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Abstract. The ellipsoidal BGK model was introduced in [10] to fit the correct
Prandtl number in the Navier-Stokes approximation of the classical BGK model.
In the paper we establish the global existence of mild solutions to the Cauchy
problem on the model for a class of initial data allowed to have large oscillations.
The proof is motivated by a recent study of the same topic on the Boltzmann
equation in [5].

1. Introduction

In this paper, we consider the Ellipsoidal BGK (ES-BGK for short) model

Ft + v · ∇xF = Aν

(
Mν − F

)
. (1.1)

Here the unknown F = F (t, x, v) ≥ 0 denotes the density distribution function of
gas particles which have position x ∈ Ω = R3 or T3 and velocity v ∈ R3 at time
t > 0. Corresponding to a given parameter ν ∈ (−1/2, 1) related to the Prandtl
number of the above Boltzmann-type model (cf. [2]), Aν = Aν(F ) is the collision
frequency and Mν = Mν(F ) is the anisotropic Gaussian, both depending on the
unknown function F ; their explicit forms will be given later on. We refer readers
to [3, 14] and [10] for the origin and background of the ES-BGK model, [1, 6, 7] for
the numerical investigations of the model, and [12, 13] for the recent mathematical
studies on the existence of solutions.

For given F (t, x, v), we introduce the usual fluid quantities density ρ, velocity u,
temperature T and stress tensor Θ, respectively, as

ρ(t, x) =

∫
R3

F (t, x, v)dv,

u(t, x) =
1

ρ

∫
R3

vF (t, x, v)dv,

T (t, x) =
1

3ρ

∫
R3

|v − u|2F (t, x, v)dv,

Θ(t, x) =
1

ρ

∫
R3

(v − u)⊗ (v − u)F (t, x, v)dv,
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and further denote the tensor Tν by

Tν = (1− ν)T Id + νΘ, (1.2)

where Id is the 3× 3 identity matrix. Then the collision frequency Aν = Aν(F ) and
the anisotropic Gaussian Mν = Mν(F ) are respectively defined by

Mν =
ρ√

det(2πTν)
exp

(
− 1

2
(v − u)tT −1

ν (v − u)
)
,

and

Aν =
ρT

1− ν
.

We are interested in the well-posedness of the Cauchy problem on the equation
(1.1) with initial data

F (t, x, v)|t=0 = F0(x, v). (1.3)

The right-hand collision term in the ES-BGK model satisfies (cf.[1, 2])∫
R3

(Mν − F )

 1
v
|v|2

 dv =

0
0
0

 .

This implies that for any solution F (t, x, v), one has conservations of defect mass,
defect momentum and defect energy as in [9]:∫

Ω

∫
R3

(F (t, x, v)− µ(v)) dvdx =

∫
Ω

∫
R3

(F0(x, v)− µ(v)) dvdx ,M0,∫
Ω

∫
R3

v(F (t, x, v)− µ(v)) dvdx =

∫
Ω

∫
R3

v(F0(x, v)− µ(v)) dvdx , J0,∫
Ω

∫
R3

|v|2(F (t, x, v)− µ(v)) dvdx =

∫
Ω

∫
R3

|v|2(F0(x, v)− µ(v)) dvdx , E0,

for all t > 0, where

µ(v) =
1

(2π)
3
2

exp

(
−|v|

2

2

)
is the normalized global Maxwellian. As shown in [2], the entropy dissipation prop-
erty also holds:

d

dt

∫
Ω

∫
R3

(F lnF − µ lnµ)dvdx ≤ 0,

for all t > 0. For later use, as in [5], due to Proposition 2.1 we denote

E(F0) :=

∫
Ω

∫
R3

F0 lnF0 − µ lnµ dvdx+ [
3

2
ln(2π)− 1]M0 +

1

2
E0.

Note that one has E(F0) ≥ 0 for any F0(x, v) ≥ 0, cf. [5].

