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Abstract. This paper concerns the coupled chemotaxis-Navier-Stokes
system in the two-dimensional setting. Such a system was proposed in
[19] to describe the collective effects arising in bacterial suspensions in
fluid drops. Under some basic assumptions on the parameter functions
χ(·), k(·) and the potential function φ, which are consistent with those
used by the experimentalists but weaker than those appeared in the
known mathematical works, we establish the global existence of weak
solutions and classical solutions for both the Cauchy problem and the
initial-boundary value problem supplemented with some initial data.
For the initial-boundary value problem, we also assert that the solu-
tion converges in large time to the spatially homogeneous equilibrium
(n0, 0, 0) with n0 := 1

|Ω|

∫
Ω
n0(x) dx. Our results also show that the

large diffusion of the cell density or the chemical concentration can rule
out the finite-time blow-up even though the Navier-Stokes fluid is in-
cluded.

1. Introduction

Bacteria or microorganisms often live in fluid, in which the biology of
aerotaxis is intimately related to the surrounding physics. Tuval et al. [19]
proposed a coupled cell-fluid model to describe the dynamics of swimming
bacteria, Bacillus subtilis, which not only consists of chemotaxis and diffu-
sion, but also includes transport and viscous fluid dynamics. It is given as
follows:

nt + u · ∇n = Dn∆n−∇ ·
(
nχ(c)∇c

)
, x ∈ Ω, t > 0,

ct + u · ∇c = Dc∆c− k(c)n, x ∈ Ω, t > 0,

ut + u · ∇u +∇P = Du∆u + n∇φ, x ∈ Ω, t > 0,

∇ · u = 0, x ∈ Ω, t > 0,

(1.1)

where the unknowns n(t, x), c(t, x), u(t, x) and P (t, x) denote the cell den-
sity, the oxygen concentration, the fluid velocity, and the corresponding
scalar pressure, respectively. Ω ⊂ R2 or R3 is a spatial domain where the
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cells and the fluid move and interact. The positive constants Dn, Dc and Du

are the corresponding diffusion coefficients for the cells, the oxygen and the
fluid, respectively. The given functions χ(·) and k(·) denote the chemotac-
tic sensitivity and the oxygen consumption rate, respectively. The known
function φ = φ(x) is a time-independent one, and usually denotes potential
function such as the gravitational force or centrifugal force. One example in
the case of gravity is φ = ax1 for some constant a ∈ R depending on the ratio
of the fluid mass density to the cell density and the gravity acceleration.

As usual, in order for the system (1.1) to be well-posed, it should be
supplemented with some initial conditions

(n, c,u)|t=0 = (n0(x), c0(x),u0(x)), x ∈ Ω (1.2)

and some proper boundary conditions. Two typical cases for Ω are the
whole space and the bounded domain. For the case of the whole space, the
boundary condition is hidden in the decay of solutions at spatial infinity.
For the case of the bounded domain, the most common boundary condition
is that n and c satisfy the no-flux Neumann boundary value and u satisfies
the no-slip boundary value, namely,

∂n

∂ν
=
∂c

∂ν
= 0, u = 0 on ∂Ω, (1.3)

where ν is the unit outward normal vector on ∂Ω.
System (1.1) consists of two subsystems. One is the classical incompress-

ible Navier-Stokes equations which are still lacking a complete existence
and regularity theory, especially in the three-dimensional case (see [15]).
The other is a variant of the classical Keller-Segel system{

nt = ∆n−∇ ·
(
nχ(c)∇c

)
, x ∈ Ω, t > 0,

ct = ∆c− c+ n, x ∈ Ω, t > 0.
(1.4)

It is well-known that the cross-diffusive term −∇·
(
nχ(c)∇c

)
may destabilize

the homogeneity of model (1.4) and even enforce blow-up of solutions (see [1]
and references therein). Therefore, the mathematical analysis of the coupled
chemotaxis-fluid model (1.1) faces large challenges.

Up to now, there are only few analytic results which mainly focus on the
local and global solvability of corresponding initial(-boundary)-value prob-
lems in either bounded or unbounded domains Ω, under various technical
conditions on χ(·) and k(·). In the case Ω = R2, in [5], it was proved that
there exists a global weak solutions for the chemotaxis-Stokes equations, i.e,
the nonlinear convective term u·∇u is removed in the fluid equation of (1.1),
by making use of quasi-energy functionals associated with (1.1), under the
following conditions on χ(·) and k(·):

χ(c) > 0, χ′(c) ≥ 0, k(0) = 0, k′(c) > 0,
d2

dc2

(
k(c)

χ(c)

)
< 0, (1.5)
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and on φ and the initial data c0:

φ ≥ 0, ∇φ ∈ L∞(R2),

supw|∇φ|+ supw2|∇2φ| and ‖c0‖L4(R2) are small;
(1.6)

or

k(0) = 0, k′(c) > 0, (1.7)

and
φ ≥ 0, ∇φ ∈ L∞(R2),

supw|∇φ|+ supw2|∇2φ| <∞, ‖c0‖L∞(R2) is small,
(1.8)

where w = w(x) = (1 + |x|)
(
1 + ln(1 + |x|)

)
. In [12], the global existence

of weak solutions for the full chemotaxis-Navier-Stokes equations (1.1) are
obtained, under the conditions on χ(·) and k(·):

χ(c), χ′(c), k(c), k′(c) ≥ 0,

d2

dc2

(
k(c)

χ(c)

)
< 0,

χ′(c)k(c) + χ(c)k′(c)

χ(c)
> 0.

(1.9)

The decay of the potential at infinity and the smallness of c0 and φ in
(1.6) and (1.8) are not required in [12, 6]. Moreover, if the initial data are
sufficiently smooth, it was proved in [2] that the global existence of smooth
solutions could be established by assuming that φ(x), χ(c) and k(c) satisfy

φ(x), χ(c), χ′(c), k(c), k′(c) ≥ 0, k(0) = 0 (1.10)

and that there exists a constant µ such that

sup
c≥0
|χ(c)− µk(c)| < ε for a sufficiently small ε > 0. (1.11)

In [3], Chae et al got rid of the condition (1.11) and obtained the global
existence of smooth solution for some small initial data under only the as-
sumptions (1.10). In the case Ω = R3, the global classical solution near
constant steady states and the global weak solutions in the special situation
that χ(·) precisely coincides with a fixed multiple of k(·) are constructed for
the full chemotaxis-Navier-Stokes system (1.1) in [5] and [2], respectively.

In the case Ω ⊂ R2 is a bounded convex domain with smooth boundary,
Winkler [23] proved the global existence of classical solution to the initial
boundary value problem (1.1)-(1.3) under the assumption that the parame-
ter functions satisfy that

χ ∈ C2
(
[0,∞)

)
, χ(·) > 0 in [0,∞),

k ∈ C2([0,∞)), k(0) = 0, k(·) > 0 in (0,∞),

φ ∈ C2(Ω),

(1.12)

and

d2

dc2

(
k(c)

χ(c)

)
> 0,

d2

dc2

(
k(c)

χ(c)

)
≤ 0,

(
χ(c) · k(c)

)′
≥ 0, (1.13)
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while the initial data satisfy that
n0 ∈ C0(Ω̄), n0 > 0 in Ω,

c0 ∈W 1,q(Ω) for some q > 2, c0 > 0 in Ω,

u0 ∈ D(Aα) for some α ∈ (1/2, 1),

(1.14)

where A denotes the realization of the Stokes operator in the solenoidal
subspace L2

σ(Ω) := {ϕ ∈ L2(Ω)|∇·ϕ = 0} of L2(Ω). Then in [24], he further
asserted that this solution stabilizes to the spatially uniform equilibrium
(n0, 0, 0) with respect to the norm in L∞(Ω). More related works on the
bounded domain case, we may refer to [16, 20, 21] for the two-dimensional
case and [4, 17, 22, 25, 26] for the three dimensional case. In particular,
the recent works [25, 26] established the global existence of weak solutions
as well as their eventual smoothness and stabilization to the 3D version of
system (1.1), still under some strong structural assumptions on χ and k.

The main purpose of this paper is to establish the global existence for
system (1.1) with initial(-boundary)-value condition under the weaker re-
strictions on the chemotactic sensitivity χ and the oxygen consumption rate
k than those used in (1.5), (1.7), (1.9), (1.10) and (1.13). Indeed, Petroff
and Libchaber [14] recently proposed a similar chemotaxis-fluid model to
describe how the response of the sulfur-oxidizing bacterium Thiovulum ma-
jus to changing oxygen gradients causes cells to organize into large-scale
fronts, where the chemotactic sensitivity χ(c) is preferred as χ′(c∗)(c − c∗)
with χ′(c∗) < 0. This assumption is based on the experimental observation
in [7] and [18], that the sulfur-oxidizing bacterium T. majus shows a strong
chemotactic response toward a specific concentration of oxygen, c∗ = 4%
air saturation. Moreover, the experimentalists in [19] used multiples of the
Heaviside step function to model χ(·) and k(·). Additionally, it is also rea-
sonable to assume that χ(c) → 0 as c → ∞, which indicates that at large
oxygen concentrations chemotaxis is inhibited ([9, 10]). As far as we know,
there are few results involving parameter functions satisfying these condi-
tions. Since different functional forms of χ and k are meaningful as well,
then it is very interesting to investigate system (1.1) with the more general
chemotactic sensitivity χ and the oxygen consumption rate k.

