THE VLASOV-MAXWELL-BOLTZMANN SYSTEM NEAR MAXWELLIANS IN THE
WHOLE SPACE WITH VERY SOFT POTENTIALS

RENJUN DUAN, YUANJIE LEI, TONG YANG, AND HUIJIANG ZHAO

ABSTRACT. Since the work [14] by Guo [Invent. Math. 153 (2003), no. 3, 593-630], it has remained an
open problem to establish the global existence of perturbative classical solutions around a global Maxwellian
to the Vlasov-Maxwell-Boltzmann system with the whole range of soft potentials. This is mainly due to the
complex structure of the system, in particular, the degenerate dissipation at large velocity, the velocity-growth
of the nonlinear term induced by the Lorentz force, and the regularity-loss of the electromagnetic fields. This
paper solves this problem in the whole space provided that initial perturbation has sufficient regularity and
velocity-integrability.
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1. INTRODUCTION

The motion of dilute ionized plasmas consisting of two-species particles (e.g., electrons and ions) under
the influence of binary collisions and the self-consistent electromagnetic field can be modelled by the Vlasov-
Maxwell-Boltzmann system (cf. [3, Chapter 19] as well as [21, Chapter 6.6])

OF, +v-V,Fy + ;—* (E+ % x B) VoFy = Q(Fy, Fu) + Q(Fy, Fl),
+

OF_ +v-V,F_ — % (E+ % x B) Vo F_ = Q(F_,F.) +Q(F_,F_). (1.1)

The electromagnetic field [E, B] = [E(t, z), B(t, z)] satisfies the Maxwell equations

OE —cVyx B = —47r/ v(eprFy —e_F_)dv,

R3
OB+cVy, x E=0, (1.2)
V- E= 47r/ (exFy —e_F_)dv,
R3
V. -B=0.

Here V, = (0yy, 02y, 023) , Vo = (Ouy, Oy s Ony ). The unknown functions Fy = Fy (¢, x,v) > 0 are the number
density functions for the ions (+) and electrons (—) with position x = (z1,22,23) € R3 and velocity v =
(v1,v2,v3) € R3 at time ¢ > 0, respectively, ex and m. the magnitudes of their charges and masses, and ¢ the
speed of light.
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Let F(v), G(v) be two number density functions for two types of particles with masses my and diameters
o4, then Q(F,G)(v) is defined as (cf. [3])

QF,G)(v) =7 F7=) /R e (“’(”_“)) (F()G(') — F(v)G(u)} dwdu

4 |u — v

Eanin(Fa G) - Qloss(F7 G)
Here w € S? and b, the angular part of the collision kernel, satisfies the Grad cutoff assumption (cf. [9])
0 < b(cosf) < C|cosb| (1.3)

for some positive constant C' > 0. The deviation angle m — 20 satisfies cosf = w - (v — u)/|v — u|. Moreover,
for my,ms € {m4,m_},
vV =v— 2&[(vfu) - wlw, u':quﬂ[(v—u) - wlw,
my + ma my 4 mo
which denote velocities (v', u') after a collision of particles having velocities (v, u) before the collision and vice
versa. Notice that the above identities follow from the conservation of momentum miv 4+ mou and energy
%mﬂv\z + %m2|u|2.

The exponent v € (—3,1] in the kinetic part of the collision kernel is determined by the potential of
intermolecular force, which is classified into the soft potential case when —3 < v < 0, the Maxwell molecular
case when v = 0, and the hard potential case when 0 < v < 1 which includes the hard sphere model with
~v =1 and b(cos#) = C|cos | for some positive constant C' > 0. For the soft potentials, the case —2 <y < 0
is called the moderately soft potentials while —3 < v < —2 is called the very soft potentials, cf. [29] by Villani.
The importance and the difficulty in studying the very soft potentials can be also found in that review paper.

The main purpose of this work is to construct global classical solutions to the Vlasov-Maxwell-Boltzmann
system (1.1), (1.2) for the whole range of soft potentials, in particular, the very soft case when —3 < v < —2,

near global Maxwellians
m |v]?
b ( %hpTh ) ’
no

(v) m_ m_|v|?

(v)=—|=——— ) exp|- ,

. e_ \2mkgpTy P\ 26570

in the whole space R3, where kg > 0 is the Boltzmann constant, ng > 0 and Ty > 0 are constant reference

number density and temperature, respectively, and the reference bulk velocities have been chosen to be zero.
We consider the Cauchy problem with prescribed initial data

Njw

oMy
,LL+(U) o €4 (271’]63T0)

e

Fi(0,z,v) = Fy +(z,v), E(0,z)=Ey(x), B(0,z)= By(z), (1.4)

which satisfy the compatibility conditions
vxE():/ (FO,—Q—*FO,—)drUa v:EBOZO
R3

We remark that the angular non-cutoff case was considered in [6] basing on the argument (cf. [16]) that the
energy dissipations include an extra velocity differentiation due to the angular non-cutoff assumption. As will
be explained later, the techniques used in [6] cannot be applied to the cutoff very soft case under consideration
in the paper. The basic motivation here is to develop new strategies to deal with such case.

We assume in the paper that all the physical constants are chosen to be one. Under such assumption,
accordingly we normalize the above Maxwellians as

_ vl

po=po(v) = py () = (2m) "2 7

To study the stability problem around p, we define the perturbation fy = fi(t,z,v) by

Fy(t,z,v) =p+ ,Ltl/zfi(t,x,v).
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Then, the Cauchy problem (1.1), (1.2), (1.4) is reformulated as
Ofr +v - Vofe 2(E+vxB) - Vofs FE-opt?FIE vfy + Lif =T4(f, f),
OE -V, xB= —/ op 2 (fy — f)dv,
R3

1.5
HB+V,xE=0, (1.5)
Va -E:/ p?(fy — f)dv, V,-B=0
R3
with initial data
fe(0,z,v) = fox(z,v), E(0,z)= Ey(xz), B(0,z)= By(z) (1.6)
satisfying the compatibility conditions
Vo Ey= / 12 (for — fo—)dv, V- By=0. (1.7)
R3
Here, as in [14], for later use, setting f = [f4, f—], the first equation of (1.5) can be also written as
Ouf + -Vl +a0(E+vx B)-Vof — B-optlq + Lf = 0B of +T(/, f), (L8)
where ¢ = diag(1,—1), ¢1 = [1,—1], and the linearized collision operator L = [L4, L_] and the nonlinear

collision operator I' = [[';,I"_] are to be given later on.
We are now ready to state the main theorem in this paper.

Theorem 1.1. Let —3 <y < —1 and (1.3) hold. Assume Fy(x,v) = p+/pfo(x,v) > 0. Take 1/2 < o < 3/2
and 0 < ¢ < 1. There exist some integer N > 0 and I > 0 such that if

* )2 aa
> @B 9 fo| + 1 foll -y + B0, Bl -
la|+[BI<N

is sufficiently small, then the Cauchy problem (1.5), (1.6), (1.7) admits a unique global solution [f(t,z,v),
B(t,2), B(t,x)] satisfying F(t,,v) = ji+ Jif (f,,0) > 0.

In the next section, the statement of the above theorem will be given more precisely in Theorem 2.1 as well
as Theorem 2.2 for the time decay property. Basically the result shows that as long as initial data is small
with enough regularity, one can establish the global existence of small amplitude classical solutions for the
full range of cutoff intermolecular interactions with —3 < v < 1. Note that the case —1 <~ < 1 is a trivial
consequence of [6]; details for that case will be briefly discussed in Section 2.2. Here, the bound in the Sobolev
space of negative index is used for obtaining the time decay of solutions that is needed to close the a priori
estimates. The general technique of adopting the negative Sobolev estimates to treat the time-decay of the
Boltzmann equation and other types of dissipative equations was firstly introduced in [18]. For the case of the
whole space, compared to L} initial data used in [6], the space H ¢ is much more convenient to deduce the
fast enough time-decay rates in terms of only the pure energy method and the interpolation inequalities.

The proof of Theorem 1.1 is based on a subtle time-weighted energy method. For this, in addition to the
existing analytic techniques used in [16] and [6], we develop a new approach to deal with the weighted estimates
involving both the negative power time-weight and the time-velocity dependent wy_g, . (t,v) weight.

The rest of this paper is organized as follows. In Section 2, we explain the difficulty in studying the case
when —3 < v < —1, particularly including the very soft potential case, and give a complete statement of the
main results. In Section 3, we list some basic lemmas for later use. The proof of the main results will be given
in Section 4. For clear presentation, the proofs of several technical lemmas and estimates used in Section 4
will be given in the appendix.

2. MAIN RESULTS

In this section, we will first review the previous approaches for studying the global existence of classical
solutions to Valsov-Maxwell-Boltzmann equations, and then we will point out the difficulties in studying the
very soft potentials and give the complete statements of the main results.

First of all, we recall some basic facts concerning the collision operators and the macro-micro decomposition.
L,T in (1.8) are respectively defined by

Lf = [L+f7L—f]7 F(fa g) = [F"r(fa g)’r—(fa g)]
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with
Laf == 2{Q (12 + £2)) +2Q (W2 feom) }

Ty(f,g) =p /2 {Q (ul/zfi,umgi) +Q (Ml/zfiaﬂl/ngF) } :

For the linearized collision operator L, it is well known (cf. [14]) that it is non-negative and the null space N/
of L is spanned by

N = span {[1,02/2, [0, 12, [oi, w2 (1 < i < 3), [Jof?, o) /2}
Moreover, under Grad’s angular cutoff assumption (1.3), it is easy to see that L can be decomposed as
Lf=vf-Kf (2.1)
with the collision frequency v(v) and the nonlocal integral operator K = [K, K_] being defined by

v(v) = 2Quoss (1, 1) = 2/R3 . v —u|"b (W) p(u)dwdu ~ (1 + |v])7, (2.2)

and

(e f) (0) = 1% {2Qqain (13 fs1) = Q (mond (2 + 1)) |

[ ey (2 )
~/]R3><S2 < v — ul )

{20} W) 1) = @) (o + ) ) + pd @) (fa + f2)(0) } dwdu,  (23)

respectively.
Define P as the orthogonal projection from L?(R3) x L?(R2) to . Then for any given function f(t,z,v) €
L*(R2) x L*(R2), one has
3
Pf =ay(t,z)[1,0]u"? +a_(t,x)[0,1]u/? + Z bi(t, 2)[1, Nosp/? + e(t, z)[1,1)(Jv]® — 3)p!/?
i=1
with

1
ax = /]R p!? fadv, b= /R v P (fy 4 fo)dv, e (|0 = 3)u 2 (f4 + f-)dv.

2 12 Jps
Therefore, we have the following macro-micro decomposition with respect to the given global Maxwellian p(v),
cf. [15],
ft,z,0) =Pf(t,z,0) + {I-P}f(t,x,v),
where I denotes the identity operator, and Pf and {I — P}f are called the macroscopic and the microscopic
component of f(¢,x,v), respectively.
Under the Grad’s angular cutoff assumption (1.3), by [14, Lemma 1], L is locally coercive in the sense that

2
(A Lf) 2 00 {1~ P = 00 [ ViH{T = P[P v(0) ~ (14 o) (2.4)
holds for some positive constant og > 0. Here (-,-) denotes the inner product in L?(R3) x L?(R3).

2.1. Existing approaches. For the problem on the construction of solutions to the Cauchy problem (1.5),
(1.6), (1.7), the local existence and uniqueness of solution [f (¢, x,v), f— (¢, z,v), E(t,x), B(t,x)] in certain
weighted Sobolev space to be specified later can be obtained by combining the arguments used in [14] and [16].
To extend the local solution [fi (¢, z,v), f— (¢, z,v), E(t,x), B(t,x)] to be global in time, one needs to deduce
certain a priori estimates in some function spaces. In general, the main difficulties in this step lies in:

e How to control the possible velocity-growth induced by the nonlinearity of the system (1.8)7?
e How to control the convection term v - V. f in the weighted energy estimates?

The nonlinear energy method developed in [12, 15, 23, 24] for the Boltzmann equation provides an effective
approach in the perturbative framework; see also the recent progress [11]. The main idea in those work is
to decompose the solution into the macroscopic part and the microscopic part and then rewrite the original
equation as the combination of an equation satisfied by the microscopic part which contains the macroscopic
part as source term and a system satisfied by the macroscopic part with the microscopic part as source term.
In the perturbative framework, the dissipative mechanism on the microscopic part is the coercive estimate
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(2.4) of the linearized Boltzmann collision operator or its weighted variants, while for the macroscopic part,
the corresponding mechanism comes from the dissipation of the compressible Navier-Stokes type system. The
corresponding approach to treat the case of non-cutoff cross sections was developed in [2] and [10].

However, as pointed out in [16] and [6], when one applies the energy method to some complex systems such
as the Vlasov-Maxwell-Boltzmann system (1.1), (1.2), in addition to the difficulty caused by the nonlinear
collision operator mentioned above, additional difficulties are encountered:

e How to control the corresponding nonlinear terms induced by the Lorentz force, such as the terms
(E4+vxB)-V,fand E-vf, that can lead to velocity growth at the rate of the first order |v|?
e How to cope with the regularity loss of the electromagnetic field [E(t, z), B(t, x)]?

For the hard sphere model, the coercive estimate (2.4) of L is sufficient to control the nonlinear terms
related to the Lorentz force provided that the electromagnetic field [E(t, z), B(t, x)] is suitably small and thus
satisfactory global well-posedness theory for the Vlasov-Maxwell-Boltzmann system (1.1), (1.2) for the hard
sphere model has been established, cf. [7, 14, 17, 20, 25] and the references therein. But for the corresponding
problem involving cutoff non-hard sphere intermolecular interactions with v < 1, the story is quite different.
One can not use the coercive estimate (2.4) of L to absorb the nonlinear terms related to the Lorentz force
which yield the velocity growth at the rate of the first order |v|. Thus it is interesting and important to find out
how to construct global classical solutions near Maxwellians to the Vlasov-Maxwell-Boltzmann system (1.1),
(1.2) for cutoff non-hard sphere cases. Certainly, the same applies to the Vlasov-Poisson-Landau system and
the Vlasov-Maxwell-Landau system containing the Coulomb potential, cf. [16, 28, 30] and [4, 26], respectively;
and the Vlasov-Poisson-Boltzmann system for non-hard sphere interactions cf. [5, 8, 32].

