (1 + EN([SLyn ¥, i) + [ 6,89 (1 4 €2)GilS

Jj=2 Jj=2

-3
+ E([KeAm — [ 6622 (K5 L) i1, 1) = 0.
=3

A a1, 1)

for 5 < ¢ < m—1, where the last term of left hand side is replaced by &(i|

K5 Ly |24, @)
for £ = 5. Here we define Ky as Ky = 61 K1 + (1 + £2)K, and

Ko =803 K1+ (1+ ) 3K,
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for ¢ > 5. Therefore, we make the combination of (2.43) and (2.44) with £ =m — 1.
Then we can obtain

1 m—4 . ‘ o o
(2.45) 5at<{ ]];[2 §;€2m= (1 4 €2)S — zflCm}u,u> ([ Al a, 4

m—4 m—4
+ 1 8,890 + ) (SLal¥a i) + [] 6,97 (1 + ) i1S A i )

Jj=2 Jj=2

m—4
— T 68D+ G Lo it, @) — E(1 + €)™ P G[K L) ™ 1, ) = 0.
j=3

Finally, multiplying (2.45) by 8,,—3/(1 + £2)™~2, and combining (2.28) and the
resultant equations, we can obtain

m—4

1 Om—3 c2(m—4) i i
(2.46) §8t<[1+ W{ u ;62 V(1 +€%)S li’CmHu7U>
o m—3 52(m—4) .
Tl =2 " (1+&2)m=3 SLnl™a,8)
62 o m—3 52(7n—4)+1 ) sy -
+0m-3 (1+ &£2)m=2 (KmAp]¥a, ) + ]1;[2 0; (1+&2)m=3 (i[SAR]* 0, 4)

m—3 g2m=5)+1 ey - £ vy -
where I denotes an identity matrix. Letting d1, - - , d,,—3 suitably small, then (2.46)
derives energy estimate (2.37). More precisely, noting that
m—3
K= [] 6,8 (01K + 1+ ) Ka) + (14 )" Ky,
=2
m—3m—3
ST a0 K
k=3 j=k

for m > 6, we can estimate the dissipation terms as

m—3 52(m—4)

o n Sy s o
£ ‘
+dn-a gy (o An]™ 6 )

gAm=4) ) g2m=3) ) DL gmeg) 9
>ed S5 s S\
- C{ (14 £2)m=3 [ ]” + (14 £2)m—2 [aa]” + ; (14 €2)ym=i 5] }

for suitably small é1,---,d,—3. Consequently we conclude that our desired sym-

metric matrix S and skew-symmetric matrix K are described as

2(m—4) 2
£ S K= giicm.

TS i+ ey
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3. MobpEL II

3.1. Main result II. In this section, we treat the Cauchy problem (1.1), (1.2)
with

01,0 0, |
oo .
00 0 as, 0 N
00ay 0000 U L
T070/0 ag T
A = ' 0ag 0 !
m | | | ?
| | |
| | 0 a |
| | m—21
O m_s 0 '0 0
BT . 4= - -
| | 0 0 10 am
! ! 0 'a, O
(3.1) ! . L ‘
%6 0,0 I
Oly 110 ! [
0-10,0 0 .0 1
000 010 as | |
| 0,—as 0 | |
| | | |
Lm = | | | | )
| | | |
| | 0 am,g‘ 0 |
N B “m-3 0 0 0
‘ ‘ 0 0 " 0 an40
i ,Qj ,,,,,,,,,,, 0 i—am1_ 0 10
1 1 0 010

where integer m > 4 is even, v > 0, and all elements a; (4 < j < m) are nonzero.
We note that the system (1.1) with (3.1) for m = 4 is the Timoshenko system
(cf. [13, 14]). For this problem, we can derive the following decay structure.

Theorem 3.1. The Fourier image i of the solution u to the Cauchy problem (1.1)-
(1.2) with (3.1) satisfies the pointwise estimate:

(3.2) ja(t, £)] < Ce™ MO a,(¢)

)

where \(€) = &£3m~10 /(1 4 €2)2(m=3) " Furthermore, let s > 0 be an integer and
suppose that the initial data ug belong to H> N L'. Then the solution u satisfies the
decay estimate:

J0u(®)ze < O+ ) 50 G ug | o+ C(1+ 1)~ 72 |2 gl |2
for k+ 4 <s. Here C and c are positive constants.

3.2. Energy method in the case m = 6. Ide-Hramoto-Kawashima [13] and Ide-
Kawashima [14] had already obtained the desired estimates in the case m = 4.
Thus we consider the case m = 6 in this subsection, which can shed light on the
proof of the general case m > 6 to be given by Section 3.3. Then we rewrite the



DECAY STRUCTURE OF TWO HYPERBOLIC RELAXATION MODELS 23

system (1.1) with (3.1) as follows.

Byt + i€ty = 0,

Oylip 4 1€y + 7yl + U3 = 0,
Ostiz + i€agtiy — g = 0,
Oty + 1€astiz + astis = 0,
Osis + i€aglic — astiy = 0,
Byt + i€agis = 0.

Step 1. We first derive the basic energy equality for the system (3.3) in the

Fourier space. We multiply the all equations of (3.3) by @ = (7, Gz, U3, 4, Us, g )T,

respectively, and combine the resultant equations. Furthermore, taking the real part
for the resultant equality, we arrive at the basic energy equality

1
(3.4) S Olaf* + ylio|* = 0.
Next we create the dissipation terms by the following two steps.

Step 2. We multiply the first and second equations in (3.3) by &ty and —ii,
respectively. Then, combining the resultant equations and taking the real part, we
have

(3.5) ED:R (it ti) + (| |* — [aaf*) + ¥E R(i1T2) + ER(idraz) = 0.
Next, we combine the fourth and sixth equations in (3.3), obtaining
8t(§a6114 + ia5116) + i§2a4a6ﬁ3 =0.

Then multiplying the first equation in (3.3) and the resultant equation by Eagly —
iaste and U1, and combining the resultant equations and taking the real part, we
obtain

(36) 8t{a6§%(ﬂlﬁ4) — a5%(iﬁ1ﬁ6)}
— a4a6£2 %(Zﬂﬂi;{) + a6§2 §R(m2§4) + as€ %(ﬁgﬁ@) =0.
To eliminate R(iti173), we multiply (3.5) and (3.6) by a2a2¢2? and a4aeé, add the
resultant equations. Then this yields
(3.7)  a1a6E0, B\ + a2a2e*(|in|? — |a2]?)
+ a4a§§3 %(Zﬂgé@) + a4a5a6§2 %(ﬂgé@) + 7&2&%53 %(’Lalﬁg) =0,
where E§6) = a6§§R(ﬂ11§4) — %%(i&ﬂ%) + a4a6§2§}?(iﬂ1?§2). ~
On the other hand, we multiply the second and third equations in (3.3) by 43

and 19, respectively. Then, combining the resultant equations and taking the real
part, we have

(3.8) 9 R(t2ts) + |is]* — |@2|® + ER(it1ds) — asé R(itiata) + v R(t2tz) = 0.
By the Young inequality, the equation (3.8) is estimated as

1 _
(3.9) O Es + 5|ag,|2 < Elu|? + (1 + )| + asé R(idoia),

where E3 = 8%(’{1,263)
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Furthermore, we multiply the third equation and fourth equation of (3.3) by
—i€aqtiy and i€aytiz, respectively. Then, combining the resultant equations and
taking the real part, we have

(3.10) —as€0,R(itsts) + a2€2(Jtg|* — |03|?) + asé R(itatiy) — agasé R(itiztis) = 0.