Main Results. We shall study both the Cauchy problem (1.1)-(1.2) and the
initial-boundary value problem (1.1)-(1.3) in the two-dimensional setting.
For the Cauchy problem (1.1)-(1.2), we first assume that:

(A). The chemotactic sensitivity χ(·) and the oxygen consumption rate
k(·) are locallly bounded, k(·) is continuous at zero with k(0) = 0, and
k(s) ≥ 0 for all s ∈ R;

(A1). ∇φ ∈ L∞(R2);

(A2). The initial data (n0, c0,u0) satisfy that

n0(x) ≥ 0, c0(x) ≥ 0, ∇ · u0(x) = 0 for all x ∈ R2



A TWO-DIMENSIONAL CHEMOTAXIS-NAVIER-STOKES SYSTEM 5

and that

n0(1 + |x|+ | lnn0|) ∈ L1(R2),

c0 ∈ L1(R2) ∩ L∞(R2) ∩H1(R2), u0 ∈ L2(R2;R2).

Under these assumptions, we will first prove the global existence of weak
solutions to the Cauchy problem (1.1)-(1.2). Here, the definition of global
weak solutions is in the following sense:

Definition 1.1 (Weak solution). A triple (n, c,u) is called a global weak
solution to the Cauchy problem (1.1)-(1.2) if for any T > 0,

(i) it holds that n(t, x) ≥ 0, c(t, x) ≥ 0 a.e. in [0, T ]× R2, and

n(1 + |x|+ | lnn|) ∈ L∞
(
0, T ;L1(R2)

)
,

∇
√
n ∈ L2

(
0, T ;L2(R2)

)
,

c ∈ L∞
(
0, T ;L1(R2) ∩ L∞(R2) ∩H1(R2)

)
,

∆c ∈ L2
(
0, T ;L2(R2)

)
u ∈ L∞

(
0, T ;L2(R2,R2)

)
∩ L2

(
0, T ;H1(R2,R2)

)
;

(1.15)

(ii) it holds that∫ T

0

∫
R2

n(∂tψ +Dn∆ψ +∇ψ · u + χ(c)∇c · ∇ψ) dxdt

+

∫
R2

n0(x)ψ(0, x) dx = 0 (1.16)

and∫ T

0

∫
R2

c(∂tψ +Dc∆ψ +∇ψ · u− k(c)nψ) dxdt+

∫
R2

c0(x)ψ(0, x) dx = 0

(1.17)
for any ψ ∈ C∞([0, T )× R2), and∫ T

0

∫
R2

u · ∂tϕ+Duu ·∆ϕ+ (u · ∇)u · ϕ− n∇φ · ϕdxdt

+

∫
R2

u0(x) · ϕ(0, x) dx = 0 (1.18)

for any ϕ ∈ C∞([0, T ) × R2;R2) with ∇ · ϕ = 0, where both ψ and ϕ have
compact support in x, ψ(T, ·) = 0 and ϕ(T, ·) = 0.

The main results describing the global existence of weak solutions to the
Cauchy problem are given as follows.

Theorem 1.1 (Global existence of weak solutions for Ω = R2). Suppose
that the assumptions (A), (A1) and (A2) hold. Let M = ‖c0‖L∞(R2) and
CGN be a positive constant resulted from the Gagliardo-Nirenberg inequality.
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If it holds thatM
2 sup

0≤s≤M
χ4(s)

4D3
nDc

+

sup
0≤s≤M

k2(s)

DnDc
+

4M2

DnDcDu

CGN‖n0‖L1(R2) < 1,

then the Cauchy problem (1.1)-(1.2) admits at least a global-in-time weak
solution (n, c,u).

Whenever one enhances the regularity of the initial data (n0, c0,u0) and
of the parameter functions χ, k and φ, the corresponding solution (n, c,u)
can become more regular and thus the global classical solutions may be
obtained.

Theorem 1.2 (Global existence of classical solutions for Ω = R2). Let m ≥
3. Under the assumptions of Theorem 1.1, if it additionally holds that the
initial data (n0, c0,u0) ∈ Hm−1(R2)×Hm(R2)×Hm(R2;R2), χ, k ∈ Cm(R)
and ‖∇lφ‖L∞(R2) < ∞ for 1 ≤ |l| ≤ m, then system (1.1)-(1.2) admits a
unique global-in-time classical solution (n, c,u) satisfying for any T > 0

(n, c,u) ∈ L∞
(
0, T ; Hm−1(R2)×Hm(R2)×Hm(R2;R2)

)
and

(∇n,∇c,∇u) ∈ L2
(
0, T ; Hm−1(R2)×Hm(R2)×Hm(R2;R2)

)
.

For the initial boundary value problem (1.1)-(1.3), we will study both the
global existence and the large-time behavior of classical solutions under the
basic regularity assumptions (1.12) and (1.14) but without the structural
conditions (1.13).

Theorem 1.3. Let Ω ⊂ R2 be a bounded domain with smooth boundary.
Suppose that the parameter functions χ, k and φ satisfy (1.12) and that the

initial data (n0, c0,u0) satisfies (1.14). Let M̃ = ‖c0‖L∞(Ω) and CGN be a
positive constant resulted from the Gagliardo-Nirenberg inequality. If it holds
that 

M̃2 sup
0≤s≤M̃

χ4(s)

4D3
nDc

+

sup
0≤s≤M̃

k′2(s)

DnDc

CGN‖n0‖L1(Ω) <
4

3
,

then system (1.1)-(1.3) possesses a unique global in time classical solution
with the regularity properties that, for all T ∈ (0,∞),

n ∈ C0
(
[0, T );L2(Ω)

)
∩ L∞

(
[0, T );C0(Ω̄)

)
∩ C2,1

(
Ω̄× (0, T )

)
,

c ∈ C0
(
[0, T );L2(Ω)

)
∩ L∞

(
[0, T );W 1,q(Ω̄)

)
∩ C2,1

(
Ω̄× (0, T )

)
,

u ∈ C0
(
[0, T );L2(Ω)

)
∩ L∞

(
[0, T );D(Aα)

)
∩ C2,1

(
Ω̄× (0, T )

)
,

P ∈ L∞
(
(0, T );W 1,2(Ω)

)
.

(1.19)
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Furthermore, the global solution converges in large time to the the spatially
uniform equilibrium (n0, 0, 0) with n0 := 1

|Ω|
∫

Ω n0(x) dx, in the sense that

n(·, t)→ n0, c(·, t)→ 0 and u(·, t)→ 0 as t→∞
hold with respect to the norm in L∞(Ω).

Remark 1.1. Compared with the results in [5, 12, 23, 24], we removed the
monotonicity assumption and the structural conditions on χ and k.

Remark 1.2. Theorems 1.1, 1.2 and 1.3 also show that the large diffusion
of the cell density or the chemical concentration can rule out the finite-time
blow-up even though the Navier-Stokes fluid is included. Moreover, a similar
conclusion as Theorem 1.1 still holds in the three dimensional case while it is
not clear for the 3D analogies of Theorems 1.2 and 1.3 due to the outstanding
open problem on the 3D Navier-Stokes system in fluid dynamics.

Remark 1.3. Smallness assumptions on ‖c0‖L∞(Ω) are known to enforce
global regularity also in other fluid-free chemotaxis systems involving signal
consumption as in (1.1) but lacking convenient energy structures (see e.g.
[11] for the chemotaxis system with rotational flux terms).

The rest of this paper is organized as follows. We first concern the Cauchy
problem in Section 2 and then investigate the initial-boundary value problem
in Section 3.

2. The Cauchy problem in Ω = R2

In this section, we investigate the global existence of weak or classical
solutions to the Cauchy problem of system (1.1)-(1.2). We begin with the
nonnegativity of n and c, and the basic mass conservation of n as well as
the boundedness of c.

Lemma 2.1. Suppose that the assumptions (A), (A1) and (A2) hold. Then
the global weak or strong solution (n, c,u) to the Cauchy problem of system
(1.1)-(1.2) satisfies

n(t, x) ≥ 0, c(t, x) ≥ 0 a.e. in [0,+∞)× Ω, (2.1)

and
‖n(t)‖L1(Ω) ≡ ‖n0‖L1(Ω) for any t ≥ 0, (2.2)

as well as
sup
t≥0
‖c(t)‖L∞(Ω) ≤ ‖c0‖L∞(Ω). (2.3)

Proof. We just show the case that (n, c,u) is a strong solution to system
(1.1)-(1.2). For the weak solution case, we can use the same argument to the
regularized system (2.28)-(2.29) and then take an approximation procedure
to obtain the desired result.

Firstly, it follows from the assumption (A) and the maximum principle
that n and c preserve the nonnegativity of the initial data, which gives (2.1).
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Next, integrating (1.1)1 on x over R2 and using the nonnegativity of n,
we see that (2.2) holds.