Particularly, a breakthrough was made in Guo’s work [16] on the two-species Vlasov-Poisson-Landau system
in a periodic box, that leads to the subsequent works for the Vlasov-Poisson-Landau system in the whole space
mentioned above. The main ideas can be outlined as follows:

e An exponential weight of electric potential eT? is used to cancel the growth of the velocity in the
nonlinear term $%Vz¢ cvfy.
e A velocity weight

wl*\alf\ﬂl(v) — <U>—(v+1)(l—\a|—|ﬁ|), Wy =1+ ]2, 1> |a]+ B
is used to compensate the weak dissipation of the linearized Landau kernel £ for the case of —3 <y <
—2;
e The decay of the electric field ¢(t,x) is used to close the energy estimate.
However, since the Lorentz force E 4+ v x B is not of the potential form, the argument in [16] can not

be directly adopted to study the Vlasov-Maxwell-Boltzmann system (1.1), (1.2). For this, a time-velocity
weighted energy method is introduced in [8] by using the following weight wy, g (¢,v) function:

_ _ a()? 1
We—|g) = We—p|(t,v) = (v)"yw—lm)e(lﬂw, 0<gxl, |8<¢E 0<v< T (2.5)

Here it is worth pointing out that, unlike the weight function @;_|4—|5/(v), the algebraic factor {EZ—IBI(U) =

(v)=7E=18D in (2.5) varies only with the order of the v—derivatives to represent the fact that the dissipative
effect of the cutoff linearized Boltzmann collision operator L is “weaker” than that of the linearized Landau
collision operator L.

2.2. Difficulties for very soft potentials. To illustrate the main ideas used in [6, 8] for —1 <y < 1, and
the problem to be studied in this paper, we first introduce the following general weight function

a(v)?
Wo— 18],k = We—|8|,x(t, V) = <v>“(€_‘ﬁ|)e<1+t>ﬂ , k>0, 0<gxl, (2.6)

where the precise range of the parameter 1 will be specified later. It is easy to see that

we—\BL—’Y(t’ ’U) = ’[17@_|ﬂ| (t, U).

Since for cutoff non-hard sphere intermolecular interactions, the macroscopic part can be controlled as for
the case of hard sphere model, the main difficulty for the case of non-hard sphere model is to control the
microscopic component {I — P} f(¢,z,v) suitably. The idea for that purpose is to use the following two types
of dissipative mechanisms:
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e The first one is the dissipative term

Dt = et s05 =PI} = Voo s05 (1= PYf | oy cns)

from the coercive estimate of the linearized collision operator L;
e The second type is the extra dissipative term

1 . 2
‘D‘V([)fl,lf‘ﬁ‘,/{ = (1 + t) v ng_lﬁlvnaﬂ {I - P}f<v>||L2(R%XRg)

induced by the weight function w,_g| . (t,v).
The most difficult terms to be studied are:
e The term
1o = (95751 = PYfwd 051 - PYS) (2.7)
related to the linear transport term v - V f;
e The terms containing the electromagnetic field [E(t, x), B(t, x)], i.e.

= S (8‘“E V05 I~ PY fwd5,,08{ - P}f) , (2.8)
lar|>1
and
I8 se= D ((v X 9 B) -V, 05 {1 - Py fw?_ g 05 {1~ P}f) . (2.9)
[a1|>1

Here (-, -) denotes the standard L?(R? x R3) x L?(R3 x R3) inner product in R? x R3.

To deduce the desired estimates on the above terms, the main ingredients used in [6, 8] can be summarized as
follows:

e A time-velocity weighted energy method is introduced basing on the weight function w,_g|(t,v) =
Wy |3],—~(t,v). An advantage of this weight function is that the term Illé‘ 0= 18], related to the linear
transport term v - V, f can be controlled suitably. In fact,

~2 ~ ~
Wi—|p] = We—|g] X We—|—e;| X (0)7
then
2
! ~ 2 ~ i
‘I\fme—\m,—v’ < e||te—15105 {1 - P}f[[, + C(e) H’we—w—ei\agfi {1- P}fHV :
that, by a suitable linear combination with respect to ||, can be further controlled by the dissipation
L
> Digeisi
lal+IBI<N
induced by the linearized Boltzmann collision operator L.
On the other hand, this approach leads to an additional difficulty on estimating the nonlinear term
(E+4v x B)-V,f+ that requires a restriction on the range of the parameter . In fact, to control the
B
berm Jig) g1, —y BY
~2 ~ ~ —
Wiy (8, v) = W) (E,0) X Wy -1 (2, v) X {v) 77,

we can have

B
Iaw—w,—w‘ (2.10)

< Z / <’U>1_’Y |8alB| |@4,‘5‘8§{I — P}fi’ ‘@,w,l%ﬁg*“l {I — P}fi dvdl‘,
R3 xR3

0<ai<a
which can be controlled by the dissipation
> Dleisi—
la|+]BI<N
induced by the exponential factor of the weight function wy_z,—(t,v) only when
1—v<2, de. v>-—1,
and 0*t B(t, x) decays sufficiently fast.
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Thus, up to now, the existing approaches for the construction of global classical solutions to the Vlasov-
Maxwell-Boltzmann system (1.1), (1.2) near Maxwellians is limited to the case when —1 < < 1. And the
purpose of this paper is to introduce a new approach for the whole range soft potential, that is, to include the
case when —3 < v < —1.

To continue, we first introduce some notations used throughout the paper.

e C and O(1) denote some positive constants (generally large) and , § and A are used to denote some
positive constants (generally small), where C, O(1), &, §, and A may take different values in different
places;

e A < B means that there is a generic constant C' > 0 such that A < CB. A ~ B means A < B and
B < A;

e The multi-indices o = [a1,a2,a3] and 8 = [B1, e, B3] will be used to record spatial and velocity
derivatives, respectively. And 95 = 80‘163228;‘;851 862853. Similarly, the notation 0% will be used
when 8 = 0 and likewise for dz. The length of « is denoted by |a| = a1 + as + a3. o/ < «a means that
no component of o’ is greater than the corresponding component of a, and o/ < o means that o/ < «
and |o/| < |a|. And it is convenient to write VX = 0 with |a| = k;

e (-,-) is used to denote the L? x L2 inner product in R?, with the L? norm |- |;2. For notational
simplicity, (-,-) denotes the L? x L? inner product either in R3 x R3 or in R? with the L? x L? norm
11115

e xq is the standard indicator function of the set £2;

o ||f(t,,)lrprs = / ( |f(t,x,v)|qdv> dr | , and others like ||f(t,-,-)|| Lz g can be defined
R \/R}

similarly;

e Bc C R3 denotes the ball of radius C centered at the origin, and L?(B¢) x L?(B¢) stands for
the space L? x L? over Be and likewise for other spaces. Recall that v(v) ~ (1 + |[v|?)%, we set
|12 = Jgs |fIPv(v)dv and for each I € R, LF(R3) x L7(R3) denotes the weighted function space with

norm
1 = /}RS If )2 )2 dv, () = /1 + [v]2.

v

HF(R3) x HF(R3) with the norm |flgy ete. can be defined similarly;
e For s € R,

(Asg) (t,g:,v) :/ |§| (t & ) 2mix- £d£ / |§| J—_' t g, ) 27”I£df

with §(¢,&,v) = Flg](t, &, v) being the Fourier transform of g(¢,z,v) with respect to x. The homoge-
neous Sobolev space H® x H* is the Banach space consisting of all g satisfying ||g|| ;. < 400, where

lo(®)lze = 1(A%9) (62,02 . = IIEFG(EE 0z -
For an integer N > 0 and ¢ € R, the parameter ¥ is suitably chosen so that

0<¥< min{77221139+2, 29778?;7:44976} , when pé€ [%, %) and Ny > 5,

(2.11)

0<19§min{7 297+39+2,m ij, 2 2}, when ¢ € (1,3) and Ny = 4.

Note that those strictly positive upper bounds for the choice of ¥ above are due to derivation of estimates
(3.29) and (3.35) to be used in the later proof. Define the energy functional €y ¢ . (t) and the corresponding
energy dissipation rate functional Dy s .(t) of a given function f(¢,z,v) with respect to the weight function
wy—|g),x(t,v) defined by (2.6) as follows:

Enen(t) ~ Enen(t) + |A0(f, B, B)|?
and
Dy ti(t) ~ Do (t) + [[A%(a, b, c, E,B)H2 + ||A"%(ay — a_,E)H2 + ||AT{T - P}f||i,
respectively. Here

Even) ~ Y we 5. 08 |+ (B, B) 3y,
lal+|B|<N
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and

2 2 2
Dres(t)~ D [0%ax b, 0"+ Y [wesip w05 {T= P, +llas —a|
1<|a|<N loe|+BI<N
+E3n s + [ VaBlgy—=+1+677" Y w o5{1—PHf(w)|
HN1 D)y -2 e—|8],x98 v
la|+[BI<N
Moreover, we also need to define Ey(t), the energy functional without weight, 51’2,0 (t), the high order energy
functional without weight, and & ]’307 Z7K(t), the high order energy functional with respect to the weight function
wy—g),x(t, v), as follows:
N
2
k=0
No
o 2
Ex, () ~ D llo*(f, E B,

|| =k

and

No
Ehoin®~ ST NwemgL05 £+ S 16°(E, B,

le|+|B< Ny, la|=k
|e| >k

respectively. The corresponding energy dissipation rate functionals Dy (¢), DJ]’“VO (t), and Df\,m 0. (t) are given by

Dn(t) ~(Byar —a )P+ Y [0*®LEB)*+ > II0°PAI*+ D> [0{I-P}f|;,

1<]a|<N -1 loe|=N || <N
2 (0% (0% (0%
Dy () ~[VH(Eay —a)|"+ D 0*RLE B + Y [0°PfIP+ D [l0{I-P}Hfl;,
k4+1<|a|<No—1 |a|=No E<|a|<No
and
2 o 2 o 2
D) ~[VE(Erar —a)[[T+ Y [0"PLEBI+ > |lweys£05{T - P},
k4+1<|a|<No—1 lal+18< N,
lal >k
« 2 11— o 2
+ ) OPAP+ A+ Y (we s £05{T - PYH ()],
le|=No lal+18< N,
lal >k
respectively.

2.3. Main results and ideas. With the above preparation, the precise statement concerning the global in
time solvability of the Cauchy problem (1.5), (1.6), (1.7) can be stated as follows.

Theorem 2.1. Suppose that
(i) Fo(z,v) = p+ /mfo(z,v) >0, % <o< %, —3<vy<—1. Let
{NO >5,N=2Ny—1, when o€ [},1],

(2.12)
No >4,N =2Ny, when o€ (1, %),

ii) The parameter ¥ is chosen to satisfy (2.11) and we take ong = 1“0, ono = 0 withn < N —1,
) 2 )
Onj— Onj-1= %(14—19) when 0 < j<nand1<n<N;
(iii) There exists a positive constants 1 which depends only on v and Ny such that

oy, (U=2Vongmg 7 o< 3 20-27)ow, 7oy (=2von N
() h 25+ == b2 3+ T ggg, s and f3 2 5 + ——5 7=,

(b) L >N, I zmax{@—g, Zg—g—yzl}, > §+3, 0520 21— +17) witht*=§ - L.
If we assume further that
Yo= D llwg—is108fol + > [[wi 151,108 fol| +11(Eo, Bo)l g gr-e + [ foll gr-e
lal+1B1<No No+1<|al+|8I<N

is sufficiently small, then the Cauchy problem (1.5), (1.6), (1.7) admits a unique global solution [f(t,z,v),
B(t,), Bt,)] satisfying F(t,,v) = p+ f (t,z,0) > 0.
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Remark 2.1. Several remarks concerning Theorem 2.1 are given.

o As mentioned before, although only the case of —3 < v < —1 is studied in this paper, the case of —1 <
v < 1 is much simpler and similar result holds. Thus, the current work provides a satisfactory well-
posedness theory for the Cauchy problem of the two-species Viasov-Mazwell-Boltzmann system (1.5),
(1.6), (1.7) in the perturbative framework for the whole range of the cutoﬁ intermolecular interactions.

e Since in the proof of Lemma /.3, N is assumed to satisfy N > %No 3, while in the proof of Lemma
3.5, N is further required to satisfy N > 2Ny — 2+ 0. Putting these assumptions together, we can take
N =2Nyg—1 forpoe [%,1] and N = 2Ny for o € (1,%).

o The minimal reqularity index, i.e., the lower bound on the parameter N, we imposed on the initial data
is N=9, Ng=5 forp€[L,1] and N =8, No =4 for o€ (1,3).

e The precise value of the parameter | will be specified in the proof of Lemma /.35.

Note that Theorem 1.1 is an immediate consequence of Theorem 2.1. The next result is concerned with the
temporal decay estimates on the global solution [f(t, z,v), E(t,z), B(t,z)] obtained in Theorem 2.1.
Theorem 2.2. Under the assumptions of Theorem 2.1, we have

(1) Taking k =0,1,2,---,Ng — 2, it follows that
ER (1) SYR(L+1t)~(eFh), (2.13)
(2) Let0 <1i <k < Ny—3 be an integer. Take ly > No with lox—1 > lox+3 for2 <k < Ny—3. Further
take lop and I* respectively as lo = lp,0 = lp,1 > max {Xk>2 lox +3k—3),I7 + 2} and l* = kf - % m
Theorem 1.1. Then it follows that

ENpto s, SYEA+HTETE =01,k +[o]- (2.14)

Here and in the sequel [o] denotes the greatest integer less than .
(3) When No+1<|a| <N -1,

(N—|a|)(Ng—2+e)

[0°fIIP S YF(L+)" ¥ %o . (2.15)

Remark 2.2. In Theorem 2.2, we notice that the highest index k of 5]’%0 (t) is No — 2 while the highest index

of ENO ¢._(t) is No — 3. The reason is that the highest order ||0*E||* appearing in (3.9) does not belong to the
corresponding dissipation rate Dy, (t).

