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Abstract. The paper aims at investigating two types of decay structure for

linear symmetric hyperbolic systems with non-symmetric relaxation. Precisely,
the system is of the type (p, q) if the real part of all eigenvalues admits an

upper bound −c|ξ|2p/(1 + |ξ|2)q , where c is a generic positive constant and ξ

is the frequency variable, and the system enjoys the regularity-loss property
if p < q. It is well known that the standard type (1, 1) can be assured by

the classical Kawashima-Shizuta condition. A new structural condition was

introduced in [33] to analyze the regularity-loss type (1, 2) system with non-
symmetric relaxation. In the paper, we construct two more complex models

of the regularity-loss type corresponding to p = m − 3, q = m − 2 and p =

(3m − 10)/2, q = 2(m − 3), respectively, where m denotes phase dimensions.
The proof is based on the delicate Fourier energy method as well as the suitable

linear combination of series of energy inequalities. Due to arbitrary higher
dimensions, it is not obvious to capture the energy dissipation rate with respect

to the degenerate components. Thus, for each model, the analysis always

starts from the case of low phase dimensions in order to understand the basic
dissipative structure in the general case, and in the mean time, we also give

the explicit construction of the compensating symmetric matrix K and skew-

symmetric matrix S.
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1. Introduction

In the paper, we consider the Cauchy problem on the following linear symmetric
hyperbolic system with relaxation (cf. [5]):

ut +Amux + Lmu = 0(1.1)

with

(1.2) u|t=0 = u0.

Here u = u(t, x) = (u1, · · · , um)T (t, x) ∈ Rm over t > 0, x ∈ R is an unknown
function, u0 = u0(x) ∈ Rm over x ∈ R is a given function, and Am and Lm are
m × m real constant matrices. In general we assume Am is symmetric and Lm
is degenerately dissipative in the sense of 1 ≤ dim (kerLm) ≤ m − 1. As pointed
out in [33], for a general linear degenerately dissipative system it is interesting to
study its decay structure under additional conditions on the coefficient matrices
and further investigate the corresponding time-decay property of solutions to the
Cauchy problem at the linear level. The purpose of the paper is to present two
concrete models of Am and Lm, which do not satisfy the dissipative condition in
[33], to derive the decay structure of the corresponding linear systems. We remark
that the similar issue has been extensively investigated in Villani [37] for an infinite-
dimensional dynamical system, for instance, in the content of kinetic theory.

In what follows let us explain the motivation of dealing with the problem consid-
ered here. More generally one may consider the system in multidimensional space
Rn:

(1.3) A0
mut +

n∑
j=1

Ajmuxj + Lmu = 0,

where u = u(t, x) ∈ Rm over t ≥ 0, x ∈ Rn. When the degenerate relaxation matrix
Lm is symmetric, Umeda-Kawashima-Shizuta [36] proved the large-time asymptotic
stability of solutions for a class of equations of hyperbolic-parabolic type with appli-
cations to both electro-magneto-fluid dynamics and magnetohydrodynamics. The
key idea in [36] and the later generalized work [31] that first introduced the so-
called Kawashima-Shizuta (KS) condition is to construct the compensating matrix
to capture the dissipation of systems over the degenerate kernel space of Lm. The
typical feature of the time-decay property of solutions established in those work
is that the high frequency part decays exponentially while the low frequency part
decays polynomially with the same rate as the heat kernel. To precisely state these
results, we apply Fourier transform to (1.3) (or (1.1)). Then we can obtain

(1.4) A0
mût + i|ξ|Am(ω)û+ Lmû = 0,

where ξ ∈ Rn denote the Fourier variable of x ∈ Rn, ω = ξ/|ξ| ∈ Sn−1, and
Am(ω) :=

∑n
j=1A

j
mωj . Moreover we prepare some notations. Given a real matrix

X, we use Xsy and Xasy to denote the symmetric and skew-symmetric parts of X,
respectively, namely, Xsy = (X +XT )/2 and Xasy = (X −XT )/2. Then the decay
result in [36, 31] is stated as follows.

Proposition 1.1 (Decay property of the standard type ([36, 31])). Consider (1.3)
with the following condition:
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Condition (A)0: A
0
m is real symmetric and positive definite, Ajm for each

1 ≤ j ≤ n is real symmetric, and Lm is real symmetric and nonnegative
definite with the nontrivial kernel.

For this problem, assume that the following condition hold:

Condition (K): There is a real compensating matrix K(ω) ∈ C∞(Sn−1)
with the properties: K(−ω) = −K(ω), (K(ω)A0

m)T = −K(ω)A0
m and

[K(ω)Am(ω)]sy > 0 on kerLm

for each ω ∈ Sn−1.

Then the Fourier image û of the solution u to the equation (1.3) with initial data
u(0, x) = u0(x) satisfies the pointwise estimate:

(1.5) |û(t, ξ)| ≤ Ce−cλ(ξ)t|û0(ξ)|,

where λ(ξ) := |ξ|2/(1 + |ξ|2). Furthermore, let s ≥ 0 be an integer and suppose
that the initial data u0 belong to Hs ∩ L1. Then the solution u satisfies the decay
estimate:

(1.6) ‖∂kxu(t)‖L2 ≤ C(1 + t)−n/4−k/2‖u0‖L1 + Ce−ct‖∂kxu0‖L2

for k ≤ s. Here C and c are positive constants.

Under the conditions (A)0 and (K), we can construct the following energy in-
equality:

d

dt
E + cD ≤ 0,

where

(1.7) E = 〈A0
mû, û〉 −

α|ξ|
1 + |ξ|2

δ〈iK(ω)A0
mû, û〉, D =

|ξ|2

1 + |ξ|2
|û|2 + |(I − P )û|2,

α and δ are suitably small constants, and P denotes the orthogonal projection onto
kerLm.

For the nonlinear system, the global existence of small-amplitude classical solu-
tions was proved by Hanouzet-Natalini [11] in one space dimension and by Yong [38]
in several space dimensions, provided that the system is strictly entropy dissipative
and satisfies the KS condition. And later on, the large time behavior of solutions
was obtained by Bianchini-Hanouzet-Natalini [3] and Kawashima-Yong [17] basing
on the analysis of the Green function of the linearized problem. Those results show
that solutions to such nonlinear system will not develop singularities (e.g., shock
waves) in finite time for small smooth initial perturbations, cf. [5, 19]. Notice that
the L2-stability of a constant equilibrium state in a one-dimensional system of dis-
sipative hyperbolic balance laws endowed with a convex entropy was also studied
by Ruggeri-Serre [29]. Moreover, it would be an interesting and important topic to
study the relaxation limit of general hyperbolic conservation laws with relaxations,
see [4, 16] and reference therein.

Recently it has been found that there exist physical systems which violate the KS
condition but still have some kind of time-decay properties. For instance, for the
dissipative Timoshenko system [13, 14] and the Euler-Maxwell system [7, 35, 34],
the linearized relaxation matrix Lm has a nonzero skew-symmetric part while it
was still proved that solutions decay in time in some different way. Besides those,
there are two related works dealing with general partially dissipative hyperbolic
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systems with zero-order source when the KS condition is not satisfied. Beauchard-
Zuazua [2] first observed the equivalence of the KS condition with the Kalman rank
condition in the context of the control theory. They extended the previous analysis
to some other situations beyond the KS condition, and established the explicit
estimate on the solution semigroup in terms of the frequency variable and also the
global existence of near-equilibrium classical solutions for some nonlinear balance
laws without the KS condition. In the mean time, Mascia-Natalini [25] also made
a general study of the same topic for a class of systems without the KS condition.
The typical situation considered in [25] is that the non-dissipative components are
linearly degenerate which indeed does not hold under the KS condition (see also
[15]). Notice that both in [2] and [25], the rate of convergence of solutions to the
equilibrium states for the nonlinear Cauchy problem is still left unknown.

In [33], the same authors of this paper introduced a new structural condition
which is a generalization of the KS condition, and also analyzed the corresponding
weak dissipative structure called the regularity-loss type for general systems with
non-symmetric relaxation which includes the Timoshenko system and the Euler-
Maxwell system as two concrete examples. Precisely, one has the following result.

Proposition 1.2 (Decay property of the regularity-loss type ([33])). Consider (1.3)
with the condition:

Condition (A): A0
m is real symmetric and positive definite, Ajm for each

1 ≤ j ≤ n is real symmetric, while Lm is not necessarily real symmetric
but is nonnegative definite with the nontrivial kernel.

For this problem, assume the previous condition (K) and the following condition
hold:

Condition (S): There is a real matrix S such that (SA0
m)T = SA0

m, and

[SLm]sy + [Lm]sy ≥ 0 on Cm, ker
(
[SLm]sy + [Lm]sy

)
= ker Lm,

and moreover, for each ω ∈ Sn−1,

i[SAm(ω)]asy ≥ 0 on ker [Lm]sy.(1.8)

Then the Fourier image û of the solution u to the equation (1.3) with initial data
u(0, x) = u0(x) satisfies the pointwise estimate:

(1.9) |û(t, ξ)| ≤ Ce−cλ(ξ)t|û0(ξ)|,

where λ(ξ) := |ξ|2/(1+|ξ|2)2. Moreover, let s ≥ 0 be an integer and suppose that the
initial data u0 belong to Hs ∩ L1. Then the solution u satisfies the decay estimate:

(1.10) ‖∂kxu(t)‖L2 ≤ C(1 + t)−n/4−k/2‖u0‖L1 + C(1 + t)−`/2‖∂k+`x u0‖L2

for k + ` ≤ s. Here C and c are positive constants.

Observe that λ(ξ) in (1.9) behaves as |ξ|2 as |ξ| → 0 but behaves as 1/|ξ|2 as
|ξ| → ∞. Thus those estimates (1.9) and (1.10) are weaker than (1.5) and (1.6),
respectively. In particular, the decay estimate (1.9) is said to be of the regularity-
loss type. Similar decay properties of the regularity-loss type have been recently
observed for several interesting systems. We refer the reader to [13, 14, 23] (cf.
[1, 28]) for the dissipative Timoshenko system, [7, 35, 34] for the Euler-Maxwell
system, [12, 18] for a hyperbolic-elliptic system in radiation gas dynamics, [20, 21,
22, 24, 32] for a dissipative plate equation, and [6, 9] for various kinetic-fluid models.
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In fact, one can show that Proposition 1.1 can be regarded as a corollary of
Proposition 1.2 after replacing (1.8) in condition (S) by a stronger condition:

i[SAm(ω)]asy ≥ 0 on Cm.

for each ω ∈ Sn−1. The key point for the proof of (1.9) is to derive the matrices S
and K(ω) such that the coercive estimate:

(1.11) δ[K(ω)Am(ω)]sy + [SLm]sy + [Lm]sy > 0 on Cm

holds true for suitably small δ > 0. Indeed, under the conditions (A), (S) and (K),
the estimate (1.11) is satisfied. Then, using (1.11), we get the following energy
equality

(1.12)
d

dt
E + cD ≤ 0,

where

E = 〈A0
mû, û〉+

α1

1 + |ξ|2
(
〈SA0

mû, û〉 −
α2|ξ|

1 + |ξ|2
δ〈iK(ω)A0

mû, û〉
)
,

D =
|ξ|2

(1 + |ξ|2)2
|û|2 +

1

1 + |ξ|2
|(I − P )û|2 + |(I − P1)û|2,

(1.13)

α1 and α2 are suitably small constants, and P and P1 denote the orthogonal pro-
jections onto kerLm and ker [Lm]sy. Interested readers may refer to [33] for more
details of this issue and also for the construction of S and K(ω) for the Timoshenko
system and the Euler-Maxwell system. Therefore, those conditions in Proposi-
tion 1.2 are generalizations of the classical KS conditions. We finally remark that
it should be interesting to further investigate the nonlinear stability of constant
equilibrium states of the system of the regularity-loss type under the structural
condition postulated in Proposition 1.2.

Inspired by the previous work [33], the goal of the paper is to construct much
more complex models (1.1) with given Am and Lm such that they enjoy some
new dissipative structure of the regularity-loss type. Here we recall a notion of the
uniform dissipativity of the system (1.1) introduced in [33]. Consider the eigenvalue
problem for the system (1.1):

(ηA0
m + iξAm + Lm)φ = 0,

where η ∈ C and φ ∈ Cm. The corresponding characteristic equation is given by

(1.14) det(ηA0
m + iξAm + Lm) = 0.

The solution η = η(iξ) of (1.14) is called the eigenvalue of the system (1.1).

Definition 1.3. The system (1.1) is called uniformly dissipative of the type (p, q)
if the eigenvalue η = η(iξ) satisfies

< η(iξ) ≤ −c|ξ|2p/(1 + |ξ|2)q

for all ξ ∈ Rn, where c is a positive constant and (p, q) is a pair of positive integers.

Note that as proved in [33, Theorem 4.2], one has < η(iξ) ≤ −cλ(ξ) whenever
the pointwise estimates in the form of (1.5) or (1.9) hold true. Therefore, we can
determine the type (p, q) for a uniformly dissipative system (1.1) in terms of the
function λ(ξ) obtained from the pointwise estimate on û(t, ξ):

(1.15) |û(t, ξ)| ≤ Ce−cλ(ξ)t|û0(ξ)|.
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For example, under the assumption in Propositions 1.1 or 1.2, the system (1.1)
is uniformly dissipative of the type (1, 1) or (1, 2), respectively. Notice that the
regularity-loss type corresponds to the situation when p is strictly less than q, i.e.,
p < q.

Historically, Shizuta-Kawashima [32] showed that, under the condition (A)0, the
strict dissipativity < η(iξ) < 0 for ξ 6= 0 is equivalent to the uniform dissipativity
of the type (1, 1). Moreover, they showed the pointwise estimate (1.5) by using
only one compensating skew-symmetric matrix K(ω) (see (1.7)). On the other
hand, the authors formulated in [33] a class of systems whose dissipativity is of the
type (1, 2) and got Proposition 1.2. Notice that, in this cace, we need to use one
compensating symmetric matrix S and one compensating skew-symmetric matrix
K(ω) to get the desired pointwise estimate (1.9) (see (1.13)). We note that the
dissipative Timoshenko system and the Euler-Maxwell system studied in [13] and
[34], respectively, are included in the class of systems with the type (1, 2) which
was formulated in [33]. However, to get the optimal dissipative estimate for these
two examples, we need to use one S and two different K(ω) (see [26, 34]).

On the other hand, more complicated concrete models are found in these years.
Indeed, Mori-Kawashima [27] considered the Timoshenko-Cattaneo system with
heat conduction and showed that its dissipativity is of the type (2, 3). Moreover,
they proved the optimal dissipative estimate by using four different S and four
different K(ω). This means that Proposition 1.2 and the class formulated in [33]
is not enough to analyze the dissipativity of general systems (1.3), and we have to
study other concrete models.

In this paper, we will present a study of two concrete models of the system (1.1)
related to the above general issue. For the Model I, one has

p = m− 3, q = m− 2,

see (2.2) in Theorem 2.1. While for the Model II, we let m be even and one has

p =
1

2
(3m− 10), q = 2(m− 3),

see (3.2) in Theorem 3.1. In both cases we see p < q and hence two models that we
consider are of the regularity-loss type. Compared with the energy inequality (1.12),
the energy inequalities of the Model I and II are much more complicated. More
precisely, to control the dissipation term, we must employ a lot of compensating
symmetric matrices and skew-symmetric matrices whose numbers depend on the
dimension m of the coefficient matrices. Therefore we can not apply Proposition
1.2 to the Model I and II, and need direct calculations (see in Section 2 and 3).

The proof of the estimate in the form of (1.15) is based on the Fourier energy
method, and in the mean time we also give the explicit construction of matrices S
and K as used in Proposition 1.2. As seen later on, a series of energy estimates
are derived and their appropriate linear combination leads to a Lyapunov-type
inequality of the time-frequency functional equivalent with |û(t, ξ)|2, which hence
implies (1.15). The most difficult point is that it is priorly unclear to justify whether
one choice of (p, q) is optimal; see more discussions in Section 4.1. For that purpose,
we also present an alternative approach to find out the value of (p, q) for both Model
I and Model II, and the detailed strategy of the approach is to be given later on.

The rest of the paper is organized as follows. In Section 2 and Section 3, we
study Model I and Model II, respectively. In each section, for the given model, we
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first state the main results on the dissipative structure and the decay property of
the system (1.1), give the proof by the energy method in the case m = 6 which
indeed corresponds to some existing physical models, show the proof in the general
case m ≥ 6 still using the energy method, and finally give the explicit construction
of matrices S and K. The matrices S and K constructed in Subsection 2.3 and
3.3 have a very important role in obtaining the coercive estimate similar to (1.11).
Consequently, by employing these matrices, we can derive the desired pointwise
estimates through (2.47) and (3.63) to be verified later on. In the last Section 4, we
provide another approach to justify the dissipative structure of the system (1.1).

Notations. For a nonnegative integer k, we denote by ∂kx the totality of all the
k-th order derivatives with respect to x = (x1, · · · , xn). Let 1 ≤ p ≤ ∞. Then
Lp = Lp(Rn) denotes the usual Lebesgue space over Rn with the norm ‖ · ‖Lp .
For a nonnegative integer s, Hs = Hs(Rn) denotes the s-th order Sobolev space
over Rn in the L2 sense, equipped with the norm ‖ · ‖Hs . We note that L2 = H0.
Finally, in this paper, we use C or c to denote various positive constants without
confusion.