Finally, multiplying (1.1)2 by pcp−1 with p ≥ 1 and then integrating over
R2, we obtain

d

dt

∫
R2

cp dx+
4(p− 1)

p

∫
R2

|∇cp/2|2 dx = −p
∫
R2

k(c)cp−1n dx ≤ 0,

which implies that supt≥0 ‖c(t)‖Lp(R2) ≤ ‖c0‖Lp(R2) for any p ≥ 1. Then
passing to the limit as p→∞ yields that supt≥0 ‖c(t)‖L∞(R2) ≤ ‖c0‖L∞(R2).
This completes the proof of (2.3) and hence Lemma 2.1. �

2.1. Global existence of weak solutions. The global existence of weak
solution is based on deriving a key entropy functional inequality. To establish
such an inequality for a weak solution (n, c,u), we introduce

E(t) :=

∫
R2

(
n lnn+ 2n

√
1 + |x|2 + |∇c|2 +

4CGNM
2

DuDc
|u|2

)
dx,

and

F(t) :=
(
Dn −K1

) ∫
R2

|∇
√
n|2dx+

Dc
2

∫
R2

|∆c|2dx

+
4CGNM

2

Dc

∫
R2

|∇u|2dx,

where M = ‖c0‖L∞(R2), K1 is defined by (2.4) and CGN is a uniform positive
constant related to the Gagliardo-Nirenberg inequality, which may change
from line to line.

We now state the entropy functional inequality for Ω = R2.

Lemma 2.2. Suppose that the assumptions (A), (A1) and (A2) hold. If it
holds that

K1 :=

CGNM
2 sup

0≤c≤M
χ4(c)

4D2
nDc

+

sup
0≤c≤M

k2(c)

Dc
+

4CGNM
2

DuDc


× CGN‖n0‖L1(R2) < Dn, (2.4)

then the global weak solution (n, c,u) to the Cauchy problem of system (1.1)-
(1.2) satisfies the entropy functional inequality

E(t) +

∫ t

0
F(τ) dτ ≤

(
E(0) +

K3

K2

)
eK2t, t > 0 (2.5)

for K2 6= 0, or

E(t) +

∫ t

0
F(τ) dτ ≤ E(0) +K3t, t > 0 (2.6)
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for K2 = 0, where

K2 := ‖∇φ‖2L∞(R2) +
DuDc‖n0‖L1(R2)

2DnM2
+

2CGN‖n0‖L1(R2) sup
0≤c≤M

χ2(c)

Dn
and

K3 := 4Dn‖n0‖L1(R2) + 4K2e
−1

∫
R2

e−
1
2
〈x〉 dx.

Proof. To establish the entropy functional inequality (2.5) and (2.6), we
divide the proof into several steps. Without loss of generality, we assume
that (n, c,u) is a strong solution to system (1.1)-(1.2). The general case
can be dealt with by using the same argument to the regularized system
(2.28)-(2.29) and then taking an approximation procedure.

Step 1. An evolution estimate for n lnn.
Multiplying equation (1.1)1 by (1 + lnn) and integrating the resulting

equation in R2, we have

d

dt

∫
R2

n lnn dx+Dn
∫
R2

|∇n|2

n
dx =

∫
R2

∇n · χ(c)∇cdx := I1, (2.7)

by the integration by parts and the divergence free of u. It follows from
Young’s inequality and (2.3) that

I1 ≤
Dn
2

∫
R2

|∇n|2

n
dx+

1

2Dn

∫
R2

χ2(c)n|∇c|2dx

≤ Dn
2

∫
R2

|∇n|2

n
dx+

sup
0≤c≤M

χ4(c)

4D2
nε

∫
R2

n2dx+
ε

4

∫
R2

|∇c|4dx

(2.8)

with ε > 0 to be specified later. Substituting (2.8) into (2.7), we obtain

d

dt

∫
R2

n lnn dx+
Dn
2

∫
R2

|∇n|2

n
dx

≤
sup

0≤c≤M
χ4(c)

4D2
nε

∫
R2

n2dx+
ε

4

∫
R2

|∇c|4dx. (2.9)

Step 2. An evolution estimate for ∇c.
To control the last term of (2.9), we multiply the equation (1.1)2 by −∆c,

integrate the resulting equation in R2 and use the integration by parts to
obtain

1

2

d

dt

∫
R2

|∇c|2dx+Dc
∫
R2

|∆c|2dx

=

∫
R2

k(c)n∆cdx+

∫
R2

(u · ∇c)∆cdx := I2 + I3, (2.10)
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due to ∇ ·u = 0. We need to estimate I2 and I3. For I2, Young’s inequality
and the boundedness (2.3) give that

I2 ≤
Dc
2

∫
R2

|∆c|2dx+

sup
0≤c≤M

k2(c)

2Dc

∫
R2

n2dx. (2.11)

For I3, invoking the divergence free of u and using the integration by parts
and Young’s inequality again, we have

I3 = −
∫
R2

∇u · ∇c · ∇cdx ≤ 2

ε

∫
R2

|∇u|2dx+
ε

8

∫
R2

|∇c|4dx, (2.12)

with the same ε as that of (2.9). Thus substituting (2.11) and (2.12) into
(2.10), we obtain

d

dt

∫
R2

|∇c|2dx+Dc
∫
R2

|∆c|2dx

≤
sup

0≤c≤M
k2(c)

Dc

∫
R2

n2dx+
4

ε

∫
R2

|∇u|2dx+
ε

4

∫
R2

|∇c|4dx. (2.13)

Step 3. A coupled evolution estimate for n lnn and ∇c.
Collecting (2.9) to (2.13), we have

d

dt

(∫
R2

n lnn dx+

∫
R2

|∇c|2dx
)

+
Dn
2

∫
R2

|∇n|2

n
dx+Dc

∫
R2

|∆c|2dx

≤

 sup
0≤c≤M

χ4(c)

4D2
nε

+

sup
0≤c≤M

k2(c)

Dc

∫
R2

n2dx+
4

ε

∫
R2

|∇u|2dx

+
ε

2

∫
R2

|∇c|4dx.

Using the estimate

‖∇c‖4L4(R2) ≤ CGN‖c‖
2
L∞(R2)‖D

2c‖2L2(R2) ≤ CGNM
2‖∆c‖2L2(R2), (2.14)

which follows from the Gagliardo-Nirenberg inequality and the boundedness
(2.3), we have

d

dt

(∫
R2

n lnn dx+

∫
R2

|∇c|2dx
)

+
Dn
2

∫
R2

|∇n|2

n
dx+Dc

∫
R2

|∆c|2dx

≤

 sup
0≤c≤M

χ4(c)

4D2
nε

+

sup
0≤c≤M

k2(c)

Dc

∫
R2

n2dx+
4

ε

∫
R2

|∇u|2dx

+
ε

2
CGNM

2‖∆c‖2L2(R2).

(2.15)
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To absorb the term involving the second order derivatives of c on the right-
hand side of (2.15), we take ε := Dc

CGNM2 and obtain

d

dt

(∫
R2

n lnn dx+

∫
R2

|∇c|2dx

)
+
Dn
2

∫
R2

|∇n|2

n
dx+

Dc
2

∫
R2

|∆c|2dx

≤


CGNM

2 sup
0≤c≤M

χ4(c)

4D2
nDc

+

sup
0≤c≤M

k2(c)

Dc


∫
R2

n2dx

+
4CGNM

2

Dc

∫
R2

|∇u|2dx.

(2.16)

Step 4. An evolution estimate for u.
To absorb the last term of (2.16), we test the fluid equation (1.1)3 against

2u and obtain

d

dt

∫
R2

|u|2dx+ 2Du

∫
R2

|∇u|2dx = 2

∫
R2

n∇φ · u dx, (2.17)

where we have used ∇·u = 0. Applying Young’s inequality to the last term
of (2.17), we have

d

dt

∫
R2

|u|2dx+ 2Du

∫
R2

|∇u|2dx ≤
∫
R2

n2dx+ ‖∇φ‖2L∞(R2)

∫
R2

|u|2dx.

(2.18)
Step 5. A coupled evolution estimate for n lnn, ∇c and u.

Multiplying (2.18) by 4CGNM
2

DuDc
and adding the resulted equation to (2.16),

we obtain

d

dt

∫
R2

(
n lnn+ |∇c|2 +

4CGNM
2

DuDc
|u|2

)
dx

+
Dn
2

∫
R2

|∇n|2

n
dx+

Dc
2

∫
R2

|∆c|2dx+
4CGNM

2

Dc

∫
R2

|∇u|2dx

≤

CGNM
2 sup

0≤c≤M
χ4(c)

4D2
nDc

+

sup
0≤c≤M

k2(c)

Dc
+

4CGNM
2

DuDc

∫
R2

n2dx

+
4CGNM

2‖∇φ‖2L∞(R2)

DuDc

∫
R2

|u|2dx

≤

CGNM
2 sup

0≤c≤M
χ4(c)

4D2
nDc

+

sup
0≤c≤M

k2(c)

Dc
+

4CGNM
2

DuDc


× CGN‖n0‖L1(R2)

∫
R2

|∇
√
n|2dx+

4CGNM
2‖∇φ‖2L∞(R2)

DuDc

∫
R2

|u|2dx.