By the Young inequality, the above equation is estimated as
1 1 _
(3.11) EO By + 5a§§2|a4|2 < §|az|2 + a3&%|ts]?* + asasé R(itsis),

where Fy = —ayR(iti31y). B B

We multiply the fourth equation and fifth equation in (3.3) by asts and asiy,
respectively. Then, combining the resultant equations and taking the real part, we
have

(L58t§}%(’&41§,5) + a§(|1l5|2 — |ﬂ4|2> + aqasé %(2’&3’5&5) — asagé %(“14756) =0.

By using Young inequality, we obtain
1 5. N 1 . S
(3.12) o Es + 5&%\U5|2 < a2ltg)? + §a§§2|u;;|2 + asacé R(itate).

where Es = a50;R(14Us).

Moreover, we multiply the last equation and the fifth equation in (3.3) by i€ags
and —iagl, respectively. Then, combining the resultant equations and taking the
real part, we have

7&65815%(7;11517146) + ag€2(|ﬁ6|2 — |ﬁ5|2) + (15(165 %(217,466) = O

Using Young inequality, this yields

1 . . 1 5.
(3.13) §0i B + 5058 ito|* < ag€?|is | + a3,
where E6 = 7&6%(’&15’&6).

Step 3. In this step, we sum up the energy inequalities and derive the desired
energy inequality. For this purpose, we first multiply (3.12) and (3.13) by ¢2 and
(1, respectively. Then we combine the resultant equation, obtaining

1 R 1 N
O{EEs + Bi£Es} + 5 Arade? ol + (503 — Brad ) €lis|?
1 . 1 . PR
< (551 + 52)a§\u4|2 + §a§§4|u3|2 + |as||ag|[€]?|tia]| ig).

Letting (8 suitably small and using Young inequality, we get

O {EEs + Bi1éEs | + c€(las|? + |ae|?) < C(1+€%)?|ial® + %a§§4|ﬁ3|2~
Moreover, combining the above estimate and (3.12), we get
(3.14) 0 {(1+ &) Es + B1éEs} + c(1 + &2)|s]? + ||

N 1 N
< OO+ €l + Ja3e(1+ €.
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Second, we multiply (3.11) and (3.14) by (1 + £2)? and B2£2, respectively, and
combine the resultant equations. Then we obtain

6t{ﬂ2§2((1 + &%) Es + B1€Eg) + £(1 + 52)2E4}
+ Bac(1+ €5 + Bactasl? + (5% — 5:0)E2(1 + €
< C(1+H2|ag)? + CE2 (1 + €2)?ag|? + CE(1 + €2)* R(itz0s).
Letting (o suitably small and using Young inequality, we get
(3.15)  0{Bo€®((1 + € Es + Si&Es) + E(1 + €2 Ba} + € (1 + &) a5
+ c€tig? + e (1 + €2)2|aa)* < C(1+ €2)2|a2)® + C(1 + £2)3|as)?.

Third, we multiply (3.9) and (3.15) by (1 +&2)? and f5 and combine the resultant
equations. Then we obtain

Oi{B3(BaE? (1 + ) Es + Br6Es) + £(1+ €%)2Ea) + (1 + €2)° Bz} + Bact ||
+ B+ E)fis? + B5€(1+ sl + (5 BsC) (1462
<O+ 33a)? + 21 + 23 |2 + as€(1 + €2)3 R(itiptiy).
Therefore, letting (3 suitably small and using Young inequality, we get
(3.16)  0,{B3(B26>((1 4+ &%) Es + B1€Eg) + £(1 + €2)°Ey) 4+ (1 4+ €%)°E3}
+ et ag|? + €1+ €)as|? + (1 + € * + e(1 + €2) s |
< C(1+)MNas* + (1 + &€2)%|ar ).
Fourth, we multiply (3.7) and (3.16) by (1 +&£2)% and £4€2, respectively, and com-

bine the resultant equalities. Moreover, letting 84 suitably small and using Young
inequality, then we obtain

(3.17)  OLE + c&8ig|* + c€* (1 + &) |tis)? + c€*(1 + %) ag]? + c€2(1 + £2)3|as)?
+et 1+ )| f* < C(1+ €%)°ag]? + asasact® (1 + €2)° R(iats),
where we have defined
E = B4€*(B3(B26%((1 + %) Es5 + B1€Ee) + E(1 + €2)2Ey) + (1 + €)% E3)
+ aga6é(1 + 52)3E£6).

Moreover, to estimate R (7o), we multiply (3.17) by ¢2 and use Young inequality
again. Then this yields

(3.18) €20, E + c&|iig|” + c£(1 + €%)|as[* + c£®(1 + )| ]
+ €1+ )3 asl® + c€®(1+ €)?|a > < C(1 + €)%lao .
Finally, multiplying the basic energy (3.4) and (3.18) by (1 + £¢2)¢ and B, respec-
tively, combining the resultant equations and letting (s suitably small, then this
yields
1 .

(3819) 0 {51+l + BB} + e (1 + €)% + e(1 + )" [aal?

+ €t (146 as|* + € (1 + €)% |ual® + e§° (1 + €%)[tas|* + c€¥iig|* < 0.
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Thus, integrating the above estimate with respect to ¢, we obtain the following
energy estimate

) t 56 A . 54 . 56
2 2 2 2
.90+ || {rgp i + s + e ol +
56

8
+ atep a5 |2 + Aty f€2)6 |ﬁ6|2}d7 < Clu(0,6)|?.
Here we have used the following inequality

Bs&?
(1+¢€2)0
for suitably small 5. Furthermore the estimate (3.19) with (3.20) give us the
following pointwise estimate

)4|ﬁ4|2

1 ~
(3.20) cla* < 5|a|2 + E < Cla)?

58
1+
This therefore proves (3.2) in the case m = 6 for Theorem 3.1.

la(,€)] < Ce 2 @a(0,6)l,  AE) =

3.3. Energy method for model II. Inspired by the concrete calculation in Sub-
section 3.2, we consider the more general situation m > 6. Then we rewrite our
system (1.4) with (3.1) as follows:

Oylin + i€y = 0,
Optia + i€ty + ylg + i3 = 0,
Oylis + 1i€aytiy — Uo = 0,
(3.21) R ) .
Otij + i€ajlj—1 + ajr1lj41 =0, j=4,6,--- ,m—2, (for even)
8tﬁj + zfa]quﬂjﬂ - ajﬁj,1 = 0, _] = 5, 7, e ,M — ]., (fOf Odd)
Oyl + 1€amlm—1 = 0.
Step 1. We first derive the basic energy equality for the system (1.4) in the Fourier
space. Taking the inner product of (1.4) with 4, we have

(G, 0) + i€(ApG, @) + (L@, @) = 0.
Taking the real part, we get the basic energy equality
%at\m? + (L, @) = 0,
and hence
(3.22) %@W + yltp]? = 0.
Next we create the dissipation terms by the following three steps.

Step 2. We note that we had already derived some useful equations in Subsection
3.2. Indeed the equations (3.5), (3.9), (3.11) and (3.12) are valid for our general
problem. Therefore we adopt these equations in this subsection.
To eliminate R (it 3) in (3.5), we first prepare the useful equation. We combine
the fourth equations with j =4,--- ,2¢ in (3.21) inductively. Then we obtain
¢

¢
(3.23) Oilhog + i€(—i€)* 2 H a3 + H agjy1tzer1 = 0,
j=2 j=2
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for 4 < 2¢ < m — 2, where we have defined Uy = 14 and
-1
Uz = —i&agelhzp—2 + H ag;j 102y
=2
Moreover, combining the last equation in (3.21) and (3.23), this yields
m/2
(3.24) 20Uy, — 6™ [ ] azgiis = 0.
j=2

Multiplyig (3.24) by —; and the first equation in (3.21) by —i™/2U,,, combining
the resultant equations and taking the real part, we obtain

m/2
(3.25)  —OR(I™Upin) — [] ag; €™ R(itintis) + ERE™ M Upniiz) = 0.

j=2

In order to eliminate R(iti173), we multiply (3.5) by Hjmz/z2 a2;€™?72 and combine
the resultant equation and (3.25). Then we obtain

m/2
(3.26) 0, B™ + T ags&™2 (|t ? — J1a]?)
Jj=2
m/2
+ [ azs€™ " R(iantin) + ERE™ > Uy i) = 0,
j=2
where we have defined
m/2
B = T azi€™* R(itntz) — R Uy ).
Jj=2

For £ =4,6,--- ,m — 2, we multiply the fourth equation and fifth equation with
j=~¢and j ={¢+11in (3.21) by agt1Us+1 and agq1%y, respectively. Then, combining
the resultant equations and taking the real part, we have

(3:27) 10 R(edes1) + agy ([t |* — |ie]?)
+ agag1€ R(ity—18041) — apg1ar42€ Ridyt2) = 0.