2. Model I

2.1. Main result I. In this section, we consider the Cauchy problem (1.1), (1.2)
with coefficient matrices given by

Am =



0 1 0 0
1 0 0 0
0 0 0 a4 0 O
0 0 a4 0 a5 0

0 a5 0 a6

0 a6
. . .

O am
am 0


, Lm =



0 0 0 1
0 0 0 0
0 0 0 0 O
−1 0 0 0

0
. . .

O 0
γ


,(2.1)

where integer m ≥ 6 is even, γ > 0, and all elements aj (4 ≤ j ≤ m) are nonzero.
We note that the system (1.1), (2.1) with m = 6 is the Timoshenko system with
the heat conduction via Cattaneo law (cf. [10, 30]). For this problem, we can derive
the following decay structure.

Theorem 2.1. The Fourier image û of the solution u to the Cauchy problem (1.1)-
(1.2) with (2.1) satisfies the pointwise estimate:

(2.2) |û(t, ξ)| ≤ Ce−cλ(ξ)t|û0(ξ)|,
where λ(ξ) := ξ2(m−3)/(1 + ξ2)m−2. Furthermore, let s ≥ 0 be an integer and
suppose that the initial data u0 belong to Hs ∩L1. Then the solution u satisfies the
decay estimate:

(2.3) ‖∂kxu(t)‖L2 ≤ C(1 + t)−
1

2(m−3)
( 1
2+k)‖u0‖L1 + C(1 + t)−

`
2 ‖∂k+`x u0‖L2

for k + ` ≤ s. Here C and c are positive constants.

We remark that the estimates (2.2) and (2.3) with m = 6 is not optimal. Indeed,
Mori-Kawashima [27] showed more sharp estimates.

The decay estimate (2.3) is derived by the pointwise estimate (2.2) in Fourier
space immediately. Thus readers may refer to the same authors’ paper [33] (see
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also [8]) and we omit the proof of (2.3) for brevity. In order to make the proof more
precise, we first consider the special case m = 6 in Section 2.2, and then generalize
it to the case m ≥ 6 in Section 2.3. The proof of (2.2) is given in the following two
subsections.

2.2. Energy method in the case m = 6. In this subsection we first consider the
case m = 6. In such case, the system (1.1) with (2.1) is described as

∂tû1 + iξû2 + û4 = 0,

∂tû2 + iξû1 = 0,

∂tû3 + iξa4û4 = 0,

∂tû4 + iξ(a4û3 + a5û5)− û1 = 0,

∂tû5 + iξ(a5û4 + a6û6) = 0,

∂tû6 + iξa6û5 + γû6 = 0.

(2.4)

For this system we are going to apply the energy method to derive Theorem 2.1 in
the case m = 6. The proof is organized by the following three steps.

Step 1. We first derive the basic energy equality for the system (2.4) in the
Fourier space. We multiply the all equations of (2.4) by ¯̂u = (¯̂u1, ¯̂u2, ¯̂u3, ¯̂u4, ¯̂u5, ¯̂u6)T ,
respectively, and combine the resultant equations. Then we obtain

6∑
j=1

¯̂uj∂tûj + 2iξ<(û1 ¯̂u2) + 2iξ

5∑
j=3

aj+1<(ûj ¯̂uj+1) + 2iIm(û4 ¯̂u1) + γ|û6|2 = 0.

Thus, taking the real part for the above equality, we arrive at the basic energy
equality

(2.5)
1

2
∂t|û|2 + γ|û6|2 = 0.

Here we use the simple relation ∂t(û
2
j ) = 2<(¯̂uj∂tûj) for any j. Next we create the

dissipation terms.

Step 2. We first construct the dissipation for û1. We multiply the first and fourth
equations in (2.4) by −¯̂u4 and −¯̂u1, respectively. Then, combining the resultant
equations and taking the real part, we have

(2.6) −∂t<(û1 ¯̂u4) + |û1|2 − |û4|2 − ξ<(iû2 ¯̂u4) + a4ξ<(iû1 ¯̂u3) + a5ξ<(iû1 ¯̂u5) = 0.

On the other hand, we multiply the second and third equations in (2.4) by −a4 ¯̂u3
and −a4 ¯̂u2, respectively. Then, combining the resultant equations and taking the
real part, we have

−a4∂t<(û2 ¯̂u3)− a4ξ<(iû1 ¯̂u3) + a24ξ<(iû2 ¯̂u4) = 0.

Therefore, combining the above two equalities, we obtain

(2.7) − ∂t<(û1 ¯̂u4 + a4û2 ¯̂u3) + |û1|2 − |û4|2

+ (a24 − 1)ξ<(iû2 ¯̂u4) + a5ξ<(iû1 ¯̂u5) = 0.

Furthermore, we multiply the second equation and fifth equation in (2.4) by −¯̂u5
and −¯̂u2, respectively. Then, combining the resultant equations and taking the real
part, we have

(2.8) −∂t<(û2 ¯̂u5)− ξ<(iû1 ¯̂u5) + a5ξ<(iû2 ¯̂u4) + a6ξ<(iû2 ¯̂u6) = 0.
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Finally, multiplying (2.7) and (2.8) by a25 and −a5(a24 − 1), respectively, and com-
bining the resultant equations, we have

(2.9) ∂tE1 + a25(|û1|2 − |û4|2)

+ a5(a24 + a25 − 1)ξ<(iû1 ¯̂u5)− a5a6(a24 − 1)ξ<(iû2 ¯̂u6) = 0,

where we have defined that E1 := −<
{
a25(û1 ¯̂u4 + a4û2 ¯̂u3)− a5(a24 − 1)û2 ¯̂u5

}
.

Next, we multiply the first and second equations in (2.4) by −iξ ¯̂u2 and iξ ¯̂u1,
respectively. Then, combining the resultant equations and taking the real part, we
have

(2.10) ξ∂tE2 + ξ2(|û2|2 − |û1|2) + ξ<(iû2 ¯̂u4) = 0,

where E2 := −<(iû1 ¯̂u2). Therefore, by Young inequality, the above equation be-
comes

(2.11) ξ∂tE2 +
1

2
ξ2|û2|2 ≤ ξ2|û1|2 +

1

2
|û4|2.

We multiply the third and fourth equations in (2.4) by iξa4 ¯̂u4 and −iξa4 ¯̂u3,
respectively. Then, combining the resultant equations and taking the real part, we
have

a4ξ∂t<(iû3 ¯̂u4) + a24ξ
2(|û3|2 − |û4|2) + a4a5ξ

2<(û3 ¯̂u5) + a4ξ<(iû1 ¯̂u3) = 0.

On the other hand, we multiply the second and third equations in (2.27) by −a4 ¯̂u3
and −a4 ¯̂u2, respectively. Then, combining the resultant equations and taking the
real part, we have

−a4∂t<(û2 ¯̂u3)− a4ξ<(iû1 ¯̂u3) + a24ξ<(iû2 ¯̂u4) = 0.

Finally, combining the above two equations, we get

(2.12) ∂t
{
ξE3 + F1

}
+ a24ξ

2(|û3|2 − |û4|2) + a4a5ξ
2<(û3 ¯̂u5) + a24ξ<(iû2 ¯̂u4) = 0.

where E3 := a4<(iû3 ¯̂u4) and F1 := −a4<(û2 ¯̂u3). By using Young inequality, we
can obtain the following inequality:

(2.13) ∂t
{
ξE3 + F1

}
+

1

2
a24ξ

2|û3|2 ≤ a24ξ2|û4|2 +
1

2
a25ξ

2|û5|2 + a24|ξ||û2||û4|.

Multiplying the fourth equation and fifth equation in (2.27) by iξa5 ¯̂u5 and
−iξa5 ¯̂u4, respectively, combining the resultant equations, and taking the real part,
then we have

(2.14) ξ∂tE4 + a25ξ
2(|û4|2 − |û5|2)

− a4a5ξ2<(û3 ¯̂u5) + a5a6ξ
2<(û4 ¯̂u6)− a5ξ<(iû1 ¯̂u5) = 0,

where E4 := a5<(iû4 ¯̂u5). Here, by using Young inequality, we obtain

(2.15) ξ∂tE4 +
1

2
a25ξ

2|û4|2

≤ a25ξ2|û5|2 +
1

2
a26ξ

2|û6|2 + a4a5ξ
2<(û3 ¯̂u5) + a5ξ<(iû1 ¯̂u5).

On the other hand, we multiply the fifth equation and the last equation in (2.4)
by iξa6 ¯̂u6 and −iξa6 ¯̂u5, respectively. Then, combining the resultant equations and
taking the real part, we obtain

a6ξ∂t<(iû5 ¯̂u6) + a26ξ
2(|û5|2 − |û6|2)− a5a6ξ2<(û4 ¯̂u6) + γa6ξ<(iû5 ¯̂u6) = 0.



10 Y. UEDA, R.-J. DUAN, AND S. KAWASHIMA

Using Young inequality, this yields

(2.16) a6ξ∂t<(iû5 ¯̂u6) +
1

2
a26ξ

2|û5|2 ≤ a26ξ2|û6|2 +
1

2
γ2|û6|2 + a5a6ξ

2<(û4 ¯̂u6).

Step 3. In this step, we sum up the energy inequalities derived in the previous
step, and then get the desired energy estimate. Throughout this step, βj with j ∈ N
denote the real numbers determined later. We first multiply (2.9) and (2.11) by ξ2

and β1, respectively. Then we combine the resultant equation, obtaining

∂t
{
ξ2E1 + β1ξE2

}
+ (a25 − β1)ξ2|û1|2 +

β1
2
ξ2|û2|2

≤
(β1

2
+ a25ξ

2
)
|û4|2 − a5(a24 + a25 − 1)ξ3<(iû1 ¯̂u5) + a5a6(a24 − 1)ξ3<(iû2 ¯̂u6).

Moreover, combining (2.9), (2.13) and the above inequality, we have

∂t
{

(1 + ξ2)E1 + β1ξE2 + ξE3 + F1

}
+
{
a25 + (a25 − β1)ξ2

}
|û1|2 +

β1
2
ξ2|û2|2 +

1

2
a24ξ

2|û3|2

≤
{
a25 +

β1
2

+ (a24 + a25)ξ2
}
|û4|2 +

1

2
a25ξ

2|û5|2 + a24|ξ||û2||û4|

− a5(a24 + a25 − 1)ξ(1 + ξ2)<(iû1 ¯̂u5) + a5a6(a24 − 1)ξ(1 + ξ2)<(iû2 ¯̂u6).

For this inequality, letting β1 suitably small and employing Young inequality, we
can get

(2.17) ∂t
{

(1 + ξ2)E1 + cξE2 + ξE3 + F1

}
+ c(1 + ξ2)|û1|2 + β1ξ

2(|û2|2 + |û3|2)

≤ C(1 + ξ2)|û4|2 + Cξ2|û5|2

+ |a24 + a25 − 1|C|ξ|3|û1||û5|+ |a24 − 1|C|ξ|(1 + ξ2)|û2||û6|.

Similarly, multiplying (2.15) and (2.17) by 1 + ξ2 and β2ξ
2, respectively. Then we

combine the resultant equation, obtainig

∂t
{
β2ξ

2((1 + ξ2)E1 + β1ξE2 + ξE3 + F1) + ξ(1 + ξ2)E4

}
+ β2cξ

2(1 + ξ2)|û1|2 + β2cξ
4(|û2|2 + |û3|2) +

(1

2
a25 − β2C

)
ξ2(1 + ξ2)|û4|2

≤ β2Cξ4|û5|2 + a25ξ
2(1 + ξ2)|û5|2 +

1

2
a26ξ

2(1 + ξ2)|û6|2

+ a4a5ξ
2(1 + ξ2)<(û3 ¯̂u5) + a5ξ(1 + ξ2)<(iû1 ¯̂u5)

+ β2|a24 + a25 − 1|C|ξ|5|û1||û5|+ β2|a24 − 1|C|ξ|3(1 + ξ2)|û2||û6|.

Letting β2 suitably small and using Young inequality derive that

(2.18) ∂t
{
β2ξ

2((1 + ξ2)E1 + β1ξE2 + ξE3 + F1) + ξ(1 + ξ2)E4

}
+ cξ2(1 + ξ2)(|û1|2 + |û4|2) + cξ4(|û2|2 + |û3|2)

≤ C(1 + ξ2)2|û5|2 + Cξ2(1 + ξ2)|û6|2

+ |a24 + a25 − 1|Cξ6|û5|2 + |a24 − 1|C|ξ|2(1 + ξ2)2|û2||û6|.
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If we assume that a24 − 1 = 0, the estimate (2.18) can be rewritten as

(2.19) ∂t
{
β2ξ

2((1 + ξ2)E1 + β1ξE2 + ξE3 + F1) + ξ(1 + ξ2)E4

}
+ cξ2(1 + ξ2)(|û1|2 + |û4|2) + cξ4(|û2|2 + |û3|2)

≤ C(1 + ξ2)3|û5|2 + Cξ2(1 + ξ2)|û6|2.

Then, multiplying (2.16) and the above inequality by (1 + ξ2)3 and β3ξ
2, respec-

tively, and combining the resultant equation, we have

∂t
{
β3ξ

2(β2ξ
2((1 + ξ2)E1 + β1ξE2 + ξE3 + F1) + ξ(1 + ξ2)E4) + ξ(1 + ξ2)3E5

}
+ β3cξ

4(1 + ξ2)(|û1|2 + |û4|2) + β3cξ
6(|û2|2 + |û3|2)

+
(1

2
a26 − β3C

)
ξ2(1 + ξ2)3|û5|2 ≤ β3Cξ4(1 + ξ2)|û6|2

+
(
a26ξ

2 +
1

2
γ2
)

(1 + ξ2)3|û6|2 + a5a6ξ
2(1 + ξ2)3<(û4 ¯̂u6).

Hence we arrive at

∂t
{
β3ξ

2(β2ξ
2((1 + ξ2)E1 + β1ξE2 + ξE3 + F1)

+ ξ(1 + ξ2)E4) + ξ(1 + ξ2)3E5

}
+ cξ4(1 + ξ2)(|û1|2 + |û4|2) + cξ6(|û2|2 + |û3|2) + cξ2(1 + ξ2)3|û5|2

≤ C(1 + ξ2)4|û6|2 + Cξ2(1 + ξ2)3|û4|||û6|.

Moreover, we multiply (2.13) and (2.15) by β4ξ
6 and β5ξ

6, respectively, and com-
bining the resultant equations and the above inequality. Then, letting β4 and β5
suitably small, this yields

(2.20) ∂tE + cξ4(1 + ξ2)|û1|2 + cξ6|û2|2 + cξ6(1 + ξ2)|û3|2

+ cξ4(1 + ξ2)2|û4|2 + cξ2(1 + ξ2)3|û5|2 ≤ C(1 + ξ2)4|û6|2,

where we have defined

(2.21) E = β2β3ξ
4(1 + ξ2)E1 + β1β2β3ξ

5E2 + ξ4(β2β3 + β4ξ
2)(ξE3 + F1)

+ ξ3(β3(1 + ξ2) + β5ξ
4)E4 + ξ(1 + ξ2)3E5.

Finally, combining the basic energy (2.5) with the above estimate, this yields

(2.22) ∂t

{1

2
(1 + ξ2)4|û|2 + β7E

}
+ cξ4(1 + ξ2)|û1|2

+ cξ6|û2|2 + c

6∑
j=3

ξ2(6−j)(1 + ξ2)j−2|ûj |2 ≤ 0.

Thus, integrating the above estimate with respect to t, we obtain the following
energy estimate

(2.23) |û(t, ξ)|2 +

∫ t

0

{ ξ4

(1 + ξ2)3
|û1|2 +

ξ6

(1 + ξ2)4
|û2|2

+

6∑
j=3

ξ2(6−j)

(1 + ξ2)6−j
|ûj |2

}
dτ ≤ C|û(0, ξ)|2.
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Here we used the following inequality

(2.24) c|û|2 ≤ 1

2
|û|2 +

β7
(1 + ξ2)4

E ≤ C|û|2

for suitably small β7. Furthermore the estimate (2.22) with (2.24) gives us the
following pointwise estimate

(2.25) |û(t, ξ)| ≤ Ce−cλ(ξ)t|û(0, ξ)|, λ(ξ) =
ξ6

(1 + ξ2)4
.

On the other hand, if we assume that a24 + a25 − 1 = 0, the estimate (2.18) is
rewritten as

∂t
{
β2ξ

2((1 + ξ2)E1 + β1ξE2 + ξE3 + F1) + ξ(1 + ξ2)E4

}
+ cξ2(1 + ξ2)(|û1|2 + |û4|2) + cξ4(|û2|2 + |û3|2)

≤ C(1 + ξ2)2|û5|2 + C(1 + ξ2)4|û6|2.
(2.26)

Then, multiplying (2.16) and the above inequality by (1 + ξ2)2 and β3ξ
2, respec-

tively, and combining the resultant equation, we have

∂t
{
β3ξ

2(β2ξ
2((1 + ξ2)E1 + β1ξE2 + ξE3 + F1) + ξ(1 + ξ2)E4) + ξ(1 + ξ2)2E5

}
+ β3cξ

4(1 + ξ2)(|û1|2 + |û4|2) + β3cξ
6(|û2|2 + |û3|2) +

(1

2
a26− β3C

)
ξ2(1 + ξ2)2|û5|2

≤ β3C(1 + ξ2)4|û6|2 +
(
a26ξ

2 +
1

2
γ2
)

(1 + ξ2)2|û6|2 + a5a6ξ
2(1 + ξ2)2<(û4 ¯̂u6).