(2.19)
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Here in the last inequality we used the estimate

‖n‖L2(R2) ≤
√
CGN‖n‖1/2L1(R2)

‖∇
√
n‖L2(R2)

≤
√
CGN‖n0‖1/2L1(R2)

‖∇
√
n‖L2(R2), (2.20)

which follows from the Gagliardo-Nirenberg inequality and the mass conser-
vation equality (2.2).

Step 6. An evolution estimate of the first-order spatial moment of n.
For simplicity, we set 〈x〉 :=

√
1 + |x|2. Multiplying the equation (1.1)1

by 〈x〉 and integrating by parts, we have

d

dt

∫
R2

n〈x〉dx =

∫
R2

nu · ∇〈x〉dx+Dn
∫
R2

n∆〈x〉 dx

+

∫
R2

χ(c)n∇c · ∇〈x〉 dx := I4 + I5 + I6. (2.21)

We now estimate I4, I5 and I6 one by one. For I4, by the Cauchy-Schwarz
inequality, (2.20) and Young’s inequality, we see that

I4 ≤ ‖n‖L2(R2)‖u‖L2(R2)‖∇〈x〉‖L∞(R2)

≤
√
CGN‖n0‖1/2L1(R2)

‖∇
√
n‖L2(R2)‖u‖L2(R2)

≤ Dn
4
‖∇
√
n‖2L2(R2) +

CGN
Dn
‖n0‖L1(R2)‖u‖2L2(R2).

(2.22)

For I5, we have

I5 ≤ Dn‖∆〈x〉‖L∞(R2)‖n‖L1(R2) ≤ 2Dn‖n0‖L1(R2) (2.23)

by the mass conservation for n again. Finally, for I6, we use a similar
procedure as I4 to obtain

I6 ≤ sup
0≤c≤M

|χ(c)| ‖n‖L2(R2)‖∇c‖L2(R2)‖∇〈x〉‖L∞(R2)

≤ sup
0≤c≤M

|χ(c)|
√
CGN‖n0‖1/2L1(R2)

‖∇
√
n‖L2(R2)‖∇c‖L2(R2)

≤ Dn
4
‖∇
√
n‖2L2(R2) +

CGN
Dn

sup
0≤c≤M

χ2(c) ‖n0‖L1(R2)‖∇c‖2L2(R2).

(2.24)

Substituting (2.22), (2.23) and (2.24) into (2.21), we deduce that

d

dt

∫
R2

2n〈x〉 dx ≤ Dn
∫
R2

|∇
√
n|2dx+

2CGN
Dn

‖n0‖L1(R2)

∫
R2

|u|2dx

+
2CGN
Dn

sup
0≤c≤M

χ2(c) ‖n0‖L1(R2)

∫
R2

|∇c|2dx

+ 4Dn‖n0‖L1(R2).

(2.25)

Step 7. Closing of the entropy estimates.
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Since
∫
R2
|∇n|2
n dx = 4

∫
R2 |∇

√
n|2dx, we may combine (2.25) with (2.19)

to obtain

d

dt

∫
R2

(
n lnn+ 2n〈x〉+ |∇c|2 +

4CGNM
2

DuDc
|u|2

)
dx

+Dn
∫
R2

|∇
√
n|2dx+

Dc
2

∫
R2

|∆c|2dx+
4CGNM

2

Dc

∫
R2

|∇u|2dx

≤ K1

∫
R2

|∇
√
n|2dx

+

(
4CGNM

2‖∇φ‖2L∞(R2)

DuDc
+

2CGN‖n0‖L1(R2)

Dn

)∫
R2

|u|2dx

+

2CGN‖n0‖L1(R2) sup
0≤c≤M

χ2(c)

Dn

∫
R2

|∇c|2dx+ 4Dn‖n0‖L1(R2)

≤ K1

∫
R2

|∇
√
n|2dx+K2

(∫
R2

|∇c|2dx+
4CGNM

2

DuDc

∫
R2

|u|2dx

)
+ 4Dn‖n0‖L1(R2).

(2.26)

To close the entropy estimates, we need to bound
∫
R2

(
n lnn + 2〈x〉n

)
dx

from below. Indeed, let IX be the indicator function of a set X and then a
direct calculation shows that∫

R2

(
n lnn+ 2n〈x〉

)
dx

=

∫
R2

n| lnn|dx+ 2

∫
R2

n lnn I{
x∈R2|n(x)≤1

}dx+ 2

∫
R2

n〈x〉dx

=

∫
R2

n| lnn|dx+ 2

∫
R2

n lnn I{
x∈R2| 0≤n(x)≤e−〈x〉

}dx

+ 2

∫
R2

n lnn I{
x∈R2| e−〈x〉≤n(x)≤1

}dx+ 2

∫
R2

n〈x〉 dx

≥
∫
R2

n| lnn|dx+ 2

∫
R2

n lnn I{
x∈R2| 0≤n(x)≤e−〈x〉

}dx.

By the basic fact that
√
x lnx ≥ −2e−1 for any x ≥ 0, we have∫

R2

(
n lnn+ 2n〈x〉

)
dx

≥
∫
R2

n| lnn|dx− 4e−1

∫
R2

n
1
2 I{

x∈R2| 0≤n(x)≤e−〈x〉
}dx

≥
∫
R2

n| lnn|dx− 4e−1

∫
R2

e−
1
2
〈x〉dx

≥ −4e−1

∫
R2

e−
1
2
〈x〉dx.

(2.27)
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Thus, substituting (2.27) into (2.26), we obtain

d

dt

∫
R2

(
n lnn+ 2n〈x〉+ |∇c|2 +

4CGNM
2

DuDc
|u|2

)
dx

+
(
Dn −K1

) ∫
R2

|∇
√
n|2dx+

Dc
2

∫
R2

|∆c|2dx+
4CGNM

2

Dc

∫
R2

|∇u|2dx

≤ K2

∫
R2

(
n lnn+ 2n〈x〉+ |∇c|2 +

4CGNM
2

DuDc
|u|2

)
dx+ 4Dn‖n0‖L1(R2)

+ 4K2e
−1

∫
R2

e−
1
2
〈x〉dx,

that is,
d

dt
E(t) + F(t) ≤ K2E(t) +K3, t > 0.

Then Gronwall’s inequality or a direct integration yields the desired entropy
inequality (2.5) and (2.6). �

Remark 2.1. The inequality (2.27) gives the estimate∫
R2

n| lnn|dx ≤
∫
R2

(
n lnn+ 2n〈x〉

)
dx+ 4e−1

∫
R2

e−
1
2
〈x〉,

which together with (2.5) or (2.6) also yields the bounds of
∫
R2 n| lnn|dx.

We now prove the global existence of weak solutions to the Cauchy prob-
lem of system (1.1)-(1.2). Following the ideas of [5, 12], our proof is based
on the entropy functional estimate derived last section, which allows us to
perform a compactness argument to the regularized system of (1.1)-(1.2).

Proof of Theorem 1.1. Firstly, we construct the following regularized
system to (1.1)-(1.2) as [12]:

nεt + uε · ∇nε = Dn∆nε −∇ ·
(
nε[χ(cε)∇cε] ∗ σε

)
,

cεt + uε · ∇cε = Dc∆cε − [k(cε)nε] ∗ σε,
uεt + uε · ∇uε +∇P ε = Du∆uε + (nε∇φ) ∗ σε,
∇ · uε = 0

(2.28)

in R2 × (0,∞), with prescribed initial data

(nε, cε, uε)
∣∣
t=0

= (n0 ∗ σε, c0 ∗ σε, u0 ∗ σε) (2.29)

in R2, where σε is a mollifier. For each given ε, the local existence of strong
solution (nε, cε,uε) to the regularized system (2.28)-(2.29) can be obtained
by applying Schauder fixed point theorem. Then the following uniform
estimates also allows us to extend the local strong solution (nε, cε,uε) to a
global weak solution.

We now begin to establish the uniform estimates for (nε, cε,uε) in ε. Fol-
lowing the same argument as Lemma 2.1, we can obtain the nonnegativity of
nε and cε, and the basic mass conservation of nε as well as the boundedness
of cε:
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B1. nε ≥ 0 and cε ≥ 0 in Ω× (0,∞);
B2. ‖nε‖L1(R2) = ‖nε0‖L1(R2) ≤ ‖n0‖L1(R2) and ‖cε‖Lp(R2) ≤ ‖cε0‖Lp(R2) ≤

‖c0‖Lp(R2) for any 1 ≤ p ≤ ∞, where we used Young’s inequality in the last
two inequalities.

Then following the same argument as Lemma 2.2 and applying Young’s
inequality again to the terms involving the convolution, we can find that the
same entropy functional inequality also works for this regular system. We
first state the uniform boundedness of nε in ε:
B3. ∇

√
nε is bounded in L2

(
(0, T ), L2(R2)

)
. This also yields that

B4. nε is bounded in L2
(
(0, T )× R2

)
by the estimate

‖nε‖L2(R2) ≤ CGN‖nε‖
1/2
L1(R2)

‖∇
√
nε‖L2(R2) ≤ CGN‖n0‖1/2L1(R2)

‖∇
√
nε‖L2(R2),

where we used the Gagliardo-Nirenberg inequality and the mass conservation
B2. The regularized versions of Remark 2.1 and Lemma 2.2 also give that
B5. nε| lnnε| is bounded in L∞

(
(0, T ), L1(R2)

)
.