By using Young inequality, we obtain
1 . . 1 . L=
(3.28) 3tEe+1+§a?+1|W+1|2 < a?—&-l|u€|2+§a%+1£2|uf—1|2+a’€+10’€+2£ R(iteter2).

where EZ+1 = a5+1§R(ﬁg’L7Lz+1).

On the other hand, for £ = 4,---,m — 4, we multiply the fourth and fifth
equations with j = ¢+ 2 and j = £+ 1 in (3.21) by i€asi2ley1 and —ifapiativyo,
respectively. Then, combining the resultant equations and taking the real part, we
have
(329) ap 260 R (it 1Tpy2) + a7 o8 ([Gg2l® — |esa[?)

. + apr1a042E R(idetipro) — arsoaes3€ R(itpr1ter3) = 0.
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Here, by using Young inequality, we obtain

1

(330) E@tE(+2 + 2

a§+2§2 |t g2 |2

. 1 . o=
< ag o83 tpsr|* + §a§+1|u5|2 + apyoa043E R(itpr1U043),

where FEypyo = —ap1oR(ilp110042).

Moreover, we multiply the last equation and the fifth equation with j = m — 1
in (3.21) by i€amUm_1 and —i€a,,,,, respectively. Then, combining the resultant
equations and taking the real part, we have

(3.31) —amEs R (it —1Tm) + a2, E2 ([t |* = [tim—1|%) + @ 16 € R(iy 2T ) = 0.

Using Young inequality, this yields

1 R . 1 N
(332) B+ Lah il < @i + Lol ol
where E,, = —am R(it,_10m).

Step 3. In this step, we sum up the energy inequalities constructed in the previous
step and then make the desired energy inequality. The strategy is essentially the
same as in Subsection 3.2.

For this purpose, we first multiply (3.28) with £ = m — 2 and (3.32) by &2 and
(1, respectively. Then we combine the resultant equation, obtaining

OE Bt + BréFn} + 50102 Elinl? + (3031 — 162, ) i
< (551 +€)lion P + S0yl + a1 a1l
Letting 31 suitably small and using Young inequality, we get
O Em1 + Bi1&Em } + & (Jam | + |am—1]?)
< O+ &Pl af? + 5018 im s
Moreover, combining the above estimate and (3.28) with £ = m — 2, we get
(3:33) O {(14+ &) Em1+ Br&Em} + € im|* + c(1 4 &)1 |
< O+ )il + 0%, 1 €51+ i ol

Second, we multiply (3.33) and (3.30) with £ = m — 4 by $2£2 and (1 +¢2)? and
combine the resultant equations. Then we obtain

OB (1 + E)Ep1 + B1€Ey) + E(1+ ) Ep_a}
+ 52064‘am|2 + 62062(1 + 52)|am71|2 + (%agnfz - ﬁ?c)gz(l + 62)2|am72‘2

N 1 N N N
< CE1+ &) Um—s|* + §a3nfg(1 + &) Jim—al? + CIE|(1 + )| 3|l 1],
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Letting (5 suitably small and using Young inequality, we get

(3.34)  0u{Bo2((1 + E)Em—1 + 1€Ew) + €1+ )’ Eps}
+ €€ tim|? + €€ (1 4 ) |im 1] + € (1 + £%)?| iy —2|?

N 1 N
< C(1+ &) am-sl* + 5613%3(1 + €)% am-a|*.

Third, we multiply (3.34) and (3.28) with £ = m — 4 by f3 and (1 + £2)3,
respectively, and combine the resultant equations. Then we obtain

O {B3(BaE* (1 + €2 Epe1 + P1€Em) + E(L+ €22 Eps) + (1 + €2)°Ep_s}
+ B3l |* + B33 (1 4 €2)|tm—1]? + Bac€2(1 + £2) |ty _a|?

1 .
+ <2 Q-3 ﬁBC>(1 + &)t —s|?
N 1 N N N
<C(1+ 52) |um74|2 + iaqzn—:sfz(l + 52)3‘um75|2 +ClEI(1 + 52)3‘um74”um72|~
Therefore, letting B3 suitably small and using Young inequality, we get

(3.35) 0 {B3(B26* (1 + &) Epp1 + BréEm) + (1 + )’ En—s)
+ (14 &)’ Em-s} + €' m|* + € (1 + &) im-1]* + c€*(1 + €%)? |t 2|

1 .
S 02a€ (1 + )i

Inspired by the derivation of (3.33), (3.34) and (3.35), we can conclude that the
following inequality

+ (14 )3 |m-3]* < O + &) *|tm—a|* +

(3.36) OhEms +cy WA (14 2)m~ i[>
{=5

m—4| 1 m—5|
C1+ €)™ il + 536 (1 + €)™ g,

is derived by the induction argument. Here [ ] denotes the greatest integer function,
and & = 51€E,, + (1 + fz)Em_l and

Eo = Be€ -1 + E(1+ ) By,

(3.37)
Eov1 = Bei&e+ L+ )T En_(41),

for ¢ are even integers with £ > 2.
Furthermore, we multiply (3.36) and (3.11) by B,,_4£2 and (1 + £2)™ 4, respec-
tively, and combine the resultant equation. Then we obtain

OrEm—a + Bm—acy WAV (14 2y i,
=5

+ (502~ BusC) 0+ )i

_4pn 1 m—d s medin |15
<O+ Mitg|* + 5 (1+ €)™ il + ClE[(1+ €)™ s |5,
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where &,,_4 is defined by (3.37) with £ = m — 4. Thus, letting 5,,_4 suitably small
and using Young inequality, we obtain

(338) 8tgm—4 + CZEQ([Z/Z]—l)(l + EQ)m—Z‘adQ
=4

. 1 i~
< O+ agl + 5 (1+ €)™ ol

Similarly, we multiply (3.38) and (3.9) by 8;,—3 and (1 + £2)™3, combine the
resultant equalities, and take (,,_3 suitably small. Then we have

(339) 8tgm—3 +CZ€2([€/Q]—1)(1 +€2)m—£‘aé|2
=3

S C(]. +€2)m72|ﬁ2|2 + 52(1 +€2)m73|ﬁ1|2’

where &,,_3 is defined by (3.37) with £ =m — 3.