Now we present the main ideas in the proof. To overcome the difficulties pointed out before for the case

when —3 < v < —1, the main observation is that two sets of time-velocity weighted energy estimates should
be performed simultaneously as explained in the following.
(i). First of all, when estimating I\gll—\ﬂ\,ﬁ defined by (2.9) for kK = —+, there are some error terms with
higher weight when —3 < v < —1, cf. (2.10) that can not be controlled. However, as long as the
solution [f(t,x,v), E(t, ), B(t,x)] constructed up to ¢t = T > 0 satisfies the a priori assumption

X(t) = S {EN () + Enptorie, () +En—11,,—4(5)}
<s<t

+sup 4 Y S ()7 (w95 {T - PYF||?

0<s<t | Ny+1<n<N laltigl=n,
181=5,1<5<n

Y et Y () (w07 f) (2.16)

No+1<n<N-1|a|=n |a]=N

+ ST (487 w05 {T— P}

1<n<Ng lal+18l=n,
|1B81=3,1<j<n

+ 3 S w2 £ [wig  {T - PP § < M,

1<n<Np |a|=n
where M > 0 is sufficiently small, then one can obtain

d_ _ FR .
i ENodot15, =7 () + Do to+1,-1 () S ||V2(E73)H;150—2 Drouza(t)+ Y ell0“E|?,
|a]=No
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d A
ZEn )+ D) S (IBlLz + [ VAE, B ;xo-2) * Duvaz a(t) + Ex(DEK, 1y, (1):
and

d
agN—l,ll,—v(t) +DN-1,1,,—~(t)

SIVAE.B)|| ooz Dn-rasa () + Ex(OER 1o, () + D 0°E] |u’os].
' la|l=N—1

where 5N071371(t), §N71,l;,1(t), and ﬁN’l;’l(t) are defined by (3.16) and (3.18) respectively.

Notice that ¢; (i = 1,2,3) can be chosen sufficiently small as long as [;(j = 0,1) is taken suffi-
ciently large. Thus, one deduce some uniform-in-time estimates based on the above three differential
inequalities provided that
(i1). The electromagnetic field [E(t, z), B(t, )] has certain temporal decay estimate and 511\/0,

LYRY);
(i2). There are some upper bound estimates on 15N071371(t), 5N—1,l;,1(t), and ZSNJIJ(t). For example,

107—’Y(t) €

even if we can not deduce uniform-in-time bounds on DNO,lg;,l(t), 51\7—1,1?71(0’ and 51\771»{71(15), it
suffices to show that the possible time increasing upper bounds on Dy, 12 1(t), Dn—1,1,1(t), and

ﬁN’lf,l(t) are independent of the choices of the parameters 5 (j = 0,1) but depend only on N
and Ny.
To achieve (il), first of all, under the assumption of (2.16) with M > 0 sufficiently small, we can

deduce that

d
afﬁo(t)—kDﬁ,o(t) <0, k=0,1,---,Ny—2

and y
7511370,87—7(15) + D?Vg,l,—’y(t) f/ Z ||aaE||2’ k= 0,1

dt
|a]=Ng
hold for any 0 <t < T.
From these two differential inequalities, by using the interpolation technique as in [18, 30], we can
deduce a temporal decay rate of 5173,0 (t), from which one can further obtain the temporal decay rates

of EX 1o (1) with EX , _(t) € L'(RT).

lo,— lo,—y

. To deduce the estimates stated in (i2), we need the second set of time-velocity weighted energy esti-

mates with the weight function w,_ g1 (¢, v) for some £ that is sufficiently large. In this case, since

wi_ g1t 0) = we g1t 0) X wejg1-11 (8 0) X (v),

wi_ 5,1t 0) = we g1t 0) X weyg141.1 (8 0) X (v) 7,

we can deduce that for all —3 < v < —1, the terms (2.8) and (2.9) can be controlled by the extra
dissipative term (2.7) provided that the electromagnetic field [E(t,x), B(t,x)] has certain temporal
decay estimates. On the other hand, the term (2.7) related to the linear transport term v - V. f can
only be bounded as

2 ates _a_ 1|2
1o S0 w1105 1= PHE + Cy wejpey 18578 T = P ()37

Hence, it leads to how to control

4 112
Hwe—w-ei\,lagfff{l—P}f<v>’f 1H : (2.17)

For (2.17), observe that
— Since 7 < —7 —1 < 2 holds for all =3 <y < —1, it does not lead to the increase of the weight if
we neglect the fact (1 +¢)71~ in the extra dissipative term D\Voit/llf\ﬁl,l given by (2.7);
— The order of the derivative with respect to x increases by one in (2.17) so that the corresponding
temporal decay rate in L?—norm increases %, cf. [6, 7].
Therefore, motivated in [19] for deducing the temporal decay estimates on solutions to some non-
linear equations of regularity-loss type, we set different time increase rate o, ; for

S Jugoa0g TPy,

lo]+[B]=n,|B|=j
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where
2(1+7)

- (1+9).

Onj = Onj—1=
Thus, one can deduce that

> (4p)om

|al+8|=n,
[Bl=4,1<j<n

s ¥ oo e ogtaa- |

[ +|8|=n,
|B]=34,1<j<Np

2
wej105 S L= PH () # |

+(L 1)

2
we—j 11,105 I~ P}ny} :

Once the above argument is substantiated, we can then close the a priori assumption (2.16) and the global
solvability result follows. And this will be given in detail in the following sections.

3. PROOFS OF THE MAIN RESULTS

The proofs of Theorem 2.1 and Theorem 2.2 will be given in this section. To illustrate the main ideas of
the proof clearly and to make the presentation easy to follow, we will just state some key estimates first and
then use them to prove our main results. The complete proofs of these key estimates will be given in the next
section. To simplify the presentation, we divide this section into a few parts.

3.1. Preliminaries. In this subsection, for later use we collect several basic estimates on the linearized Boltz-
mann collision operator L and the nonlinear term I' for cutoff potentials, whose one-species version can be
found in [8, 27].

The first lemma concerns the coercivity estimate (2.4) on the linearized collision operators L together with
its weighted version with respect to the weight wy (¢, v) given by (2.6).

Lemma 3.1. Let —3 <y <0, one has

(Lf, f) = {I-P}f[Z. (3.1)
Moreover, let |3| > 0, for n > 0 small enough and any £ € R,k > 0,0 < ¢ < 1,9 € R, there ezists C, > 0
such that
2
(W} OsLf,05f) > lwen0pfl = D |wewds{T=PHI2 = Cy [Xqjo1<20,) f (3.2)
1871<18]
holds.

Proof. For the estimate (3.1), the case for the hard sphere model has been proved in [14], while for general
cutoff soft potentials, recall that L can be decomposed as in (2.1) with the collision frequency v(v) and
the nonlocal integral operator K being defined by (2.2) and (2.3) respectively, one can deduce by using the
argument employed in Lemma 2 of [13] for one-species linearized Boltzmann collision operator with cutoff that
the operator K can be decomposed into a “small part” K and a “compact part” K., therefore (3.1) follows
by repeating the argument used in Lemma 3 of [13].

As to (3.2), it can be proved by a straightforward modification of the argument used in Lemma 2 of [27],
we thus omit the details for brevity. (]

The second lemma is concerned with the corresponding weighted estimates on the nonlinear term I'. For
this purpose, similar to that of [27], we can get that

5T (g1,92) = D PPy (95101,0529: ) (3.3)

= Yoo [ o=l b(eos0)0 [u(w) ] {05052 0 ()
3% 2

+05: 91+ ()05 9oz (W) — 95 91+ (v) 057 g2+ (u) — I} gli(v)agjgn(w} dwdu,

where g;(t,z,v) = [git (¢, x,v), gi—(t,2,v)] (i = 1,2) and the summations are taken for all By + f1 + B2 =
B,a1 + as = a. From which one can deduce that
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Lemma 3.2. Assume k > 0,£ > 0. Let -3 <~y <0, N >4, g; = gi(t,x,v) = [gis (¢, x,v), gi— (t, x,v)] (i =
1,2,3), Bo + B1 + P2 = B and a1 + as = «, we have the following results:
(i). When |on| + |p1] £ N, we have

(w2, T4 (95,91, 95202) . 0503 ) {[vi {wogian |+ |weandgion| } [wendizon| | |wedges| | @)
m<2 v v
or
<w§,ﬁri (351191,332292> ,3gg3> S 22{ v {M‘;agj%}’ + ’wé,nag;gzl} ‘we,nagfgllp ’wemﬁgﬂ% Lo (3.5)
(ii). Setc(v) = (v)™" =v(v)~L, 1 >0, it holds that
2 _ 2 2
|§ZF(91792)|L3 5 Z ’gl ‘B‘aﬁ’gl‘Lz |§l92|L3,
[B1<2 v
(3.6)

2
|§ll—‘(91,g2)‘i% < Z ’Cl91|ig ‘<l7|ﬁ|5592 e
[8]<2 v

Proof. Although the definition of 'Y (g1, g2) in (3.3) is a little different from I'°(gy, g2) of [27], one can still
deduce (3.4) and (3.5) by employing the similar argument used to yield the estimates stated in Lemma 3 of
[27], we thus omit its proof for simplicity. As for (3.6), it can also be proved by repeating the argument used
in Lemma 2.4 of [31]. This completes the proof of Lemma 3.2. O

In what follows, we will collect some analytic tools which will be used in this paper. The first one is on the
Sobolev interpolation among the spatial regularity.

Lemma 3.3. (¢f. [1, 18]) Let 2 < p < o0 and k,£,m € R, then we have
IV A1l S 197122 197 152°

(e ()

IV £l S VA 19 1127

Here 0 < 60 <1 and ¢ satisfy

Moreover, we have that

where 0 < 0 < 1 and ¢ satisfy

k 1 L 1 m
=== - - — - <k+ > k+2.
3 <2 3)0+(2 3)(1 0), (<k+1, m>k+2

The second one is concerned with the LP — L9 estimate on the operator A~¢.

Lemma 3.4. Let0<g<3,1<p<q<oo,%+§:%, then

AT fllza S (1 fllzr-

3.2. Some a priori estimates. In this subsection, we will deduce some a priori estimates on the solutions
[f(t,z,v), E(t,x), B(t,x)] to the Cauchy problem (1.5) and (1.6) under some additional assumptions imposed
on [f(t,z,v), E(t,x), B(t,z)]. For this purpose, we suppose that the Cauchy problem (1.5) and (1.6) admits
a unique local solution [f(¢,z,v), E(t,z), B(t, )] defined on the time interval 0 < ¢t < T for some 0 < T < c0.
We now turn to deduce certain a priori estimates on [f(¢, z,v), E(t,x), B(t,z)]. The first result is concerned
with the temporal decay estimates on the energy functional SJ’%O (t) for k=0,1,2,--- ,Ng — 2:

Lemma 3.5. Let Ny and N satisfy (2.12), n > %NO — %, and take k =0,1,2,--- , Ny — 2, then one has
d
dt
provided that there exists a positive constant 1 whose precise range will be specified in the proof of Lemma 4.3
such that

Ery(t) + DR, (1) <0, 0<t<T (3.7)

(Hy) max{ sup Engtn(7), sup En_1n-1,~(7), sup E, ¢ (7')} is sufficiently small.
0<r<T 0<r<T o<r< ON0T AT
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Furthermore, as a consequence of (3.7), we can get that

Ex (1) S maX{ SUp &y nyykie o (7), sup 5No+k+g(7)} (1+)” o (3.8)
0<r<t ’ 2 0<r<t

holds for 0 <t <T.

Proof. First notice that under the smallness assumption (Hp), one can deduce that

d
Sk, () + DA, (1) <0,

which is an immediate consequence of Lemma 4.3 and Lemma 4.4 whose proofs are complicated and thus are
postponed to the next section.

Now we turn to compare the difference between 51’2,0 (t) and ’DJ]’C\,0 (t). To this end, for the macroscopic
component P f (¢, z,v) and the electromagnetic field [FE(t, z), B(t, z)] one has by Lemma 3.3 that

1

|94 @5, B)| < |[V*+ (B 1, B)|# [[A-e(y, B)|

and
k+

o 1
908 B)| < [ (5,355 o, )
while for the microscopic component {I — P} f(t,z,v), we have by employing the Holder inequality that

1

k+o
kFo+1

PORN SIS SVIEND DI VSt B SYOE oI~ Pyfio) =7 [T
E<|a|<No kE<|a|<No
k+o %
< YOI =P [fwese 0 {I—PYHf||TT
k<|a|<No

Therefore, we arrive at
k k et = FRoFT
e (0) < (5,0} {max{ sup By e 0, 510 Evpsana P
0<r<t 0<r<t

which combing with (3.7) yields that

1

d = ~Fre 144
b0+ {ma{ sup £y ase 0 s Expeanan b} {ER O} <o

0<r<t 0<r<t
Solving the above inequality directly gives

ENo (t) S maX{ sup &y nopkte o (7), sup SNOHHQ(T)} (14 t)~(k+o),
0<T<t ’ 2 0<T<t

Here we have used the fact that

ER(0) 5 sup {Eromorize (D}

This completes the proof of Lemma 3.5. ([

Based on the above lemma, we can further obtain the temporal time decay of £ ]'i,o, ¢,—~(t) as in the following
lemma.