Next, for cε and uε, we have
B6. cε is bounded in L∞

(
(0, T ), H1(R2)

)
∩ L2

(
(0, T ), H2(R2)

)
for any

T > 0, where we also used the boundedness B2 with p = 2;
B7. uε is bounded in L∞

(
(0, T ), L2(R2;R2)

)
∩ L2

(
(0, T ), H1(R2;R2

)
.

Finally, to apply the Aubin-Lions lemma, we need to show the bounded-
ness of nεt, c

ε
t and uεt. Indeed, we have

B8. nεt is bounded in L2
(
(0, T ), H−3(R2)

)
. This can be verified as fol-

lows: it follows from the integration by parts, Hölder’s inequality, Young’s
inequality and Sobolev’s embedding that∣∣〈nεt, ϕ〉∣∣ =

∣∣Dn〈nε,∆ϕ〉+ 〈nε(χ(cε)∇cε ∗ σε) + uεnε,∇ϕ〉
∣∣

≤ Dn‖nε‖L2(R2)‖∆ϕ‖L2(R2) + C(nε, cε,uε)‖∇ϕ‖L∞(R2)

≤
(
Dn‖nε‖L2(R2) + C(nε, cε,uε)

)
‖ϕ‖H3(R2)

for any ϕ ∈ H3(R2), with

C(nε, cε,uε) := sup
0≤s≤M

χ(s)‖nε‖L2(R2)‖∇cε‖L2(R2) + ‖uε‖L2(R2)‖nε‖L2(R2).

This together with the uniform boundedness B4, B6 and B7 implies the
desired estimate.
B9. cεt is bounded in L2

(
(0, T )× R2

)
. This can be seen from the fact

‖cεt‖L2(R2) ≤ ‖uε‖L4(R2)‖∇cε‖L4(R2) +Dc‖∆cε‖L2(R2)

+ sup
0≤s≤M

|k(s)|‖nε‖L2(R2)

≤
(
‖uε‖H1(R2) +Dc

)
‖cε‖H2(R2) + sup

0≤s≤M
|k(s)|‖nε‖L2(R2)

and the uniform boundedness B4, B6 and B7.
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B10. uεt is bounded in L2
(
(0, T ), H−1(R2)

)
. To see this, we apply the

project operator P to (2.28)3 and use the L2-L2 boundedness of Riesz op-
erator to deduce that∣∣〈uεt, ϕ〉∣∣

=
∣∣Du〈∇uε,∇Pϕ〉+ 〈(nε∇φ) ∗ σε,Pϕ〉+ 〈uε ⊗ uε,∇Pϕ〉

∣∣
≤ Du‖∇uε‖L2(R2)‖∇Pϕ‖L2(R2) + ‖nε‖L2(R2)‖∇φ‖L∞(R2)‖Pϕ‖L2(R2)

+ ‖uε‖2L4(R2)‖∇Pϕ‖L2(R2)

≤
(
Du‖uε‖H1(R2) + ‖nε‖L2(R2)‖∇φ‖L∞(R2)

+ ‖uε‖L2(R2)‖uε‖H1(R2)

)
‖ϕ‖H1(R2)

for any ϕ ∈ H1(R2;R2), which together with the uniform boundedness B4

and B7 yields the desired estimate.
With the above uniform estimates at hand, we turn to passing the limit

of (nε, cε,uε). Firstly, we see that nε will strongly converge to some n in
L2
(
[0, T ];L2

loc(R2)
)

by using the Aubin-Lions lemma together with B4 and

B8, and ∇
√
nε weakly converges to ∇

√
n in L2

(
(0, T ), L2

loc(R2)
)

by B3.

Secondly, cε converges strongly to some c in L2
(
[0, T ];H1

loc(R2)
)

by ap-
plying the Aubin-Lions lemma to B6 and B9.

Thirdly, by applying the Aubin-Lions lemma to B7 and B10, uε converges
strongly to some u in L2

(
[0, T ];L2

loc(R2;R2)
)
, and further converges weakly

to u in L2
(
[0, T ];H1

loc(R2;R2)
)

by B7 again.
The above convergences also imply that uεnε and uεcε will strongly con-

verge to un and uc in L1
(
[0, T ];L1

loc(R2)
)
, respectively, while uε · ∇uε will

weakly converge to u · ∇u in L1
(
[0, T ];L1

loc(R2)
)
.

Summarily, we have shown that (n, c,u) satisfies the weak form (1.16)-
(1.18) and the corresponding entropy functional inequalities (2.5) and (2.6)
hold, which yield the regularity (1.15). Thus (n, c,u) is a weak solution to
system (1.1)-(1.2). This completes the proof of Theorem 1.1. �

2.2. Global existence of classical solutions. In this subsection, we prove
that the weak solution obtained afore is regular under some additional as-
sumptions on χ(·), k(·) and φ(·), and on the initial data. To achieve this
goal, we first recall the existence and uniqueness of smooth local solution as
well as the corresponding extensibility criterion.

Lemma 2.3 (see Theorem 1 and Theorem 2 in [2]). Let m ≥ 3. Assume
that χ(·), k(·) ∈ Cm(R+) with k(0) = 0, and that ‖∇lφ‖L∞(R2) < ∞ for
1 ≤ |l| ≤ m. Then there exists T ∗ > 0, the maximal time of existence, such
that, if the initial data (n0, c0,u0) ∈ Hm−1(R2) × Hm(R2) × Hm(R2;R2),
then there exists a unique classical solution (n, c,u) to system (1.1)-(1.2)
satisfying for any T < T ∗

(n, c,u) ∈ L∞
(
0, T ; Hm−1(R2)×Hm(R2)×Hm(R2;R2)

)
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and

(∇n,∇c,∇u) ∈ L2
(
0, T ; Hm−1(R2)×Hm(R2)×Hm(R2;R2)

)
.

Moreover, if the maximal time of existence T ∗ <∞, then∫ T ∗

0
‖∇c(τ)‖2L∞(R2)dτ =∞. (2.30)

The global existence will be proved by showing that the local classical so-
lutions can be extended at any time T > 0 due to the extensibility criterion.

Proof of Theorem 1.2. We will prove the global existence of classical
solutions by contradictory arguments. Assuming that the maximal time T ∗

is finite, we will show that∫ T ∗

0
‖∇c(τ)‖2L∞(R2)dτ <∞,

which leads to a contradiction to the extensibility criterion (2.30). Indeed,
since

‖∇c‖2L∞(R2) ≤ CGN‖∇c‖L2(R2)‖∇3c‖L2(R2)

≤ CGN
2

(
‖∇c‖2L2(R2) + ‖∇3c‖2L2(R2)

)
,

we only need to verify that∫ T ∗

0

∫
R2

|∇c(x, τ)|2dxdτ <∞, (2.31)

and that ∫ T ∗

0

∫
R2

|∇3c(x, τ)|2dxdτ <∞. (2.32)

To see (2.31), we first substitute (2.27) into (2.5) or (2.6) and then obtain∫
R2

|∇c(x, t)|2dx+

∫
R2

|u(x, t)|2dx+

∫ T ∗

0

∫
R2

|∇
√
n(x, τ)|2dxdτ

+

∫ T ∗

0

∫
R2

|∆c(x, τ)|2dxdτ +

∫ T ∗

0

∫
R2

|∇u(x, τ)|2dxdτ ≤ C1,

(2.33)

for all t ∈ (0, T ∗), where C1 is a positive constant depending only on the
initial data and the maximal time T ∗. Thus a direct integration from 0 to
T ∗ yields (2.31).
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To see (2.32), we apply ∆ to equation (1.1)2, multiply ∆c with the resulted
equation, and integrate over R2 to obtain

1

2

d

dt

∫
R2

|∆c|2dx+Dc
∫
R2

|∇∆c|2dx

=

∫
R2

(
∇(u · ∇c) + k′(c)n∇c+ k(c)∇n

)
· ∇∆cdx

≤ Dc
2

∫
R2

|∇∆c|2dx+
1

Dc

∫
R2

|∇u|2|∇c|2dx+
1

Dc

∫
R2

|u|2|D2c|2dx

+
1

Dc
sup

0≤s≤M
k′2(s)

∫
R2

n2|∇c|2dx+
1

Dc
sup

0≤s≤M
k2(s)

∫
R2

|∇n|2dx.