Hence we arrive at

∂t
{
β3ξ

2(β2ξ
2((1 + ξ2)E1 + β1ξE2 + ξE3 + F1)

+ ξ(1 + ξ2)E4) + ξ(1 + ξ2)2E5

}
+ cξ4(1 + ξ2)(|û1|2 + |û4|2) + cξ6(|û2|2 + |û3|2) + cξ2(1 + ξ2)2|û5|2

≤ C(1 + ξ2)4|û6|2.

Moreover, we multiply (2.13), (2.15) and (2.16) by β4ξ
6, β5ξ

6 and β6ξ
6, respectively,

and combine the resultant equations and the above inequality. Then, letting β4 and
β5 suitably small, this yields

∂t
{
β2β3ξ

4(1 + ξ2)E1 + β1β2β3ξ
5E2 + ξ4(β2β3 + β4ξ

2)(ξE3 + F1)

+ ξ3(β3(1 + ξ2) + β5ξ
4)E4 + ξ((1 + ξ2)2 + β6ξ

6)E5

}
+ cξ4(1 + ξ2)|û1|2 + cξ6|û2|2 + cξ6(1 + ξ2)|û3|2

+ cξ4(1 + ξ2)2|û4|2 + cξ2(1 + ξ2)3|û5|2 ≤ C(1 + ξ2)4|û6|2.

We note that this estimate is essentially the same as (2.20). Hence we can obtain
the energy estimate (2.23) and the pointwise estimate (2.25). Eventually, we arrive
at the estimate for both cases a24 − 1 = 0 and a24 + a25 − 1 = 0. Moreover, by using
the similar argument, we can derive the same estimates in the case a24 − 1 6= 0,
a24 + a25 − 1 6= 0. Thus we complete the proof of Theorem 2.1 with m = 6.
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2.3. Energy method for model I. Inspired by the concrete computation in Sub-
section 2.2, we consider the more general case m ≥ 6. Now, our system (1.1) with
(2.1) is described as

∂tû1 + iξû2 + û4 = 0,

∂tû2 + iξû1 = 0,

∂tû3 + iξa4û4 = 0,

∂tû4 + iξ(a4û3 + a5û5)− û1 = 0,

∂tûj + iξ(aj ûj−1 + aj+1ûj+1) = 0, j = 5, · · · ,m− 1,

∂tûm + iξamûm−1 + γûm = 0.

(2.27)

We are going to apply the energy method to this system and derive Theorem 2.1.
The proof is organized by the following three steps.

Step 1. We first derive the basic energy equality for the system (1.1) in the Fourier
space. Taking the inner product of (1.1) with û, we have

〈ût, û〉+ iξ〈Amû, û〉+ 〈Lmû, û〉 = 0.

Taking the real part, we get the basic energy equality

1

2

∂

∂t
|û|2 + 〈Lmû, û〉 = 0,

and hence

(2.28)
1

2
∂t|û|2 + γû2m = 0.

Next we create the dissipation terms by the following two steps.

Step 2. For ` = 6, · · · ,m − 1, we multiply the fifth equations with j = ` − 1
and j = ` in (2.27) by iξa` ¯̂u` and −iξa` ¯̂u`−1, respectively. Then, combining the
resultant equations and taking the real part, we have

(2.29) a`ξ∂t<(iû`−1 ¯̂u`) + a2`ξ
2(|û`−1|2 − |û`|2)

− a`a`−1ξ2<(û`−2 ¯̂u`) + a`a`+1ξ
2<(û`−1 ¯̂u`+1) = 0.

Here, by using Young inequality, we obtain

(2.30) ξ∂tE`−1 +
1

2
a2`ξ

2|û`−1|2 ≤ a2`ξ2|û`|2 +
1

2
a2`+1ξ

2|û`+1|2 +a`a`−1ξ
2<(û`−2 ¯̂u`)

for ` = 6, · · · ,m − 1, where we have defined E`−1 = a`ξ<(iû`−1 ¯̂u`). On the other
hand, we multiply the fifth equation with j = m− 1 and the last equation in (2.27)
by iξam ¯̂um and −iξam ¯̂um−1, respectively. Then, combining the resultant equations
and taking the real part, we obtain

(2.31) amξ∂t<(iûm−1 ¯̂um) + a2mξ
2(|ûm−1|2 − |ûm|2)

− amam−1ξ2<(ûm−2 ¯̂um) + γamξ<(iûm−1 ¯̂um) = 0.

Using Young inequality, this yields

(2.32) ξ∂tEm−1 +
1

2
a2mξ

2|ûm−1|2

≤ a2mξ2|ûm|2 +
1

2
γ2|ûm|2 + amam−1ξ

2<(ûm−2 ¯̂um),

where we have defined Em−1 = amξ<(iûm−1 ¯̂um).
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Step 3. We note that equations (2.27) with 1 ≤ j ≤ 5 are the same as the five
equations in (2.4). Thus we can adopt the useful estimates derived in Subsection
2.2. More precisely, we employ (2.13), (2.15) and (2.18) again.

For the estimate (2.18), if we assume that a24 − 1 = 0, we can obtain (2.19).
Then, multiplying (2.30) with ` = 6 and (2.19) by (1 + ξ2)3 and β3ξ

2, respectively,
and combining the resultant equation, we have

∂t
{
β3ξ

2(β2ξ
2((1 + ξ2)E1 + β1ξE2 + ξE3 + F1) + ξ(1 + ξ2)E4) + ξ(1 + ξ2)3E5

}
+ β3cξ

4(1 + ξ2)(|û1|2 + |û4|2) + β3cξ
6(|û2|2 + |û3|2)

+
(1

2
a26 − β3C

)
ξ2(1 + ξ2)3|û5|2 ≤ β3Cξ4(1 + ξ2)|û6|2 + a26ξ

2(1 + ξ2)3|û6|2

+
1

2
a27ξ

2(1 + ξ2)3|û7|2 + a5a6ξ
2(1 + ξ2)3<(û4 ¯̂u6).

Hence we arrive at

∂t
{
β3ξ

2(β2ξ
2((1 + ξ2)E1 + β1ξE2 + ξE3 + F1)

+ ξ(1 + ξ2)E4) + ξ(1 + ξ2)3E5

}
+ cξ4(1 + ξ2)(|û1|2 + |û4|2) + cξ6(|û2|2 + |û3|2) + cξ2(1 + ξ2)3|û5|2

≤ Cξ2(1 + ξ2)3(|û6|2 + |û7|2) + Cξ2(1 + ξ2)3|û4|||û6|.

Moreover, we multiply (2.13) and (2.15) by β4ξ
6 and β5ξ

6, respectively, and com-
bining the resultant equations and the above inequality. Then, letting β4 and β5
suitably small, this yields

(2.33) ∂tE + cξ4(1 + ξ2)|û1|2 + cξ6|û2|2 + cξ6(1 + ξ2)|û3|2 + cξ4(1 + ξ2)2|û4|2

+ cξ2(1 + ξ2)3|û5|2 ≤ C(1 + ξ2)4|û6|2 + Cξ2(1 + ξ2)3|û7|2.

where E is defined in (2.21).
On the other hand, if we assume that a24 + a25 − 1 = 0, we employ (2.26). Then,

multiplying (2.30) with ` = 6 and (2.26) by (1 + ξ2)2 and β3ξ
2, respectively, and

combining the resultant equation, we have

∂t
{
β3ξ

2(β2ξ
2((1 + ξ2)E1 + β1ξE2 + ξE3 + F1) + ξ(1 + ξ2)E4) + ξ(1 + ξ2)2E5

}
+ β3cξ

4(1 + ξ2)(|û1|2 + |û4|2) + β3cξ
6(|û2|2 + |û3|2)

+
(1

2
a26 − β3C

)
ξ2(1 + ξ2)2|û5|2 ≤ β3C(1 + ξ2)4|û6|2 + a26ξ

2(1 + ξ2)2|û6|2

+
1

2
a27ξ

2(1 + ξ2)2|û7|2 + a5a6ξ
2(1 + ξ2)2<(û4 ¯̂u6).

Hence we arrive at

∂t
{
β3ξ

2(β2ξ
2((1 + ξ2)E1 + β1ξE2 + ξE3 + F1)

+ ξ(1 + ξ2)E4) + ξ(1 + ξ2)2E5

}
+ cξ4(1 + ξ2)(|û1|2 + |û4|2) + cξ6(|û2|2 + |û3|2) + cξ2(1 + ξ2)2|û5|2

≤ C(1 + ξ2)4|û6|2 + Cξ2(1 + ξ2)2|û7|2.

Moreover, we multiply (2.13), (2.15) and (2.30) with ` = 6 by β4ξ
6, β5ξ

6 and β6ξ
6,

respectively, and combine the resultant equations and the above inequality. Then,
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letting β4, β5 and β6 suitably small, this yields

∂t
{
β2β3ξ

4(1 + ξ2)E1 + β1β2β3ξ
5E2 + ξ4(β2β3 + β4ξ

2)(ξE3 + F1)

+ ξ3(β3(1 + ξ2) + β5ξ
4)E4 + ξ((1 + ξ2)2 + β6ξ

6)E5

}
+ cξ4(1 + ξ2)|û1|2 + cξ6|û2|2 + cξ6(1 + ξ2)|û3|2

+ cξ4(1 + ξ2)2|û4|2 + cξ2(1 + ξ2)3|û5|2 ≤ C(1 + ξ2)4|û6|2 + Cξ2(1 + ξ2)3|û7|2.

Consequently, this estimate is essentially the same as (2.33). Moreover, by using
the similar argument, we can derive the same estimate in the case a24 − 1 6= 1 and
a24 + a25 − 1 6= 0.

By using the estimate (2.33), we construct the desired estimate. We multiply
(2.30) with ` = 7 and (2.33) by (1 + ξ2)4 and β7ξ

2, respectively, and combine the
resultant equation. Moreover, letting β7 suitably small and using Young inequality,
we obtain

∂t
{
β7ξ

2E + ξ(1 + ξ2)4E6

}
+ cξ6(1 + ξ2)|û1|2 + cξ8|û2|2 + cξ8(1 + ξ2)|û3|2

+ cξ6(1 + ξ2)2|û4|2 + cξ4(1 + ξ2)3|û5|2 + cξ2(1 + ξ2)4|û6|2

≤ C(1 + ξ2)5|û7|2 + Cξ2(1 + ξ2)4|û8|2.

Eventually, by the induction argument with respect to j in (2.30), we can derive

(2.34) ∂tEm−2 + cξ2(m−5)(1 + ξ2)|û1|2 + cξ2(m−4)|û2|2

+ c

m−2∑
j=3

ξ2(m−j−1)(1 + ξ2)j−2|ûj |2

≤ C(1 + ξ2)m−3|ûm−1|2 + Cξ2(1 + ξ2)m−4|ûm|2.

for m ≥ 7. Here we define Em−2 as E5 = E and

Em−2 = βm−1ξ
2Em−3 + ξ(1 + ξ2)m−4Em−2, m ≥ 8.

Now, multiplying (2.32) and (2.34) by (1 + ξ2)m−3 and βmξ
2, respectively, and

making the appropriate combination, we get

(2.35) ∂tEm−1 + cξ2(m−4)(1 + ξ2)|û1|2 + cξ2(m−3)|û2|2

+ c

m−1∑
j=3

ξ2(m−j)(1 + ξ2)j−2|ûj |2 ≤ C(1 + ξ2)m−2|ûm|2.

Finally, combining (2.28) with (2.35), this yields

(2.36) ∂t

{1

2
(1 + ξ2)m−2|û|2 + βm+1Em−1

}
+ cξ2(m−4)(1 + ξ2)|û1|2

+ cξ2(m−3)|û2|2 + c

m∑
j=3

ξ2(m−j)(1 + ξ2)j−2|ûj |2 ≤ 0.
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Thus, integrating the above estimate with respect to t, we obtain the following
energy estimate

(2.37) |û(t, ξ)|2 +

∫ t

0

{ ξ2(m−4)

(1 + ξ2)m−3
|û1|2 +

ξ2(m−3)

(1 + ξ2)m−2
|û2|2

+

m∑
j=3

ξ2(m−j)

(1 + ξ2)m−j
|ûj |2

}
dτ ≤ C|û(0, ξ)|2

for m ≥ 7. Here we have used the following inequality

c|û|2 ≤ 1

2
|û|2 +

βm+1

(1 + ξ2)m−2
Em−1 ≤ C|û|2

for suitably small βm+1. Furthermore the estimate (2.35) with (2.36) gives us the
following pointwise estimate

|û(t, ξ)| ≤ Ce−cλ(ξ)t|û(0, ξ)|, λ(ξ) =
ξ2(m−3)

(1 + ξ2)m−2

for m ≥ 7. Therefore, together with the proof in Subsection 2.2, (2.2) is proved,
and we then complete the proof of Theorem 2.1.

2.4. Construction of the matrices K and S. In this section, inspired by the
energy method employed in Sections 2.2 and 2.3, we shall derive the matrices K
and S.

Based on the energy method of Step 2 in Subsection 2.2, we introduce the fol-
lowing m×m matrices:

S1 =


0 0 0 1
0 0 0 0
0 0 0 0 O
1 0 0 0

O O

 , S2 =


0 0 0 0
0 0 1 0
0 1 0 0 O
0 0 0 0

O O

 , S3 =



0 0 0 0 0
0 0 0 0 1
0 0 0 0 0 O
0 0 0 0 0
0 1 0 0 0

O O


,

and hence

S̃ = −a5
{
a5(S1 + a4S2)− a5(a24 − 1)S3

}

= −a5



0 0 0 a5 0
0 0 a4a5 0 1− a24
0 a4a5 0 0 0 O
a5 0 0 0 0
0 1− a24 0 0 0

O O


.

Then, we multiply (1.4) by S̃ and take the inner product with û. Furthermore,
taking the real part of the resultant equation, we obtain

(2.38)
1

2
∂t〈S̃û, û〉+ ξ〈i[S̃Am]asyû, û〉+ 〈[S̃Lm]syû, û〉 = 0,
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where

S̃Am = −a5



0 0 a4a5 0 a25 0
0 0 0 a5 0 a6(1− a24)

a4a5 0 0 0 0 0 O
0 a5 0 0 0 0

1− a24 0 0 0 0 0
0 0 0 0 0 0

O O


,

S̃Lm = a25


1 0 0 0
0 0 0 0
0 0 0 0 O
0 0 0 −1

O O

 .

The equality (2.38) is equivalent to (2.9). We note that the symmetric matrix
S1 + a4S2 is the key matrix for 4 × 4 Timoshenko system (see [13, 14]). The

symmetric matrix S̃ is the one of the key matrix for the system (1.4).
On the other hand, we introduce the following m×m matrix:

K1 =


0 −1 0 0
1 0 0 0
0 0 0 0 O
0 0 0 0

O O

 .

Then, we multiply (1.4) by −iξK1 and take the inner product with û. Moreover,
taking the real part of the resultant equation, we have

(2.39) −1

2
ξ∂t〈iK1û, û〉+ ξ2〈[K1Am]syû, û〉 − ξ〈i[K1Lm]asyû, û〉 = 0,

where

K1Am =


−1 0 0 0
0 1 0 0
0 0 0 0 O
0 0 0 0

O O

 , K1Lm =


0 0 0 0
0 0 0 1
0 0 0 0 O
0 0 0 0

O O

 .

The equality (2.39) is equivalent to (2.10).
We next introduce the following m×m matrices:

K4 = a4


0 0 0 0
0 0 0 0
0 0 0 1 O
0 0 −1 0

O O

 , S4 = −a4


0 0 0 0
0 0 1 0
0 1 0 0 O
0 0 0 0

O O

 .
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Then, we multiply (1.4) by −iξK2 and S4, and take the inner product with û, re-
spectively. Moreover, taking the real part of the resultant equations and combining
these, then we have

(2.40)
1

2
∂t〈(S4 − iξK4)û, û〉+ ξ2〈[K4Am]syû, û〉+ 〈[S4Lm]syû, û〉

+ ξ〈i[S4Am −K4Lm]asyû, û〉 = 0,

where S4Lm = O and

K4Am =



0 0 0 0 0
0 0 0 0 0
0 0 a24 0 a4a5 O
0 0 0 −a24 0
0 0 0 0 0

O O


, S4Am −K4Lm =


0 0 0 0
0 0 0 −a24
0 0 0 0 O
0 0 0 0

O O

 .

The equality (2.40) is equivalent to (2.12).
Similarly we introduce the following m×m matrix:

K5 = a5



0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 O
0 0 0 0 1
0 0 0 −1 0

O O


.

Then, we multiply (1.4) by −iξK5 and take the inner product with û. Furthermore,
taking the real part of the resultant equation, we obtain

(2.41) −1

2
ξ∂t〈iK5û, û〉+ ξ2〈[K5Am]syû, û〉 − ξ〈i[K5Lm]asyû, û〉 = 0,

where

K5Am =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 O
0 0 0 a25 0 a5a6
0 0 −a4a5 0 −a25 0
0 0 0 0 0 0

O O


, K5Lm =



0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 O
0 0 0 0 0
a5 0 0 0 0

O O


.