Lemma 3.6. Let £ > Ny, n > 2N, — % and suppose that

(Ha2) max{ sup Eny4n(T), sup SNO [T(T)} is sufficiently small

0<r<t 0<r<t

with | being given in Lemma 3.5, then the following estimates
d k
agz\ro,z,ﬂ(t) + DNg.e,—~ (1)

DD LI CRSICE S

|a|=Nog 1<|a’|<k-1,
[al+18]=Nog

o' 2.5, [eipr i a-pproE[ G
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hold for any 0 <t < T and k = 0,1,--- ,Ng — 3. Therefore, letting lo. > No with lo = loo = lo1 and
log—1>1lox+3 for 2 <k < Ny—3, one has

glls/o,lo,kJr%v*'y(t) ,S max {Oilql—gt gNo,NoJFW»*’y(T)’ Oilql'gt 5N0+k+1+9(7-)} (1 + t)ikingi? 1= Oa 17 e ak + [Q]
(3.10)

Proof. We omit the proof of (3.9) as it is similar to the one of (3.7). Here, we point out that the main difference
for proving (3.7) and (3.9):
e The term Z |0“E||* appears when we deal with the term Z (80‘E . W%,wﬁﬂaaf);
lee|=No ||=No
e To deduce the desired estimates on
> (0B V.0 I PHui s, {I-P}S)

1< |[<k—1,
la|=k,lal+]|B|=Ng

and

> (wx0mB)- Vo5 =Py} {1-P}f),
1<y | <h-1,
lal=k, | +18]1=No

one has to encounter the term
2 3 _ 2
> 1 E B @) Fwe e 05 1P

1<]ay|<k—1,
lal=k,lalFI18]1=Ng

With (3.9) in hand, we now turn to prove (3.10). For the case k = 0, 1, the last term on the right hand side
of (3.9) disappears, we have by replacing the parameter £ in (3.9) by lop + 5(i = 0,1,--- ,k 4 [¢]) and then by
multiplying the resulting inequality by (1 + ¢)¥T2~*¢ that

d k+o—iteck k+o—itepk

= {(1 )kt 5No,zo+;;,ﬂ(t>} (LDl () .
—ite|| Qo —i—1+e¢ 3.11

S Y (L )FTeTEYO E|? 4 (14 p)kteim it 5]’;0710%)_7(15).
la|=No
Here € is taken as a sufficiently small positive constant.
By replacing the parameter £ in (3.9) by lo + %, it holds that
d (03
SEh g O4DY g (S Y 0B (3.12)

la|=No

By using the relation between the energy functional 5}%07107_7@) and its corresponding dissipation functional
Déﬁ\/mlo,—v (t), we deduce by a proper linear combination of (3.11) and (3.12) that

d k+[ol
k+o—iteck k
s 2 Ci(1+1)" 5N0,10+§',7W(t) + C’”[Q]HSNO,IUJH“H;Z]“ ’77(75)
k+[o] (3.13)
k+o—itemk k .
+ ZO (1+0)fremepl, o (1) + DNy gos kg (1)
S 3 Aot B 4+ (14 e VR, B + [V B
lo|=No
On the other hand, Lemma 3.5 tells us that
S A ner o Bl + (14 e || VEe L B )|+ (VB
(SN (3.14)

< max{ sup ?No Not btite . (T), sup 5N0+k+1+g(T)} (14t)~ 1+
0<r<t ’ 2 0<r<t
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Plugging (3.14) into (3.13) and taking the time integration, one can get that

k+[o]
k+o—iteck k
Z (1 + t) e 65N07l0+%;_'y(t) + gNo,loﬁ*ik-HgH—l ,7’}’(2&)
1=0
t [ k+l[e]
k+o—it+enk ) k
+ /0 2 (1+7) DN0,10+%,_7(T) + DN0,10+’“+[§1+1,_7(T) dr
i=

S maX{ sup END,NOJF%’_W(T% sup 5N0+k+1+g(7)} (L+12)5
0<r<t 0<r<t
and the estimate (3.10) with the case k = 0, 1 follows by multiplying the above inequality by (1 + t)~¢ where
we take lo = 10’1 = lO,1~
As to the case of 2 < k < Ny — 3, noticing that v € (=3,—1), let lox > No and lpp—1 > lox + 3,
lo =100 =1lo,1, (3.10) with the case 2 < k < Ny — 3 follows by using induction in k. Thus the proof of Lemma
3.6 is complete. ([

The above two lemmas are for the temporal time decay estimates on EF, () and 6}2,07@,77(15) respectively
which are based on the following two assumptions:

o n> %NO — g and Ng+n < N. It is easy to see that if Ny and N are suitably chosen such that (2.12)
holds, one can be able to find such an index n;
e The assumptions (H;) and (Hsz) hold, that is, both

max{ sup En(T), sup En—1,n-1,—4(T), sup ENO No—L ’Y(T)}
No—1,

0<r<t 0<r<t 0<r<t
and
max<{ sup & i T), sup En(T
e Bz, (0 s ()
are assumed to be small.
Set
k+2 1
L (3.15)
2 Y

the above computation tells us that to guarantee the validity of the assumptions imposed in Lemma 3.5 and
Lemma 3.6, we need to control &y, io41+,—~(t), En(t), and Ex_1 n-1,—(t) suitably. To this end, we only
outline the main ideas to yield these estimates and since the proofs are quite complicated, we leave the details
to the next section. In fact, as pointed out in the introduction, if we perform the weighted energy estimate
with respect to the weight function wy_ g _,, it is easy to see that the corresponding term Illri\,fflﬁlﬁw defined

by (2.7) related to the linear transport term v - V, f can be controlled suitably. In fact, due to

w?—\ﬁ\,—y(tav) = w€f|ﬁ|77'y(tav) X W(,‘B,ei‘),,y(t,v) X <’U>’Ya
the above term can be controlled by

2
1 +ei 2
Tiage—ipl,— S Hwefmfeiwwa?_i {I- P}fHV + & [|we—ip -, 05 {T = P}, -

On the other hand, since

WY 51— (£ 0) = o), (£, 0) X W |gse,,— (1) X ()77,

one can deduce that for v < —1, the terms (2.8) and (2.9) containing the electromagnetic field [E (¢, x), B(t, x)]
can not be controlled by the extra dissipation term

(1+6)717 [Jwe— ),—y (1, 0)OG{I = P} F () |°

induced by the weight w,_ 5, _.
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To overcome such a difficulty, our main trick is to use the interpolation method for v to bound these terms
by [[V2(E, B)|| }ixo- D1z 1 (£) with
Prosia®~ 3 5 g =PHIL+ 3 3 g0+ g 1= P

1<n<No lal+l8l=n, 1<n<N |a|=n
1B1=4,1<i<n

(3.16)

and some other similar terms. In fact, for €n, ¢ (t), we can deduce that

Lemma 3.7. Let Ny > 3, £ > Ng, 0 > % - %’y, 0, = 217_21 and I§ > 0 — 7 — L, then one has
—

d— = < =z o 2
25 ENot—2 (1) + Divg,e, () S 1 Ell 1 > weip 05 {1 - PYf(w)|
la|+|BI<No
1 ~
+ y|v2(E,B)||;;50_2DNO,lg,l(t) + > ellovE|* (3.17)
|a|=No

provided that
(H3) ENy.o(t) is sufficiently small.

Note that € > 0 is an arbitrary small constant, and for brevity of presentation, here and in the sequel the
dependence of coefficient constants on e similarly as on the right of (3.17) is skipped, since the order of those
terms are strictly higher than that of the quadratic term.

Similar to the definition of 51\70)13)1(1?) given in Lemma 3.7, for m = N —1 or N, 5,,1);;)1(??) is defined by

Dosa(t)~ Y Yoo lwnndsT=PHL+ Y > (w0 (3.18)

No+l<n<m |al+181=n, No+1<n<m |a|=n
Bl=3,1<j<n

Here we emphasize that for the functional 5N,1,l;,1(t) or ﬁN,l;,l(t), the differentiation order in x and v starts
from Ny+1, i.e. |a|+]|8] > No+1. We have the following two lemmas for Ex(t) and En_1,¢,—~(t) respectively:

Lemma 3.8. Assume Ny > 3, N0+1§N§2N0,2v2 > %f%% 0y = 212_21, lozgf%, and I3 2227%, we
-
can deduce that

d & ~
ZEx(®) +Dn(0) S (I1ElLz + [ V2B B)| o) * Drviza(®) +En (DK 1y () (3.19)

provided that
(Hy) En(t) is sufficiently small.

Lemma 3.9. Take No > 3, No+1 < N < 2Ny, I3 > 4 — L1y, 65 = ;l;?jy, L >N, lp >0+ 3, and
—

> 273 — 2 —ly, one has

d
ﬁgfvfl,ll,fw(t) +Dn-11y,—~(t)

Y
SIEIZ DD (w503 {T—PH ()
la|+|BI<SN-1

[VHE By s Dz a0+ Ex(OEh iy 0+ S 10°E] [0
la]=N-1

(3.20)

where we have used the assumption that
(Hs) En—1,,(t) is sufficiently small.

Lemmas 3.7-3.9 together with the fact £ Zl\fo,lo,f 7(t) € L'(RT) which is a direct consequence of the estimates
(3.10) imply that to deduce the desired estimates on €y, ¢,—(t), En(t), and En—1,4,,—~(t), one needs to bound
51\7071871@) and 51\771;,1(75) suitably. To this end, we have to perform the weighted energy estimates by replacing
the weight w,_j3,_, by wy_|,1 and in such a case, as explained in the introduction, the terms I\ill—\ﬁlﬂ
and I\lzlvé—\ﬁ\,l corresponding to (2.8) and (2.9) can be controlled by the corresponding extra dissipation rate
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Dm,e—\m,l given by (2.7) induced by the exponential factor of the weight wy_g|1(t,v) provided that the
electromagnetic field [E(t, z), B(t,x)] enjoys certain temporal decay estimates. However, compared with the
weighted energy estimate with respect to the weight w, ., the linear term I\lgzllf\ﬂ\,l defined by (2.7) leads
to a new difficult term

wa—'ﬁ—eillf’““{l P}f{v)=2~ H

which can not be controlled directly by combining the d1551patlve effects D|a\ —18],1 induced by the linearized

collision operator L.
Motivated by the argument developed in [19] to deduce the temporal decay estimates on solutions to some
nonlinear equations of regularity-loss type, we want to design different time increase rate o, ; for

oo wgaos TPy
jal+18/=m181=7

where 0, j — O j—1 = %(1 + ¢). For result in this direction, we have the following two lemmas whose
proof will be given in the next section. The first one is concerned with the case of No +1 <n < N.

Lemma 3.10. Assume Ng >4, 0y j — 0nj—1 = %(1 +9), 1] >N, andly > 15 + %, one can get that

d _ o o
Yooy > EnT w1031 =PYHA* + 3 (1 + )77 |wng 0% f|
No+1<n<N lal+18]=n, loo|=n
|B]=3,1<j<n
+ > S @) fugoga G5 T =P+ 30 (107 wia0% ]
No+1<n<N | lal+I8l=n, la|=n
[B]=3,1<j<n
+ D Yo )T w05 {1 P ()| (3.21)

No+1<n<N |a|+|8|=n,
[B|=3,1<j<n

+ Z Z 1+t —1=0—0no ||wl;,18°‘f<v>||2

No+1<n<N |a|=n

DS {Hvlo‘“ijJr||{I—P}f|l2,+HV'“EH2} (1482750 [TV 4 Ex (0K, 10— (1)
la|<N-—1

—On,j [N —0On,j a 2
No+1<n<N, No+1<n<N, |a|+|8|=n,
0<j<n 1<j<n |81=4,18" <3
where By, i(t) is defined by
n 2:73 a 2
Etrzj( ) ~ Z HEHII,OO lef—jalaﬂ{l - P}f<U>H
el +1Bl=n,
|B1=3
2
+ Y > L+ 0" B le;,j,m,lvgnag—al{l_P}f<v>H
\QIHB\ n, |a—aj|+i+m>No+1,
Bl=j 1<|a1|<Ng—2,m<1
2
1 1+9 a1 QH . m aga—ay _ ‘
S S a0 0B g VPO TP
la|+[B|=n, |a—ay|+ij+m>Ng+1, v
|Bl=3 Ng—1<|a1|<Ng,m<1
2
+ > S W0 Bl [ somaVirosT 1P|
lal+]B|=n, |a—ay|+j+m>Ng+1,
[Bl=3 1< |[SNg—2,m<1
1+ o B H e VIOST{I - P ’
S S a0 B [ a-ry,

|a|+]Bl=n, |a—ai|+j+m>Ng+1,
[Bl=3 Ng—1<|a1|<Ng,m<1

, 2
+ max {Exg to,— (1), Emra ()} > lei_m/‘,lag‘,{I—P}fHV. (3.22)

la/|+]8"|<n,
18"1<1B1=3
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Similar to Lemma 3.10, we can also get for the case of 1 <n < Ny that

Lemma 3.11. Under the assumptions of Lemma 5.10, for I§ > Ny, we have

d
> dt{ > @0 g TP 3 (14077 fug a0
rnon L i, of=n

+(1+t)"Ov"leS71{I—P}fH2}+ Z Z (14t)"omi ||w13_j,1ag‘{1—P}in (3.23)

1<n<No | lal+18/=n,
|B|=4,1<i<n

+ Z (1 +t)_a"'0 leg,laain + (1 + t)_UO’O ||wl3,1{I - P}f“i

la|=n

+ Y S )T w105 {1 - PH ()