The main result of the paper is stated as follows.
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Theorem 1.1. Let w(v) = (1 + |v|)β with β > 7. Assume that F0(x, v) ≥ 0,
‖wF0‖L∞ < +∞, and

inf
t≥0,x∈Ω

∫
R3

F0(x− vt, v)dv ≥ C0, (1.4)

for a positive constant C0 > 0. There are constants ε0 > 0, C̃1 ≥ 1 and C̃2 ≥ 1 such
that if

E(F0) + sup
t≥t1,x∈Ω

e−
t

1−ν

∣∣∣ ∫
R3

(1, v, |v|2, v ⊗ v)[F0(x− vt, v)− µ(v)]dv
∣∣∣ ≤ ε0, (1.5)

with t1 := (C̃1‖wF0‖L∞)−1, then the Cauchy problem (1.1), (1.3) of the ES-BGK
model admits a unique global-in-time mild solution F (t, x, v) ≥ 0 such that

sup
t≥0
‖wF (t)‖L∞ ≤ C̃2,

where ε0, C̃1 and C̃2 depend only on ν, C0 and ‖wF0‖L∞.

It should be pointed out that the initial data under the assumptions of Theorem
1.1 are allowed to have large oscillations in the spatial variable. For example, one
may take

F0(x, v) = ρ0(x)µ(v),

with 0 < C−1 ≤ ρ0(x) ≤ C and ‖ρ0− 1‖L1
x
� 1. Then it is straightforward to check

that F0(x, v) satisfies all the conditions of Theorem 1.1. Indeed, first of all, it is easy
to observe that ‖wF0‖L∞ is finite, (1.4) is true and also it holds that

E(F0) ≤ ‖ρ0 ln ρ0 − ρ0 + 1‖L1
x

+ C‖ρ0 − 1‖L1
x
.

To estimate the second term on the left of (1.5), we divide into two cases as in [5].

Case Ω = R3: For each t ≥ t1 and x ∈ R3, one has∫
R3

(1 + |v|2)|F0(x− vt, v)− µ(v)| dv ≤ C

∫
R3

|ρ0(x− vt)− 1| dv

= Ct−3

∫
R3

|ρ0(y)− 1| dy ≤ Ct−3
1 ‖ρ0 − 1‖L1

x
.

Case Ω = T3: For each t ≥ t1 and x ∈ T3, it holds that∫
R3

(1 + |v|2)|F0(x− vt, v)− µ(v)| dv ≤
∫
R3

|ρ0(x− vt)− 1|(1 + |v|2)µ(v) dv

≤ C

∫
|v|≥N

(1 + |v|2)µ(v) dv +
C[1 + (Nt)3]

t3

∫
T3

|ρ0(y)− 1| dy,
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and hence∫
R3

(1 + |v|2)|F0(x− vt, v)− µ(v)| dv ≤ C(N) + C(t−3
1 +N3)‖ρ0 − 1‖L1

x
,

where C(N) tends to zero as N goes to infinity.

Recall that t1 > 0 depends only on the upper bound of ρ0. Therefore, with the
above estimates, one can see that the smallness assumption on (1.5) in Theorem 1.1
can be satisfied by requiring ‖ρ0 ln ρ0−ρ0 +1‖L1

x
+‖ρ0−1‖L1

x
to be small. Under this

situation, it is easy to see that initial data can be allowed to have large oscillations.
In fact, (1.5) should contain much more general initial data with large oscillations.

The rest of the paper is arranged as follows. We give some basic lemmas in Section
2, and then establish the local L∞ estimates and global L∞ estimates in Section 3
and Section 4, respectively. Thus Theorem 1.1 immediately follows by the same
argument as in [5].

Notations. Throughout this paper, C denotes a generic positive constant which may
vary from line to line. ‖ · ‖L2 denotes the standard L2(Ω × R3

v)-norm, and ‖ · ‖L∞
denotes the L∞(Ω× R3

v)-norm.

2. Preliminaries

We need some useful inequalities (cf. [11]) in the following lemma stating the lower
bounds of velocity-weighted L∞ norms of F (t, x, v).

Lemma 2.1. Let Nq(F ) = ‖(1 + |v|)qF (t, x, v)‖L∞x,v , then it holds that

ρ

T
3
2

≤ CN0(F ), (2.1)

ρ(T + |u|2)
q−3
2 ≤ CqNq(F ), q > 5 or 0 ≤ q < 3,

ρ|u|q

((T + |u|2)T )
3
2

≤ CqNq(F ), q > 1,

where C and Cq are constants independent of F .