The equality (2.41) is equivalent to (2.14).
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Based on the energy method of Step 2 in Subsection 2.3, we introduce the fol-
lowing m×m matrices:

K` = a`



0 0

O ...
... O

0 0
0 · · · 0 0 1 0 · · · 0 `− 1
0 · · · 0 −1 0 0 · · · 0 `

0 0

O ...
... O

0 0
`− 1 `



for ` = 6, · · · ,m− 1. Then, we multiply (1.4) by −iK` and take the inner product
with û. Furthermore, taking the real part of the resultant equation, we obtain

(2.42) −1

2
ξ∂t〈iK`û, û〉+ ξ2〈[K`Am]syû, û〉 = 0

for ` = 6, · · · ,m− 1, where

K`Am =



0 0 0 0

O ...
...

...
... O

0 0 0 0
0 · · · 0 0 a2` 0 a`a`+1 0 · · · 0 `− 1
0 · · · 0 −a`−1a` 0 −a2` 0 0 · · · 0 `

0 0 0 0

O ...
...

...
... O

0 0 0 0
`− 2 `− 1 ` `+ 1



Moreover we have

(2.43) −1

2
ξ∂t〈iKmû, û〉+ ξ2〈[KmAm]syû, û〉 − ξ〈i[KmLm]asyû, û〉 = 0,

where

KmAm =


0 0 0

O ...
...

...
0 0 0

0 · · · 0 0 a2m 0
0 · · · 0 −am−1am 0 −a2m

 , KmLm =


0

O ...
0

0 · · · 0 amγ
0 · · · 0 0

 .

The equalities (2.42) and (2.43) are equivalent to (2.29) and (2.31), respectively.
For the rest of this subsection, we construct the desired matrices. According

to the strategy of Step 3 in Subsection 2.2, we first combine (2.38) and (2.39).
More precisely, multiplying (2.38), (2.40) and (2.39) by (1 + ξ2), (1 + ξ2) and δ1,



20 Y. UEDA, R.-J. DUAN, AND S. KAWASHIMA

respectively, and combining the resultant equations, we obtain

1

2
∂t
〈{

(1 + ξ2)S − iξ(δ1K1 + (1 + ξ2)K4)
}
û, û

〉
+ (1 + ξ2)〈[SLm]syû, û〉+ ξ2〈[(δ1K1 + (1 + ξ2)K4)Am]syû, û〉
+ ξ(1 + ξ2)〈i[SAm]asyû, û〉 − ξ〈i[(δ1K1 + (1 + ξ2)K4)Lm]asyû, û〉 = 0.

Here we define S = S̃ + S4. We next multiply (2.41) with ` = 6 and the above
equation by (1+ξ2)2 and δ2ξ

2, respectively, and combining the resultant equations,
we obtain

1

2
∂t
〈{
δ2ξ

2((1 + ξ2)S − iξ(δ1K1 + (1 + ξ2)K4))− ξ(1 + ξ2)2K5

}
û, û

〉
+ δ2ξ

2(1 + ξ2)〈[SLm]syû, û〉+ δ2ξ
3(1 + ξ2)〈i[SAm]asyû, û〉

+ ξ2〈[(δ2ξ2(δ1K1 + (1 + ξ2)K4) + (1 + ξ2)2K5)Am]syû, û〉
− ξ〈i[(δ2ξ2(δ1K1 + (1 + ξ2)K4) + (1 + ξ2)2K5)Lm]asyû, û〉 = 0.

Moreover, multiplying (2.42) and the above equation by (1 + ξ2)3 and δ3ξ
2, respec-

tively, and combining the resultant equations, we get

1

2
∂t
〈{
δ3ξ

2(δ2ξ
2((1 + ξ2)S − iξ(δ1K1 + (1 + ξ2)K4))

− iξ(1 + ξ2)2K5)− iξ(1 + ξ2)3K6

}
û, û

〉
+ δ2δ3ξ

4(1 + ξ2)〈[SLm]syû, û〉+ δ2δ3ξ
5(1 + ξ2)〈i[SAm]asyû, û〉

+ ξ2〈[(δ3ξ2(δ2ξ
2(δ1K1 + (1 + ξ2)K4) + (1 + ξ2)2K5) + (1 + ξ2)3K6)Am]syû, û〉

− δ3ξ3〈i[(δ2ξ2(δ1K1 + (1 + ξ2)K4) + (1 + ξ2)2K5)Lm]asyû, û〉 = 0.

Consequently, by the induction argument with respect to ` in (2.42), we have

(2.44)
1

2
∂t

〈{ `−3∏
j=2

δjξ
2(`−4)(1 + ξ2)S − iξK`

}
û, û

〉

+

`−3∏
j=2

δjξ
2(`−4)(1 + ξ2)〈[SLm]syû, û〉+

`−3∏
j=2

δjξ
2(`−4)+1(1 + ξ2)〈i[SAm]asyû, û〉

+ ξ2〈[K`Am]syû, û〉 −
`−3∏
j=3

δjξ
2(`−5)+1〈i[K5Lm]asyû, û〉 = 0.

for 5 ≤ ` ≤ m−1, where the last term of left hand side is replaced by ξ〈i[K5Lm]asyû, û〉
for ` = 5. Here we define K` as K4 = δ1K1 + (1 + ξ2)K4 and

K` = δ`−3ξ
2K`−1 + (1 + ξ2)`−3K`
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for ` ≥ 5. Therefore, we make the combination of (2.43) and (2.44) with ` = m−1.
Then we can obtain

(2.45)
1

2
∂t

〈{m−4∏
j=2

δjξ
2(m−4)(1 + ξ2)S − iξKm

}
û, û

〉
+ ξ2〈[KmAm]syû, û〉

+

m−4∏
j=2

δjξ
2(m−4)(1 + ξ2)〈[SLm]syû, û〉+

m−4∏
j=2

δjξ
2(m−4)+1(1 + ξ2)〈i[SAm]asyû, û〉

−
m−4∏
j=3

δjξ
2(m−5)+1〈i[K5Lm]asyû, û〉 − ξ(1 + ξ2)m−3〈i[KmLm]asyû, û〉 = 0.

Finally, multiplying (2.45) by δm−3/(1 + ξ2)m−2, and combining (2.28) and the
resultant equations, we can obtain

(2.46)
1

2
∂t

〈[
I +

δm−3
(1 + ξ2)m−2

{m−4∏
j=2

δjξ
2(m−4)(1 + ξ2)S − iξKm

}]
û, û

〉

+ 〈Lmû, û〉+

m−3∏
j=2

δj
ξ2(m−4)

(1 + ξ2)m−3
〈[SLm]syû, û〉

+ δm−3
ξ2

(1 + ξ2)m−2
〈[KmAm]syû, û〉+

m−3∏
j=2

δj
ξ2(m−4)+1

(1 + ξ2)m−3
〈i[SAm]asyû, û〉

−
m−3∏
j=3

δj
ξ2(m−5)+1

(1 + ξ2)m−2
〈i[K5Lm]asyû, û〉 − δm−3

ξ

1 + ξ2
〈i[KmLm]asyû, û〉 = 0.

where I denotes an identity matrix. Letting δ1, · · · , δm−3 suitably small, then (2.46)
derives energy estimate (2.37). More precisely, noting that

Km =

m−3∏
j=2

δjξ
2(m−4)(δ1K1 + (1 + ξ2)K4) + (1 + ξ2)m−3Km

+

m−3∑
k=3

m−3∏
j=k

δjξ
2(m−k−2)(1 + ξ2)k−1Kk+2

for m ≥ 6, we can estimate the dissipation terms as

(2.47) 〈Lmû, û〉+

m−3∏
j=2

δj
ξ2(m−4)

(1 + ξ2)m−3
〈[SLm]syû, û〉

+ δm−3
ξ2

(1 + ξ2)m−2
〈[KmAm]syû, û〉

≥ c
{ ξ2(m−4)

(1 + ξ2)m−3
|û1|2 +

ξ2(m−3)

(1 + ξ2)m−2
|û2|2 +

m∑
j=3

ξ2(m−j)

(1 + ξ2)m−j
|ûj |2

}
for suitably small δ1, · · · , δm−3. Consequently we conclude that our desired sym-
metric matrix S and skew-symmetric matrix K are described as

S =
ξ2(m−4)

(1 + ξ2)m−3
S, K =

ξ2

(1 + ξ2)m−2
Km.
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3. Model II

3.1. Main result II. In this section, we treat the Cauchy problem (1.1), (1.2)
with

Am =



0 1 0 0
1 0 0 0
0 0 0 a4 0
0 0 a4 0 0 0 O

0 0 0 a6
0 a6 0

. . .

0 am−2
O am−2 0 0 0

0 0 0 am
0 am 0



,

Lm =



0 0 0 0
0 γ 1 0
0 −1 0 0 0 O
0 0 0 0 a5

0 −a5 0
. . .

0 am−3 0
−am−3 0 0 0

0 0 0 am−1 0
O 0 −am−1 0 0

0 0 0



,

(3.1)

where integer m ≥ 4 is even, γ > 0, and all elements aj (4 ≤ j ≤ m) are nonzero.
We note that the system (1.1) with (3.1) for m = 4 is the Timoshenko system
(cf. [13, 14]). For this problem, we can derive the following decay structure.

Theorem 3.1. The Fourier image û of the solution u to the Cauchy problem (1.1)-
(1.2) with (3.1) satisfies the pointwise estimate:

(3.2) |û(t, ξ)| ≤ Ce−cλ(ξ)t|û0(ξ)|,

where λ(ξ) := ξ3m−10/(1 + ξ2)2(m−3). Furthermore, let s ≥ 0 be an integer and
suppose that the initial data u0 belong to Hs ∩L1. Then the solution u satisfies the
decay estimate:

‖∂kxu(t)‖L2 ≤ C(1 + t)−
1

3m−10 (
1
2+k)‖u0‖L1 + C(1 + t)−

`
m−2 ‖∂k+`x u0‖L2

for k + ` ≤ s. Here C and c are positive constants.

3.2. Energy method in the case m = 6. Ide-Hramoto-Kawashima [13] and Ide-
Kawashima [14] had already obtained the desired estimates in the case m = 4.
Thus we consider the case m = 6 in this subsection, which can shed light on the
proof of the general case m ≥ 6 to be given by Section 3.3. Then we rewrite the
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system (1.1) with (3.1) as follows.

∂tû1 + iξû2 = 0,

∂tû2 + iξû1 + γû2 + û3 = 0,

∂tû3 + iξa4û4 − û2 = 0,

∂tû4 + iξa4û3 + a5û5 = 0,

∂tû5 + iξa6û6 − a5û4 = 0,

∂tû6 + iξa6û5 = 0.

(3.3)

Step 1. We first derive the basic energy equality for the system (3.3) in the
Fourier space. We multiply the all equations of (3.3) by ¯̂u = (¯̂u1, ¯̂u2, ¯̂u3, ¯̂u4, ¯̂u5, ¯̂u6)T ,
respectively, and combine the resultant equations. Furthermore, taking the real part
for the resultant equality, we arrive at the basic energy equality

(3.4)
1

2
∂t|û|2 + γ|û2|2 = 0.

Next we create the dissipation terms by the following two steps.

Step 2. We multiply the first and second equations in (3.3) by iξ ¯̂u2 and −iξ ¯̂u1,
respectively. Then, combining the resultant equations and taking the real part, we
have

(3.5) ξ∂t<(iû1 ¯̂u2) + ξ2(|û1|2 − |û2|2) + γξ<(iû1 ¯̂u2) + ξ<(iû1 ¯̂u3) = 0.

Next, we combine the fourth and sixth equations in (3.3), obtaining

∂t(ξa6û4 + ia5û6) + iξ2a4a6û3 = 0.

Then multiplying the first equation in (3.3) and the resultant equation by ξa6 ¯̂u4 −
ia5 ¯̂u6 and ¯̂u1, and combining the resultant equations and taking the real part, we
obtain

(3.6) ∂t
{
a6ξ<(û1 ¯̂u4)− a5<(iû1 ¯̂u6)

}
− a4a6ξ2<(iû1 ¯̂u3) + a6ξ

2<(iû2 ¯̂u4) + a5ξ<(û2 ¯̂u6) = 0.

To eliminate <(iû1 ¯̂u3), we multiply (3.5) and (3.6) by a24a
2
6ξ

2 and a4a6ξ, add the
resultant equations. Then this yields

(3.7) a4a6ξ∂tE
(6)
1 + a24a

2
6ξ

4(|û1|2 − |û2|2)

+ a4a
2
6ξ

3<(iû2 ¯̂u4) + a4a5a6ξ
2<(û2 ¯̂u6) + γa24a

2
6ξ

3<(iû1 ¯̂u2) = 0,

where E
(6)
1 = a6ξ<(û1 ¯̂u4)− a5<(iû1 ¯̂u6) + a4a6ξ

2<(iû1 ¯̂u2).
On the other hand, we multiply the second and third equations in (3.3) by ¯̂u3

and ¯̂u2, respectively. Then, combining the resultant equations and taking the real
part, we have

(3.8) ∂t<(û2 ¯̂u3) + |û3|2 − |û2|2 + ξ<(iû1 ¯̂u3)− a4ξ<(iû2 ¯̂u4) + γ <(û2 ¯̂u3) = 0.

By the Young inequality, the equation (3.8) is estimated as

(3.9) ∂tE3 +
1

2
|û3|2 ≤ ξ2|û1|2 + (1 + γ2)|û2|2 + a4ξ<(iû2 ¯̂u4),

where E3 = <(û2 ¯̂u3).
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Furthermore, we multiply the third equation and fourth equation of (3.3) by
−iξa4 ¯̂u4 and iξa4 ¯̂u3, respectively. Then, combining the resultant equations and
taking the real part, we have

(3.10) −a4ξ∂t<(iû3 ¯̂u4) + a24ξ
2(|û4|2 − |û3|2) + a4ξ<(iû2 ¯̂u4)− a4a5ξ<(iû3 ¯̂u5) = 0.

By the Young inequality, the above equation is estimated as

(3.11) ξ∂tE4 +
1

2
a24ξ

2|û4|2 ≤
1

2
|û2|2 + a24ξ

2|û3|2 + a4a5ξ<(iû3 ¯̂u5),

where E4 = −a4<(iû3 ¯̂u4).
We multiply the fourth equation and fifth equation in (3.3) by a5 ¯̂u5 and a5 ¯̂u4,

respectively. Then, combining the resultant equations and taking the real part, we
have

a5∂t<(û4 ¯̂u5) + a25(|û5|2 − |û4|2) + a4a5ξ<(iû3 ¯̂u5)− a5a6ξ<(iû4 ¯̂u6) = 0.

By using Young inequality, we obtain

(3.12) ∂tE5 +
1

2
a25|û5|2 ≤ a25|û4|2 +

1

2
a25ξ

2|û3|2 + a5a6ξ<(iû4 ¯̂u6).

where E5 = a5∂t<(û4 ¯̂u5).
Moreover, we multiply the last equation and the fifth equation in (3.3) by iξa6 ¯̂u5

and −iξa6 ¯̂u6, respectively. Then, combining the resultant equations and taking the
real part, we have

−a6ξ∂t<(iû5 ¯̂u6) + a26ξ
2(|û6|2 − |û5|2) + a5a6ξ<(iû4 ¯̂u6) = 0.

Using Young inequality, this yields

(3.13) ξ∂tE6 +
1

2
a26ξ

2|û6|2 ≤ a26ξ2|û5|2 +
1

2
a25|û4|2,

where E6 = −a6<(iû5 ¯̂u6).

Step 3. In this step, we sum up the energy inequalities and derive the desired
energy inequality. For this purpose, we first multiply (3.12) and (3.13) by ξ2 and
β1, respectively. Then we combine the resultant equation, obtaining

∂t
{
ξ2E5 + β1ξE6

}
+

1

2
β1a

2
6ξ

2|û6|2 +
(1

2
a25 − β1a26

)
ξ2|û5|2

≤
(1

2
β1 + ξ2

)
a25|û4|2 +

1

2
a25ξ

4|û3|2 + |a5||a6||ξ|3|û4||û6|.

Letting β1 suitably small and using Young inequality, we get

∂t
{
ξ2E5 + β1ξE6

}
+ cξ2(|û5|2 + |û6|2) ≤ C(1 + ξ2)2|û4|2 +

1

2
a25ξ

4|û3|2.

Moreover, combining the above estimate and (3.12), we get

(3.14) ∂t
{

(1 + ξ2)E5 + β1ξE6

}
+ c(1 + ξ2)|û5|2 + cξ2|û6|2

≤ C(1 + ξ2)2|û4|2 +
1

2
a25ξ

2(1 + ξ2)|û3|2.
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Second, we multiply (3.11) and (3.14) by (1 + ξ2)2 and β2ξ
2, respectively, and

combine the resultant equations. Then we obtain

∂t
{
β2ξ

2((1 + ξ2)E5 + β1ξE6) + ξ(1 + ξ2)2E4

}
+ β2cξ

2(1 + ξ2)|û5|2 + β2cξ
4|û6|2 +

(1

2
a24 − β2C

)
ξ2(1 + ξ2)2|û4|2

≤ C(1 + ξ2)2|û2|2 + Cξ2(1 + ξ2)2|û3|2 + Cξ(1 + ξ2)2<(iû3 ¯̂u5).