Absorbing the first term on the right-hand side, we have

d

dt

∫
R2

|∆c|2dx+Dc
∫
R2

|∇∆c|2dx

≤ 2

Dc
‖∇u‖2L3(R2)‖∇c‖

2
L6(R2) +

2

Dc
‖u‖2L∞(R2)‖D

2c‖2L2(R2)

+
2

Dc
sup

0≤s≤M
k′2(s)‖∇c‖2L6(R2)‖n‖

2
L3(R2) +

2

Dc
sup

0≤s≤M
k2(s)

∫
R2

|∇n|2dx

≤ C2

(
‖u‖2H2(R2) + ‖n‖2H1(R2)

)
‖∇c‖2H1(R2) + C2

∫
R2

|∇n|2dx,

(2.34)

where C2 is a positive constant related to the Sobolev’s embedding and the
initial data. Combining (2.13) with (2.34) and using (2.14), we deduce that

d

dt
‖∇c(t)‖2H1(R2) +Dc‖∇2c(t)‖2H1(R2)

≤ C3

(
1 + ‖n‖2H1(R2) + ‖u‖2H2(R2)

)
‖∇c‖2H1(R2)

+ C3

(
‖n‖2H1(R2) + ‖u‖2H1(R2)

)
for some positive constant C3. It then follows from Gronwall’s inequality
that

‖∇c(t)‖2H1(R2) +Dc
∫ T ∗

0
‖∇2c(τ)‖2H1(R2)dτ

≤ ‖c0‖2H2(R2)e
C3

∫ T∗
0

(
1+‖n(τ)‖2

H1(R2)
+‖u(τ)‖2

H2(R2)

)
dτ

+ C3

∫ T ∗

0

(
‖n(τ)‖2H1(R2) + ‖u(τ)‖2H1(R2)

)
dτ

for all t ∈ (0, T ∗). Thus we have verified (2.32) provided that∫ T ∗

0

(
‖n(τ)‖2H1(R2) + ‖u(τ)‖2H2(R2)

)
dτ <∞. (2.35)
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We now turn to prove (2.35). Firstly, we may employ the L2 scalar
product for equation (1.1)1 and integrate by parts to get

1

2

d

dt

∫
R2

n2dx+Dn
∫
R2

|∇n|2dx =

∫
R2

nχ(c)∇c · ∇n dx

≤ Dn
4

∫
R2

|∇n|2dx+

sup
0≤c≤M

χ2(c)

Dn

∫
R2

n2|∇c|2dx.

The integral of the second term on the right can be further bounded as∫
R2

n2|∇c|2dx ≤ ‖n‖2L4(R2)‖∇c‖
2
L4(R2)

≤ CGN‖n‖L2(R2)‖∇n‖L2(R2)‖c‖L∞(R2)‖∆c‖L2(R2)

≤ Dn
4

∫
R2

|∇n|2dx+ C3

∫
R2

|∆c|2dx

∫
R2

n2dx,

with C3 = D−3
n C2

GNM
2 sup0≤c≤M χ4(c), where we used Sobolev’s embed-

ding, Young’s inequality and the boundedness of c. Then, it follows that

1

2

d

dt

∫
R2

n2dx+Dn
∫
R2

|∇n|2dx

≤ Dn
2

∫
R2

|∇n|2dx+ C3

∫
R2

|∆c|2dx

∫
R2

n2dx.

Absorbing the first term on the right hand side, we have

d

dt

∫
R2

n2dx+Dn
∫
R2

|∇n|2dx ≤ 2C3

∫
R2

|∆c|2dx

∫
R2

n2dx.

It then follows from Gronwall’s inequality that∫
R2

n2(x, t) dx+Dn
∫ T ∗

0

∫
R2

|∇n(x, τ)|2dxdτ ≤ C4

for all t ∈ (0, T ∗) and some positive constant C4 depending on the initial
data and the maximal time T ∗, where we also used the fact∫ T ∗

0

∫
R2

|∆c(x, τ)|2dxdτ <∞

due to (2.33). Thus a direct integration on [0, T ∗] yields that∫ T ∗

0
‖n(τ)‖2H1(R2)dτ <∞. (2.36)

On the other hand, by using (2.33) again, we also have∫ T ∗

0
‖u(τ)‖2H1(R2)dτ <∞. (2.37)
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It remains to investigate the integrability of the second derivative of u. We
first let ω := ∇⊥u be the vorticity of u and then consider the vorticity
equation

ωt + u · ∇ω = Du∆ω +∇⊥(n∇φ).

A direct energy method gives that

1

2

d

dt

∫
R2

ω2dx+Du

∫
R2

|∇ω|2dx = −
∫
R2

∇⊥ω · (n∇φ)dx

≤ Du

2

∫
R2

|∇ω|2dx+
1

2Du

∫
R2

n2|∇φ|2dx,

which leads to the vorticity estimate

d

dt

∫
R2

ω2dx+Du

∫
R2

|∇ω|2dx ≤ C5

∫
R2

n2dx,

where C5 is a positive constant depending on ∇φ. Then Gronwall’s inequal-
ity together with (2.36) implies that∫

R2

ω2(x, t)dx+Du

∫ T ∗

0

∫
R2

|∇ω(x, τ)|2dxdτ ≤ C6 (2.38)

for all t ∈ (0, T ∗) with C6 :=
∫
R2 ω

2(x, 0)dx + C4C5T
∗. Thus we can use

(2.38) and the Biot-Savart law to obtain∫ T ∗

0
‖∇2u(τ)‖2L2(R2)dτ <∞. (2.39)

Summarily, by (2.36), (2.37) and (2.39), we have verified the validness of
(2.35). This complete the Proof of Theorem 1.2. �

3. The initial-boundary value problem

In this section, we will focus on the global existence and large time be-
havior of classical solutions to the initial-boundary value problem of system
(1.1)-(1.3). We first recall the local existence, uniqueness and the extensi-
bility criterion of classical solutions to system (1.1)-(1.3).

Lemma 3.1 (see Lemma 2.1 in [23]). Let Ω ⊂ R2 be a bounded domain
with smooth boundary. Suppose that (1.12) and (1.14) hold. Then there
exist T ∗ ∈ (0, ∞] and a classical solution (n, c, u, P ) to the initial-boundary
value problem of system (1.1)-(1.3) in Ω × (0, T ∗). For any T ∈ (0, T ∗),
this solution is unique, up to addition of constants to P , among all functions
satisfying (1.19). Moreover, if T ∗ <∞, then

‖n(·, t)‖L∞(Ω)+‖c(·, t)‖W 1,q(Ω)+‖Aαu(·, t)‖L2(Ω) →∞ as t↗ T ∗. (3.1)

To establish an entropy functional inequality, we define

Ẽ(t) :=

∫
Ω

(
n lnn+ |∇c|2 +

9CGNM̃
2

DcDu
|u|2

)
dx,



A TWO-DIMENSIONAL CHEMOTAXIS-NAVIER-STOKES SYSTEM 21

and

F̃(t) :=
(4Dn

3
− K̃1

)∫
Ω
|∇
√
n|2dx+

Dc
2

∫
Ω
|D2c|2dx

+
CGNM̃

2

Dc

∫
Ω
|∇u|2dx,

where M̃ := ‖c0‖L∞(Ω), K̃1 is defined by (3.2) and CGN is a positive constant
related to the Gagliardo-Nirenberg inequality, which may change from line to
line. Here compared with the case of R2, we removed the first-order spatial

moment
∫

Ω n〈x〉dx of n in the definition of Ẽ due to the boundedness of Ω

and the fact x lnx ≥ −e−1 for any x ≥ 0.
We now state the entropy functional inequality for bounded domain Ω.

Lemma 3.2. Let Ω ⊂ R2 be a bounded domain with smooth boundary.
Suppose that (1.12) and (1.14) hold. If it holds that

K̃1 :=


CGNM̃

2 sup
0≤s≤M̃

χ4(s)

4D2
nDc

+

sup
0≤s≤M̃

k′2(s)

Dc

CGN‖n0‖L1(Ω) <
4Dn

3
,

(3.2)
then the solution (n, c,u) to the initial-boundary value problem of system
(1.1)-(1.3) satisfies

Ẽ(t) +

∫ t

0
F̃(τ) dτ ≤ Ct for all t ∈ (0, T ∗) (3.3)

with some positive constant C depending on Ω and the initial data.

Proof. The proof is similar to that of Lemma 2.2. Here we only give the
key steps.

We first note that the nonnegativity of n and c, and the basic mass con-
servation of n as well as the boundedness of c established in Lemma 2.1 still
hold for the initial boundary value problem (1.1)-(1.3).

Then similar to Step 1 -Step 3 in the proof of Lemma 2.2, we can deduce
that
d

dt

(∫
Ω
n lnn dx+

∫
Ω
|∇c|2dx

)
+ 2Dn

∫
Ω
|∇
√
n|2dx+Dc

∫
Ω
|∆c|2dx

≤

 sup
0≤c≤M̃

χ4(c)

4D2
nε

+

sup
0≤c≤M̃

k2(c)

Dc

∫
Ω
n2dx+

4

ε

∫
Ω
|∇u|2dx+

ε

2

∫
Ω
|∇c|4dx.

To control the last term on the right-hand side, we use the Gagliardo-
Nirenberg inequality to obtain

‖∇c‖4L4(Ω) ≤ CGN‖c‖
2
L∞(Ω)‖D

2c‖2L2(Ω) + CGN‖c‖4L∞(Ω)

≤ CGN‖c0‖2L∞(Ω)‖D
2c‖2L2(Ω) + CGN‖c0‖4L∞(Ω)

(3.4)
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and thus

d

dt

(∫
Ω
n lnn dx+

∫
Ω
|∇c|2dx

)
+ 2Dn

∫
Ω
|∇
√
n|2dx+Dc

∫
Ω
|∆c|2dx

≤

 sup
0≤c≤M̃

χ4(c)

4D2
nε

+

sup
0≤c≤M̃

k2(c)

Dc

∫
Ω
n2dx+

4

ε

∫
Ω
|∇u|2dx

+
ε

2
CGNM̃

2‖D2c‖2L2(Ω) +
ε

2
CGNM̃

4.