The below lemma whose proof can be found in [12] gives the relation between the
temperature tensor Tν and the scalar temperature function T .

Lemma 2.2. Let −1/2 < ν < 1, and define

Cν1 , min{1− ν, 1 + 2ν}, and Cν2 , max{1− ν, 1 + 2ν}.
Then, if the density function ρ(t, x) > 0, it holds that

Cν1T (t, x) Id ≤ Tν ≤ Cν2T (t, x) Id.

It follows from Lemma 2.2 that one has



GLOBAL EXISTENCE FOR THE ES-BGK MODEL 5

Corollary 2.1. Assume 0 < T (t, x) <∞, then it holds that

C−1
ν2 T

−1(t, x) Id ≤ T −1
ν ≤ C−1

ν1 T
−1(t, x) Id,

and

C3
ν1T

3(t, x) ≤ det Tν ≤ C3
ν2T

3(t, x).

For the later proof, we also need the following proposition whose proof can be
found in [9] or [5].

Proposition 2.1. Let F (t, x, v) be the solution to (1.1) and (1.3), then it holds that∫
Ω

∫
R3

|F (t, x, v)− µ(v)|2

4µ(v)
I{|F (t,x,v)−µ(v)|≤µ(v)}dvdx

+

∫
Ω

∫
R3

1

4
|F (t, x, v)− µ(v)|I{|F (t,x,v)−µ(v)|≥µ(v)}dvdx

≤
∫

Ω

∫
R3

F0 lnF0 − µ lnµ dvdx+ [
3

2
ln(2π)− 1]M0 +

1

2
E0 = E(F0).

3. Local Estimates

The mild form of the ES-BGK model equation (1.1) can be written as

F (t, x, v) = F0(x− vt, v)e−
∫ t
0 Aν(τ,x−v(t−τ))dτ

+

∫ t

0

e−
∫ t
s Aν(τ,x−v(t−τ))dτAν(s, x− v(t− s))

×Mν(s, x− v(t− s), v)ds. (3.1)

Based on the mild formulation, one can obtain the a priori estimates on the velocity-
weighted L∞ norms of solutions in a short strictly positive time for initial data of
possibly large oscillations.

Lemma 3.1. Let w(v) = (1 + |v|)β with β > 5, and t1 , (4Cβ(ν)‖wF0‖L∞)−1 > 0,
then it holds that

‖wF (t)‖L∞ ≤ 2‖wF0‖L∞ ,

for all t ∈ [0, t1], where Cβ(ν) is an explicitly computable constant depending only
on β and ν.

Proof. It follows from (3.1) that

|w(v)F (t, x, v)| ≤ ‖w(v)F0(v)‖L∞

+

∫ t

0

Aν(s, x− v(t− s)) · w(v)Mν(s, x− v(t− s), v)ds. (3.2)
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In order to estimate the last integral term of (3.2), one first notices that

Aν(s, x− v(t− s)) =
1

1− ν
(ρT )(s, x− v(t− s))

≤ 1

3(1− ν)
(3ρT +

1

2
|u|2)(s, x− v(t− s))

≤ 1

3(1− ν)

∫
R3

|η|2F (s, x− v(t− s), η)dη

≤ Cβ(ν) sup
y,η

(1 + |η|)βF (s, y, η), (3.3)

due to β > 5, where Cβ(ν) which may vary from line to line is a generic constant
depending only on β and ν. Moreover, it follows from Lemma 2.1 and Corollary 2.1
that

Mν(s, y, v) ≤ C(ν)
ρ

T
3
2

exp

(
−|v − u|

2

C(ν)T

)
≤ C(ν)

ρ

T
3
2

≤ C(ν)‖F (s)‖L∞ , (3.4)

and

|v|βMν(s, y, v) ≤ Cβ|u|βMν(s, y, v) + Cβ|v − u|βMν(s, y, v)

≤ Cβ(ν)
ρ

T
3
2

|u|β + Cβ(ν)ρT
β−3
2

≤ Cβ(ν)‖(1 + |v|)βF (s)‖L∞ . (3.5)

Combining (3.4) and (3.5), one gets that

|w(v)Mν(s, y, v)| ≤ Cβ(ν)‖wF (s)‖L∞ . (3.6)

Then it follows from (3.3) and (3.6) that for y = x− v(t− s),∣∣∣Aν(s, y) · w(v)Mν(s, y, v)
∣∣∣ ≤ Cβ(ν)‖wF (s)‖2

L∞ . (3.7)

Substituting (3.7) into (3.2), one obtains that for all t ≥ 0,

‖wF (t)‖L∞ ≤ ‖wF0‖L∞ + Cβ(ν)

∫ t

0

‖wF (s)‖2
L∞ds.