1<n<No | lal+I8=n,
|8|=4.1<i<n

o —1—9—0 2
D0 )T w10 F )7 b+ (L4 )70 w1 {T - PR (0)
la|=n
2 2 2
S SRR Lt RN TR SR VA I L RO
|a|]<No—1 v
—On,j TN —On,j a 2
Y TR Y Y (L) g e 105 {1 - PYA|T,
0<n<Ng, 1<n<Ng, |a|+|B|=n,
oci<n 1<i<n,  |8l=5 15 1<s
where Iy, ;(t) is defined by
n (03 2
ot~ > ||E|| ||'wl 5105 {I =P} f(v)]|
lal+161=n
161=3
2
+ > S @0 Bl [wgomesa VIO I PY)|
|0¢H»\ﬁ\ n, 1<|aq|<min{n—j,Ng—2},
Bl=3 m<1
2
1+9 || g 2 ) moa—on [ _
+ > Y a0 B fuymma VIO - PO
lol+18]=n, No—1<|a1]<Ng, v
1Bl1=3 m<1
2
+ Z > (1410 0™ B2 les_m_ﬂvznag*al{}—P}fH
|o¢H»\B\ 1<|ay|<min{n—j,Ng—2},
Bl=j m<1
a m ao—o 2
+ 0y Yo )0 E wig i VIO T T = P
lal+18=n, No—1<|a1]|<No. o
161=d m<i
2 o .2
+ (5No,0(t) + ||w1371f||L%H§) Z les_w/l’laﬁ’f”
7l 118 <, Y
la/|> 1,167 \<j
1 —Qq
+ Z Z szo,18 1f Lora wis,105~ f‘mm" (3.24)

el lg=n 1<]aq |+]61|<n—1
=7

3.3. The proof of Theorem 2.1. We now prove Theorem 2.1 in this subsection. For this purpose, suppose
that the Cauchy problem (1.5) and (1.6) admits a unique local solution [f(¢,x,v), E(t,z), B(t,z)] defined on
the time interval 0 < ¢ < T for some 0 < T < oo and f(¢,x,v) satisfies the a priori assumption (2.16), where
the parameters m, No, N, lg, l1, and I*, (5, T, 0, j are given in Theorem 2.1 and M is a sufficiently small positive
constant. Then to use the continuity argument to extend such a solution step by step to a global one, one only
need to deduce certain uniform-in-time energy type estimates on f(¢,z,v) such that the a priori assumption
(2.16) can be closed, which is the main result of the following lemma.
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Lemma 3.12. Assume that

The assumptions of Lemma 3.10 hold;
9 is chosen to satisfy (2.11), Ny and N satisfy (2.12);
ono =159, 0,0=0forn <N —1;

~ v (1-2v)ong,Ng 5 ~ . 2(1-2y)on,N v, (A=2y)on_1,N-1 .
> 3+ St by > § o P and £y > § T T

heN G zmax{l-3 -F -y} lo=l+3,6520-F -0 +1) witht* =3~ L witn T
being given in Lemma 3.5;

e The a priori assumption (2.16) holds for some sufficiently small M > 0.
Then it holds that

En (t) + ENOJO"‘l*:_'Y(t) + gN—l,lh—’Y(t)

+ oot uga0g{T-PHP > Y Jugaoo s

No+1<n<N |al+18|= No+1<n<N—1 |a|=n
181=3, 1<]<'n.

+ 3 T2 w00+ ST ST () w105 {T — P} £ (3.25)

la|=N 1<n<Np la|+IB|=n,
[Bl=7,1<j<n

2 2 [wiad | + e a1 - Py
1<n<No |a|=n
<Yy
forall0 <t <T.

Proof. Before proving (3.25), we first point out that if the assumptions stated in Lemma 3.12 hold, especially

the a priori assumption (2.16) is satisfied and the parameters such as 9, o, Ny, N, O'n,j,,lvhflvg,’l;7 l1,17, 1o, and 1,
satisfy the conditions listed in Lemma 3.12, then all the conditions listed in Lemma 3.5, Lemma 3.6, Lemma
3.7, Lemma 3.8, Lemma 3.9, Lemma 3.10, and Lemma 3.11 are satisfied, and based on the results obtained in

these lemmas, we can deduce that:
(i). If we take

1<;€07 n = ]\/'7
““70{ 0, n<N-1
and notice that

2(147)

n,g — On,j—1 = 1 197
UJ 0-7‘71 ,}/_2(—"_)

we can deduce that

No+1§nm§az§,0§j§n{g"’j} TONN N0+1§n1§n]3}51,0§j§n{0"’j} TON-LN-L L N o<g<n{0"”} T No,Nos
.. s 2(1—27v)on, 7 1-2 3+2
(ii). If we choose £y > 2 + TQNN and IT > ¢y — I, then we can deduce that 6, = 222:’7 < 7401\1,91\1'
Consequently, we have from Lemma 3.5 that
91 ~
(1B~ + 928, Bl y0-=) ™ B0
1
95
S (1Bl + [V, B y3o-2) ™ W+ 0™ (140" D10 (3.26)

<X(t ﬁ _(%+§)912 ON,N O’N,Nﬁ N
(#)*%= (1 +1) L+ )7 (1 +1)” Vg (t)

~

SX(8)2 (14 1) Dz 1 (1);

1—2y < 2+p

= <53 and we have
2l3—~ ON—-1,N—-1

(iii). If we take f3 > J + U=2U0otvot ang 13 > 73— — 41y, then 6 =

from Lemma 3.5 that
V2B B B2 B30

SX(t)ﬁ(l+t)*(1+§)ﬁ(1_;r_t)aNfLNfl(l+t)—aN71.N71'5N71JT’1(t) (3,27)

<X(t)ﬁ 1+ t)_aN’l'N’lﬁNle;J(t);

~
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: 7 Y (1_2’)’)‘7N N, * s ol * ol s _ 1-2y 2+4p
(iv). For £y > 3+ —— = and I > {1 — § —(lo +17), it is easy to see that ¢; = EYi—- < T and

consequently we have from Lemma 3.5 that

V*(E, B)||iNO,2 Dotz 1(8) S X ()77 (14 1)~ ¥0%0 Dy e 1 (8); (3.28)
(v). Since Ny > 4, by (3.8), we take 0 < ¥ < %ﬁé’” such that
121 05— PR
lal+1BISN -1 or No
SIVEIT [V S g 05— PG

|| +[B|SN—1 or No

2—7
— 2= _ (3, 0)2=7
S { sup EN JWH—%,—’Y(T)’ sup 8N0+k+Q(T)} Z (1+t) (4+2)1—“f

0<r<t 0 0<7<t la|=N
D DR (VRTINS e 301 )
la]+|B|<N—-1 or Ny
< X(t)7m S @+t > l[we_ 1,405 (1= PY(0)]”. (3.29)
|a]=N la|+|B|<N—-1 or Ny

With the above preparations in hand, we now turn to prove (3.25). To this end, we first multiply (3.19) by
(1+¢)~° and get by employing (3.26) that

dt
S+ )7 (J|Bl = + || VHE, B)|| yn—2) 7 Divag 1 (t) + (14 1)~ CEN(£)EN, 19— (t) (3.30)
S+ TOX )T (L4 6) 7 Dz 1 (8) + (1) EN (DER, 1. ()-

It is worth pointing out that the term eg(1+¢) "1 Ex () on the left hand side of the above inequality can be

used to control the term Z (14 t)72930||9“E||* on the right hand of (3.23).
|la|=N
Secondly, plugging (3.26) into (3.19) gives

a4 (L4+t)"CEn®) ]} +eo(1+8) 18N (t) + (L + 1) “Dy(t)

D e (®) + D (t) < X0 (140 Doy 5 1(0) + En(DENy 10 ) (3.31)
Thirdly, by combing (3.27), (3.29) with (3.20), one has
%51\/—1,11,—7(75) +DN-1,1,,—~(t)
SXW™5 (14 ) Do () 4 Ex O, 0+ Y o wers].

la]=N—-1

Thus if {7 is suitably chosen such that [T > max {ZQ -1, U5 — 7 - ’yll}, then the estimates (3.31) and (3.32)
hold and from these we can deduce that
e If we choose I; > N, then once we deduce the estimate on En_1;,,—~(t), the estimate on Ex_1,ny—1,—~ (%)
follows immediately;
e A sufficient condition to control the term 5N(t)511v0,zo,77 (t) which appears on the right hand side of
(3.31), (3.32), and (3.21) is to show that £y, . (t) € L'(R?). In fact Lemma 3.6 provides us with

such a nice estimate provided that sup &En, o41-,—~(7) is sufficiently small.
0<r<t
Now we turn to estimate €y, j,+1+,—~(t) and for this purpose, we first notice from (3.15) that since k = 1, I*
is now taken as [* = % — %, then for Iy > I5 + %7 we have by replacing ¢ in the estimate (3.17) with Iy 4 [* and

the estimate (3.28) that

d= D DT T —o N fe’
ZE Nttt () + Doy — (1) S X 1+ )" N0 Dy, g a(®) + Y, c|0°B*,  (3.39)
|a|=No
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where we have used the estimate (3.29).

Taking a proper linear combination of (3.31), (3.32), (3.33), (3.21), (3.23), and (3.30) and by using the
smallness of X (t) and &, we can deduce by taking the time integration from 0 to ¢ to the resulting differential
inequality that

En (t) + ?No»lo-i-l*,—v(t) + 5N—17l17_’)’(t)

+ S T o 05 T-PHT+ > Y w0y

No+1<n<N Ig(lx|+w\<=v<b, No+1<n<N—1|a|=n
=7,1<j<n

+ 3 @) uga P Y Y () (w003 {1 - Py

la|=N 1<n<Ng lal+8]=n,
1B|=4,1<j<n

+ 3 D (w10 f |+ w1 1= PYf|

1<n<Np |a|=n
2
<7
Here we have used the following estimate

Z (L+t)" 79 Ep, 5(t) + Z (L+8)" 7 Fy, (1)

No+1<n<N, 0<n<Ng,
0<j<n 0<j<n
S Y X+t oDl (3.34)

No+1<[a|+|B|<N

+ Z X+ t)—o\amm,\mﬁl\?’lilﬂl(t)
0<]a|+|B|<No

+ Z X(t) 55 1+ t)*olaH\B\,\B\ﬁ}g\jﬁ\lf,l(t) + X(t)Dy, (1),
laf+IBI<N

provided that the parameters ¥, g, N, and Ny satisfy the conditions listed in Lemma 3.12. Here to state briefly,
we use lel"lﬁl(t) to denote

1 2 2
(L4077 [Jwem 51,105 {T = PYF )| + [|we— 51,105 {T =PI
Without loss of generality, we only verify the estimate (3.34) for the term

2
L+ S (400 B ||wg o150 V05 I - PYS ()

lo|+]B|=n,
laey |=1,]8|=3,

since the other terms can be estimated in a similar way. In such a case, Lemma 3.5 tells us that

Z 1041 B2 < X(t)(1+1t)"27¢, Ny > 5,
Lgo ~

las|=1 X(t)(1+1t)"27¢ Ny=4
which implies
> 10 Blfe £ X1+ B (3.35)
loa|=1

if the parameters 9 and g are suitably chosen such that

{0<19§W7 o€ [$,3), No>5,

0<d< % ge(l,%z), Ny = 4.
Now due to
Onj — Onj—1 =
we can get from the estimate (3.35) that

(L4¢) mi Z (1 +t)1+19 ||aalB||i:o leg_l_jvlvvag_f«h{]:—P}f<v>H2

la|+18]=n,
lay|=1.18]=4,
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g i —1— o 2
SX(@) (1 4¢) omatr Tt K Z ||wl;—1—j,135{I—P}f<U>|| )
|| +]B|=n,
1Bl=3+1,
that is exactly what we wanted.
Finally, Lemma 3.5 implies that

N =2Ny —1, when ge[%,l],
N =2Ny, when o€ (1,3).
Thus the proof of Lemma 3.12 is complete. O

Now we turn to prove Theorem 2.1. To this end, recall the definition of the X (¢)—norm. Lemma 3.12 tells
that for the local solution [f(t, z,v), E(t,x), B(t,z)] to the Cauchy problem (1.5) and (1.6) defined on the time
interval [0, T] for some 0 < T < +o0, if

X)) <M, Vtelo,T],
then there exists a sufficiently small positive constant dg > 0 such that if
M < 82,
there exists a positive constant C' > 0 such that
X(t) <CV2

holds for all 0 < ¢ < T.
Thus if the initial perturbation Yj is assumed to be sufficiently small such that

]
YOS%)

then the global existence follows by combining the local solvability result with the continuation argument in
the usual way. This completes the proof of Theorem 2.1. O

3.4. The proof of Theorem 2.2. Based on Theorem 2.1 and by taking £k =0,1,2,--- , Ny — 2, we can get
firstly from Lemma 3.5 that

ENy (1) S Y (L+8)~¢F0),
that gives (2.13).
As to (2.14), as long as one takes Iy and I* respectively as

5
lg = l070 = lO,l > max {ngQ(ZO,k + 3k — 3), ZT + 2} s

and [* = E£2 % in Theorem 1.1, then (2.14) follows from Lemma 3.6.

Finally, to prove (2.15), we have by the interpolation method with respect to space derivative x for Ny+1 <
|a] < N — 1 and by using the time decay of ||VN°f|| and the bound of HVNfH that

o] _ (N—|aD(Ng—2+0)

lal=Ng N-|af
[0 f1” S [V £ [V f[ YT S YR T N
This is (2.15) and the proof of Theorem 2.2 is complete. O

4. APPENDIX

We will complete the proofs of some lemmas and estimates used in the previous section.

4.1 The proof of the key estimate in Lemma 3.5. First of all, the following lemmas are for proving (3.7).

Lemma 4.1. Assume —3 < v < —1, Ng and N satisfying (2.12) and n > %No — g, there exist a positive

integer m satisfying No+1 <m < N — 1 and a sufficiently large numberl~, which both depend only v and Ny,
such that when 1 < k < Ny — 2,

|(V¥((v x B) -V, f), V*f)| < max {an,m,V(t),gNO’NO_L_v(t)}

(4.1)
< (151" + VT = Py + IV 712) +& (VST = PYAL + [0
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when k = Ng — 1, it holds that
!(Vk ((vx B)-Vuf), ka)| < max {gmam:—V(t)’gNo,No577(0}
x (I B [ ) + e 9
and as for k = Ny, it follows that

2 (V= B) - Vu), V1) | S max {Enninlt) Emm 0.8y 0]
X (||VN0—1B||2 + HvNo—2{I_ P}f||12/ i HVNOAin 4 HvNoin) (4.3)

e (9% I =Py, + 1977117)

Proof. To obtain (4.1), by using the macro-micro decomposition, one has

[(VE((w x B) - Vo), VEN)| S D [((0x VIB) -V, V7 £,V )|

1<5<k
= > [((vxV'B)-V,V*7PLV )|+ Y |((vx V/B) -V, V¥ {1 - P}f, V*Pf)|
1<5<k 1<5<k
I Ip,2
+ Y |((vx VB) -V, V¥ {I-P}f, VI - P}f)|.
1<5<k
Ip 3

Applying the interpolation method with respect to space derivative x, so we deduce from Lemma 3.3 that

Ipa+1p2 S Y VB [V (I ()l

1<j<k

<3 a

1<j<k
o) (VB + [V 1]7) + < |05 1]
As for I3 3, when j = k, taking L® — L? — L? type inequality and applying Lemma 3.3, one has
Vo {T-P}f(v)' "2 VHI-P}f(v)?