Letting β2 suitably small and using Young inequality, we get

(3.15) ∂t
{
β2ξ

2((1 + ξ2)E5 + β1ξE6) + ξ(1 + ξ2)2E4

}
+ cξ2(1 + ξ2)|û5|2

+ cξ4|û6|2 + cξ2(1 + ξ2)2|û4|2 ≤ C(1 + ξ2)2|û2|2 + C(1 + ξ2)3|û3|2.

Third, we multiply (3.9) and (3.15) by (1 + ξ2)3 and β3 and combine the resultant
equations. Then we obtain

∂t
{
β3(β2ξ

2((1 + ξ2)E5 + β1ξE6) + ξ(1 + ξ2)2E4) + (1 + ξ2)3E3

}
+ β3cξ

4|û6|2

+ β3cξ
2(1 + ξ2)|û5|2 + β3cξ

2(1 + ξ2)2|û4|2 +
(1

2
− β3C

)
(1 + ξ2)3|û3|2

≤ C(1 + ξ2)3|û2|2 + ξ2(1 + ξ2)3|û1|2 + a4ξ(1 + ξ2)3<(iû2 ¯̂u4).

Therefore, letting β3 suitably small and using Young inequality, we get

(3.16) ∂t
{
β3(β2ξ

2((1 + ξ2)E5 + β1ξE6) + ξ(1 + ξ2)2E4) + (1 + ξ2)3E3

}
+ cξ4|û6|2 + cξ2(1 + ξ2)|û5|2 + cξ2(1 + ξ2)2|û4|2 + c(1 + ξ2)3|û3|2

≤ C(1 + ξ2)4|û2|2 + ξ2(1 + ξ2)3|û1|2.

Fourth, we multiply (3.7) and (3.16) by (1 + ξ2)3 and β4ξ
2, respectively, and com-

bine the resultant equalities. Moreover, letting β4 suitably small and using Young
inequality, then we obtain

(3.17) ∂tẼ + cξ6|û6|2 + cξ4(1 + ξ2)|û5|2 + cξ4(1 + ξ2)2|û4|2 + cξ2(1 + ξ2)3|û3|2

+ cξ4(1 + ξ2)3|û1|2 ≤ C(1 + ξ2)5|û2|2 + a4a5a6ξ
2(1 + ξ2)3<(û2 ¯̂u6),

where we have defined

Ẽ = β4ξ
2(β3(β2ξ

2((1 + ξ2)E5 + β1ξE6) + ξ(1 + ξ2)2E4) + (1 + ξ2)3E3)

+ a4a6ξ(1 + ξ2)3E
(6)
1 .

Moreover, to estimate <(û2 ¯̂u6), we multiply (3.17) by ξ2 and use Young inequality
again. Then this yields

(3.18) ξ2∂tẼ + cξ8|û6|2 + cξ6(1 + ξ2)|û5|2 + cξ6(1 + ξ2)2|û4|2

+ cξ4(1 + ξ2)3|û3|2 + cξ6(1 + ξ2)3|û1|2 ≤ C(1 + ξ2)6|û2|2.

Finally, multiplying the basic energy (3.4) and (3.18) by (1 + ξ2)6 and β5, respec-
tively, combining the resultant equations and letting β5 suitably small, then this
yields

(3.19) ∂t

{1

2
(1 + ξ2)6|û|2 + β5ξ

2Ẽ
}

+ cξ6(1 + ξ2)3|û1|2 + c(1 + ξ2)6|û2|2

+ cξ4(1 + ξ2)3|û3|2 + cξ6(1 + ξ2)2|û4|2 + cξ6(1 + ξ2)|û5|2 + cξ8|û6|2 ≤ 0.
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Thus, integrating the above estimate with respect to t, we obtain the following
energy estimate

|û(t, ξ)|2 +

∫ t

0

{ ξ6

(1 + ξ2)3
|û1|2 + |û2|2 +

ξ4

(1 + ξ2)3
|û3|2 +

ξ6

(1 + ξ2)4
|û4|2

+
ξ6

(1 + ξ2)5
|û5|2 +

ξ8

(1 + ξ2)6
|û6|2

}
dτ ≤ C|û(0, ξ)|2.

Here we have used the following inequality

(3.20) c|û|2 ≤ 1

2
|û|2 +

β5ξ
2

(1 + ξ2)6
Ẽ ≤ C|û|2

for suitably small β5. Furthermore the estimate (3.19) with (3.20) give us the
following pointwise estimate

|û(t, ξ)| ≤ Ce−cλ(ξ)t|û(0, ξ)|, λ(ξ) =
ξ8

(1 + ξ2)6
.

This therefore proves (3.2) in the case m = 6 for Theorem 3.1.

3.3. Energy method for model II. Inspired by the concrete calculation in Sub-
section 3.2, we consider the more general situation m ≥ 6. Then we rewrite our
system (1.4) with (3.1) as follows:

∂tû1 + iξû2 = 0,

∂tû2 + iξû1 + γû2 + û3 = 0,

∂tû3 + iξa4û4 − û2 = 0,

∂tûj + iξaj ûj−1 + aj+1ûj+1 = 0, j = 4, 6, · · · ,m− 2, (for even)

∂tûj + iξaj+1ûj+1 − aj ûj−1 = 0, j = 5, 7, · · · ,m− 1, (for odd)

∂tûm + iξamûm−1 = 0.

(3.21)

Step 1. We first derive the basic energy equality for the system (1.4) in the Fourier
space. Taking the inner product of (1.4) with û, we have

〈ût, û〉+ iξ〈Amû, û〉+ 〈Lmû, û〉 = 0.

Taking the real part, we get the basic energy equality

1

2
∂t|û|2 + 〈Lmû, û〉 = 0,

and hence

(3.22)
1

2
∂t|û|2 + γ|û2|2 = 0.

Next we create the dissipation terms by the following three steps.

Step 2. We note that we had already derived some useful equations in Subsection
3.2. Indeed the equations (3.5), (3.9), (3.11) and (3.12) are valid for our general
problem. Therefore we adopt these equations in this subsection.

To eliminate <(iû1 ¯̂u3) in (3.5), we first prepare the useful equation. We combine
the fourth equations with j = 4, · · · , 2` in (3.21) inductively. Then we obtain

(3.23) ∂tU2` + iξ(−iξ)`−2
∏̀
j=2

a2j û3 +
∏̀
j=2

a2j+1û2`+1 = 0,
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for 4 ≤ 2` ≤ m− 2, where we have defined U4 = û4 and

U2` = −iξa2`U2`−2 +

`−1∏
j=2

a2j+1û2`.

Moreover, combining the last equation in (3.21) and (3.23), this yields

(3.24) im/2∂tUm − iξm/2−1
m/2∏
j=2

a2j û3 = 0.

Multiplyig (3.24) by −¯̂u1 and the first equation in (3.21) by −im/2Um, combining
the resultant equations and taking the real part, we obtain

(3.25) −∂t<(im/2Um ¯̂u1)−
m/2∏
j=2

a2jξ
m/2−1<(iû1 ¯̂u3) + ξ<(im/2+1Um ¯̂u2) = 0.

In order to eliminate <(iû1 ¯̂u3), we multiply (3.5) by
∏m/2
j=2 a2jξ

m/2−2 and combine

the resultant equation and (3.25). Then we obtain

(3.26) ∂tE
(m)
1 +

m/2∏
j=2

a2jξ
m/2(|û1|2 − |û2|2)

+ γ

m/2∏
j=2

a2jξ
m/2−1<(iû1 ¯̂u2) + ξ<(im/2+1Um ¯̂u2) = 0,

where we have defined

E
(m)
1 =

m/2∏
j=2

a2jξ
m/2−1<(iû1 ¯̂u2)−<(im/2Um ¯̂u1).

For ` = 4, 6, · · · ,m− 2, we multiply the fourth equation and fifth equation with
j = ` and j = `+1 in (3.21) by a`+1

¯̂u`+1 and a`+1
¯̂u`, respectively. Then, combining

the resultant equations and taking the real part, we have

(3.27) a`+1∂t<(û` ¯̂u`+1) + a2`+1(|û`+1|2 − |û`|2)

+ a`a`+1ξ<(iû`−1 ¯̂u`+1)− a`+1a`+2ξ<(iû` ¯̂u`+2) = 0.

By using Young inequality, we obtain

(3.28) ∂tE`+1+
1

2
a2`+1|û`+1|2 ≤ a2`+1|û`|2+

1

2
a2`+1ξ

2|û`−1|2+a`+1a`+2ξ<(iû` ¯̂u`+2).

where E`+1 = a`+1<(û` ¯̂u`+1).
On the other hand, for ` = 4, · · · ,m − 4, we multiply the fourth and fifth

equations with j = ` + 2 and j = ` + 1 in (3.21) by iξa`+2
¯̂u`+1 and −iξa`+2

¯̂u`+2,
respectively. Then, combining the resultant equations and taking the real part, we
have

− a`+2ξ∂t<(iû`+1
¯̂u`+2) + a2`+2ξ

2(|û`+2|2 − |û`+1|2)

+ a`+1a`+2ξ<(iû` ¯̂u`+2)− a`+2a`+3ξ<(iû`+1
¯̂u`+3) = 0.

(3.29)
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Here, by using Young inequality, we obtain

(3.30) ξ∂tE`+2 +
1

2
a2`+2ξ

2|û`+2|2

≤ a2`+2ξ
2|û`+1|2 +

1

2
a2`+1|û`|2 + a`+2a`+3ξ<(iû`+1

¯̂u`+3),

where E`+2 = −a`+2<(iû`+1
¯̂u`+2).

Moreover, we multiply the last equation and the fifth equation with j = m − 1
in (3.21) by iξam ¯̂um−1 and −iξam ¯̂um, respectively. Then, combining the resultant
equations and taking the real part, we have

(3.31) −amξ∂t<(iûm−1 ¯̂um)+a2mξ
2(|ûm|2−|ûm−1|2)+am−1amξ<(iûm−2 ¯̂um) = 0.

Using Young inequality, this yields

(3.32) ξ∂tEm +
1

2
a2mξ

2|ûm|2 ≤ a2mξ2|ûm−1|2 +
1

2
a2m−1|ûm−2|2.

where Em = −am<(iûm−1 ¯̂um).

Step 3. In this step, we sum up the energy inequalities constructed in the previous
step and then make the desired energy inequality. The strategy is essentially the
same as in Subsection 3.2.

For this purpose, we first multiply (3.28) with ` = m − 2 and (3.32) by ξ2 and
β1, respectively. Then we combine the resultant equation, obtaining

∂t
{
ξ2Em−1 + β1ξEm

}
+

1

2
β1a

2
mξ

2|ûm|2 +
(1

2
a2m−1 − β1a2m

)
ξ2|ûm−1|2

≤
(1

2
β1 + ξ2

)
a2m−1|ûm−2|2 +

1

2
a2m−1ξ

4|ûm−3|2 + |am−1||am||ξ|3|ûm−2||ûm|.

Letting β1 suitably small and using Young inequality, we get

∂t
{
ξ2Em−1 + β1ξEm

}
+ cξ2(|ûm|2 + |ûm−1|2)

≤ C(1 + ξ2)2|ûm−2|2 +
1

2
a2m−1ξ

4|ûm−3|2.

Moreover, combining the above estimate and (3.28) with ` = m− 2, we get

(3.33) ∂t
{

(1 + ξ2)Em−1 + β1ξEm
}

+ cξ2|ûm|2 + c(1 + ξ2)|ûm−1|2

≤ C(1 + ξ2)2|ûm−2|2 +
1

2
a2m−1ξ

2(1 + ξ2)|ûm−3|2.

Second, we multiply (3.33) and (3.30) with ` = m− 4 by β2ξ
2 and (1 + ξ2)2 and

combine the resultant equations. Then we obtain

∂t
{
β2ξ

2((1 + ξ2)Em−1 + β1ξEm) + ξ(1 + ξ2)2Em−2
}

+ β2cξ
4|ûm|2 + β2cξ

2(1 + ξ2)|ûm−1|2 +
(1

2
a2m−2 − β2C

)
ξ2(1 + ξ2)2|ûm−2|2

≤ Cξ2(1 + ξ2)2|ûm−3|2 +
1

2
a2m−3(1 + ξ2)2|ûm−4|2 + C|ξ|(1 + ξ2)2|ûm−3||ûm−1|,
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Letting β2 suitably small and using Young inequality, we get

(3.34) ∂t
{
β2ξ

2((1 + ξ2)Em−1 + β1ξEm) + ξ(1 + ξ2)2Em−2
}

+ cξ4|ûm|2 + cξ2(1 + ξ2)|ûm−1|2 + cξ2(1 + ξ2)2|ûm−2|2

≤ C(1 + ξ2)3|ûm−3|2 +
1

2
a2m−3(1 + ξ2)2|ûm−4|2.

Third, we multiply (3.34) and (3.28) with ` = m − 4 by β3 and (1 + ξ2)3,
respectively, and combine the resultant equations. Then we obtain

∂t
{
β3(β2ξ

2((1 + ξ2)Em−1 + β1ξEm) + ξ(1 + ξ2)2Em−2) + (1 + ξ2)3Em−3
}

+ β3cξ
4|ûm|2 + β3cξ

2(1 + ξ2)|ûm−1|2 + β3cξ
2(1 + ξ2)2|ûm−2|2

+
(1

2
a2m−3 − β3C

)
(1 + ξ2)3|ûm−3|2

≤ C(1 + ξ2)3|ûm−4|2 +
1

2
a2m−3ξ

2(1 + ξ2)3|ûm−5|2 + C|ξ|(1 + ξ2)3|ûm−4||ûm−2|.

Therefore, letting β3 suitably small and using Young inequality, we get

(3.35) ∂t
{
β3(β2ξ

2((1 + ξ2)Em−1 + β1ξEm) + ξ(1 + ξ2)2Em−2)

+ (1 + ξ2)3Em−3
}

+ cξ4|ûm|2 + cξ2(1 + ξ2)|ûm−1|2 + cξ2(1 + ξ2)2|ûm−2|2

+ c(1 + ξ2)3|ûm−3|2 ≤ C(1 + ξ2)4|ûm−4|2 +
1

2
a2m−3ξ

2(1 + ξ2)3|ûm−5|2.

Inspired by the derivation of (3.33), (3.34) and (3.35), we can conclude that the
following inequality

(3.36) ∂tEm−5 + c

m∑
`=5

ξ2([`/2]−2)(1 + ξ2)m−`|û`|2

≤ C(1 + ξ2)m−4|û4|2 +
1

2
a25ξ

2(1 + ξ2)m−5|û3|2,

is derived by the induction argument. Here [ ] denotes the greatest integer function,
and E1 = β1ξEm + (1 + ξ2)Em−1 and

E` = β`ξ
2E`−1 + ξ(1 + ξ2)`Em−`,

E`+1 = β`+1E` + (1 + ξ2)`+1Em−(`+1),
(3.37)

for ` are even integers with ` ≥ 2.
Furthermore, we multiply (3.36) and (3.11) by βm−4ξ

2 and (1 + ξ2)m−4, respec-
tively, and combine the resultant equation. Then we obtain

∂tEm−4 + βm−4c

m∑
`=5

ξ2([`/2]−1)(1 + ξ2)m−`|û`|2

+
(1

2
a24 − βm−4C

)
ξ2(1 + ξ2)m−4|û4|2

≤ Cξ2(1 + ξ2)m−4|û3|2 +
1

2
(1 + ξ2)m−4|û2|2 + C|ξ|(1 + ξ2)m−4|û3||û5|,
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where Em−4 is defined by (3.37) with ` = m− 4. Thus, letting βm−4 suitably small
and using Young inequality, we obtain

(3.38) ∂tEm−4 + c

m∑
`=4

ξ2([`/2]−1)(1 + ξ2)m−`|û`|2

≤ C(1 + ξ2)m−3|û3|2 +
1

2
(1 + ξ2)m−4|û2|2.

Similarly, we multiply (3.38) and (3.9) by βm−3 and (1 + ξ2)m−3, combine the
resultant equalities, and take βm−3 suitably small. Then we have

(3.39) ∂tEm−3 + c

m∑
`=3

ξ2([`/2]−1)(1 + ξ2)m−`|û`|2

≤ C(1 + ξ2)m−2|û2|2 + ξ2(1 + ξ2)m−3|û1|2,

where Em−3 is defined by (3.37) with ` = m− 3.
To estimate |û1|2 in (3.39), we next employ (3.26). Namely, we multiply (3.26)

and (3.39) by (1 + ξ2)m−3 and βm−2αmξ
m/2−2, respectively. Then we combine the

resultant equation, obtaining

∂t
{
βm−2αmξ

m/2−2Em−3 + (1 + ξ2)m−3E
(m)
1

}
+βm−2αmcξ

m/2−2
m∑
`=3

ξ2([`/2]−1)(1+ξ2)m−`|û`|2+αm(1−βm−2)ξm/2(1+ξ2)m−3|û1|2

≤ Cξm/2−2(1 + ξ2)m−2|û2|2 + γαmξ
m/2−1(1 + ξ2)m−3<(iû1 ¯̂u2)

+ ξ(1 + ξ2)m−3<(im/2+1Um ¯̂u2),

where we have defined αm =
∏m/2
j=2 a2j . Here, taking βm−2 suitably small and using

Young inequality, we get

(3.40) ∂t
{
βm−2αmξ

m/2−2Em−3 + (1 + ξ2)m−3E
(m)
1

}
+ cξm/2−2

m∑
`=3

ξ2([`/2]−1)(1 + ξ2)m−`|û`|2 + cξm/2(1 + ξ2)m−3|û1|2

≤ Cξm/2−2(1 + ξ2)m−2|û2|2 + ξ(1 + ξ2)m−3<(im/2+1Um ¯̂u2).