(3.5)

To cancel ‖D2c‖2L2(Ω), we invoke the pointwise identity |∆c|2 = ∇·(∆c∇c)−
∇c·∇∆c, and ∆|∇c|2 = 2∇c·∇∆c+2|D2c|2, as well as the no-flux Neumann
boundary condition for c to rewrite

∫
Ω |∆c|

2dx as∫
Ω
|∆c|2dx = −

∫
Ω
∇c · ∇∆cdx+

∫
∂Ω

∆c
∂c

∂ν
dS

=

∫
Ω
|D2c|2dx− 1

2

∫
Ω

∆|∇c|2dx

=

∫
Ω
|D2c|2dx− 1

2

∫
∂Ω

∂|∇c|2

∂ν
dS.

(3.6)

For the rightmost item, one can first invoke Lemma 4.2 in [13] to obtain

1

2

∫
∂Ω

∂|∇c|2

∂ν
dS ≤ κ(Ω)

∫
∂Ω
|∇c|2dS, (3.7)

where κ(Ω) > 0 is an upper bound for the curvatures of ∂Ω. Moreover, by
the trace theorem (see Proposition 4.22(ii) and Theorem 4.24(i) in [8]), it
holds that∫

∂Ω
|∇c|2dS ≤ C(Ω, s)‖c‖2

H
3+s

2 (Ω)
for any s ∈

(
0, 1
)
,

where C(Ω, s) > 0 depends only on Ω and s, which can be fixed, for instance,
s = 1

2 . On the other hand, by the interpolation inequality and Young’s
inequality, we have

κ(Ω)C(Ω, s)‖c‖2
H

3+s
2 (Ω)

≤ C1

(
‖D2c‖

3+s
2

L2(Ω)
‖c‖

1−s
2

L2(Ω)
+ ‖c‖2L2(Ω)

)
≤ 1

4

∫
Ω
|D2c|2dx+ C2M̃

2 (3.8)

for some positive constants C1 and C2 depending on Ω and s, where we
also used the boundedness of c in the last inequality. Thus, substituting
(3.7)-(3.8) into (3.6), we obtain∫

Ω
|∆c|2dx ≥ 3

4

∫
Ω
|D2c|2dx− C2M̃

2. (3.9)
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Then taking ε = Dc

2CGNM̃2
in (3.5) and using (3.9), we have

d

dt

(∫
Ω
n lnn dx+

∫
Ω
|∇c|2dx

)
+ 2Dn

∫
Ω
|∇
√
n|2dx+

Dc
2

∫
Ω
|D2c|2dx

≤


CGNM̃

2 sup
0≤c≤M̃

χ4(c)

4D2
nDc

+

sup
0≤c≤M̃

k2(c)

Dc


∫

Ω
n2dx

+
8CGNM̃

2

Dc

∫
Ω
|∇u|2dx+ C3

(3.10)

for some positive C3 depending on Ω and the initial data.
In order to absorb the term involving

∫
Ω |∇u|2dx, similar to Step 4 in the

proof of Lemma 2.2, we first invoke the identity

d

dt

∫
Ω
|u|2dx+ 2Du

∫
Ω
|∇u|2dx = 2

∫
Ω
n∇φ · u dx. (3.11)

By the Hölder inequality along with the assumed boundedness of φ, we have

2

∫
Ω
n∇φ · u dx ≤ 2‖∇φ‖L∞(Ω)‖n‖L 3

2 (Ω)
‖u‖L3(Ω) (3.12)

Since Ω ⊂ R2 is bounded and u = 0 on ∂Ω, the continuous embedding
W 1,2

0 (Ω) ↪→ L3(Ω) and the Poincaré inequality in W 1,2
0 (Ω) ensure that there

exists a positive constant Cp such that

‖u‖L3(Ω) ≤ Cp‖∇u‖L2(Ω).

Thus by Young’s inequality and (3.12), we have

2

∫
Ω
n∇φ · u dx ≤ Du‖∇u‖2L2(Ω) +

C2
p‖∇φ‖2L∞(Ω)

Du
‖n‖2

L
3
2 (Ω)

,

which together with (3.11) yields

d

dt

∫
Ω
|u|2dx+Du

∫
Ω
|∇u|2dx ≤

C2
p‖∇φ‖2L∞(Ω)

Du
‖n‖2

L
3
2 (Ω)

. (3.13)
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Combining (3.10) with (3.13), we deduce that

d

dt

(∫
Ω
n lnn dx+

∫
Ω
|∇c|2dx+

9CGNM̃
2

DcDu

∫
Ω
|u|2dx

)

+
(

2Dn
∫

Ω
|∇
√
n|2dx+

Dc
2

∫
Ω
|D2c|2dx+

CGNM̃
2

Dc

∫
Ω
|∇u|2dx

)

≤


CGNM̃

2 sup
0≤c≤M̃

χ4(c)

4D2
nDc

+

sup
0≤c≤M̃

k′2(c)

Dc

∫
Ω
n2dx+ C4‖n‖2

L
3
2 (Ω)

+ C3,

(3.14)

with

C4 =
9C2

pCGNM̃
2‖∇φ‖2L∞(Ω)

DcD2
u

.

Here we used k(0) = 0 and k(·) ∈ C1([0,∞)). In view of the Gagliardo-
Nirenberg inequality and the mass identity (2.3), we have

‖n‖2
L

3
2 (Ω)
≤ CGN‖n‖

4
3

L1(Ω)
‖∇
√
n‖

4
3

L2(Ω)
+ CGN‖n‖2L1(Ω)

≤ CGN‖n0‖
4
3

L1(Ω)
‖∇
√
n‖

4
3

L2(Ω)
+ CGN‖n0‖2L1(Ω),

which implies that

C4‖n‖2
L

3
2 (Ω)
≤ 2Dn

3
‖∇
√
n‖2L2(Ω) + C5 (3.15)

with C5 =
C3

4C
3
GN‖n0‖4

L1(Ω)

3D2
n

+ C4CGN‖n0‖2L1(Ω) by Young’s inequality. Simi-

larly, we have∫
Ω
n2dx ≤ CGN‖n‖L1(Ω)‖∇

√
n‖2L2(Ω) + CGN‖n‖2L1(Ω)

≤ CGN‖n0‖L1(Ω)‖∇
√
n‖2L2(Ω) + CGN‖n0‖2L1(Ω). (3.16)

Substituting (3.15) and (3.16) into (3.14), we obtain

d

dt

(∫
Ω
n lnn dx+

∫
Ω
|∇c|2dx+

9CGNM̃
2

DcDu

∫
Ω
|u|2dx

)

+
4Dn

3

∫
Ω
|∇
√
n|2dx+

Dc
2

∫
Ω
|D2c|2dx+

CGNM̃
2

Dc

∫
Ω
|∇u|2dx

≤ K̃1‖∇
√
n‖2L2(Ω) + C6,

where K̃1 is given in (3.2), and

C6 = K̃1‖n0‖L1(Ω) + C3 + C5.
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Absorbing the first term on the right-hand side, we have

d

dt

(∫
Ω
n lnn dx+

∫
Ω
|∇c|2dx+

9CGNM̃
2

DcDu

∫
Ω
|u|2dx

)

+
(4Dn

3
− K̃1

)∫
Ω
|∇
√
n|2dx+

Dc
2

∫
Ω
|D2c|2dx+

CGNM̃
2

Dc

∫
Ω
|∇u|2dx

≤ C6

That is,
d

dt
Ẽ(t) + F̃(t) ≤ C6 for all t ∈ (0, T ∗). (3.17)

Thus integrating (3.17) from 0 to t, we may obtain the desired estimate
(3.3). This completes the proof of Lemma 3.2. �

Recalling the fact that x lnx ≥ −e−1 for any x ≥ 0 and the estimate
(3.4) holds true, we can deduce the following estimates from the entropy
functional (3.3).

Corollary 3.1. Let T ∈ (0, T ∗). Under the assumption of Lemma 3.2,
there exists a positive constant C depending on T , Ω and the initial data
such that ∫

Ω
n lnn(x, t) dx ≤ C for all t ∈ (0, T ),∫

Ω
|∇c(x, t)|2dx ≤ C for all t ∈ (0, T ), (3.18)∫

Ω
|u(x, t)|2dx ≤ C for all t ∈ (0, T ), (3.19)∫ T

0

∫
Ω
|∇
√
n(x, τ)|2dxdτ ≤ C, (3.20)∫ T

0

∫
Ω
|∇u(x, τ)|2dxdτ ≤ C, (3.21)∫ T

0

∫
Ω
|∇c(x, τ)|4dxdτ ≤ C. (3.22)

The following integrability result is an improvement of the above estimates
(3.20)-(3.22) and will be used to investigate the large-time behavior.