Choosing t1 = (4Cβ(ν)‖wF0‖L∞)−1 > 0, it is straightforward to verify by the conti-
nuity argument that

sup
0≤t≤t1

‖wF (t)‖L∞ ≤ 2‖wF0‖L∞ .

Thus the proof of Lemma 3.1 is complete. �

As a consequence of Lemma 3.1, one can further obtain some bounds on the
macroscopic variables which will be used in the later proof.
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Lemma 3.2. Let w(v) = (1 + |v|)β with β > 5. Assume that there is C0 > 0 such
that F0(x, v) ≥ 0 satisfies ∫

R3

F0(x− vt, v)dv ≥ C0,

for all t ≥ 0 and x ∈ Ω. Then it holds that for all 0 ≤ t ≤ t1 and x ∈ Ω,

C−1
1 ≤ ρ(t, x), T (t, x) ≤ C1, and |u(t, x)| ≤ C1, (3.8)

where t1 > 0 is given in Lemma 3.1, and C1 ≥ 1 is an explicitly computable constant
depending only on C0, ν, β and ‖wF0‖L∞.

Proof. First notice by Lemma 3.1 that for 0 ≤ t ≤ t1 and x ∈ Ω,

ρ(t, x) =

∫
R3

F (t, x, v)dv ≤ C‖wF (t)‖L∞ ≤ C‖wF0‖L∞ , (3.9)

|(ρu)(t, x)| =
∣∣∣ ∫

R3

vF (t, x, v)dv
∣∣∣ ≤ C‖wF (t)‖L∞ ≤ C‖wF0‖L∞ , (3.10)

(ρ|u|2 + 3ρT )(t, x) =

∫
R3

|v|2F (t, x, v)dv ≤ C‖wF (t)‖L∞ ≤ C‖wF0‖L∞ , (3.11)

where β > 5 has been used. For the lower bound of density ρ(t, x), it follows from
(3.1) and (3.11) that

ρ(t, x) =

∫
R3

F (t, x, v)dv ≥
∫
R3

e−
∫ t
0 Aν(τ,x−v(t−τ))dτF0(x− vt, v)dv

≥ exp

(
−
∫ t

0

‖(ρT )(s)‖L∞
1− ν

ds

)∫
R3

F0(x− vt, v)dv

≥ C0 exp

(
−
∫ t

0

‖wF0‖L∞
C(1− ν)

ds

)
≥ C0 exp

(
−t1‖wF0‖L∞

C(1− ν)

)
= C0 exp

(
− 1

4CCβ(ν)(1− ν)

)
. (3.12)

Furthermore, it follows from (2.1) and (3.9), (3.10), (3.11), (3.12) that

T (t, x) + |u(t, x)| ≤ C‖wF0‖L∞C−1
0 exp

(
1

4CCβ(ν)(1− ν)

)
,

and

T (t, x) ≥
(

ρ(t, x)

C‖wF0‖L∞

) 2
3

≥
(

C0

C‖wF0‖L∞
exp

(
− 1

4CCβ(ν)(1− ν)

)) 2
3

.
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Therefore those estimates in (3.8) follow by defining

C1 , max
{
C‖wF0‖L∞ ,

( C0

C‖wF0‖L∞
exp

(
− 1

4CCβ(ν)(1− ν)

))− 2
3
,

C−1
0 exp

( 1

4CCβ(ν)(1− ν)

)
, C‖wF0‖L∞C−1

0 exp
( 1

4CCβ(ν)(1− ν)

)}
.