For the last term of the right hand side in (3.40), we note that

Um =
(m/2−3∏

j=0

am−2j

)
(−iξ)m/2−2û4 +

(m/2−1∏
j=2

a2j+1

)
ûm

+

m/2−1∑
k=3

( k−1∏
j=2

a2j+1

)(m/2−1−k∏
j=0

am−2j

)
(−iξ)m/2−kû2k,
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for m ≥ 6, where the last term of the right hand side is neglected in the case m = 6.
Then, substituting the above equality into (3.40), we obtain

(3.41) ∂t
{
βm−2αmξ

m/2−2Em−3 + (1 + ξ2)m−3E
(m)
1

}
+ cξm/2−2

m∑
`=3

ξ2([`/2]−1)(1 + ξ2)m−`|û`|2 + cξm/2(1 + ξ2)m−3|û1|2

≤ Cξm/2−2(1 + ξ2)m−2|û2|2 + C

m/2∑
k=2

|ξ|m/2+1−k(1 + ξ2)m−3|û2||û2k|.

In order to control the term of |ûm| on the right hand side of (3.41) we introduce
the following inequality

|ξ|3m/2−5(1 + ξ2)m−3|û2||ûm| ≤ εξ3m−10|ûm|2 + Cε(1 + ξ2)2(m−3)|û2|2.

Inspired by the above inequality, we multiply (3.41) by ξ3m/2−6 and employ this
inequality. Then we obtain

ξ3m/2−6∂t
{
βm−2αmξ

m/2−2Em−3 + (1 + ξ2)m−3E
(m)
1

}
+ (c− ε)ξ3m−10|ûm|2

+ cξ2m−10
m−1∑
`=3

ξ2[`/2](1 + ξ2)m−`|û`|2 + cξ2m−6(1 + ξ2)m−3|û1|2

≤ {Cξ2m−8 + Cε(1 + ξ2)m−3}(1 + ξ2)m−3|û2|2

+ C

m/2−1∑
k=2

|ξ|2m−5−k(1 + ξ2)m−3|û2||û2k|.

Therefore, letting ε suitably small, we have

(3.42) ξ3m/2−6∂t
{
βm−2αmξ

m/2−2Em−3 + (1 + ξ2)m−3E
(m)
1

}
+ cξ2m−10

m∑
`=3

ξ2[`/2](1 + ξ2)m−`|û`|2 + cξ2m−6(1 + ξ2)m−3|û1|2

≤ C(1 + ξ2)2(m−3)|û2|2 + C

m/2−1∑
k=2

|ξ|2m−5−k(1 + ξ2)m−3|û2||û2k|.

Moreover, applying the inequality

|ξ|2m−5−k(1 + ξ2)m−3|û2||û2k|

≤ εξ2m−10+2k(1 + ξ2)m−2k|û2k|2 + Cεξ
2m−4k(1 + ξ2)m−6+2k|û2|2

to (3.42), we can get

(3.43) ∂tEm−2 + cξ2m−10
m∑
`=3

ξ2[`/2](1 + ξ2)m−`|û`|2

+ cξ2m−6(1 + ξ2)m−3|û1|2 ≤ C(1 + ξ2)2(m−3)|û2|2,

where we have defined Em−2 = ξ3m/2−6(βm−2αmξ
m/2−2Em−3 + (1 + ξ2)m−3E

(m)
1 ).
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Finally, multiplying the basic energy (3.4) and (3.43) by (1 + ξ2)2(m−3) and
βm−1, respectively, combining the resultant equations and letting βm−1 suitably
small, then this yields

(3.44) ∂t

{1

2
(1 + ξ2)2(m−3)|û|2 + βm−1Em−2

}
+ cξ2m−6(1 + ξ2)m−3|û1|2

+ c(1 + ξ2)2(m−3)|û2|2 + cξ2m−10
m∑
`=3

ξ2[`/2](1 + ξ2)m−`|û`|2 ≤ 0.

Thus, integrating the above estimate with respect to t, we obtain the following
energy estimate

(3.45) |û(t, ξ)|2 +

∫ t

0

{ ξ2m−6

(1 + ξ2)m−3
|û1|2 + |û2|2

+
ξ2m−10

(1 + ξ2)m−3

m∑
`=3

ξ2[`/2]

(1 + ξ2)`−3
|û`|2

}
dτ ≤ C|û(0, ξ)|2.

Here we have used the following inequality

(3.46) c|û|2 ≤ 1

2
|û|2 +

βm−1
(1 + ξ2)2(m−3)

Em−2 ≤ C|û|2

for suitably small βm−1. Furthermore the estimate (3.44) with (3.46) give us the
following pointwise estimate

|û(t, ξ)| ≤ Ce−cλ(ξ)t|û(0, ξ)|, λ(ξ) =
ξ3m−10

(1 + ξ2)2(m−3)
.

This therefore proves (3.2) and completes the proof of Theorem 3.1.

3.4. Construction of the matrices K and S. In this section, inspired by the
energy method stated in Sections 3.2 and 3.3, we derive the desired matrices K and
S.

Based on the energy method of Step 2 in Subsection 3.2, we first introduce the
following m×m matrices:

K1 =


0 1 0 0
−1 0 0 0
0 0 0 0 O
0 0 0 0

O O

 , K4 = a4


0 0 0 0
0 0 0 0
0 0 0 −1 O
0 0 1 0

O O

 .

Then, we multiply (1.4) by −iξK1 and take the inner product with û. Moreover,
taking the real part of the resultant equation, we have

(3.47) −1

2
ξ∂t〈iK1û, û〉+ ξ2〈[K1Am]syû, û〉 − ξ〈i[K1Lm]asyû, û〉 = 0,
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where

K1Am =


1 0 0 0
0 −1 0 0
0 0 0 0 O
0 0 0 0

O O

 , K1Lm =


0 γ 1 0
0 0 0 0
0 0 0 0 O
0 0 0 0

O O

 .

The equality (3.47) is equivalent to (3.5). Similarly, by using the matrix K4, we
can obtain

(3.48) −1

2
ξ∂t〈iK4û, û〉+ ξ2〈[K4Am]syû, û〉 − ξ〈i[K4Lm]asyû, û〉 = 0,

where

K4Am = a24


0 0 0 0
0 0 0 0
0 0 −1 0 O
0 0 0 1

O O

 , K4Lm = −a4


0 0 0 0 0
0 0 0 0 0
0 0 0 0 a5 O
0 1 0 0 0

O O

 .

The equality (3.48) is equivalent to (3.10).

We next introduce

S3 =


0 0 0 0
0 0 1 0
0 1 0 0 O
0 0 0 0

O O

 , S̃` =



1

O 0 O
...

1 0 · · · 0 · · · 0 `

O ... O
0
`


for 2 ≤ ` ≤ m − 1. Then, by using the same argument, we can show that the
equality

(3.49)
1

2
∂t〈S3û, û〉+ ξ〈i[S3Am]asyû, û〉+ 〈[S3Lm]syû, û〉 = 0,

which satisfies

S3Am =


0 0 0 0
0 0 0 a4
1 0 0 0 O
0 0 0 0

O O

 , S3Lm =


0 0 0 0
0 −1 0 0
0 γ 1 0 O
0 0 0 0

O O


is equivalent to (3.8). Similarly, we derive that

(3.50)
1

2
∂t〈S̃2j û, û〉+ ξ〈i[S̃2jAm]asyû, û〉+ 〈[S̃2jLm]syû, û〉 = 0,
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which satisfies

S̃2jAm =



a2j

O 0 O
...

0 1 0 · · · 0 · · · 0 2j

O ... O
0

2j − 1


and

S̃2jLm =


0 · · · 0 a2j+1 0 · · · 0

0

O ... O
0

2j + 1

,

is equivalent to

∂t<(û1 ¯̂u2j)− a2jξ<(iû1 ¯̂u2j−1) + a2j+1<(û1 ¯̂u2j+1) + ξ<(iû2 ¯̂u2j) = 0,

for 2 ≤ j ≤ (m − 2)/2. Therefore, to construct (3.25), we sum up (3.50) with
respect to j with 2 ≤ j ≤ (m− 2)/2, and find that

(3.51)
1

2
∂t〈S̃m−2û, û〉+ ξ〈i[S̃m−2Am]asyû, û〉+ 〈[S̃m−2Lm]syû, û〉 = 0

is equivalent to (3.25). Here we define S̃2` as S̃4 = S̃4 and

S̃2` = a2`ξS̃2`−2 +

`−1∏
j=2

a2j+1S̃2`

for ` ≥ 3. Consequently, multiplying (3.47) by
∏m/2
j=2 a2jξ

m/2−2 and combining the

resultant equality and (3.51), we obtain

1

2
∂t

〈(
S̃m−2 − i

m/2∏
j=2

a2jξ
m/2−1K1

)
û, û

〉

+
〈[
S̃m−2Lm +

m/2∏
j=2

a2jξ
m/2K1Am

]sy
û, û

〉

+ ξ〈i[S̃m−2Am]asyû, û〉 −
m/2∏
j=2

a2jξ
m/2−1〈i[K1Lm]asyû, û〉 = 0.

(3.52)

This equality is the same as (3.26).
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Based on the energy method of Step 3 in Subsection 3.3, we next introduce the
following m×m matrices:

S`+1 = a`+1



0 0

O ...
... O

0 0
0 · · · 0 0 1 0 · · · 0 `
0 · · · 0 1 0 0 · · · 0 `+ 1

0 0

O ...
... O

0 0
` `+ 1



for ` = 4, 6, · · · ,m−2. Then, we multiply (1.4) by S`+1 and take the inner product
with û. Furthermore, taking the real part of the resultant equation, we obtain

(3.53)
1

2
∂t〈S`+1û, û〉+ ξ〈i[S`+1Am]asyû, û〉+ 〈[S`+1Lm]syû, û〉 = 0

for ` = 4, 6, · · · ,m− 2, where

S`+1Am = a`



0 0 0 0

O ...
...

...
... O

0 0 0 0
0 · · · 0 0 0 0 a`+2 0 · · · 0 `
0 · · · 0 a` 0 0 0 0 · · · 0 `+ 1

0 0 0 0

O ...
...

...
... O

0 0 0 0
`− 1 ` `+ 1 `+ 2


and

S`+1Lm = a2`+1



0 0

O ...
... O

0 0
0 · · · 0 −1 0 0 · · · 0 `
0 · · · 0 0 1 0 · · · 0 `+ 1

0 0

O ...
... O

0 0
` `+ 1


.

We note that the equalities (3.53) is equivalent to (3.27).



36 Y. UEDA, R.-J. DUAN, AND S. KAWASHIMA

On the other hand, we introduce the following m×m matrices:

K`+2 = a`+2



0 0

O ...
... O

0 0
0 · · · 0 0 −1 0 · · · 0 `+ 1
0 · · · 0 1 0 0 · · · 0 `+ 2

0 0

O ...
... O

0 0
`+ 1 `+ 2



for ` = 4, 6, · · · ,m − 2. Then, we multiply (1.4) by −iK`+2 and take the inner
product with û. Furthermore, taking the real part of the resultant equation, we
obtain

(3.54) −1

2
ξ∂t〈iK`+2û, û〉+ ξ2〈[K`+2Am]syû, û〉 − ξ〈i[K`+2Lm]asyû, û〉 = 0,

for ` = 4, 6, · · · ,m− 4, where

K`+2Am = a2`+2



0 0

O ...
... O

0 0
0 · · · 0 −1 0 0 · · · 0 `+ 1
0 · · · 0 0 1 0 · · · 0 `+ 2

0 0

O ...
... O

0 0
`+ 1 `+ 2


and

K`+2Lm = a`+2



0 0 0 0

O ...
...

...
... O

0 0 0 0
0 · · · 0 0 0 0 −a`+3 0 · · · 0 `+ 1
0 · · · 0 −a`+1 0 0 0 0 · · · 0 `+ 2

0 0 0 0

O ...
...

...
... O

0 0 0 0
`− 1 ` `+ 1 `+ 3


.

Moreover we have

(3.55) −1

2
ξ∂t〈iKmû, û〉+ ξ2〈[KmAm]syû, û〉 − ξ〈i[KmLm]asyû, û〉 = 0,
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where

KmAm = a2m


0 0

O ...
...

0 0
0 · · · 0 −1 0
0 · · · 0 0 1

 , KmLm = am−1am


0 0 0

O ...
...

...
0 0 0

0 · · · 0 0 0 0
0 · · · 0 −1 0 0

 .

The equalities (3.54) and (3.55) are equivalent to (3.29) and (3.31), respectively.
For the rest of this subsection, we construct the desired matrices. According

to the strategy of Step 3 in Subsection 3.2, we first combine (3.53) and (3.55).
More precisely, multiplying (3.53) with ` = m − 2 and (3.55) by (1 + ξ2) and δ1,
respectively, and combining the resultant equations, we obtain

1

2
∂t
〈{

(1 + ξ2)Sm−1 − δ1iξKm

}
û, û

〉
+ (1 + ξ2)〈[Sm−1Lm]syû, û〉+ δ1ξ

2〈[KmAm]syû, û〉
+ ξ(1 + ξ2)〈i[Sm−1Am]asyû, û〉 − δ1ξ〈i[K1Lm]asyû, û〉 = 0.

We next multiply (3.54) with ` = m − 4 and the above equation by (1 + ξ2)2 and
δ2ξ

2, respectively, and combining the resultant equations, we obtain

1

2
∂t
〈{
δ2ξ

2((1 + ξ2)Sm−1 − δ1iξKm)− iξ(1 + ξ2)2Km−2
}
û, û

〉
+ δ2ξ

2(1 + ξ2)〈[Sm−1Lm]syû, û〉+ ξ2〈[(δ1δ2ξ2Km + (1 + ξ2)2Km−2)Am]syû, û〉
+ δ2ξ

3(1 + ξ2)〈i[Sm−1Am]asyû, û〉
− ξ〈i[(δ1δ2ξ2Km + (1 + ξ2)2Km−2)Lm]asyû, û〉 = 0.

Furthermore, multiplying (3.53) with ` = m − 4 and the above equation by
(1 + ξ2)3 and δ3, respectively, and combining the resultant equations, we get

(3.56)
1

2
∂t
〈{
δ3(δ2ξ

2((1 + ξ2)Sm−1 − δ1iξKm)

− iξ(1 + ξ2)2Km−2) + (1 + ξ2)3Sm−3
}
û, û

〉
+ (1 + ξ2)〈[(δ2δ3ξ2Sm−1 + (1 + ξ2)2Sm−3)Lm]syû, û〉

+ δ3ξ
2〈[(δ1δ2ξ2Km + (1 + ξ2)2Km−2)Am]syû, û〉

+ ξ(1 + ξ2)〈i[(δ2δ3ξ2Sm−1 + (1 + ξ2)2Sm−3)Am]asyû, û〉
− δ3ξ〈i[(δ1δ2ξ2Km + (1 + ξ2)2Km−2)Lm]asyû, û〉 = 0.

Now, we introduce the new matrices K` and S` as K0 = Km and

K` = δ`−1δ`ξ
2K`−2 + (1 + ξ2)`Km−`

for ` ≥ 2, and S1 = Sm−1 and

S` = δ`−1δ`ξ
2S`−2 + (1 + ξ2)`−1Sm−`

for ` ≥ 3. Then the equation (3.56) is rewritten as

1

2
∂t
〈{

(1 + ξ2)S3 − δ3iξK2

}
û, û

〉
+ (1 + ξ2)〈[S3Lm]syû, û〉+ δ3ξ

2〈[K2Am]syû, û〉

+ ξ(1 + ξ2)〈i[S3Am]asyû, û〉 − δ3ξ〈i[K2Lm]asyû, û〉 = 0.
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Consequently, by the induction argument with respect to ` in (3.53) and (3.54), we
arrive at

(3.57)
1

2
∂t
〈{

(1 + ξ2)Sm−5 − δm−5iξKm−6
}
û, û

〉
+ (1 + ξ2)〈[Sm−5Lm]syû, û〉

+ δm−5ξ
2〈[Km−6Am]syû, û〉+ ξ(1 + ξ2)〈i[Sm−5Am]asyû, û〉

− δm−5ξ〈i[Km−6Lm]asyû, û〉 = 0.

Applying Young inequality to (3.57), we can obtain (3.36).
Moreover, we multiply (3.48) and (3.57) by (1+ξ2)m−4 and δm−4ξ

2, respectively,
and combine the resultant equations. Then this yields

1

2
∂t
〈{
δm−4ξ

2(1 + ξ2)Sm−5 − iξKm−4
}
û, û

〉
+ δm−4ξ

2(1 + ξ2)〈[Sm−5Lm]syû, û〉+ ξ2〈[Km−4Am]syû, û〉
+ δm−4ξ

3(1 + ξ2)〈i[Sm−5Am]asyû, û〉 − ξ〈i[Km−4Lm]asyû, û〉 = 0.