Corollary 3.2. Under the assumption of Lemma 3.2, there exists a positive
constant C depending only on the initial data such that for all t > 0,∫ t

0

∫
Ω
e−κ0(t−τ)|∇

√
n(x, τ)|2dxdτ ≤ C for all t ∈ (0, T ∗), (3.23)∫ t

0

∫
Ω
e−κ0(t−τ)|∇u(x, τ)|2dxdτ ≤ C for all t ∈ (0, T ∗), (3.24)∫ t

0

∫
Ω
e−κ0(t−τ)|∇c(x, τ)|4dxdτ ≤ C for all t ∈ (0, T ∗), (3.25)
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where

κ0 := min

{
1

CGN‖n0‖L1(Ω)

(4Dn
3
− K̃1

)
,
Dc

CGNM̃2
,
Du

18CΩ

}
> 0.

Proof. By x lnx ≤ 1
2x

2 for any x ≥ 0 and (3.16), we obtain∫
Ω
n lnn dx ≤ 1

2

∫
Ω
n2dx

≤ 1

2
CGN‖n0‖L1(Ω)

∫
Ω
|∇
√
n|2dx+

1

2
CGN‖n0‖2L1(Ω),

which implies that

1

2

(4Dn
3
− K̃1

)∫
Ω
|∇
√
n|2dx

≥ 1

CGN‖n0‖L1(Ω)

(4Dn
3
− K̃1

)∫
Ω
n lnn dx− 1

2

(4Dn
3
− K̃1

)
‖n0‖L1(Ω)

≥ κ0

∫
Ω
n lnndx+ κ0e

−1

− e−1

CGN‖n0‖L1(Ω)

(4Dn
3
− K̃1

)
− 1

2

(4Dn
3
− K̃1

)
‖n0‖L1(Ω),

(3.26)

where we used x lnx ≥ −e−1 for any x ≥ 0 in the last inequality. By Young’s
inequality and (3.4), we also have∫

Ω
|∇c|2dx ≤ 1

4

∫
Ω
|∇c|4dx+ |Ω|

≤ 1

4
CGNM̃

2

∫
Ω
|D2c|2dx+

1

4
CGNM̃

4 + |Ω|,

and thus

Dc
4

∫
Ω
|D2c|2dx ≥ Dc

CGNM̃2

∫
Ω
|∇c|2dx− 1

4
DcM̃2 − Dc|Ω|

CGNM̃2

≥ κ0

∫
Ω
|∇c|2dx− 1

4
DcM̃2 − Dc|Ω|

CGNM̃2
.

(3.27)

Finally, Poincare’s inequality
∫

Ω |u|
2dx ≤ CΩ

∫
Ω |∇u|2dx implies tjat

CGNM̃
2

2Dc

∫
Ω
|∇u|2dx ≥ CGNM̃

2

2DcCΩ

∫
Ω
|u|2dx ≥ κ0

9CGNM̃
2

DcDu

∫
Ω
|u|2dx.

(3.28)
Combining (3.26), (3.27) and (3.28), we see that

1

2
F̃(t) ≥ κ0Ẽ(t)− C7,
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for some positive constant C7 depending only on Ω and the initial data,
which together with (3.17) yields

d

dt
Ẽ + κ0Ẽ +

1

2
F̃ ≤ C6 + C7.

Then a direct calculation gives that

Ẽ(t) +
1

2

∫ t

0
e−κ0(t−τ)F̃(τ)dτ ≤ Ẽ(0) + κ−1

0

(
C6 + C7

)
,

for all t ∈ (0, T ∗). Thus, the inequlities (3.23) and (3.24) are acquired.
Moreover, we also have∫ t

0

∫
Ω
e−κ0(t−τ)|D2c|2dxdτ ≤ C8

for some C8 > 0, which together with (3.4) leads to∫ t

0

∫
Ω
e−κ0(t−τ)|∇c|4dxdτ

≤ CGN‖c0‖2L∞(Ω)

∫ t

0

∫
Ω
e−κ0(t−τ)|D2c|2dxdτ

+ CGN‖c0‖4L∞(Ω)

∫ t

0
e−κ0(t−τ)dτ

≤ CGNC8‖c0‖2L∞(Ω) + CGNκ
−1
0 ‖c0‖4L∞(Ω).

We then obtain the inequality (3.25). This completes the proof of Corollary
3.2. �

Proof of Theorem 1.3. We divide the proof into two parts. For the global
existence, we will prove it by the contradiction argument. Assuming that
T ∗ <∞, we will show that

sup
t∈(0,T ∗)

(
‖n(·, t)‖L∞(Ω) + ‖c(·, t)‖W 1,q(Ω) + ‖Aαu(·, t)‖L2(Ω)

)
<∞, (3.29)

which contradicts to the extensibility criterion (3.1).
We now verify (3.29). Due to T ∗ <∞, the bound (3.22) can be read as∫ T ∗

0

∫
Ω
|∇c(x, τ)|4dxdτ <∞.

This is sufficient to guarantee that for any p > 1, there exists a positive
constant C1 such that∫

Ω
np(x, t) dx ≤ C1 for all t ∈ (0, T ∗) (3.30)

by a standard regularity argument which relies on testing the first equation
in (1.1) by np−1 (see Lemma 4.5 in [23] for details). On the other hand,
inequalities (3.19) and (3.21) together with T ∗ <∞ show that

‖u(·, t)‖L2(Ω) ≤ C2 for all t ∈ (0, T ∗)
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and ∫ T ∗

0

∫
Ω
|∇u(x, τ)|2dxdτ ≤ C2

for some C2 > 0. Then by the same procedure as that in [23], we can use
the variation-of constants formula for u and the contractivity of the Stokes
semigroup in L2 along with (3.30) to obtain

sup
t∈(0, T ∗)

‖Aαu(·, t)‖L2(Ω) <∞ (3.31)

with α taken from the hypothesis of the theorem (see (4.16)-(4.22) in [23]
for details).

Next, (3.31) together with Sobolev’s embedding implies |u| ≤ C3 in Ω×
(0, T ∗) for some C3 > 0. In view of T ∗ <∞ and (3.18), we have∫

Ω
|∇c(x, t)|2dx ≤ C4 for all t ∈ (0, T ∗)

for some C4 > 0. Thus the variation-of constants formula of c and the well-
known smoothing estimates for the Neumann heat semigroup then yield
‖∇c(·, t)‖Lq(Ω) ≤ C4 for all t ∈ (0, T ∗), which together with (2.3) leads to

sup
t∈(0, T ∗)

‖c(·, t)‖W 1,q(Ω) <∞. (3.32)

Finally, we apply Bβ with β ∈ (1
q ,

1
2) to the variation-of-constants of n,

where B denotes the realization of −∆ + 1 with homogeneous Neumann
boundary conditions in Lr(Ω) with r ∈ ( 1

β , q), and using the embedding

D(Bβ) ↪→ L∞(Ω) and the maximum principle to obtain

sup
t∈(0, T ∗)

‖n(·, t)‖L∞(Ω) <∞ (3.33)

(see (4.26) in [23] for details).
By (3.31), (3.32) and (3.33), we have verified (3.29) and thus infer that

T ∗ =∞. This completes the proof of global existence.

We now turn to the proof of the convergence. Our proof is very similar
to the corresponding one in [24] and we only give a sketch for completeness.
It follows from(3.23) that∫ t+1

t

∫
Ω
|∇
√
n(x, τ)|2dxdτ

≤ eκ0

∫ t+1

t

∫
Ω
e−κ0(t+1−τ)|∇

√
n(x, τ)|2dxdτ ≤ C5e

κ0 ,

for all t > 0 and for some C5 > 0, which combining with the Gagliardo-
Nirenberg inequality∫

Ω
n2dx ≤ CGN‖n0‖L1(Ω)

∫
Ω
|∇
√
n|2dx+ CGN‖n0‖2L1(Ω),
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yields that for all t > 0,∫ t+1

t

∫
Ω
n2dxds ≤ C5CGNe

κ0‖n0‖L1(Ω) + CGN‖n0‖2L1(Ω), (3.34)

Similarly by (3.25), we have that for all t > 0,∫ t+1

t

∫
Ω
|∇c(x, τ)|4dxdτ ≤ C6e

κ0 , (3.35)

for some C6 > 0. With (3.34) and (3.35) at hand, we can follow the proof
of Corollary 4.4 in [24] to see that

‖c(·, t)‖L∞(Ω) → 0 as t→∞. (3.36)

Applying the integrability of n to the energy identity for u, we have
‖u(t)‖L2(Ω) → 0 as t → ∞. Then by the variation-of-constants formula for
u and the interpolation, we can obtain

‖u(·, t)‖L∞(Ω) → 0 as t→∞. (3.37)

See the proof of Lemma 6.3 in [24].
By the variation-of-constants formula for n and a compactness argument,

we can show that

‖n(·, t)− n0‖L∞(Ω) → 0 as t→∞ (3.38)

(see the proof of Lemma 8.2 in [24] for details). From (3.36), (3.37) and
(3.38), we complete the proof of Theorem 1.3. �
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