The proof of Lemma 3.2 is complete. �

4. Global Estimates

In this section, we consider the global-in-time estimates on the solution F (t, x, v)
to the Cauchy problem (1.1), (1.3) under the following a priori assumptions:

(2C1)−1 ≤ ρ(t, x), T (t, x) ≤ 2C1, and |u(t, x)| ≤ 2C1, (4.1)

for all t ≥ t1 and x ∈ Ω, where t1 > 0 and C1 > 0 are respectively given in Lemma
3.1 and Lemma 3.2. First of all, we have

Lemma 4.1. Let w(v) = (1 + |v|)β with β > 5. Under the assumption (4.1), it
holds that

‖wF (t)‖L∞ ≤ ‖wF0‖L∞ + C(ν)C
13
2

1 , (4.2)

for all t ≥ 0, where C(ν) > 0 is a constant depending only on ν.

Proof. It follows from (2.1), (3.4) and (4.1) that

|wF (t, x, v)| ≤ ‖wF0‖L∞ +

∫ t

0

e
− t−s

4C2
1(1−ν) 4C2

1

1− ν
Mν(s, x− v(t− s), v)ds

≤ ‖wF0‖L∞ + C(ν)

∫ t

0

4C2
1

1− ν
e
− t−s

4C2
1(1−ν) ρ

T
3
2

ds

≤ ‖wF0‖L∞ + C(ν)C
9
2
1

∫ t

0

1

1− ν
e
− t−s

4C2
1(1−ν)ds

≤ ‖wF0‖L∞ + C(ν)C
13
2

1 ,

which gives (4.2). The proof of Lemma 4.1 is complete. �

To close the a priori assumption (4.1), we need the following lemma whose proof
is based on the reformulated mild form by (3.1):

F (t, x, v)− µ = [F0(x− vt, v)− µ]e−
∫ t
0 Aν(τ,x−v(t−τ))dτ

+

∫ t

0

e−
∫ t
s Aν(τ,x−v(t−τ))dτAν(s, x− v(t− s))

×[Mν(s, x− v(t− s), v)− µ]ds. (4.3)
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Lemma 4.2. Let w(v) = (1 + |v|)β with β > 7. It holds that

sup
x∈Ω

∣∣∣ ∫
R3

(1, v, |v|2, v ⊗ v)[F (t, x, v)− µ(v)]dv
∣∣∣

≤ e−
t

1−ν sup
x∈Ω

∣∣∣ ∫
R3

(1, v, |v|2, v ⊗ v)[F0(x− vt, v)− µ(v)]dv
∣∣∣

+ C
{√
E(F0) + E(F0)

β−5
2β−7

}
, (4.4)

for all t ≥ 0, where C ≥ 1 is a constant depending only on C0, ν, β and ‖wF0‖L∞.

Proof. In fact, (4.3) gives∣∣∣ ∫
R3

[F (t, x, v)− µ(v)]dv
∣∣∣

≤
∣∣∣ ∫

R3

[F0(x− vt, v)− µ(v)] · exp
(
−
∫ t

0

Aν(τ, y)dτ
)
dv
∣∣∣

+

∫ t

0

e
− t−s

4C2
1(1−ν) 4C2

1

1− ν

∫
R3

(1 + |v|2)|Mν(F )(s, y, v)− µ(v)|dvds, (4.5)

with y := x− v(t− s). Notice that

[F0(x− vt, v)− µ(v)] · exp
(
−
∫ t

0

Aν(τ, y)dτ
)

= [F0(x− vt, v)− µ(v)] · exp
(
−
∫ t

0

1

1− ν
dτ
)

+ [F0(x− vt, v)− µ(v)] ·
{

exp
(
−
∫ t

0

Aν(τ, y)dτ
)
− exp

(
−
∫ t

0

1

1− ν
dτ
)}

.

This implies that∣∣∣ ∫
R3

[F0(x− vt, v)− µ(v)] · exp
(
−
∫ t

0

Aν(τ, y)dτ
)
dv
∣∣∣

≤ e−
t

1−ν

∣∣∣ ∫
R3

[F0(x− vt, v)− µ(v)]dv
∣∣∣

+
C

1− ν
e
− t

4C2
1(1−ν) (1 + ‖wF0‖L∞)

∫ t

0

∫
R3

w(v)−1|(ρT )(τ, y)− 1|dvdτ

≤ e−
t

1−ν

∣∣∣ ∫
R3

[F0(x− vt, v)− µ(v)]dv
∣∣∣

+
C

1− ν
e
− t

4C2
1(1−ν)