To estimate |@;]? in (3.39), we next employ (3.26). Namely, we multiply (3.26)
and (3.39) by (1+£2)™3 and B, 20, E™/?72, respectively. Then we combine the
resultant equation, obtaining

0u{ B0 €™/ 726, g + (1 + €3 E™)

+Bm—zamc€™272 N U )™ iy Pt g, (1= Bn) €2 (14€7) ™ i
(=3

< Cgm/Z—Q(l =+ 52)m—2|,&2|2 + 'YOémfm/z_l(l + §2)m—3%(iﬂ1ﬁ2)
+ 5(1 + 62)m73 m(im/QJrlZ/{mﬁg),

where we have defined o, = H;nz/f azj. Here, taking 3,,_» suitably small and using

Young inequality, we get

(3.40)  9{Brm—2amE™* 2Ep s+ (1 + ™ 3EM™Y

+ c§m/2—2 252([”2]_1)(1 + 52)m_€\fbe|2 + cgm/Q(l + g2)m—3|a1|2
(=3

< Ogm/272(1 +§2)m72|a2|2 + 5(1 + E2)m73 §R(Z-m/2+1um62)'
For the last term of the right hand side in (3.40), we note that

m/2-3 m/2—1

U, = ( H am—2j>(—if)m/2_2@4 + ( H a2j+1)11m
Jj=0 j=2

m/2—-1 k-1 m/2—1—k

+ > (H%‘H)( I1 am—zj)(—iﬁ)m/%kﬁzk,

k=3 j=2 j=0
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for m > 6, where the last term of the right hand side is neglected in the case m = 6.
Then, substituting the above equality into (3.40), we obtain

(3:41)  O{Bm2am€™> 2 5+ (1 + )" 3E™Y

+eem™/272 3 U0 (14 22 4 €™ (1 4 €)My |

£=3
m/2
S CEMETE(L 4 )Pl + C Y €A 4 €2)™ 3 g dag -
k=2

In order to control the term of |é,,| on the right hand side of (3.41) we introduce
the following inequality

€3m/275(1 + €)™ 3 ata [t | < €™ 10| + Co(1 + €2)2m=3) g2,

Inspired by the above inequality, we multiply (3.41) by £3m/2=6 and employ this
inequality. Then we obtain

€3m/2768t{ﬂm_zamgm/zfzgm_g + (1 + 52)’”’3E§m)} + (c _ 6)€3m—10mm|2

m—1
gm0 ST AL @ il 4 e (14 )i
(=3
< {0+ Co(1+ )1+ €)™ il
m/2—1
O Y PR 2™ ooy
k=2

Therefore, letting e suitably small, we have
(342) €3m/2—6at{Bm_2am§m/2—25m_3 + (1 + gQ)m—SEYTL)}

+ 0527”_10252[6/2](1 +§2)m—é|ael2 +C§2m—6(1 +§2)m—3|a1‘2

=3
m/2—1
SCA+EPM a2 +C Y [P R(L + €2)™ 5 iy |1z
k=2

Moreover, applying the inequality

€277 (1 + €2)™ 2 o [ iz |

< 6£2m710+2k(1 +§2)m72k|ﬂ2k|2 +O€£2m74k(1 +§2)m76+2k|ﬂ2|2
to (3.42), we can get

(343) atgm—Q + C£2m710 252[2/2](1 + 62)mfl|,&£‘2
£=3

+ Cme_G(]. +£2)m—3|,&1|2 < C(l +£2)2(m—3)|,&2|2,

where we have defined &,,_o = £3™/276(83,, o, ™/ > 2E 3+ (1 + 52)’”’3E§m)).
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Finally, multiplying the basic energy (3.4) and (3.43) by (1 + £€2)2(™=3) and
Bm_1, respectively, combining the resultant equations and letting f,,_1 suitably
small, then this yields

1
(3.44) at{§(1 + £2)2m=3))2 4 Bm_lsm_z} + €201 4 )3y ?

+ C(]. +£2)2(m—3)|,&2|2 + Cme_lOZ§2[e/2](l +€2)m—£‘a[|2 S 0.
(=3

Thus, integrating the above estimate with respect to ¢, we obtain the following
energy estimate

£2m—6

t
@45) 1t + [ { g il + liaP
§2m—10 m 62[6/2]

Ty Ly o)

sl far < Cla(0,€) 2

Here we have used the following inequality

6m—1

~12

1
§|a\2 + Em—2 < Claf?

for suitably small ,,_;. Furthermore the estimate (3.44) with (3.46) give us the
following pointwise estimate

€3m—10

[a(t. ) < OO M) = T @

This therefore proves (3.2) and completes the proof of Theorem 3.1.

3.4. Construction of the matrices K and S. In this section, inspired by the
energy method stated in Sections 3.2 and 3.3, we derive the desired matrices K and
S.

Based on the energy method of Step 2 in Subsection 3.2, we first introduce the
following m x m matrices:

0 1 00, 0000,

-1 0 00! 0000

| |
K — 0 000‘0 7 Ki—ay 000—1‘0
0_000 0010,

Then, we multiply (1.4) by —i£K; and take the inner product with @. Moreover,
taking the real part of the resultant equation, we have

(BAT) €DK, + €Ky Al @) — TR L], i) =,



DECAY STRUCTURE OF TWO HYPERBOLIC RELAXATION MODELS 33

where
10 00| 0~ 10,
0-100 00 00
w4 _|00000 v _l00000
144m — 70797070:777 } 1&m — 70797070L77
| |
O 0 O 0

The equality (3.47) is equivalent to (3.5). Similarly, by using the matrix Ky, we
can obtain

1 , .
3.48 ——E0 (iK1, 0) + E2{[K4 A |0, 1) — EG[K 4Ly >0, 4) = 0,
2
where
00 00, 00000
00 00 00000
KA — 00 -100 KL 00 00as O
4 m—a4 70797971L77 bl 4Lim — a4 707}7070419777
O 0 O 0

The equality (3.48) is equivalent to (3.10).

‘We next introduce

—_

0000
0010: O 0 O
|
g 01000 g _
T lo0o00 | 11 o0 -0 - o
I :
0 0 o 0
¢

for 2 < ¢ < m — 1. Then, by using the same argument, we can show that the
equality

1
(3.49) §at<53a,a> + £(i[S3 A"V 0, @) + ([S3 L™ 4, @) = 0,
which satisfies
0000, 00 00
0 0 0ay' 0-100
SA_100010 o 0~ 100
3 m T 707970707:777 ) 3 m 70797070‘ o
O 0 O 0
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which satisfies

az;j
O o O
S24m =101 ¢ 0 0 |25
O : 0
0
27 — 1
and
0 -+ 0 a1 0 -+ 0
5 0
Soj Ly = O : O )
0
2j +1

is equivalent to
O R(1Gi2;) — agj€ R(itntinj—1) + agjs1 R(A1dj+1) + € R(itata;) = 0,

for 2 < j < (m — 2)/2. Therefore, to construct (3.25), we sum up (3.50) with
respect to j with 2 < j < (m — 2)/2, and find that

(3.51) %at (G aity @) + E(i[Sm2 A ™11, 8) + ([Sro Loty 6) = 0

is equivalent to (3.25). Here we define Syp as S = Sy and

-1
Sop = a206S2p 2 + H az;j+152¢

=2

for ¢ > 3. Consequently, multiplying (3.47) by H;n:g agjém/ 2-2 and combining the
resultant equality and (3.51), we obtain

m/2
%6t< (Sm_g —1 Jl;[2 agjﬁmﬂilKl)ﬁ, ’IAL>
_ m/2 sy
(3.52) " <[Sm_2Lm [ a1y Am} uu>
=2
’ m/2
+ E(i[Sm—2Am]™ i, i) — [ ag; €™ (i[K1 Ly |*Yii, @) = 0.
j=2

This equality is the same as (3.26).
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Based on the energy method of Step 3 in Subsection 3.3, we next introduce the
following m X m matrices:

0 0
0 0
6. —4 0 -~ 00 1 0 0 ¢
MLy .o 001 00 0 0] ¢+1
0 0
0 0
¢ 041

for £ =4,6,--- ;m—2. Then, we multiply (1.4) by Sy and take the inner product
with @. Furthermore, taking the real part of the resultant equation, we obtain