Similarly, Moreover, we multiply (3.49) and the above equation by (1+ ξ2)m−3 and
δm−3, respectively, and combine the resultant equations. Then we get

(3.58)
1

2
∂t
〈{

(1 + ξ2)Sm−3 − δm−3iξKm−4
}
û, û

〉
+ (1 + ξ2)〈[Sm−3Lm]syû, û〉

+ δm−3ξ
2〈[Km−4Am]syû, û〉+ ξ(1 + ξ2)〈i[Sm−3Am]asyû, û〉

− δm−3ξ〈i[Km−4Lm]asyû, û〉 = 0.

By Young inequality to (3.58), we can derive (3.39).
We next employ (3.52) constructed before. Multiplying (3.52) and (3.58) by (1+

ξ2)m−3 and δm−2αmξ
m/2−2, respectively, and combining the resultant equations,

we get

(3.59)
1

2
∂t
〈{

(1 + ξ2)S ′ − αmiξm/2−1K′
}
û, û

〉
+ (1 + ξ2)〈[S ′Lm]syû, û〉

+ αmξ
m/2〈[K′Am]syû, û〉+ ξ(1 + ξ2)〈i[S ′Am]asyû, û〉

− αmξm/2−1〈i[K′Lm]asyû, û〉 = 0,

where we have defined

S ′ = δm−2αmξ
m/2−2Sm−3 + (1 + ξ2)m−4S̃m−2,

K′ = δm−2δm−3Km−4 + (1 + ξ2)m−3K1,

and had already defined αm =
∏m/2
j=2 a2j . By (3.59), we can get (3.43).
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Finally, multiplying (3.59) by δm−1ξ
3m/2−6/(1+ξ2)2(m−3), and combining (3.22)

and the resultant equations, we can obtain

(3.60)
1

2
∂t

〈[
I +

δm−1
(1 + ξ2)2(m−3)

{
ξ3m/2−6(1 + ξ2)S ′ − αmiξ2m−7K′

}]
û, û

〉
+ 〈Lmû, û〉+ δm−1

ξ3m/2−6

(1 + ξ2)2m−7
〈[S ′Lm]syû, û〉

+ αmδm−1
ξ2(m−3)

(1 + ξ2)2(m−3)
〈[K′Am]syû, û〉 − αmδm−1

ξ2m−7

(1 + ξ2)2(m−3)
〈i[K′Lm]asyû, û〉

+ δm−1
ξ3m/2−5

(1 + ξ2)2m−7
〈i[S ′Am]asyû, û〉 = 0,

where I denotes an identity matrix. Letting δ1, · · · , δm−1 suitably small, then (3.60)
derives the energy estimate (3.45). To be more precise, we introduce

Km−4 = (1 + ξ2)m−4K4 +

m/2∑
k=3

k−1∏
j=2

δm−2jδm−2j−1ξ
2(k−2)(1 + ξ2)m−2kK2k

for m ≥ 6, and hence

K′ = (1 + ξ2)m−3K1 + δm−2δm−3(1 + ξ2)m−4K4

+ δm−2δm−3

m/2∑
k=3

k−1∏
j=2

δm−2jδm−2j−1ξ
2(k−2)(1 + ξ2)m−2kK2k.

(3.61)

Moreover, we find that

Sm−3 = (1 + ξ2)m−4S3 +

m/2∑
k=3

k−1∏
j=2

δm−2jδm−2j+1ξ
2(k−2)(1 + ξ2)m−2kS2k−1

for m ≥ 6, and S̃4 = S̃4, S̃6 = a5S̃6 + a6ξS̃4 and

S̃m−2 =

m/2−2∏
j=2

a2j+1S̃m−2 +

m/2−3∏
j=1

am−2jξ
m/2−3S̃4

+

m/2−3∑
k=2

(m/2−k−1∏
j=2

a2j+1

)( k−1∏
j=1

am−2j

)
ξk−1S̃m−2k

for m ≥ 10, and also

S ′ = δm−2αmξ
m/2−2(1 + ξ2)m−4S3

+ αm

m/2∑
k=3

k−1∏
j=1

δm−2jδm−2j+1ξ
m/2+2(k−3)(1 + ξ2)m−2kS2k−1

+

m/2−2∏
j=2

a2j+1(1 + ξ2)m−4S̃m−2 +

m/2−3∏
j=1

am−2jξ
m/2−3(1 + ξ2)m−4S̃4

+

m/2−3∑
k=2

(m/2−k−1∏
j=2

a2j+1

)( k−1∏
j=1

am−2j

)
ξk−1(1 + ξ2)m−4S̃m−2k

(3.62)
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Therefore, by using (3.61) and (3.62), we can estimate the dissipation terms as

(3.63) 〈Lmû, û〉+ δm−1
ξ3(m−4)/2

(1 + ξ2)2m−7
〈[S ′Lm]syû, û〉

+ δm−1
ξ2(m−3)

(1 + ξ2)2(m−3)
〈[K′Am]asyû, û〉

≥ c
{ ξ2(m−3)

(1 + ξ2)m−3
|û1|2 + |û2|2 +

m/2∑
j=2

ξ2(m+j−6)

(1 + ξ2)m+2j−7 |û2j−1|
2

+

m/2∑
j=2

ξ2(m+j−5)

(1 + ξ2)m+2j−6 |û2j |
2
}
,

for suitably small δ1, · · · , δm−1. We note that this estimate is the same as the
dissipation part of (3.45). Consequently we conclude that our desired symmetric
matrix S and skew-symmetric matrix K are described as

S =
ξ3(m−4)/2

(1 + ξ2)2m−7
S ′, K =

ξ2(m−3)

(1 + ξ2)2(m−3)
K′.

4. Alternative approach

4.1. General strategy. In this section, by using the Fourier energy method, we
provide an alternative way to justify the dissipative structure of the linear symmet-
ric hyperbolic system with relaxation (1.1). The key point of the approach is to
derive from the above system a new system of m number of equations or inequalities

(I1), (I2), · · · , (Ij), · · · , (Im),

in the Fourier space, such that their appropriate linear combination can capture the
dissipation rate of all the degenerate components only over the frequency domain
far from |ξ| = 0 and |ξ| =∞. Precisely, for any 0 < ε < M <∞, by considering

(4.1)

m∑
j=1

cjIj

for an appropriate choice of constants cj > 0 (1 ≤ j ≤ m) which may depend on ε
and M , we expect to obtain that for ε ≤ |ξ| ≤M ,

(4.2) ∂t{|û|2 + <Eint1 (û)}+ cε,M |û|2 ≤ 0,

where cε,M > 0 depending on ε and M is a constant, and Eint1 (û) is an interactive
functional such that |û|2 + <Eint1 (û) ∼ |û|2 over ε ≤ |ξ| ≤ M . To deal with the
dissipation rate around |ξ| = 0 or |ξ| = ∞, instead of (4.1), we re-consider the
frequency weighted linear combination in the form of

(4.3)

m∑
j=1

cj
|ξ|αj

(1 + |ξ|)αj+βj
Ij .

Here αj ≥ 0 and βj ≥ 0 (1 ≤ j ≤ m) are constants to be chosen such that the
similar computations for deriving (4.2) can be applied so as to obtain a Lyapunov
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inequality taking the form

(4.4) ∂t{|û|2 + <Eint(û)}+ c

m∑
j=1

λj(ξ)|ûj |2 ≤ 0,

for all t ≥ 0 and all ξ ∈ R, where c > 0 is a constant, λj(ξ) (j = 1, 2, · · · ,m) are
nonnegative rational functions of |ξ|, and Eint(û) is an interactive functional such
that |û|2 + <Eint(û) ∼ |û|2 for all ξ ∈ R. If (4.4) was proved then by defining

λmin(ξ) = min
1≤j≤m

λj(ξ), ξ ∈ R,

it follows that

|û(t, ξ)|2 ≤ Ce−cλmin(ξ)t|û(0, ξ)|2,
for all t ≥ 0 and all ξ ∈ R, which thus implies the dissipative structure of the
considered system (1.1). Observe that λj(ξ) (1 ≤ j ≤ m) and hence λmin(ξ) may
depend on αj ≥ 0 and βj ≥ 0 (1 ≤ j ≤ m). In general, αj and βj are required to
satisfy a series of inequalities such that (4.3) indeed can be applied to deduce (4.4)
by using the Cauchy-Schwarz inequalities. Therefore we always expect to choose
constants αj and βj such that λmin(ξ) is optimal in the sense that λmin(ξ) may
tend to zero when |ξ| → 0 or |ξ| → ∞ in the slowest rate. Finally, we remark
that due to (4.2) which holds over ε ≤ |ξ| ≤ M , considering (4.3) is equivalent to
considering

∑m
j=1 cj |ξ|αjIj over |ξ| ≤ ε with 0 < ε ≤ 1, and

∑m
j=1 cj |ξ|−βjIj over

|ξ| ≥M with M ≥ 1. In such way, it is more convenient to derive those inequalities
satisfied by λj(ξ) (1 ≤ j ≤ m).

4.2. Revisit Model I. By using the same strategy as in Subsection 2.2 and 2.3,
one can obtain m number of identities (Ij) with j = 1, 2, · · · ,m as follows:

(I1) : ∂t〈iξû2, û1〉+ |ξ|2|û2|2 = −〈iξû2, û4〉+ |ξ|2|û1|2.
(I2) : ∂t〈−û1, û4〉+ |û1|2 = |û4|2 + 〈iξû2, û4〉+ 〈û1, iξa4û3 + iξa5û5〉.
(I3) : ∂t{〈iξa4û3, û4〉 − 〈a4û3, û2〉}+ a24|ξ|2|û3|2 =

+a24|ξ|2|û4|2 + 〈iξa4û3,−iξa5û5〉+ a24〈iξû4, û2〉.
(I4) : ∂t〈iξa5û4, û5〉+ a25|ξ|2|û4|2 = 〈iξa5û4,−iξa6û6〉

+a25|ξ|2|û5|2 + a5a4|ξ|2〈û3, û5〉+ 〈iξa5û1, û5〉.
(Ij−1) : ∂t〈iξaj ûj−1, ûj〉+ a2j |ξ|2|ûj−1|2 = 〈iξaj ûj−1,−iξaj+1ûj+1〉

+a2j |ξ|2|ûj |2 + ajaj−1|ξ|2〈ûj−2, ûj〉, j = 6, 7, · · · ,m− 1.

(Im−1) : ∂t〈iξamûm−1, ûm〉+ a2m|ξ|2|ûm−1|2 = 〈iξamûm−1,−γûm〉
+a2m|ξ|2|ûm|2 + am−1am|ξ|2〈ûm−2, ûm〉.

(Im) :
1

2
∂t|û|2 + γ|ûm|2 = 0.

We note that the equations (I1), (I2), (I3), (I4), (Ij−1), (Im−1), (Im) are parallel to
(2.10), (2.6), (2.12), (2.14), (2.29), (2.29), (2.28), respectively. Hence we omit the
proof for the derivation of these equations.

Step 1. We claim that for any 0 < ε < M <∞, there is cε,M > 0 such that for all
ε ≤ |ξ| ≤M ,

(4.5) ∂t{|û|2 + <Eint1 (û)}+ cε,M |û|2 ≤ 0,
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where Eint1 (û) is an interactive functional chosen such that

(4.6) |û|2 + <Eint1 (û) ∼ |û|2.

Proof of claim: The key observation is that all the right-hand terms of identities
(Ij) (1 ≤ j ≤ m) can be absorbed by the left-hand dissipative terms after taking
an appropriate linear combination of all identities. In fact, let us define

Eint1 (û) = c1〈iξû2, û1〉+ c2〈−û1, û4〉

+c3{〈iξa4û3, û4〉 − 〈a4û3, û2〉}+

m−1∑
j=4

cj〈iξaj ûj−1, ûj〉.

By taking the real part of each identity (Ij), taking the sum
∑m
j=1 cjIj with an

appropriate choice of constants cj (1 ≤ j ≤ m), and applying the Cauchy-Schwarz
inequality to the right-hand product terms, one can obtain (4.5), where constants
cj (1 ≤ j ≤ m) depending on ε and M are chosen such that

0 < c1 � c2 � · · · � cm−2 � cm−1 � 1 = cm.

The detailed representation of the proof is omitted for brevity. (4.6) holds true due
to |Eint(û)| ≤ CMcm−1|û|2 for some constant CM depending on M and also due
to smallness of cm−1. �

Step 2. Let |ξ| ≥ M for M ≥ 1. We consider the weighted linear combination of
identities (Ij) (1 ≤ j ≤ m) in the form of

Im +

m−1∑
j=1

cj |ξ|−βjIj ,

where cj (1 ≤ j ≤ m − 1) are chosen in terms of step 2, and βj ≥ 0 are chosen
such that all the right-hand product terms can be absorbed after using the Cauchy-
Schwarz inequality. In fact, multiplying (Ij) by |ξ|−βj , one has

(Iβ1) : ∂t〈iξ|ξ|−β1 û2, û1〉+ |ξ|2−β1 |û2|2 = −〈iξ|ξ|−β1 û2, û4〉+ |ξ|2−β1 |û1|2.
(Iβ2) : ∂t〈−|ξ|−β2 û1, û4〉+ |ξ|−β2 |û1|2 = |ξ|−β2 |û4|2 + 〈iξ|ξ|−β2 û2, û4〉

+〈û1, iξ|ξ|−β2a4û3 + iξ|ξ|−β2a5û5〉.
(Iβ3) : ∂t{〈iξ|ξ|−β3a4û3, û4〉 − 〈a4|ξ|−β3 û3, û2〉}+ a24|ξ|2−β3 |û3|2 =

+a24|ξ|2−β3 |û4|2 + 〈iξ|ξ|−β3a4û3,−iξa5û5〉+ a24〈iξ|ξ|−β3 û4, û3〉.
(Iβ4

) : ∂t〈iξ|ξ|−β4a5û4, û5〉+ a25|ξ|2−β4 |û4|2 = 〈iξ|ξ|−β4a5û4,−iξa6û6〉
+a25|ξ|2−β4 |û5|2 + a5a4|ξ|2−β4〈û3, û5〉+ 〈iξ|ξ|−β4a5û1, û5〉.

(Iβj−1
) : ∂t〈iξ|ξ|−βj−1aj ûj−1, ûj〉+ a2j |ξ|2−βj−1 |ûj−1|2

= 〈iξ|ξ|−βj−1aj ûj−1,−iξaj+1ûj+1〉+ a2j |ξ|2−βj−1 |ûj |2

+ajaj−1|ξ|2−βj−1〈ûj−2, ûj〉, j = 6, 7, · · · ,m− 1.

(Iβm−1) : ∂t〈iξ|ξ|−βm−1amûm−1, ûm〉+ a2m|ξ|2−βm−1 |ûm−1|2

= 〈iξ|ξ|−βm−1amûm−1,−γûm〉+ a2m|ξ|2−βm−1 |ûm|2

+am−1am|ξ|2−βm−1〈ûm−2, ûm〉.
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We then require βj (1 ≤ j ≤ m− 1) to satisfy the following relations. From (Iβ1
),

β1 − 1 ≥ 0, β1 − 2 ≥ 0,

2(β1 − 1) ≥ (β1 − 2) + (β4 − 2), β1 − 2 ≥ β2,

where since |ξ| ≥ M , β1 − 1 ≥ 0 is such that ξ|ξ|−β1 in the left first product term
of (Iβ1) is bounded, β1 − 2 ≥ 0 is such that |ξ|2−β1 in the left second product
term of (Iβ1) is bounded, 2(β1 − 1) ≥ (β1 − 2) + (β4 − 2) is such that the product
term 〈iξ|ξ|−β1 û2, û4〉 on the right first term of (Iβ1) can be bounded by the linear
combination of the dissipative term |ξ|2−β1 |û2|2 in (Iβ1) and |ξ|2−β4 |û4|2 in (Iβ4),
β1− 2 ≥ β2 is such that the term |ξ|2−β1 |û1|2 on the right second term of (Iβ1) can
be bounded by the dissipative term |ξ|−β2 |û1|2 of (Iβ2). In terms of the completely
same way, from (Iβj ) for j = 2, 3, · · · ,m− 1, respectively, we require

β2 ≥ 0,

β2 ≥ β4 − 2, 2(β2 − 1) ≥ (β1 − 2) + (β4 − 2), β2 ≥ β3, β2 ≥ β5,

and

β3 − 1 ≥ 0, β3 ≥ 0, β3 − 2 ≥ 0,

β3 − 2 ≥ β4 − 2, β3 ≥ β5, 2(β3 − 1) ≥ (β3 − 2) + (β4 − 2),

and

β4 ≥ 1, β4 ≥ 2, β4 ≥ β6, β4 ≥ β5,
2(β4 − 2) ≥ (β3 − 2) + (β5 − 2), 2(β4 − 1) ≥ β2 + (β5 − 2),

and for j = 6, · · · ,m− 1,

βj−1 ≥ 1, βj−1 ≥ 2,

βj−1 ≥ βj+1, βj−1 ≥ βj , 2(βj−1 − 2) ≥ (βj−2 − 2) + (βj − 2),

and

βm−1 ≥ 1, βm−1 ≥ 2,

2(βm−1 − 1) ≥ βm−1 − 2, βm−1 − 2 ≥ 0, 2(βm−1 − 2) ≥ βm−2 − 2.