∫ t

0

∫
R3

w(v)−1

∣∣∣∣∫
R3

(1, η, |η|2)[F (s, y, η)− µ(η)]dη

∣∣∣∣ dvds. (4.6)
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It is direct to further compute

|Mν(s, y, v)− µ|

≤ C
(
|ρ(s, y)− 1|+ |u(s, y)|+ |Tν(s, y)− Id|

)
e−
|v|2
C

≤ C
(
|ρ(s, y)− 1|+ |(ρu)(s, y)|+ |ρTν(s, y)− Id|

)
e−
|v|2
C . (4.7)

Recall (1.2). One then can write

ρTν = (1− ν)ρTId+ νρΘ

=
1− ν

3

∫
R3

|η − u|2[F (s, y, η)− µ]dη

+ ν

∫
R3

(η − u)⊗ (η − u)[F (s, y, η)− µ]dη

+
1− ν

3

∫
R3

|η − u|2µdη + ν

∫
R3

(η − u)⊗ (η − u)µdη

=
1− ν

3

∫
R3

|η − u|2[F (s, y, η)− µ]dη

+ ν

∫
R3

(η − u)⊗ (η − u)[F (s, y, η)− µ]dη

+ Id+
1− ν

3
|u|2Id+ νu⊗ u, (4.8)

where we have denoted u = u(s, y) on the right. Using (4.8), it follows from (4.7)
that

|Mν(F )(s, y, v)− µ| ≤ C
(
|ρ(s, y)− 1|+ |(ρu)(s, y)|

)
· e−

|v|2
C

+ Ce−
|v|2
C

∣∣∣ ∫
R3

(1, η, |η|2, η ⊗ η){F (s, y, η)− µ}dη
∣∣∣

≤ Ce−
|v|2
C

∣∣∣ ∫
R3

(1, η, |η|2, η ⊗ η)[F (s, y, η)− µ]dη
∣∣∣,

which together with (4.5) and (4.6), yield that∣∣∣ ∫
R3

[F (t, x, v)− µ(v)]dv
∣∣∣

≤ C

∫ t

0

e
− t−s

4C2
1(1−ν) 4C2

1

1− ν

∫
R3

w(v)−1

∣∣∣∣∫
R3

(1, η, |η|2, η ⊗ η)[F (s, y, η)− µ(η)]dη

∣∣∣∣ dvdτ
+ e−

t
1−ν

∣∣∣ ∫
R3

[F0(x− vt, v)− µ(v)]dv
∣∣∣.
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By similar arguments as above, one can obtain that∣∣∣ ∫
R3

(1, v, |v|2, v ⊗ v)[F (t, x, v)− µ(v)]dv
∣∣∣

≤
∫ t

0

Ce
− t−s

4C2
1(1−ν) 4C2

1

1− ν

∫
R3

w(v)−1|v|2
∣∣∣∣∫

R3

(1, η, |η|2, η ⊗ η)[F (s, y, η)− µ]dη

∣∣∣∣ dvdτ
+ e−

t
1−ν

∣∣∣ ∫
R3

(1, v, |v|2, v ⊗ v)[F0(x− vt, v)− µ(v)]dv
∣∣∣

=: e−
t

1−ν

∣∣∣ ∫
R3

(1, v, |v|2, v ⊗ v)[F0(x− vt, v)− µ(v)]dv
∣∣∣

+

∫ t

t−λ
(· · · )dτ +

∫ t−λ

0

(· · · )dτ, (4.9)

where λ > 0 is a small constant to be chosen later. It remains to estimate the second
and third terms on the right of (4.9). For the second term, we have∫ t

t−λ
(· · · )ds ≤ Cλ sup

y∈R3,t−λ≤s≤t

∣∣∣∣∫
R3

(1, η, |η|2, η ⊗ η)[F (s, y, η)− µ]dη

∣∣∣∣ . (4.10)

Now we estimate the third term on the right of (4.9). For the case Ω = R3, we
divide the integral into two parts:∫