1 ~ . asy .~ Sy s 5
(3.53) §8t<55+111, @) + E(i[Se41Am]* G, 4) + ([Ser1Lm]¥ G, @) =0

for £ =4,6,--- ,m — 2, where

0 0
0 0 0 0 0 amg 0 --- 0 ¢
Am: +
Se+1 “l o 0 a 0 0 0 0 -~ 0| ¢+1
0 0

-1 ¢ (+1 £+2

and

0 0
0 0
0 0 -1 0 0 --- 0 ¢
SeviLim = iy 0 00 1 0 -~ of ¢x1
0 0
0 0
¢ 0+

We note that the equalities (3.53) is equivalent to (3.27).
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On the other hand, we introduce the following m x m matrices:

0 0
0 0
0 - 0 0 -1 0 - 0| t+1
K =
S T | 0 0 --- 0| 42
0 0
0 0
(+1 042

for £ = 4,6,--- ,m — 2. Then, we multiply (1.4) by —iKy,o and take the inner
product with 4. Furthermore, taking the real part of the resultant equation, we
obtain

1 A Sy A~ . asy s 4
(354) _§§8t<iK€+2u7 U> =+ €2<[K€+2Am] yu? U> - §<Z[KZ+2L'HL] yu7 U> = 07

for ¢ =4,6,--- ,m — 4, where

0o 0
0o 0
0 0 -1 0 0 - 0f ¢+1
KeppAm =iz | 0 0 1 0 - 0f ¢+2
0 0
0o 0
041 042
and
0 0 0 0
0 0 0 0
N 0 0 0 0 0 —ags 0 0] ¢+1
Koyl = .
2 w2l 0 —agsr 00 0 0 -~ 0| 42
0 0 0 0
0 0 0 0

¢—1 ¢ ¢+1 £+3

Moreover we have

(355) g OBt 0} + €K Al it 8) — €K L]V, ) = 0,
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where
00 000
KmAm:afn () () v KLy =am-_10m 0 00
0---0-10 0---0000
0---001 0---0-100

The equalities (3.54) and (3.55) are equivalent to (3.29) and (3.31), respectively.

For the rest of this subsection, we construct the desired matrices. According
to the strategy of Step 3 in Subsection 3.2, we first combine (3.53) and (3.55).
More precisely, multiplying (3.53) with £ = m — 2 and (3.55) by (1 + £2) and 6y,
respectively, and combining the resultant equations, we obtain

%at<{(1 + )81 — 6106 K y, b, )
+ (1 + 52)<[Sm—1Lm]Syﬁa ﬁ> + 51§2<[KmAm]Syﬁv ﬂ>
+ (1 + ) (i[Sm—1 4], @) — 61 (i[ K L™, 0) = 0.

We next multiply (3.54) with £ = m — 4 and the above equation by (1 + £2)? and
32£2, respectively, and combining the resultant equations, we obtain

SOBE (1 €)1 — 61iEK ) — i€(1+ € Koo} i)
+ 0262(1 + ED([Sm—1 L ¥ 1, 0) + E2([(010262 Ky + (14 €2)2K ) A ¥ 01, 1)
+ 6263 (1 4+ €3 (i[Spn—1 A ™Y 01, 1)
— &(i[(01026° Ko + (1 + 622 Ky —2) L™V 01, 0) = 0.

Furthermore, multiplying (3.53) with ¢ = m — 4 and the above equation by
(1+ £2)? and d3, respectively, and combining the resultant equations, we get

(3.56) %at<{53(5252((1 + ) St — 51iEK )
—i¢
+(1+¢
+ 0382([(010282 Ky + (1 4+ €2)2 Koy —2) A ¥ 01, 1)
L+ ) (i((5205€2Sm1 + (14 )25 _5) A0, )
— 038 (i[(81626* K, + (1 + €2) Ky —2) L]0, ) = 0.
Now, we introduce the new matrices Ky, and Sy as Ko = K,,, and
Ke=080-100* Koo+ (1 + &) Ky
for £ > 2, and & = S5,,_1 and
St = 00-10062Sp—o + (1 + 318,
for ¢ > 3. Then the equation (3.56) is rewritten as

(
){[(02056% Sm—1 + (1 + €2)*Spn—3) Lin]™ @, 1)

%at<{(1 + €%)85 — 03i€KCo bii, @) + (1 + €2)([SsLn]™ @, 0) + 6562 ([K2 Ay ™Y@, 1)
+ &1+ €2)(i[S3Am)™V i1, @) — 638 (i[Ka Ly |V, ) = 0.
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Consequently, by the induction argument with respect to £ in (3.53) and (3.54), we
arrive at

(3.57) %at<{(1 )85 — Bonsithm bty @) + (1 + €) ([Sms L], 1)

+ 5m75£2<[lcm7614m}syﬂa ﬁ> + 5(1 + 52)<i[8m75Am]asyﬁ, ﬁ>
— S5 ([ —6 L |V 10, 1) = 0.

Applying Young inequality to (3.57), we can obtain (3.36).
Moreover, we multiply (3.48) and (3.57) by (1+&2)™* and 6,,,_4£2, respectively,
and combine the resultant equations. Then this yields

S0 (s (1 €S s — K}t )
+ 0m—a&2(1+ E)([Sm—s L) ¥, 1) + (KA |¥ 0, )
4 0 a3 (1 + ED[Sp_5 A Y10, @) — E(G[Kom—a L] ™Y, @) = 0.

Similarly, Moreover, we multiply (3.49) and the above equation by (14 £2)™~3 and
dm—3, respectively, and combine the resultant equations. Then we get

(3.58) %at<{<1 )t — b i€homa Yty 8) + (14 E) ([Sms L] 1, 1)

+ 6m—3£2<[lcm—414m]syaa 1AL> + 6(1 + 52)<i[8’m—3Am]asyﬁ? ﬁ/>
— G5 ([ —a Lo @1, 1) = 0.

By Young inequality to (3.58), we can derive (3.39).

We next employ (3.52) constructed before. Multiplying (3.52) and (3.58) by (1+
€2)=3 and 8,20, E™/272, respectively, and combining the resultant equations,
we get

(3.59) %at<{(1 + &S — api€™ 7 Y, a) + (1 + E2)([S L)Y, 0)
+ ™ (K A, @) + E(1+ €2)(i[S"An) il @)
— @™ 2K Ly |2 0, 1) = 0,

where we have defined

S = Opm2amE™? 728, 3+ (1 4+ €)™ 1S,, o,
K' = 6m—20m—3Km-a+ (1+E)" 3K,

and had already defined a,, = H;’Z; as;. By (3.59), we can get (3.43).
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Finally, multiplying (3.59) by &,,—1&3™/276/(14¢2)2(m=3) "and combining (3.22)
and the resultant equations, we can obtain

1 6m— — / - ~2m— / NS
(3.60) §8t<[1+(1+§2—)21m,3){53m/2 61+ )8 — apmit®™ K }}u,u>

£3m/2-6 /
N Sy~
+ (L, ) + 5m71WqS L™, a)
52(m73) , o - €2m77 . asy o -
+ ozm(sm—lW([/C Ap)¥a, ) — am(sm—lmﬁm L™ 0, )
me/ZfB .
o (7 gy 18 A8 = 0,

where I denotes an identity matrix. Letting dy, - - , §,,—1 suitably small, then (3.60)
derives the energy estimate (3.45). To be more precise, we introduce

m/2k—1

Km—a =14+ *Ky+ Z H 5m—2j5m—2j—1§2(k72)(1 + 52)m72kK2k
k=3 j=2

for m > 6, and hence
ICI _ (1 4 52)7”_3K1 + 5m72§m73(1 4 52)7”_4K4

(3.61) ot 2(k—2) 2ym—2k
+ 0m—20m—3 Z H Om—2j0m—2j—1& (1+&5)" Ky,

k=3 j=2

Moreover, we find that

m/2k—1
Sm_3z=(1+)""45; + Z H 5m—2j§m—2j+1£2(k72)(1 + €)Mk Gy
k=3 j=2
for m > 6, and Sy = Sy, S = a5Ss + €Sy and
m/2—2 m/2—3