T g g 8 B et () e ()|

A (i)

53 59"l

L3LE L3LE
_ 2 2
SEag-1 @ [VFB|T 42 [VHI-PLA .
While for the case 1 < j <k — 1, by the similar virtue of the estimates on Ip 3 for j = k, one also has

Ipss > VBl V.V 1= PH[[VHI - P}f(v)]

1<j<k-1
2k—2j—1 2j+20+3 ‘ L
S Z HA7£’B|| 2(kt+1to) HV’“+13H 2(k+1+0) ||V’Umlj+1vk*j {1- P}f“ My, T
1<j<k-1

myj myj(k—j+e)
% HA*Q{I _ P}fum Hvk{l _ P}fH <m1j-+1><k+e> HV’C{I _ P}f<’0>H
S Y0 [ATeB|HE R B i1 py g

~
1<j<k—1
myj(k—j+e)B;

% HA_Q{I_P}fH% HV’“{I—P}f<U>%||m b

[VHI-P}f(0)?

nyj(k—j+e)(1-58;)

> Hvk{l _ P}f< U>l1-7 H; (Jm1j+1)(k+g)—J Hvk{l _ P}f<’U>l2j Hl—ﬂj

< max {5k+m1,1+m1,—'y(t)7gk i (t)} (HkaBH? + ||Vk{I - P}f”i) +e ||Vk{1 — P}f||12/ .

TR Y
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Here we have used the fact that there exists a positive constant 8; € (0,1) such that
2j+20+3  my(k—j+0)p;
2k+1+0)  (my+1)(k+0)

holds for 1 < j <k — 1. A necessary and sufficient condition to guarantee the existence of such §; is

2j+20+3 | my(k—j+o0)
2k+14+0) (my+1)(k+ o)

2 . .
from which one can deduce that mq; > 2’“2;92_‘5’?;;322__53;2_]5;9 holds for 1 < j < k—1. Noticing that 3 < 0 < 2
it is easy to see that we can take

+ ;=2

+1>2, 1<j<k-1,

2k 20—3 2k? + 20k — 3k — 3p

T A M = e T 0,13 kot 3k + 20 +30—2
Consequently, mi; +1+k—j <k+4+m; = giigk + §§+§ < giigN 229;133 with Ny > 4.
Moreover, since ly; and Iy, satisfy respectlvely 26 + I;(1 - BJ) 0 and 28; + l2;(1 — B;) = 1 with
0 < B; < 1, one can deduce that, I;; = 2 (17&) and ly; = 7 - (1 ,6’ y from which we can see that loj > I

where )
(4k + 1+ 20— 25)(m1; + 1)(k + o)

(k + 2+ ZQ)UC + o0+ 2km1j + 20mq; — jmlj)'

B =

Here we take ig = max {Zgj}.
1<j<k—1 U~
Consequently, if we take m = k + my and = max{lg, = — l}, (4.1) follows by collecting the above

estimates. As well as case k < No — 2, for k = No — 1, there exist a positive integer m and a sufficiently large
number [ such that

Z |(VE((v x B) -V, f), V¥ f)| $max {sm,m,_w(t),sNo,No_;_ (t)}
k=No—1

< (9% B + [V ) e 9

With regard to the case k = Ny, compared with the above cases, we only notice that if we take n > %NO - %,

|((vx VVB) -V {I-P}f,VVoy)|
S [Vt BT 9t T |, vmz+1{I_P}f||;;};g I OV oo

ma(1-8)(1+e)
(1+mg2)(Ng—2+e)

Hi L3

B(l+e
(1+m2)(N(J 2+9)

HlL?

3 KAt S SHOR

KAt e JFIOE

<[eser ﬂ

e

< max {5N0+n(t), 53*”12’3*”12’7(15)’51\10,%’741,#’5)} (||VN0—1B||2 || w21 — P}inI;Lﬁ)

_ 2 2
t+e (HVN" HL=PYf | + V) -
Here we need to ask %= + % + B = 2 which deduce :chat mo > %, we can get Iy =
7= m and [, = - 1 B) from 7 B+15(1—B) =0 and 7 -B+14(1 =) = 1. We can choose my suitably
such that 3 +mqo <3+ &%. The other terms can be estimated as well as (4.1). Consequently, if we
take suitable numbers m and T, we also have

Z ’(Vk((v x B) - va),ka)‘ < max {5N0+n(t),8m7m7_7(t)

k=No

’EN(J,No—g;—’Y(t)}
X (VN B|? + VN2 {T = P2 + (IVY 12 + VY £I2)
e (VL= PH|[ e + [V -

Thus we have completed the proof of this lemma. (I
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By repeating the argument used to prove Lemma 4.1, we can also obtain that

Lemma 4.2. Under the assumptions of Lemma 4.1, we have estimates on the terms containing E and T'(f, f)
as follows. For k < Ny — 2, it holds that

(F5 (- Bf), V)| + | (VB - 9o ), VE1)| + |(VFT(, 1), V5 F)|
gmax{é‘mm_v(t),s%%5)7(75)} (Hvk+1EH +|IVHI-PY | + ||Vk+1f|\5) (4.4)
e (V=P + 9442
For k = Ny — 1, it holds that
[(VE@-EF). V50| + [(VHE - Vo). VL) | + | (VT (F, ). V45|

S e (0.8 -1, 0} (1977 B+ [95 A2) e 921

i
0= 57

(4.5)

For k = Ny, it holds that
(V- B, VENO| 4+ [(VHE -V 1), V*F) |+ (VTS ), V)|
S { vy (0 (0 Ey, 1, O} (V9B + [V 0-PYL gy
TR + 912+ (19 P + 1971

Remark 4.1. Comparing the proofs of the above two lemmas, we all take suitably numbers m satisfying
No—1<m<N-—1andl. In fact, by complex calculation as well as (4.3), we obtain

L 20+5 6 20+ 7 80+ 38
mmaX{XNo>4{ ¢ Ny — }, XN026{ ¢ No — g },

20+3 20+ 3 2043 20+ 3
29+9N 40+ 36 2@+11N 40+ 44
XNo>7 20+5 0 20+5 | XNo>8 729_’_7 0 20+ 9 s

Thus we can choose m = N — 1 without generality if N satisfies (2.12). Since the computation of accurate

value ofl is too complicated but standard, we claim that there ezists a finite number | satisfying the above three
lemmas.

Based on the above three lemmas and Remark 4.1, it is straightforward to obtain

Lemma 4.3. Let Ny and N satisfying (2.12), then there exists a positive constantz which depends only on
Ny, 0 and v, such that:

(1). Fork=0,1,---, Ny —2, it holds that
d 2 2 2
= (V%717 + 195 2. B)I) + VL - Py
< max {gN_l:N_l’_'Y(t)’gNo,Nog,y(t)} (]|Vk+1(E,B)H2 n Hvk{l — P}in (4.7)
+ VL) + e (V= Pyl + 9 )
(2). If k = No — 1, it follows that
d
= (IoY=2s )P + vt e, B|) + V- P
< max {ENLN1,7(t),€N07N0_5,_W(t)} <||VN071(E,B)||2 (4.8)

I P 4+ [0 2 [V
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(3). As for k= Ny >4, if we let n > %No — %, one has
d
= (V%" + [V 2 B)|) + [v¥ {1 - P

Smax{sNo+n<t>7sN1,N1,7<t>,5N0,N ; W(t)}(HvNo-1<E,B>y|"’+|\vN0-2{I—P}in (4.9)

12 - 2 17|12
P )+ (IR 4 19 )

Proof. To prove (4.7), we apply V¥ to (1.5), multiply the resulting identity by V*f, and further integrate
it with respect to 2 and v over R3 x R3. Then, for k < Ny — 2, (4.7) follows by recalling (4.1), (4.4) and
the coercive property of the linear operator L. Similarly, for &k = Ny —1 > 2, (4.2) and (4.5) imply (4.8).
Regarding the last case k = Ny > 4, one has (4.9) by combing (4.3) and (4.6). Thus the proof of Lemma 4.3
is complete. (I

The next lemma is concerned with the macro dissipation Dy mac(t) defined by

DN mac(t) ~ |Valas, b,) a1 + llay = a-|® + 1B x-1 + Ve Bl n-2

Lemma 4.4. For the macro dissipation estimates on f(t,x,v), we have the following results:

i). Fork=0,1,2---, Ny — 2, there exist interactive energy functionals G%(t) satisfying
f

G0 S IV BB + [V (BB + [V 2E]
such that
%G’}'(t) + || VHE, ap - a,)HZ;L% +|v*®eys, B’
SEvo-r0.+ ) ([VHHE B + [V 1L) + V5T - P
IVHHI P+ VI P
(i). For k = No —1, there exists an interactive energy functional G{°~(t) satisfying
G () S |VN BB+ [V BB+ VOB

such that
d
dt
Evao® (|98, B + [V 7[12) + [V (1 - B |

G (1) 4 [N 2 (EBras — a3y, + IV B+ VR

2

_ 2 2
+{[VEOTHI =P, + [ VT =P,
(iii). There exists an interactive energy functional EX(t) satisfying

vty < Y lloc(f B B
la]<N

such that

LEQ D + Dymac) S Y2 10— P + En(t)Dn (1)
lal<N

holds for any t € [0,T].
Proof. Since the procedure of the proof is almost the same as the proof of Lemma 3.5 in [22, page 3742], we

omit it for brevity. O

4.2 The estimate in the negative indexed space. Our first result in this subsection is concerned with the
estimate on ||[f, E, B](t)]| -.-
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Lemma 4.5. For p € [3,3), it holds that

d 2 2 2
— ([A72f" + [|A~(E,B)||) + |A~{1-P}f|]
A I )+ w0

3_

< Coamstt)” ([a1-25 ) ¢ a1

2 _ 3 2
y) + 8581 (1) HAT@(f,E,B)H .

5

Proof.iWe have by taking Fourier transform of (1.5) with respect to x, multiplying the resulting identity by

|€]725 . with f being the complex conjugate of fi, and integrating the final result with respect to & and v
over RZ’ x R3 that

2 1 . 1 .
<atfi to - FIVofel £ FIE +v x B) - Vofs] F qv- FIEfe] F E-op? + FlLy f] = FIP2(f, F)] | |§|_29f>
=0. (4.11)
Recall that throughout this paper, Flg|(t,&,v) = §(t,&,v) denotes the Fourier transform of g(t,z,v) with

respect to x.
(4.11) together with Lemma 3.1 yield

d
= (12| + 1A=, B)|*) + [[A=e T - Py

SO (FIE-Vupad g2 ) |+ 30 | (Flo < B Vufal 1122 fs)|
+ £

v - (4.12)

# 30| (o FBA Ve 0 ) [+ S0 (FInath 0 el 2e s )|
+ +

I3 14

To estimate I; (i = 1,2,3), we have from Lemma 3.1, Lemma 3.3 and Lemma 3.4 that

nglame @I @)+ ame (B 9o 2) [ Iamea-py],

SIE-WF| o 1A ()| + | B Vs i) |- Py,

342
L%Lz+ o

6
3+2
L3t2er2

<[atsa] ats n | Iae o)+ [at-e] .o

J
2

2 2
+e||A"H{I-P}f|

< (B, (1)"* (HAESEHQ + HA%*%

2 _ 5 2 5
) + 050 AT B[ e AT - Py

For I, and I3, we have by repeating the argument used in deducing the estimate on I; that

2
v
2

+813-2 ,Y(t)HA%*Q(E,B)‘F+5|}A’9{17P}f|| .

It 15 5 (Evo (1) (HAZ‘g(E, B+ at-t

I, can be bounded from Lemma 3.2 by
I = (FIC(f, ) €22 F{T - P}S)
S (ORI | NSRS £ 3%5]
<|ades] 151z IA-eM1 - PYs],

_ 5 2
SEaa, () AR es|| +2lameqT - P2



28 R.-J. DUAN, Y.-J. LEI, T. YANG, AND H.-J. ZHAO

Substituting the estimates on I;(i = 1,2,3,4) into (4.12) yields

4 (|a-eglf + Ja=ece, B) + Ao - Py
_ ) 2
5(50,0,—7(25))1/2 (HAZ_S(E’B)H 4 HAg_gf |

2 _ 3
y) +E5 1 (1) HATQ(f,E,B)H

Thus we complete the proof of Lemma 4.5. O

Applying the argument of Lemma 3.2 in [22, page 3727] and Lemma 3.3 in [22, page 3731], we easily have
the following lemma;:

Lemma 4.6. Let o € [%, %), there exists an interactive functional Gg g(t) satisfying

G7o(t)] S AV e(f, B, B)|) + ||A~e(f, B, B)|) + |A2~¢ B2
such that

d o —e 2 -ep|? —e ;
GO+ [|AE B+ AT + [[A%(ay — a) [} (4.13)

S[IAeT =Py + AT = PYf| + A2 T = PYf| + Er0— (D20, (1)

holds for any 0 <t <T.