Let us choose

β1 = 4, β2 = β3 = · · · = βm−1 = 2,

which satisfy all the above inequalities of βj (1 ≤ j ≤ m− 1).
We now define

Eint∞ (û) = c1〈iξ|ξ|−4û2, û1〉+ c2〈−|ξ|−2û1, û4〉
+c3{〈iξ|ξ|−2a4û3, û4〉 − 〈a4|ξ|−2û3, û2〉}

+

m−1∑
j=4

cj〈iξ|ξ|−2aj ûj−1, ûj〉.

Then, as in Step 1, one can show that for any M ≥ 1, there is cM > 0 such that
for all |ξ| ≥M ,

∂t{|û|2 + <Eint∞ (û)}+ cM{|ξ|−2(|û1|2 + |û2|2) +

m∑
j=3

|ûj |2} ≤ 0.
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Step 3. Let |ξ| ≤ ε for 0 < ε ≤ 1. As in Step 2, we consider the weighted linear
combination of identities (Ij) (1 ≤ j ≤ m) in the form of

Im +

m−1∑
j=1

cj |ξ|αjIj ,

where cj (1 ≤ j ≤ m − 1) are chosen in terms of step 1, and αj ≥ 0 are chosen
such that all the right-hand product terms can be absorbed after using the Cauchy-
Schwarz inequality. In fact, as in Step 2, multiplying (Ij) by |ξ|αj , one has

(Iα1
) : ∂t〈iξ|ξ|α1 û2, û1〉+ |ξ|2+α1 |û2|2 = −〈iξ|ξ|α1 û2, û4〉+ |ξ|2+α1 |û1|2.

(Iα2
) : ∂t〈−|ξ|α2 û1, û4〉+ |ξ|α2 |û1|2 = |ξ|α2 |û4|2 + 〈iξ|ξ|α2 û2, û4〉

+〈û1, iξ|ξ|α2a4û3 + iξ|ξ|α2a5û5〉.
(Iα3

) : ∂t{〈iξ|ξ|α3a4û3, û4〉 − 〈a4|ξ|α3 û3, û2〉}+ a24|ξ|2+α3 |û3|2 =

+a24|ξ|2+α3 |û4|2 + 〈iξ|ξ|α3a4û3,−iξa5û5〉+ a24〈iξ|ξ|α3 û4, û3〉.
(Iα4

) : ∂t〈iξ|ξ|α4a5û4, û5〉+ a25|ξ|2+α4 |û4|2 = 〈iξ|ξ|α4a5û4,−iξa6û6〉
+a25|ξ|2+α4 |û5|2 + a5a4|ξ|2+α4〈û3, û5〉+ 〈iξ|ξ|α4a5û1, û5〉.

(Iαj−1
) : ∂t〈iξ|ξ|αj−1aj ûj−1, ûj〉+ a2j |ξ|2+αj−1 |ûj−1|2

= 〈iξ|ξ|αj−1aj ûj−1,−iξaj+1ûj+1〉+ a2j |ξ|2+αj−1 |ûj |2

+ajaj−1|ξ|2+αj−1〈ûj−2, ûj〉, j = 6, 7, · · · ,m− 1.

(Iαm−1) : ∂t〈iξ|ξ|αm−1amûm−1, ûm〉+ a2m|ξ|2+αm−1 |ûm−1|2

= 〈iξ|ξ|αm−1amûm−1,−γûm〉+ a2m|ξ|2+αm−1 |ûm|2

+am−1am|ξ|2+αm−1〈ûm−2, ûm〉.

As in the case of the large frequency domain, for |ξ| ≤ ε with ε > 0, in order for all
the right product terms to be bounded, from equations (Iαj ) (j = 1, 2, · · · ,m− 1)
above, respectively, we have to require

α1 + 1 ≥ 0, 2(α1 + 1) ≥ (α1 + 2) + (α4 + 2), α1 + 2 ≥ α2,

and

α2 ≥ α4 + 2, 2(α2 + 1) ≥ (α1 + 2) + (α4 + 2), α2 ≥ α3, α2 ≥ α5,

and

α3 ≥ α4, α3 ≥ α5, 2(α3 + 1) ≥ (α4 + 2) + (α1 + 2),

and

α4 ≥ α6, α4 ≥ α5,

2(α4 + 2) ≥ (α3 + 2) + (α5 + 2), 2(α4 + 1) ≥ α2 + (α5 + 2),

and for j = 6, · · · ,m− 1,

αj−1 ≥ αj+1, αj−1 ≥ αj , 2(αj−1 + 2) ≥ (αj−2 + 2) + (αj + 2),

and

αm−1 ≥ 0, αm−1 + 2 ≥ 0, 2(αm−1 + 2) ≥ αm−2 + 2.

To consider the best choice of {αj}m−1j=1 , one can see

α1 ≥ α2 ≥ · · · ≥ αj ≥ αj+1 ≥ · · · ≥ αm−2 ≥ αm−1 ≥ 0 := αm,
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with

α1 − α4 ≥ 2,

α2 − α4 ≥ 2,

α3 − α4 ≥ 2,

αj−1 − αj ≤ αj − αj+1, 4 ≤ j ≤ m− 1.

Therefore, the possible best choice satisfies

α1 − α4 = 2,

α2 − α4 = 2,

α3 − α4 = 2,

2 = α3 − α4 ≤ α4 − α5 ≤ · · · ≤ αm−1 − αm = αm−1 = 2,

which implies

α1 = α2 = α3 = 2(m− 4),

αj = 2(m− j − 1), 4 ≤ j ≤ m− 1.

We now define

Eint0 (û) = c1〈iξ|ξ|2(m−4)û2, û1〉+ c2〈−|ξ|2(m−4)û1, û4〉
+c3{〈iξ|ξ|2(m−4)a4û3, û4〉 − 〈a4|ξ|2(m−4)û3, û2〉}

+

m−1∑
j=4

cj〈iξ|ξ|2(m−j−1)aj ûj−1, ûj〉.

Then, as in Step 1, one can show that for any 0 < ε ≤ 1, there is cε > 0 such that
for all |ξ| ≤ ε,

∂t{|û|2 + <Eint0 (û)}+ cε{|ξ|2m−8|û1|2 + |ξ|2m−6|û2|2 +
m∑
j=3

|ξ|2(m−j)|ûj |2} ≤ 0,

which further implies that for |ξ| ≤ ε,

∂t{|û|2 + <Eint0 (û)}+ cε|ξ|2m−6|û|2 ≤ 0.

Step 4. For ξ ∈ R let us define

Eint(û) = c1
|ξ|2(m−4)

(1 + |ξ|)2m−4
〈iξû2, û1〉+ c2

|ξ|2(m−4)

(1 + |ξ|)2m−6
〈−û1, û4〉

+c3
|ξ|2(m−4)

(1 + |ξ|)2m−6
{〈iξa4û3, û4〉 − 〈a4û3, û2〉}

+

m−1∑
j=4

cj
|ξ|2(m−j−1)

(1 + |ξ|)2(m−j)
〈iξaj ûj−1, ûj〉.
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As in Step 2 and Step 3, we consider the weighted linear combination of identities
(Ij) (1 ≤ j ≤ m) in the form of

Im + c1
|ξ|2(m−4)

(1 + |ξ|)2m−4
I1 + c2

|ξ|2(m−4)

(1 + |ξ|)2m−6
I2

+ c3
|ξ|2(m−4)

(1 + |ξ|)2m−6
I3 +

m−1∑
j=4

cj
|ξ|2(m−j−1)

(1 + |ξ|)2(m−j)
Ij ,

where cj (1 ≤ j ≤ m − 1) are chosen in terms of Step 1. Thanks to computations
in Step 1, Step 2, and Step 3, in the completely same way, one can deduce that for
ξ ∈ R,

∂t{|û|2 + <Eint(û)}+ c{ |ξ|2m−8

(1 + |ξ|)2m−6
|û1|2

+
|ξ|2m−6

(1 + |ξ|)2m−4
|û2|2 +

m∑
j=3

|ξ|2(m−j)

(1 + |ξ|)2(m−j)
|ûj |2} ≤ 0,

which further gives

∂t{|û|2 + <Eint(û)}+ c
|ξ|2m−6

(1 + |ξ|)2m−4
|û|2 ≤ 0.

Noticing |û|2 + <Eint(û) ∼ |û|2, it follows that

|û(t, ξ)| ≤ Ce−cη(ξ)t|û(0, ξ)|, η(ξ) =
|ξ|2m−6

(1 + |ξ|)2m−4
,

for all t ≥ 0 and all ξ ∈ R. Notice that the result here is consistent with (2.2)
proved in Section 2.3.

4.3. Revisit Model II. In this section we revisit the Model II (1.1) with coeffi-
cients matrices Am and Lm defined in (3.1). For simplicity of representation, we
rewrite Am with m = 2n as

A2n =



0 a12
a21 0

0 a34
a43 0

. . .

0 a2n−1,2n
a2n,2n−1 0


,

with a2j−1,2j = a2j,2j−1 = aj for 1 ≤ j ≤ n, and also choose Lm with m = 2n as

L2n =



0
1 1
−1 0

0 1
−1 0

. . .

0 1
−1 0

0


.
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With notations above, system (1.1) can read

∂tû2j−1 + iξaj û2j − û2j−2 = 0,

∂tû2j + iξaj û2j−1 + û2j+1 + δ2,2j û2 = 0, j = 1, 2, · · · , n,

with the convention that û2n+1 ≡ 0 and û0 ≡ 0. As for the model I, we can obtain
the following estimates

(4.7)
1

2
∂t|û|2 + |û2|2 = 0,

and

(4.8) ∂t<〈iξa1û1,
n∑
j=1

(−iξ)1−j(
j∏

k=2

ak)−1û2j〉+ ca21ξ
2|û1|2

. (1 + |ξ|)2|û2|2 + <〈ξ2a21û2,
n∑
j=2

(−iξ)1−j(
j∏

k=2

ak)−1û2j〉,

and

(4.9) ∂t<〈û2j−1, u2j−2〉+ c|û2j−1|2 . |û2j−2|2 + ξ2|û2j−3|2 + <〈−iξaj û2j , û2j−2〉,

and

(4.10) ∂t<〈iξaj û2j , û2j−1〉+ ca2jξ
2|û2j |2

. |û2j−2|2 + a2jξ
2|û2j−1|2 + <〈−iξaj û2j+1, û2j−1〉,

for j = 2, 3, · · · , n. Indeed, by using the equations (3.22), (3.26), (3.28), (3.30)
derived in Subsection 3.3, we can get (4.7), (4.8), (4.9), (4.10), immediately.

Let us denote (4.7), (4.8), (4.9), (4.10) by (I1), (I2), (I2j−1) and (I2j), respec-
tively, where j = 2, 3, · · · , n. Consider the linear combination of all 2n number of
equations

n∑
j=1

(c2j−1I2j−1 + c2jI2j),

where c1 = 1, and ck > 0 (k = 2, 3, · · · , 2n) are constants to be properly chosen. It
is straightforward to verify that for any 0 < ε < M <∞, one can choose constants
ck (1 ≤ k ≤ 2n) depending on ε and M , with

0 < c2n � c2n−1 � · · · � c2j � c2j−1 � · · · � c3 � c2 � 1 = c1,

such that there is cε,M > 0 such that for all ε ≤ |ξ| ≤M ,

∂t{|û|2 + <Eint1 (û)}+ cε,M |û|2 ≤ 0,

where Eint1 (û) is an interactive functional given by

Eint1 (û) = c2〈iξa1û1,
n∑
j=1

(−iξ)1−j(
j∏

k=2

ak)−1û2j〉

+

n∑
j=2

{c2j−1〈û2j−1, u2j−2〉+ c2j〈iξaj û2j , û2j−1〉},

satisfying

|û|2 + <Eint1 (û) ∼ |û|2, for ε ≤ |ξ| ≤M.



48 Y. UEDA, R.-J. DUAN, AND S. KAWASHIMA

Furthermore, we can consider the frequency weighted linear combination in the
form of

(4.11)

n∑
j=1

{c2j−1
|ξ|α2j−1

(1 + |ξ|)α2j−1+β2j−1
I2j−1 + c2j

|ξ|α2j

(1 + |ξ|)α2j+β2j
I2j},

where α1 = β1 = 0. As for the model I, we use the same strategy to determine the
choice of constants

α2, α3, · · · , α2n; β2, β3, · · · , β2n.
In fact, by considering the low frequency domain |ξ| ≤ ε with ε ≤ 1, α2, α3, · · · , α2n

are required to satisfy inequalities

2− j + α2 ≥ 0, j = 2, 3, · · · , n,
α2 ≥ 0,

2 + α2 ≥ 0,

α3 ≥ 0, 2 + α3 ≥ 2 + α2,

α4 ≥ 0, 2 + α4 ≥ α3,

α2j ≥ 2 + α2j−2, 2 + α2j ≥ α2j−1,

α2j−1 ≥ 2 + α2j−2, 2 + α2j−1 ≥ α2j−3, j = 3, 4, · · · , n,

and

2(3− j + α2) ≥ α2j + 2, j = 2, · · · , n,

1 + α3 ≥
2 + α4

2
,

α2j ≥
1

2
(α2j+1 + α2j−1)− 1,

α2j+1 ≥
1

2
(α2j+2 + α2j)− 1, j = 2, · · · , n− 1.

One can take the best choice

α2 = 4(n− 2),

α2j−1 = α2j = 4(n− 2) + 2(j − 2), j = 2, 3, · · · , n.

Similarly, by considering the high frequency domain |ξ| ≥M with M ≥ 1, constants
β2, β3, · · · , β2n are required to satisfy inequalities

β2 − 2 ≥ 0,

β3 ≥ 0, β3 − 2 ≥ β2 − 2,

β4 ≥ 0, β4 − 2 ≥ β3,
β2j ≥ β2j−2, β2j − 2 ≥ β2j−1,
β2j−1 ≥ β2j−2 − 2, β2j−1 − 2 ≥ β2j−3, j = 3, · · · , n,

and

2(β3 − 1) ≥ β4 − 2,

β2 + j − 2 ≥ 0, 2(β2 + j − 3) ≥ β2j − 2, j = 2, · · · , n,
2(β2j − 1) ≥ β2j+1 + β2j−1,

2(β2j+1 − 1) ≥ (β2j+2 − 2) + (β2j − 2), j = 2, · · · , n− 1.
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One can take the best choice

β2j = β2j+1 = 2j, j = 1, 2, · · · , n.

Now, by (4.11), let us define the interactive functional

Eint(û) = c2
|ξ|α2

(1 + |ξ|)α2+β2
〈iξa1û1,

n∑
j=1

(−iξ)1−j(
j∏

k=2

ak)−1û2j〉

+

n∑
j=2

{c2j−1
|ξ|α2j−1

(1 + |ξ|)α2j−1+β2j−1
〈û2j−1, û2j−2〉

+c2j
|ξ|α2j

(1 + |ξ|)α2j+β2j
〈iξaj û2j , û2j−1〉},

that is,

Eint(û) = c2
|ξ|4n−8

(1 + |ξ|)4n−6
〈iξa1û1,

n∑
j=1

(−iξ)1−j(
j∏

k=2

ak)−1û2j〉

+

n∑
j=2

{c2j−1
|ξ|4n+2j−12

(1 + |ξ|)4n+4j−14 〈û2j−1, û2j−2〉

+c2j
|ξ|4n+2j−12

(1 + |ξ|)4n+4j−12 〈iξaj û2j , û2j−1〉},

and also define the energy dissipation rate

D(û) = |û2|2 +
|ξ|2+α2

(1 + |ξ|)α2+β2
|û1|2

+

n∑
j=2

{ |ξ|α2j−1

(1 + |ξ|)α2j−1+β2j−1
|û2j−1|2 +

|ξ|2+α2j

(1 + |ξ|)α2j+β2j
|û2j |2},

that is,

D(û) = |û2|2 +
|ξ|4n−6

(1 + |ξ|)4n−6
|û1|2

+

n∑
j=2

{ |ξ|4n+2j−12

(1 + |ξ|)4n+4j−14 |û2j−1|
2 +

|ξ|4n+2j−10

(1 + |ξ|)4n+4j−12 |û2j |
2}.

Then it follows that

∂t{|û|2 + <Eint(û)}+ cD(û) ≤ 0,

for all t ≥ 0 and all ξ ∈ R. Noticing

|û|2 + <Eint(û) ∼ |û|2,

and

D(û) &
|ξ|6n−10

(1 + |ξ|)8n−12
|û|2,

one can see that the Model II (1.1), where coefficients matrices Am and Lm are
defined in (3.1) with m = 2n, enjoys the dissipative structure

|û(t, ξ)|2 ≤ Ce−cη(ξ)t|û(0, ξ)|,
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with

η(ξ) =
|ξ|6n−10

(1 + |ξ|)8n−12
=

|ξ|3m−10

(1 + |ξ|)4m−12
.

Hence the derived result here is consistent with (3.2) proved in Theorem 3.1.
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