Spa = H 2j415m—2 + H A2, E™? 738,
j=2 i=1

for m > 10, and also

S = 5m—2am§m/272(1 + 62)m74S3

m/2 k—1
+m Y [ Om-2i0m—2j41€™PP2EI (1 4 )RSy
k=3 j=1
(362) m/2—2 ~ m/2—3 _
+ H azj41(1+ €)™ 48, 5+ H -2 €™ P73 (1 4 €2)™m 18,
Jj=2 j=1

m/2—3 m/2—k—1

T Z ( H a21+1)<kl—[1am2j)fk_l(1+§2)m_45'm2k
k=2 j=2

Jj=1
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Therefore, by using (3.61) and (3.62), we can estimate the dissipation terms as

o 53(171—4)/2 , v
(363) <Lmu,u> + (smflqu Lm] yu7u>
52(m73) , aSyA A
m— m/2 2(m+j—6)
gm=9 2 2 g2m+i=
ZC{(1+§2) —5 1] + |2 +ZW'“2J 1|2
m/2 2(m+j—5)
g 2
+Z T+ eymrars | }
for suitably small d1, -+ ,d,,—1. We note that this estimate is the same as the

dissipation part of (3.45). Consequently we conclude that our desired symmetric
matrix S and skew-symmetric matrix K are described as

§3(m74)/2 s 52(m73)

_ _ !
S = (1+£2)2m77 ’ K= (1+§2)2(m—3)’C

4. ALTERNATIVE APPROACH

4.1. General strategy. In this section, by using the Fourier energy method, we
provide an alternative way to justify the dissipative structure of the linear symmet-
ric hyperbolic system with relaxation (1.1). The key point of the approach is to
derive from the above system a new system of m number of equations or inequalities

(Il)7 (I2>7 o ’<Ij)’ T 7(I7R)7

in the Fourier space, such that their appropriate linear combination can capture the
dissipation rate of all the degenerate components only over the frequency domain
far from || = 0 and |¢] = co. Precisely, for any 0 < e < M < oo, by considering

(4.1) > ol
j=1
for an appropriate choice of constants ¢; > 0 (1 < j < m) which may depend on e
and M, we expect to obtain that for e < || < M,
(4.2) O{|af* + RET™ (@)} + cenla]? <0,

where ce ps > 0 depending on € and M is a constant, and E{™ (@) is an interactive
functional such that |@|? + RE () ~ |4|? over € < |¢| < M. To deal with the

dissipation rate around |£] = 0 or |[£| = oo, instead of (4.1), we re-consider the
frequency weighted linear combination in the form of

€1/
(43) ZC] 1+|§‘ ozﬁ-ﬁgl-

Here a; > 0 and ; > 0 (1 < j < m) are constants to be chosen such that the
similar computations for deriving (4.2) can be applied so as to obtain a Lyapunov
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inequality taking the form
(4.4) O{lal® + RE™ (@)} + ¢ Y N(9)lay]* <0,
j=1

for all t > 0 and all £ € R, where ¢ > 0 is a constant, A\;(§) (j = 1,2,---,m) are
nonnegative rational functions of |£|, and E* (@) is an interactive functional such
that |a|? + RE™(4) ~ |a|? for all £ € R. If (4.4) was proved then by defining

)\mzn(g) = min >‘](§)7 £ € R?

1<j<m
it follows that
la(t,€)* < CeAmm©a(0, €)%,

for all ¢ > 0 and all £ € R, which thus implies the dissipative structure of the
considered system (1.1). Observe that A;(&) (1 < j < m) and hence A,in(§) may
depend on a; > 0 and 8 > 0 (1 < j < m). In general, a; and §; are required to
satisfy a series of inequalities such that (4.3) indeed can be applied to deduce (4.4)
by using the Cauchy-Schwarz inequalities. Therefore we always expect to choose
constants «; and §; such that Anin(§) is optimal in the sense that Apin(§) may
tend to zero when [¢] — 0 or |[¢] — oo in the slowest rate. Finally, we remark
that due to (4.2) which holds over e < |[¢| < M, considering (4.3) is equivalent to
considering Y 7" | ¢;[¢|* I; over [§] < e with 0 < € <1, and > 7", cil€|7Pi1; over
|€] > M with M > 1. In such way, it is more convenient to derive those inequalities
satisfied by A;(§) (1 < j <m).

4.2. Revisit Model I. By using the same strategy as in Subsection 2.2 and 2.3,
one can obtain m number of identities (I;) with j =1,2,--- ,m as follows:
(1) + Ou(i€ia, ) + [ [aa]® = —(i€iiz, ia) + €] [
(I) :+ Oy(—tin, ig) + |0 |* = |Ga]® + (i€l2, Ga) + (T, i8astlis + iCasis).
(Is) : Oi{(i€aqtiz, i) — (astiz, t2)} + ajlé|?|is|? =
+aj€?aa]? + (i€asts, —i€asis) + af(i€la, Uo).
(La) = Duli€asta, Gs) + aF|€||aa|* = (i€asia, —i€agis)
+a3|€?[is |* + asaalé]? (s, 45) + (i€asin, @s).
(Ii—1) = Ou(i€azi;_y,t;) + a3 iy -1 |* = (iajiij 1, —i€a;1841)
+a?|f\2|ﬁj\2 + ajaj_1|§|2<ﬂj_2,1lj>, j=6,7,---,m-—1.
(Im—1)  0¢(iamtim—1,tm) + a’, |€]*|Um—1|* = (iantim—1, —Ylim)
+a3n|€|2mm|2 + am—lam|€|2<am—2aam>-
() 50Wlil? + il = 0.
We note that the equations (I1), ({2), (I3), (14), (Ij—1), (Im-1), (Im) are parallel to

(2.10), (2.6), (2.12), (2.14), (2.29), (2.29), (2.28), respectively. Hence we omit the
proof for the derivation of these equations.

Step 1. We claim that for any 0 < € < M < oo, there is cc pr > 0 such that for all
e<|{| <M,

(4.5) o{|a> + REI™ (4)} 4 co ]t <0,
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where Ei"!(4) is an interactive functional chosen such that
(4.6) [a]? + RE (4) ~ |a]?.

Proof of claim: The key observation is that all the right-hand terms of identities
(I;) (1 <5 < m) can be absorbed by the left-hand dissipative terms after taking
an appropriate linear combination of all identities. In fact, let us define

E{™(0) = e1(i€lia, G1) + co(—y, i)

m—1
+03{<i§a4ﬁ3,ﬁ4> — <a4'&3,'&2>} + Z q(z’fajﬁj_l,ﬁj).
j=4

By taking the real part of each identity (I;), taking the sum Z;nzl c;jl; with an
appropriate choice of constants ¢; (1 < j <m), and applying the Cauchy-Schwarz
inequality to the right-hand product terms, one can obtain (4.5), where constants
¢; (1 <j < m) depending on € and M are chosen such that

<K<K K ep—sa<KLem_1<K1=cpy.