4.3 The proof of Lemmas 3.7, 3.8 and 3.9. We first give the proof of Lemma 3.9 as it is the most difficult
one among those three lemmas. The standard energy estimate on 0% f with 1 < |a| < N — 1 weighted by the
time-velocity dependent function wy,_, = we _~(t,v) gives

d

(6% (6% 1 (6%
= > eI Y w0 f||3+m||wm@ F)?
1<|a|<N-1 1<|a|<N-1
< ST e tli+ D BNt + DD [(9%(w x B) - Vo f),wi _,0°F)]
1<|al<N-1 1<]a]<N-1 1<]a]<N-1
J1
+ Y | E-wf BVl 00N+ S (0T ) w00 f)].
1<|a|<N-1 1<|a|<N-1

Ja J:}
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For J;, we deduce that

i S10°B| w1, Vo f ()%

lwe—y@ 71,

L2L
Jia
+ Y 10 Bllgg |[wet o Vo0 T ) E | w07,
1<|a—a1|<No—2 vla
J1,2
107 Bl e, Vo0 £ F 071,

‘Ot*alI:Nofl

Ji3

Y 107 Bl w0 T Py fu)EE

la—aq|>Np,
g [=Ng—1

)} w07 |

L2L3

J1,4

la—aq|>No,
2<|ap|<Np—1

Q2
2

‘w47,78af(v>%_ 2| dx

J1,5

> [ 10M Bl |wer, V0 PR 0)

3
‘Ot*OQIZNU R

T

Ji6
The first three term and the last term can be bounded by

3
> T+ Jie S ENENG 10— (8) + Eny ()DN_1(t) + EDN 1,0, (t)
=1

where we take lg > ¢ + % — % such that wgy,ﬁY@)l*%W < Wiy, —~-
As for the last two terms J; 4 and J; 5, we only estimate J; 4 since J; 5 can be obtained in a similar way,

1—05
Jia$s Y 0V By |wee1, 40"V {T =P (0)F]|
|a—aq|=>Ng, L3L3
|aq|=Ng—1
03

x—Qq 23 03
X ‘wg_l,_va VTP
< > vvs®

la—aq|>No,
lag |=Ng—1

T D (L N P N O ¥

|a—ay|>Np,
lep|[=Ng—1

1607 |

‘w57_78“f<v>23

we—1, 401V, {I = P}f(0)" we, 0% f(v)"

L3LG

<IN B||% Dy—14:1(£) + eDy—1.6— (1).

where 51\;71,11’1(1?) is given in (3.18) with m = N — 1 and 05 satisfies that % — %7 = 3(1—-03) + U505

which yields that 63 = 212_21. Meanwhile I} satisfies that f3 + (—y)(£ — 1) < I — 1 + 7 which deduce that
-

B>l + (=) (0—1)+1— 7. Notice that v € (=3, —1), we can take [] > by — 3 — L. Consequently,

1 ~
Jq 5 HV2BH;;N0*2 ,DN—LlTJ(t) + SN(t)gjl\/o,[m_»y(t) + END (t)DN_l(t) + €DN—1,€,—'~/(t)-
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By the virtue of the estimates on J;, we also have
1 ~
Jo S| V2E| 2wy 2 DN-15.1(8) + EN(EN, 15— (t) + Eng (DN -1(t)
2—y
I— o 2
+IBI = D w0 {T =P} (@)|* +eDn1,e, (1)
1<|a|<N-1

Applying Lemma 3.2 gives
J3 S(EN-1,6,—~(t) +)DNn-1,6,—4(t).

Collecting the above estimates gives the desired weighted energy type estimates on the derivatives of f (¢, x, v)
with respect to the x—variables only as follows

d (67 (63
R D (VA | RS S (VA | b

1 2
g lwe,—, 0% f()

1<[al<N—1 1<|al<N-1 (1+1)
(03 2 (03 (03
SO N0+ YD 0B |0 £ + {En 1.6 (t) + €}DN 1,0, -~(t) (4.14)
1<|a|<N-1 1<|a|<N-1

2—7 1 ~
FIEILS Y e (TP + [ V2B, B)| s Drv145,1(8) + En (D, 1y (1).
1<[al<N-1

After applying {I — P} to the equation (1.8), one can get the weighted energy estimate on {I — P}f

1 _ v)|?
ar o eI =P}l (4.15)

SIHT=PY/IZ + 1B 12 llwe— AT = PYF @) + IEI® + IVaf I + (En-1,-() + &) Dn—1,6,-1 (1)-

As to the weighted energy estimate on {I — P}0g f with |af +[8] < N — 1,[8] > 1, applying the similar trick
as (4.14), we also deduce

d
7 llwe o {T=PYFI* + g {T = P +

d N—-1 N )
P SO Y wejp 03 T-PHP D {Hw6—|ﬁ|,—vaa{IP}f||i
m=1 |Bl=m, [a]+|B|SN -1,
la|+|BI<N-1 [B]>1
1 ) )
T AT [[we5,— 05 {T = P}f(v)| } (4.16)
2 2-5
=Y (Hv!f“fH + 1= P2 + ||aaE||2) B Y w51 - P W)
o <N -2 ' lal+|BI<N -1

+ V2B, B)| v, D151 () + ENEN, 19— () + (En—1,6,—(t) + €) Dy_1,6,-+().

Here we used the fact that ((v x B) - 05V {I - P}f, w?_|ﬂ|7_78§‘{1 - P}f) = 0.
Therefore, recalling (3.18), a proper linear combination of (3.19), (4.14), (4.15) and (4.16) gives (3.20) by

taking lo > I + 3, 03 = ;Zi“; ,

It > 03 — 2 — v¢ and further by replacing ¢ with I; > N. This proves Lemma
1 2 Y

Now, for brevity let us modify the proof of Lemma 3.9 above so as to obtain Lemma 3.7 and Lemma 3.8.
To prove Lemma 3.7, similarly for deducing (4.14), (4.15) and (4.16), one can get

d

1
= > Nwe P+ DY w0 fI + iy lwe 0% )
dt (1+1)

1<|a| <Ny 1<|a|<No
2=y
le" « « 1— o 2

S D e fIE 4+ S MBI+ 1Bl Y llwe @ {T—P}f(w)]| (4.17)
1<|a|<No 1<|a|<No 1<|a| <Ny

1 ~
+[[VZ(E, B)|| o2 Dnvotsa(t) + (Eng.e.~(1) + ) D~ (1),
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and

EHW,w{I —P}f|* + we,— {T = PYf|7 + %Mllwe,—w{l —P}f(v)|?

(1+1) (4.18)
SIHI-PY/Z + HEII e AT =PI + [ EIP + VA1 + (Enoutir (£) + € Digutr (8),

and

22 Cm D wep 08 0-PH "+ Y ( [weis 05 {T- P},

m=1 |B|=m, la|+|B|<No,
l+181<No 18121

1 (63
+W’|Wﬂm,waﬁ{1 P}f(v H)

2 2—~
S ¥ (oo pr 4 leEr) 1B Y 08 - PY O
la|<No—1 lee|+]BI<No
1 ~
+[[V2(E, B)|| 2vo -2 Dot 1 () + (Eno 6.~ (1) +€) Divg .-+ (),
’ (4.19)
where 51\;0,@, ~(t) is given in (3.16). Therefore, recalling (3.16), a proper linear combination of (3.7), (4.10),
(4.13), (4.17), (4.18) and (4.19) yields the desired estimate (3.17) by taking 6; = : 1and 5> 6177776 This
proves Lemma 3.7. Finally, Lemma 3.8 follows from modifying the proof of Lemma 3.9 in a straightforward
way without considering any weight function; the details of the proof are omitted for brevity. O

4.4 The proof of Lemma 3.10. To prove Lemma 3.10, we firstly estimate the highest N —th order norm as
follows:

d
o > [[wis 10 f|* + S+t w107 f W)|I* + > lef,laafui (4.20)
la|=N la|=N la|=N

S S0+ S sl 0B+ Y (070 x B Vap),wh 10°F)

la|=N |a|=N la|=N

Ry

+ > (07E Vo wh00f) + 3 (0% BNl ,0°F) + Y (00T (S ) ui 100F).

|o|=N |a|=N la|]=N

Ro R3 R4

Applying macro-micro decomposition and Holder inequalities gives

Ri= Y 0Bl

|O¢70¢1|§N072

wig 1V, 0 T = P} (v~ F41]

wis 10° f(v) 2

L2LS

Ry

> 107 Bl [wra Ve T = PYF ) TR g a0 o)

la—a1|=No—1

Ry 2
+ > 10°0 Bl oo [|wi 1,1 Vo0* =" {1 = P} ()| [|wiz 10” f(0)|
la—aq |[+1>Ng+1,
1<y [<Ng—2
Ry 3
+ D> 0V Bl w11 Ve T = PHA)]| 5 o [l 107 £ ()

la—aq|+1>No+1,
No—1<|a1|<Ng

Ri4
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+ > /Rs 0% B |n° 0%~ f| |n°0° f| d .

a1 <a

Ris5
It is straightforward to compute that
o el12
Rii+ Ria+ Ris S EN(DEN, 1y, () + EN(ODN (D) +e D [Jwp a0 S]],
|la|=N
where lg satisfies that [f — 8| +1—3 < —y(lo—[B8|—1) so lp > %+%+|B|+|m%1. Noticing that v € (-3, -1),
so we take lop > [T + % As to Ry 3 and Rj 4, one deduce by Cauchy’s inequality
fe! a—aoq 2
Rig+Ria S > (146 10% B[ [|wi 11 Vo0* ™ {T = P}f(v)]|

la—ay|+1>Ng+1,
1<]a1[<Ng—2

+ Y 0N B w14 VeI = PR ()]}

Ja—ayp|+1>Ng+1,
No—1<]eg[SNg

e+ )7 S w10 f )|
la|=N

Consequently

D SRR, L AT N A P}f(v)H2

|a—aq |[+1>Ng+1,
1<|ag[SNg—2

> A0 B w1 Ved I = PYHA)

la—aq|+1>Ng+1,
Np—1<|a1|<Ng

- o 2 o )12
+EN (DN (1) + Ex(DEX 1y D)+ D LA+ w10 @) * + [fwn 2022}
la|=N
By exploiting the same argument used to estimate R;, one also deduces

Ro+ Ry S S @0 Bl e lwig —ma VIO I - P2

la—aq|+m>Ng+1,
1<]ay |[<Ng—2,m<1

Y A0 BIPwy VOO (L= P f|Za

la—aq|+m>No+1,
No—1<aq|<Ng.m<1

+ 37 1Bl= (Jwr 10°{T =P} @)||* + Ex (D (1) + En(8)Eky 1o+ (1)

|la|=N
e 3 {0407 a0 0 + w07}
|a]=N
For R4, Lemma 3.2 tells us that
mE Y [ 9o a0t ], o), do

a1 | < No—4,m<2

Ry

fY [ el e, o], da

|a1|=No—3 or Nog—2,m<2

Ry 2

b bl [ G ) a0,

|1 [>No—2,m<2

Ry 3
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> / iz 10 f| [z 101 | |z 10°f] d

la1|<No

Ry,

D S Ty RO

No+1<|an|<lal-1

Rys

+Z/ ’wl 10° f| |wl 1f’|wl 10° f| dx .

a1 =«

Ri
For R4, one obtains by the Holder inequality that
Rin s Y Vi (0 )| o lwng 1027 £2 + e g 201,

Imfgg*‘l
a—a 2 o pl|2
551\707107—’)’(15) Z ||’LU1T,18 lny_'—EleIvla sz/
\a1|§N074

By using L2 — L>® — L2, L>®° — L2 — L2, L — L3 — L? or L3 — L% — L? type inequalities with respect to space
derivative x, one also has

6
ZR‘W Smax {Eny,ig,— (1), EN—1,N—1,—~(1)} Z le;,ﬁalin +e le;,laain :

1=2 1<]ar|<]e]
Consequently
< (o5} 2 (0% 2
Ry S maX{gNole’,,Y(t),5N,17N,17,W(t)} Z ||w11718 f”y +e€ ||w11718 f”u .
1<]az|<|e

Recalling (3.22) in the case when n = N and j = 0, we refer to
4
Z i S Blio(t) + EN(DEN, 15— (t) + En(t)D(2)

+ 2 o sl 0Bl +e D {0+ 07 w0 fo) P+ w07 ]}

la|=N lal=N

Collecting the above estimates into (4.20) yields

d
a2 Nwad s+ 30 007 st @) + 30 w0 sl

la|=N la|]=N la|=N
S D 0FI5 + B o(t) + EN(EN, 1. — (1) + En(®DN (D) + > [0°F], [0°E].
la|=N la|=N
When |a] 4+ |8] = N, |8] = 1, one has

d o 2 o 2

7 2 Mewnosr=rhT Y0 e a5 {T- P (4.21)
lo+[B]=N,|B|=1 |l +]8|=N,[B]=1

+(1 )70 Z [|wiy 1105 {T = P}f (v ||

lal+[B]=N,|8|=1

S DR €] IRt S 3 1 Wl ANt B S ¥

le+1Bl=N,|B]=1

+ > (% T-Ph)wh L, ,05{1-P)S)

lee|+|8]=N,|8|=1

Rs
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+ Y (8(wx B VA{I- Py, wd_y ,05{1- P)S)

lo|+[B]=N,|8|=1

Rg

> (9B VTP wh 051 PYY)

lee|+|B]=N,|8|=1

R7

+ Y (90 BE-PH) i, 05{1- P}f)

lee|+|8]=N,|8|=1

Rs

+ Y (T wh 051 - PYY)

|| +[B]=N,|8|=1

Ry

+ Z (3§Imac(t)’w12;_1,13§{1 - P}f)7

loe|+[B]=N,|8|=1

Rio

where I,,,4.(t) is defined by
Inae(t) = {1 =P} E -vop/? + P {1} Vo +qo(E+vxB)-V,f — —E f} (4.22)
0 -V,Pf—qo(E+vxB) V,Pf+ %OE-va.
Unlike the corresponding linear term for the weight wy -, here Rs can be dominated by

Rs < Z <3a+51{1_ P}f, wff,lylag{I_P}f)

lo+[B]=N,|B]=1

< Z le* 0TI — P} f{v H le*—l 103{1 - P}f(v >7H
lee|+]8|=N,|8|=1
. _a_q]? o 2
s Z sz;,1aa+e"{I_P}f<v> 2 lH +e Z le’fq,lag{I_P}le,
la|+]8|=N,|B|=1 la|+]B8|=N,|B]=1

As for Ry, it is straightforward to compute that
2
Rip S [V fI2 4+ [ W11E|2 4 ¢ |[TiT = Py + En (D (8).