R3

w(v)−1|v|2
∣∣∣∣∫

R3

(1, η, |η|2, η ⊗ η)[F (s, y, η)− µ]dη

∣∣∣∣ dv
≤
∫
R3

∫
R3

(1 + |v|)−β+2(1 + |η|2)|[F (s, y, η)− µ]| · I{|F (s,y,v)−µ|≤µ}dηdv

+

∫
R3

∫
R3

(1 + |v|)−β+2(1 + |η|2)|[F (s, y, η)− µ]| · I{|F (s,y,v)−µ|≥µ}dηdv

=: J1 + J2. (4.11)

For terms on the right of (4.11), we have, for β > 7, that

J1 ≤ C
(∫

R3

∫
R3

(1 + |v|)−2β+4e−
1
2
|η|2(1 + |η|2)2dηdv

) 1
2

×
(∫

R3

∫
R3

|[F (s, y, η)− µ]|2

µ(η)
I{|F (s,y,v)−µ|≤µ}dηdv

) 1
2

≤ C
(∫

R3

∫
R3

|[F (s, y, η)− µ]|2

µ(η)
I{|F (s,y,v)−µ|≤µ}dηdv

) 1
2

≤ C

(t− s) 3
2

(∫
R3

∫
R3

|[F (s, y, η)− µ]|2

µ(η)
I{|F (s,y,v)−µ|≤µ}dηdy

) 1
2

≤ C

(t− s) 3
2

√
E(F0), (4.12)
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and

J2 ≤ C
(∫

R3

∫
R3

(1 + |v|)−2β+4(1 + |η|)4−β[1 + ‖w(η)F (s, y, η)‖L∞ ]dηdv
) 1

2

×
(∫

R3

∫
R3

|[F (s, y, η)− µ]|I{|F (s,y,v)−µ|≥µ}dηdv
) 1

2

≤ C[1 + ‖wF (s)‖L∞ ]
1
2

(∫
R3

∫
R3

|[F (s, y, η)− µ]|I{|F (s,y,v)−µ|≥µ}dηdv
) 1

2

≤ C

(t− s) 3
2

[1 + ‖wF (s)‖L∞ ]
1
2

(∫
R3

∫
R3

|[F (s, y, η)− µ]|I{|F (s,y,v)−µ|≥µ}dηdy
) 1

2

≤ C

(t− s) 3
2

[1 + ‖wF (s)‖
1
2
L∞ ]
√
E(F0) ≤ C

(t− s) 3
2

√
E(F0), (4.13)

where we have made a change of variable v → y = x − v(t − s) and used (4.2),
Proposition 2.1 in (4.12) and (4.13). Thus, it follows from (4.11)-(4.13), for Ω = R3,
that∫

R3

w(v)−1|v|2
∣∣∣∣∫

R3

(1, η, |η|2, η ⊗ η)[F (s, y, η)− µ]dη

∣∣∣∣ dv ≤ C
√
E(F0)

(t− s) 3
2

. (4.14)

For the case Ω = T3, we divide the integral into three parts:∫
R3

w(v)−1|v|2
∣∣∣∣∫

R3

(1, η, |η|2, η ⊗ η)[F (s, x− v(t− s), η)− µ(η)]dη

∣∣∣∣ dv
≤
∫
|v|≥N

∫
R3

(1 + |v|)−β+2(1 + |η|2)|[F (s, y, η)− µ]|dηdv

+

∫
|v|≤N

∫
R3

(1 + |v|)−β+2(1 + |η|2)|[F (s, y, η)− µ]| · I{|F (s,y,v)−µ|≤µ}dηdv

+

∫
|v|≤N

∫
R3

(1 + |v|)−β+2(1 + |η|2)|[F (s, y, η)− µ]| · I{|F (s,y,v)−µ|≥µ}dηdv

=: J3 + J4 + J5, (4.15)

where N > 0 is a large number to be chosen later. For terms on the right of (4.15),
one obtains that

J3 ≤
∫
|v|≥N

∫
R3

(1 + |v|)−β+2(1 + |η|)−β+2(1 + ‖w(η)F (s, y, η)‖L∞)dηdv

≤ C sup
0≤s≤t

(1 + ‖w(η)F (s, y, η)‖L∞)

∫
|v|≥N

(1 + |v|)−β+2dv

≤ C

∫
|v|≥N

(1 + |v|)−β+2dv ≤ CN−β+5, (4.16)
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J4 ≤ C
(∫
|v|≤N