The detailed representation of the proof is omitted for brevity. (4.6) holds true due
to |[E"(4)] < Carem—1la|* for some constant Cps depending on M and also due
to smallness of ¢, _1. O

Step 2. Let || > M for M > 1. We consider the weighted linear combination of
identities (I;) (1 < j <m) in the form of

m—1
I, + Z cj|§‘_,8jlj7
j=1

where ¢; (1 < j < m — 1) are chosen in terms of step 2, and 3; > 0 are chosen
such that all the right-hand product terms can be absorbed after using the Cauchy-
Schwarz inequality. In fact, multiplying (I;) by |£|7%7, one has
(Is,) = Op(EIEI™ Pt ) + €7 a2|® = —(G€€] o, ) + €7 ||
(Ig,) + Ou(—I€|™ P, tig) + €] P2 |0a|* = [€]7 P2 a|* + (i€|E| b, tia)
+(tiy, i€ aqtis + €| azds).
(Igg) : O (iEIE| P antis, tia) — (aa|€| Pz, o)} + a3[€[* 7 s]* =
+adle* % aal? + (i€]€| ™ aatiy, —i€asis) + ad(i€l€l U, Gs).
(Ig,) = O (i€|€]™ astia, ) + a3[€ 77 || = (i€]€| ™ *agiia, —i€acts)
a3 |e[* P as|® + asaal€ P (@, G5) + (i€]€] T azt, ).
(Ig, 1) = O(i€lE] P azitj—1,a5) + a3[€P P iy |?
= (|E|™ P ajiy_n, —ifajrfija) + a3 €20 ay)?
tajaj1|E*H 1 g, 0y), §=6,7,-- ,m— 1.
(Ig, 1) OGELEI™ P amtlon 1, m) + @ |77 [ty |
= (€| i -1, —Yilm) + ag, [€[7 0 [ |

+am—10m |£|27ﬁm71 <am—27 am>'
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We then require 3; (1 < j <m — 1) to satisfy the following relations. From (Ig,),
pr—=12>20, p1—-2=0,
280 -1) 2 (B1=2)+(ba—2), BL—22p,

where since |£] > M, 31 — 1 > 0 is such that £|¢|7% in the left first product term
of (Ig,) is bounded, B; — 2 > 0 is such that |¢|>7A in the left second product
term of (Ig,) is bounded, 2(f1 — 1) > (1 —2) + (B4 — 2) is such that the product
term (i€|¢|~P1iig, q) on the right first term of (I5,) can be bounded by the linear
combination of the dissipative term |£|>7F1|dz|? in (I,) and |€|>~P4|ay)? in (I5,),
B1 —2 > (3 is such that the term |£|2~5|d;|? on the right second term of (I5,) can
be bounded by the dissipative term |¢|7%2|4;|? of (Ig,). In terms of the completely

same way, from (Ig,) for j = 2,3,--- ,m — 1, respectively, we require
B2 > 0,
B2 Ps—2, 2(B2—1)=(B1—2)+(Bs—2), B2>pB3 [2=Ps,
and
B3—12>0, B3>0, B3—2>0,
Bs—22>Ps—2, PBs>Ps 2(Bs—1)>(B3—2)+ (fa—2),
and

Ba=1, Ba=2, Bs>Ps, Pa=Ps,
2B1=2) 2 (Bs—2)+ (B —2), 2(Ba—1) = B2+ (B —2),
and for j =6,--- ,m—1,
Bi—1>1, Bj—1>2,
Bi-1 > Bj+1,  Bj—1 =B 2(Bj—1—2) > (Bj—2—2) + (8 — 2),
and
Bm-12>1, Bm-12>2,
2(Bm-1—-1) 2 Bm-1—2, Bm-1-220, 2(Bm-1—2) > Bm_2—2.
Let us choose
fr=4, Ba=pf3=-"=Pm-1=2,

which satisfy all the above inequalities of 3; (1 < j <m —1).
We now define

B (a) = c1 (€] g, Ar) + co(— €], tia)
+e3{(i€|¢] 2 aatiz, Ga) — (aq|€| *a3, 12) }

m—1
+ c; (i€|€| 2a i1, 4y ).
j=a

Then, as in Step 1, one can show that for any M > 1, there is ¢py > 0 such that
for all |£] > M,

Ou{|a)® + REZH (@)} + ear{ €72 (] + |62*) + > |5} < 0.
=3
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Step 3. Let || < e for 0 < e < 1. As in Step 2, we consider the weighted linear
combination of identities (I;) (1 < j < m) in the form of

m—1

I, + Z cj|§|aJI]
j=1

where ¢; (1 < j < m — 1) are chosen in terms of step 1, and «; > 0 are chosen
such that all the right-hand product terms can be absorbed after using the Cauchy-
Schwarz inequality. In fact, as in Step 2, multiplying (I;) by |£|*/, one has
(Tay) = O (EJE| i, dn) + [EPF ao]? = —(i€|€| " i, ) + €77 an [*.
(Tny) = (= €|°2 @, a) + €] | [* = [€]°2]ua]? + (i€]¢]*> o, D)
+(t1,i€|&| 2 astiz + i€|E|* asis).
(Tng) = O{(i€]€| % antis, Gia) — (as|€|** a3, Ga) } + aF|€[*T%|as|* =
+ag|€P T aal? + (i€[¢| 2 aqtiy, —ifastis) + af(i€]€]* i, T3).
(Iay) = O (iEIE| " a5y, A5) + a3|€[* 4 aa]® = (i€|€|** a5, —iagiis)
+a3|€[* 0 iis|? + azaal€PH (s, s) + (i€]¢]* azta, @s).
(Tay 1) = Oei€IE[™  ajij—n,a5) + af|€[* T2 [°
= (i€|¢|* ayiy 1, —i€ajy1fy41) + af[€[PT a1
taja; 1 [EPT9 g, 0y), j=6,T,- ,m—1.
Loy ) = Oc(iEIE1" ™ a1, G ) + g [€[2FOm [ |?
= (@€|¢|" " amlm—1, = Ylm) + a$n|£‘2+am71 |ﬁm|2
+am71am|§‘2+am Hlm—2, Um).
As in the case of the large frequency domain, for || < e with € > 0, in order for all

the right product terms to be bounded, from equations (I,,) (j =1,2,---,m — 1)
above, respectively, we have to require

a1+120, 2(a; +1) > (a1 +2) + (g + 2), a1 +2 > ao,

and
ag > ag+2, 2 +1) > (a1 +2) + (g +2), ag > as, as > as,
and
az > ay, az > as, 2(az +1) > (as +2) + (a1 +2),
and

Q4 = g, Qg 2 Qs,
2as+2) > (a3 +2)+ (a5 +2), 2(ag+ 1) > s + (a5 + 2),
and for j =6,--- ,m —1,
ajo1 2 a1, a1 2 ag, 21 +2) 2 (g2 +2) + (a; +2),
and
Q1 20, @1 +22>0, 2(am-1 +2) > apm_2s+2.

To consider the best choice of {a;}'"'", one can see

Jj= 1’
Q202> 2> Qg 2 2 Qe 2 Q1 2> 0= gy,
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with

o) — oy > 2,
Qg — oy > 2,
a3z — oy > 2,

ozj_lfozjgajfaj+1, 4§j§m71
Therefore, the possible best choice satisfies

041—044:2,
ag—a4:2,
as — oy = 2,

2=az3—ag<ag—a5 < S Qo1 — Q= Qo1 = 2,
which implies

a1:a2:a3:2(m—4),
a;j=2(m—j—1), 4<j<m-1

We now define

Et(0) = c1 (6€]€)2 M Vg, 1) + co(— |2 Dy dy)
+C3{<if|§|2(m74)a4ﬁ3,ﬁ4> — (ag 6PV, G5}

+Z meg(m 7= 1)%“] 1, 4).-

Then, as in Step 1, one can show that for any 0 < € < 1, there is ¢, > 0 such that
for all |¢] <,

A{|al* + REG™ (@)} + co{I€1*™ P lan |* + [€[*™laa* + Z €2 ay ) < o,
7=3
which further implies that for || < e,

O{[af® +REG™ (@)} + cclg*™lal* < 0.