Applying the similar trick as Ry ~ R4 gives

9
SRSENL®O+e > {007 w05 {1 - PH O + e 11031 P2}
=6

lal+[B]=N,|B8]=1

where Eﬁiyl(t) is given in (3.22) with n = N and j = 1. Thus plugging the estimates on Rs ~ Ry into (4.21)
yields

d
T It ALt 471 D DI (LTERCA B ¥y

lo+[B]=N,|8|=1 lel+]B]=N,|8]=1

N Z (|wi; —1105 {1 - P}f(v H
laf+B|=N,|B]=1
< wi; 10°TH{I =P} f(v _7_‘
laf+|Bl=N,|B]=1
N i O +ENODNO + S fawg a0 TP + 01— P}
la|+|B|=N,|B8]=1

"+ ||9lE] B



THE VLASOV-MAXWELL-BOLTZMANN SYSTEM WITH VERY SOFT POTENTIALS 35

Similarly, we can obtain that

d

D DI LAtz At 2 V1 TR SR CTSRRTC: e S 31
la|+|B8|=N,|B8|=3 la|+|B|=N,|B|=j
+(1 )Y Z |wis —1105{T = P}f (v H
la|+|B8|=N,|B8|=j
< > leIﬂ#l 1055 SH{I =P} f (v _"1‘ + HVWEH + BN (1)

lo+[BI=N,|B]=j

[0 2 (0%
+5N(t)51]§/'0,l0,7ﬂ/(t) +En(t)Dn(t) + Z {77 ||wl’1‘—|,8/|,18,8’{1 - P}fH,, + 0T — P}fﬂi} ;
lal+[B8|=N,|B'|<j

for 2 < j < N, where EJ; ;(t) is defined in (3.22) with n = N. Taking summation over 0 < j < N, one
deduces

d , )
T ST @) Jwg—a 83 T =PI+ DD (1) (w107

|al+|B8|=N, la|=N
|Bl=3,1<j<N

+ Y @) w03 =P+ Y (1417 w107
|a]+|B|=N, la|]=N
|B]=5,1<j<N

+ Z (1+t)717’l970'N,j ||wl jlaﬁ{I_P}f H + Z (l_i_t)flfﬁfcw,o sz;,ﬁaf(v)HQ

la|+|8|=N, la|=N
181=j,1<j<N

< > {Hva'+1ij+|{I—P}f||§+HvalEHQ}Jr(Ht)—%N»O IVVE + S0 (40BN ()
jal<N-1

0<j<N
o o 2
+EN(E)ENy 19— () + EN(E)DN (E) + 1 > (14877 [|wys 51,105 {1 — PYf||,
Bl=i A N B <
where we have used the fact that
L2
S A+ w05t (T- P (4.23)
ol +1B|=N,
18]=4,1<5<N
N TCESI P N A - =
S Y e T EE O s 0s e T PH )| T e85 T - PYA)E
||+ B|=N,
181=5,1<j<N
s > {“ 1o g5 = PY )| (07 0857 (- P ) }
DENS ety
where follows from the fact that on ; —on j—1 = %(1 +99).
When Ny +1<n <N —1, we can deduce similarly that
d o o 2 ,J o l2
232 @ OB PYT D 07 w0

|a|+]8|=n,
18]=3,1<j<n

> )T e BT - PR+ 3D ()7 w0 f)

|a|+]8|=n,
|8]=3,1<j<n

+ Y )T w08 {T - PO+ Y (1 7 I w107 Flw) |

|| +]8|=n,
18l=4,1<j<n

< {Hv'a“fH + 1= P}/II} +Hv'aEH} (L4 )7270 || + En (€K, 40, (1)

Ja|<n—1

|a]=n

lee|=n

lor|=n
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—On,j TN —0On,j (e 2
+ ) L+ B, () + En(t)DN () + 1 > L+ 1) [wi; -1y 105 {1 = PYHf||
0<j<n lorl+18]=n,
181=5,1<j<n, |81 <
Here we have used 0, j — 0y j—1 = (1+7 (1+49) and recall that £y, ;(?) is given in (3.22). Taking summation
over Ng +1 <n < N gives (3.21). Thls completes the proof of Lemma 3.10. O
4.5 The proof of Lemma 3.11. Similar to the proof of Lemma 3.10, we have firstly that
d o el2 o 2 o N2
7 2 Nwgad? fI7+ >0 07 ug a0 f@)+ 30 w0 f (4.24)
la|=No la|=No |a|=No
a (2 a a fel e
S D eI+ D 0l 197l + Y (9%((v x B) - Vuf),ui 10°F)
la|=No |a|=No lo|=No
H,
+ 3 (00 Vo a0of)+ Y (97 B, ,0%F)
lo|=No |a|=No
H2 HS
+ > (oor(s )t 0p)
la|=No
Hy

Applying the Holder inequality and the Sobolev inequality, one has

His ) 0% Bllpe lwg-1aV00" " I = PH (@) [|wig 107 f{v)]]

1S‘0{1|§N072

+ 2 10m Bl oy Ved T I = PH ()] o o w107 F0)]

No—1<]a1|<Nog

E X [ B s

a1 <a

<Y @M Bl [wig -1 Ve T I = P (o)

1S‘O¢1|§N072
+ > AT BI [y 10 Ved* I = PHA)
No—1<]a1|<No

+EN (DD () + £(1+ )7 Juns 10° F0) || + ¢ || d 0 £ ||
In a similar way, we can also get that

Hy+ Hjz < 3 (L4570 B} « [|wig—m 1 Voo~ {I = P}f|®

1<|a1|<Ng—2,m<1
_ 2
SO DI (i s 2l EPRRA st B 371 PPN
N071§|a1|§No,m<1 o

S BN (w1041 - PHW)| + & w100 f

|a|=No
te(l+¢) 7 ||Jwi 10 {1 — P}Hf(v) ||2 + Eny (1) D, (1).

As for Hy, Lemma 3.2 suggests that

ms Y [V ) a0 o], a0 do

Ja1]=0,m<2

Hy,
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D SR N T [

1<]a |[<Np—3,m<2

Hy 2
D S ALt e
la1|=No—2 or No—1,m<2”R®
Hy 3

w0 @], 97 (00 g 107 o

ar=a,m<2

Hy g

+ Z /R3 ’w1851f| ‘wlg,laafL/ |wl8,laaf‘ydw

la1|=0

Hy s

s b0 i a0 ] g 107, d

1<|ar|[<No—1

Hye

+ 2 /]R3 Jwig 1 f] w107, [wis 10f], de.

ap=a

Hy, 7

By using L? — L™ — L? or L™ — L? — L? type inequalities with respect to space derivative x, one has

Hyi+Hya+Hys+Hyp S {5No,0(t) + ||wl;;1f||izLio} leévlaafH,Q, te ||w13718af||12/ )
while employing L? — LS — L? or L5 — L3 — L? type inequalities gives
Hys+ Hyz+ Hag S > [V (u°oof) HL% szg,ﬁa_(”inELg

1<]@1|<Ng—3,m<2

Y Twad . IV )

lay|=No—2,m<2

+ ) leé»laalfHQLng v (“58a_a1f)H2LgL;’;

|a1\:N071,m§2

T2 a0 sl a0 g e+ e a0 S

1<]a1|[<No—1
Consequently
15 {Ewo® +wgaflfes ) S0 a0l
B E P\

+ > w0 G a0 s e + < g 10 £ -
1§\o¢1|§N071
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Recalling (3.24) with n = Ny, j = 0 for Fggo(t), it follows by inserting the estimates on Hy ~ Hy into (4.24)

that
d
= 2 Nwgads P+ 30 Jwgad s+ X @07 wigad s
|a|=No |a|=No |a|=No

S D0 N0FIE + FR () + VN E|? + Eny ()Di, ().
|a|=No
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When |a| 4 |8] = No, |6| = 1, one has

d

DR LIRSS 271 ST W (TPt S5 1 (4.25)
|a|+]B|=No,|B|=1 la|+]8|=No,|8|=1

+(1+t)~ 1Y Z sz* 1,105 {I - P}f(v H

lae|+|Bl=No,|B|=1

s Y {nlwgaor@-PyL + lom - Py

lal+|B|=N,|B8]=1

+ > (% TPy uE 1 05{1-P)Y)

loe|+[B8]=No,|B|=1

Hs

+ Y (05w x B) Vo {T-PH),wh_, 05{T— P}

loe|+[B]=No,|B|=1

Hsg

+ Y (03B VA{I-P})wE 1,051~ PYY)

lee|+|8|=No,|B|=1

H7

+ Y (050 BO-PH) i, 05{1- P}

|| +|8|=No,|B]=1

Hg

LD DR C O NTARRC S 3Ty

lo|+[B8]=No,|B|=1

Hy

+ Z (5§Imac(t)7w12371,15§{1—P}f),

loe|+[B]=No,|B|=1

Hio
where I,,4.(t) is given in (4.22). Hs can be dominated by
Hys > (97T PY) w051~ PYY)
la|+|B]=No,|B|=1
S Y et T Ph )| fug1a05{T - Py E

|| +]B8|=No,|B]=1

N Z szg,lawei{IfP}f( wﬂH +e Z ||w15_17lag{1,13}f|,3

la|+|Bl=No,|B|=1 la|+|B|=No,|B8|=1

Applying the same trick as H; ~ H4 suggests that

10

ZH FNo () +e(1+1)7! 3 [wis 1,105 {1 - P}f ()

|a-+|B]=No,| Bl=1

2 1 2 2

+HV‘°‘|EH +Hvlal+ fH te > Jlwgona0g{T- Py,
Y lal+I8/=No,|8]=1

where Ft%il(t) is given in (3.24) with n = Ny and j = 1. Thus plugging the estimates on Hs ~ Hjq into (4.25)
yields

d
7> wgewesr-PyP e 3 g {T- Py

lee|+[B]=No,|B|=1 lo|+[B]=No,|B|=1
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1+ Y [leg—aad5{I - PYW)
lee|+1Bl=No,|B|=1
ok 2 2 2
I D ST S 2¥ IR I N R A IR AN

l|+|8|=No,|B[=1

+EN, (1) Dy (1) + >
|a|+]B8|=No,|B|=1

{nllwgaom = Pys|L + 101 - Py 112}

Similarly, we can get for 2 < j < Nj that

d
DO (PR 11 £ 3 V1 RE S

|| +|8|=No,|B|=3

= w1105 {1 P}
|a|+[B|=No,|B|=J
H1+077 3 fugmaad8{I - PHW)

(al+181=No.I8I=
2 o 2 N,
||

< Z szé*jﬂ»lagtg{l_P}f(v)*%ﬂHQ N HV‘O‘Hlf

lee|+[B|=No,|B|=j
a 2 o 2
e (DN, 0+ 30 w1051 PY|E + o (T - PY1I2),
lal+181=Ng,
181=4,18"1<i
where F0 (t) is given in (3.24) with n = Ny. Taking summation over 0 < j < N, one deduces
tri,g g g

(1+t)_UN0‘j leg,j’lé)g{I—P}sz—F Z (]__|_t)—<TN0,0 ||w13’18af||2

d
i) X
la|=No

|| +18]=Ng,
[B1=3,1<j<Ng

+ Z (L)oo [Jwgs ;105 {1 — P}in + Z (142)7one leé’laafui
lal+181=No, la|=No
1B1=4,1<5 < No

(1+2)~ 177770 ||wl§7j,lag{1 - P}f<’U>H2 + Z (1+t)~ 177700 ||wlg,18af<v>“2

DY
|a|=No

|e|+[B|=Ng,
[Bl|=3,1<j<Ng

s > {Hv'a“ij T Y Nz HvNOEW} + Eno (1D (1)

|D¢‘SNO*1
—o Ny, IV — ; a 2
O QTR O+ Y (07T w1095 {T- P, .
0<j<No la|+181=No,
181=3,1<5<Np.|18/|<j
where we have used the facts that
2(1+
ONo,j — ONo,j—1 = ( — ;) (1+7)

and in a similar way as (4.23),

S (e

|al+B8|=Ng,
[B|=4,1<j<Ng

2
TP

a+
wl;—j+1,1aﬁ,ei

s ¥ {arorren i fug e - pyo)|

2
w05 - P}

|al+8|=Ng,
[Bl=3,1<j<Ng

(14 1) N0

By exploiting the same argument as before, we can get for 1 <n < Ny — 1 that

d
{ > ) ey T PYT DT () fung 107 £
|

dt

la|=n

al+18]=n,
|B]=4,1<j<n
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+(1+t)"0~°||w13,1{1P}fy|2}+ Z (1+t)*”"vf||wl3_j716§‘{IfP}in

|| +]B|=n,
[Bl=j,1<j<n

+ 30 @+ g 10+ (14 67700 g {T - P

lee|=n

+ Y AT w1 83T~ P ()|
BT,
+ 3 AT g 107 f ()7 + (14 £) T 0700 gy 1 {T - PR ()|

la]=n

DY {HV“'“in T Y N e ||V"E||2} + Exo (DD (1)

o <n—1
o o 2
+ D TR M+ Y ()77 [Jwgg e 105 {T = P,
0<j<n | +|B8l=n,
181=3,1<5<n, 18/ 1<
where F}}; ;(t) is given in (3.24). With the above estimates in hand, (3.23) follows by taking summation over

1 < n < N and by using the energy estimates on |jw; 1 {I — P}f||?>. Thus we have completed the proof of
Lemma 3.11. (]
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