∫
R3

|[F (s, y, η)− µ]|2

µ(η)
I{|F (s,y,v)−µ|≤µ}dηdv

) 1
2

≤ CN
3
2

(∫
T3

∫
R3

|[F (s, y, η)− µ]|2

µ(η)
I{|F (s,y,v)−µ|≤µ}dηdy

) 1
2

≤ CN
3
2

√
E(F0), (4.17)

and

J5 ≤ C[1 + ‖wF (s)‖L∞ ]
1
2

(∫
|v|≤N

∫
R3

|[F (s, y, η)− µ]|I{|F (s,y,v)−µ|≥µ}dηdv
) 1

2

≤ CN
3
2

(∫
T3

∫
R3

|[F (s, y, η)− µ]|I{|F (s,y,v)−µ|≥µ}dηdy
) 1

2

≤ CN
3
2

√
E(F0), (4.18)

where once again we have made a change of variable v → y = x − v(t − s) and

used (4.2), Proposition 2.1 in (4.17) and (4.18). Choosing N−β+5 = N
3
2

√
E(F0) and

combining (4.15) together with (4.16)-(4.18), one obtains that for Ω = T3,∫
R3

w(v)−1|v|2
∣∣∣∣∫

R3

(1, η, |η|2, η ⊗ η)[F (s, y, η)− µ(η)]dη

∣∣∣∣ dv ≤ CE(F0)
β−5
2β−7 . (4.19)

Now, substituting (4.10), (4.14) and (4.19) into (4.9), one has∣∣∣ ∫
R3

(1, v, |v|2, v ⊗ v)[F (t, x, v)− µ(v)]dv
∣∣∣

≤ e−
t

1−ν

∣∣∣ ∫
R3

(1, v, |v|2, v ⊗ v)[F0(x− vt, v)− µ(v)]dv
∣∣∣

+ Cλ sup
y∈R3,t−λ≤s≤t

∣∣∣∣∫
R3

(1, η, |η|2, η ⊗ η)[F (s, y, η)− µ]dη

∣∣∣∣ (4.20)

+ Cλ−
3
2

√
E(F0) + CE(F0)

β−5
2β−7 .

Choosing λ > 0 suitably small such that Cλ ≤ 1
2
, then the desired estimate (4.4)

follows from (4.20). Therefore, we complete the proof of Lemma 4.2. �

Corollary 4.1. There is a constant ε0 > 0 such that if

E(F0) + sup
t≥t1,x∈Ω

e−
t

1−ν

∣∣∣ ∫
R3

(1, v, |v|2, v ⊗ v)[F0(x− vt, v)− µ(v)]dv
∣∣∣ ≤ ε0,

then it holds that

C−1
1 ≤ ρ(t, x), T (t, x) ≤ C1, and |u(t, x)| ≤ C1,

for all t ≥ t1 and x ∈ Ω.
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Proof of Theorem 1.1. It follows immediately from Lemma 3.1, Lemma 3.2,
Lemma 4.1, Lemma 4.2 and Corollary 4.1; see also [5]. �

In the end of the paper, we give a remark on the stability of solutions. For sim-
plicity, we consider the only torus case Ω = T3 and (M0, J0, E0) = (0, 0, 0), namely
initial data have the same fluid quantities as the normalized global Maxwellian µ.
As in [4], due to the Csiszár-Kullback inequality, it is direct to verify that for all
t > 0,

‖F (t)− µ‖L1
x,v
≤
√

2H(F (t)|µ) ≤
√

2H(F0|µ) =
√

2E(F0) ≤
√

2ε0,

where H(·|·) is the relative entropy defined by

H(F |G) =

∫
R3

∫
T3

F log
F

G
dxdv.

Therefore, the solution is stable uniformly in time in the sense of L1
x,v under the

assumptions of Theorem 1.1. Moreover, it would be also interesting to further study
the large-time behavior of solutions obtained in Theorem 1.1. However, as the global-
in-time existence is proved in the non-perturbation framework, it seems impossible
to make use of the same idea as in [5] (also cf. [13]) to justify that the difference
F (t, x, v)− µ without adding the extra velocity weight µ−1/2 should approach zero
in some sense as time goes to infinity. As one of possibilities, we will see if or not
the method developed in [8] could be adapted to treat this problem in the future.
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