Step 4. For ¢ € R let us define

N . B L B
(a) = C1W<Z§U27U1> + 02W<_ula )
|£‘2(m—4) ' L o
+03W{<Z§G4U3a Ug) — (astiz, Ug)}
[

+ZCJ [ 2o (6t-1, ).
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As in Step 2 and Step 3, we consider the weighted linear combination of identities
(I;) (1 <5 <m) in the form of

|§|2(m 4) | |2m 4)

@ ezl ey jeeme 2

Im+61

gf2m-9 gf2m=i—D

+C3(1+|§| T lst ZCJ (1 + [€])20m— T ienzem—n

where ¢; (1 < j < m — 1) are chosen in terms of Step 1. Thanks to computations
in Step 1, Step 2, and Step 3, in the completely same way, one can deduce that for
feR,

|§|2m 8 | |2
(1 +¢pzm—s'™

+ |§|2m ¢ | |2+Z |€|2m 9 |A'|2}<O
(L gzt (L [gem=a T =

O{[af* + RE™ (@)} + of

which further gives
| £‘2m 6

el <
(14 [¢])zm—*
Noticing |@]? + RE™!(d) ~ |a|?, it follows that

|£‘2m—6

ja(t, &) < Ce="@"a(0,8)], n(&) = (G

for all ¢ > 0 and all £ € R. Notice that the result here is consistent with (2.2)
proved in Section 2.3.

4.3. Revisit Model II. In this section we revisit the Model II (1.1) with coeffi-
cients matrices A4,, and L,, defined in (3.1). For simplicity of representation, we
rewrite A, with m = 2n as

o{|a)* + RE™ (1)} +

0 aq
a1 O

0 as34
Ag,, = as3 0

0 2n—12n
A2n,2n—1 0

with agj_1,2; = agj2j—1 = a; for 1 < j < n, and also choose L,, with m = 2n as
0
11
—-10
01
L2n = —-10

01
—-10




DECAY STRUCTURE OF TWO HYPERBOLIC RELAXATION MODELS 47

With notations above, system (1.1) can read
8{&2]‘71 + ifajﬂgj — ’LALQj,Q = O,
Olinj + i€ajlioj—1 + Uoj41 + 022502 =0, j=1,2,---,n,

with the convention that s,4+1 = 0 and 4g = 0. As for the model I, we can obtain
the following estimates

1. N
(4.7) §8t\u|2 +a2|* =0,

and

(4.8) 3t§R<i§a1ﬁ1,Z —i&) I ( I_Ia;C taj) + cai&?|iy|?

Jj=1

< (14 el + R{Eadan, 3 (i) H ax) " Vaay),

j=2
and
(4.9) 0 R(tizj—1,uj—2) + cligj—1]* < zj—2]? + & |agj—5|* + R(~i€a;tiz;, Gzj—2),
and
(4.10) 9 R(ika;ting, tigj—1) + ca;&|ig;)?
S lagjof? + af€?|ag; 1 [* + R(—iajiinj i1, 25 1),

for j = 2,3,--- ,n. Indeed, by using the equations (3.22), (3.26), (3.28), (3.30)
derived in Subsection 3.3, we can get (4.7), (4.8), (4.9), (4.10), immediately.

Let us denote (4.7), (4.8), (4.9), (4.10) by (I1), (I2), (I2j—1) and (I3;), respec-

tively, where j = 2,3,--- ,n. Consider the linear combination of all 2n number of

equations
n

Z(C2jflf2jfl + co5125),

j=1
where ¢ =1, and ¢, > 0 (k= 2,3,---,2n) are constants to be properly chosen. It
is straightforward to verify that for any 0 < € < M < oo, one can choose constants
¢k (1 <k <2n) depending on € and M, with

0 < cop K Con—1 LK Kegj1 K K3 K e <L1l=aq,
such that there is ¢ p > 0 such that for all € < [£] < M,
O{lal* + RET™ (@)} + cenrlaf® <0,

where Ei"(4) is an interactive functional given by

Ei"(4) = 02<i§a1ﬁ1,z —i&)1I( Hak Uaj)
j=1
n

+ Y {eaj1(lnj_1,uzj-2) + co5(i€ayiiag, fiaj1)},
j=2
satisfying
|a]? + REI™(4) ~ |a|?, for e < €] < M.
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Furthermore, we can consider the frequency weighted linear combination in the
form of

- |§] 2 |€]~2
(4.11) > {2 o T 2= T 2 T e e T By 12 )
24 g )

where a; = 51 = 0. As for the model I, we use the same strategy to determine the
choice of constants
Q2,Q3, Q205 P2,83, 0, Ban.

In fact, by considering the low frequency domain |§| < e with € < 1, aig, a3, -+ - , vy,
are required to satisfy inequalities

2—74+a22>0,7=2,3,---,n,

ag >0,

24+ a2 >0,

ag > 0,2+ a3z > 2+ ag,

ay 20,24+ a4 > as,

;> 2+ aipj_2,2 + ag; > g1,

Qoj_1 2 2+ agj_2,2+ aj_1 > agj_3, j=3,4,---,n,

and

2(3_]+a2)2a2]+27]:27 ) 1,

2
o> =,

1
Qg > 5( 2j+1 + agj-1) — 1,

1 .
Q1 > §(a2j+2 +ag)—1,j=2,--- ,n—1

One can take the best choice
as =4(n—2),
Qgj_1 =09 =4n—2)+2(j —2), 7=2,3,-- ,n.
Similarly, by considering the high frequency domain || > M with M > 1, constants
B2, B3, -+, P2y, are required to satisfy inequalities
f2—22>0,
B3 >0,83 =22 P — 2,
Ba > 0,84 —2 2> B,
Baj = Baj—2, B2 — 2 = Paj—1,
Baj—1 > Baj—2 —2,B2j—1 — 2 > Boj_3, 7 =3, -+ ,m,
and
2(83—1) = Bs— 2,
Bot+j—220,2(B24j—3)>Poy —2,j=2,--,n,
2(B2; — 1) > Baji1 + B2j—1,
2(B2j+1 —1) = (Bojr2 —2) + (B2 — 2), =2, ,n— 1.
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One can take the best choice
Baj = Bojy1 =24, j=12,--- n
Now, by (4.11), let us define the interactive functional

n

az o
B(0) = ex e onin, S ([[ow)
k=2

j=1

- gz -
+;{%‘1 1 Jel) 7P (Bs-1 22)

€12

+02jW<i§ajﬂ2jaﬁ2j—l>}>
that is,
int [~ |€|4n—8 . ~ - c\1—75 ] —1~
E™(a) = 02W<Z§G1U1,Z(—Z§) (H ak)” ;)
j=1 k=2

n ‘§|4n+2j—12
+ {62];1 Inidj—14 <'&2j717a2j72>
2 ey g

|£‘4n+2j712
(1 [g])anrar—t2

and also define the energy dissipation rate

+C2; (i€a;lgj, toj—1)},

7 ~ |2 |£|24_O]2 ~ 12
D(U) = |U2| + W'uﬂ
- |§|(12j_1 R 9 |§|2+a2j S
+ 2 e il g il
that is,
9 ~ 12 |§|4TL—6 ~ 12

n |§|4n+2j—12 . ) ‘€|4n+2j—10 o
+Z{(1 I |£D4n+4j—14|u2j*1| T (1+ |£|)4n+4j712|u2j‘ 2
J=2

Then it follows that
O {|af® + RE™ ()} + eD(a) < 0,
for all ¢ > 0 and all £ € R. Noticing
a2 + RE™(0) ~ |i]2,
and
et

D(a) 2 Wlﬁ\z,

one can see that the Model IT (1.1), where coefficients matrices A4,, and L,, are
defined in (3.1) with m = 2n, enjoys the dissipative structure

la(t, &) < Cem a0, ¢)l,
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with

‘§|6n710 |£‘3m710

M= T T g

Hence the derived result here is consistent with (3.2) proved in Theorem 3.1.
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