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1. Introduction

The relativistic Boltzmann equation, which is a fundamental model describing the
motion of fast moving particles in kinetic theory, takes the form of

P®dxF = —C(F,F). (1.1)

Here ® represents the Lorentz inner product (+ — ——) of 4-vector. As is customary we
write X = (xg,2) with 2 € T3 and 29 = —t, and P = (pp, p) with momentum p € R?
and energy py = +/c? + |p|?, where ¢ denotes the speed of light. For convenience of
presentation, we rewrite (1.1) supplemented with initial data as

6tF+ﬁ v:cF = Q(Fa F)7 F(Oa$7p) = FO(I7p)a (12)

with Q(F,F) = C(F, F)/po, where the unknown F = F(t, z,p) stands for the density
distribution function of time ¢ > 0, space & € T® and momentum p € R3. Here the dot
represents the standard Fuclidean dot product, and the normalized velocity of a particle
is denoted as

. P P

p:c—_i.
P It PP/

It is known that the constant equilibrium state of (1.1) is the global relativistic
Maxwellian, also called the Jiitter solution, in the form of

__exp{—cpo/(kpT)}
JTp) = 47rckBTK§ (2/(kpT)’

where Ky(2) : fl e (t? — )3/2dt is the Bessel function, T is temperature and
kp is the Boltzmann s constant. For notational simplicity we normalize all the physical

constants to be one. Then the normalized global relativistic Maxwellian takes the form
of

Jo)=S—, po=ItIP (1.3)
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Moreover, to describe the relativistic Boltzmann collision term, we introduce the relative

momentum g as

9=29(p.q) =\2(pogo —p-q— 1), (1.4)

and also the quantity s as

s=s(p,q) =g°+4=2(pogo —p-q+1). (1.5)

The M¢ller velocity is given by

2 2
vy = v4(p, q \/‘po—qo |12 L :M. (1.6)

Po 4o Poqo
Then we may express the collision operator Q(F,G) in the form (see [7,12,14])
QF.G) = [ [veola. 0P WG - Fp)Glo) dades (17)
R3 §2

where dw is the surface measure on the unit sphere S? in R3, and o(g, 6) is the scattering
kernel. As is standard, we abbreviate F'(¢, z, p) by F(p), etc., and use primes to represent
the results of collisions. The conservation of momentum and energy is

Y+d=p+q (1.8)
VIHIPRE+ I+ =1+ +V1+]q (1.9)

for any p,q € R3. Finally, the scattering angle # is defined as follows. Given 4-vectors
P = (po,p) and Q = (qo, q), with the Lorentz inner product, the angle 6 is given by

(P-Q el -Q)
(P-Q@(P-Q)

Here o = /1+]¢|? and ¢f = /1+|¢'|>. As in [28], by (1.8) and (1.9), the post-

collisional momentum can be written:

cos =

p+q pP+q)w
P==—F+3 (w+(9—1)(p+q)%),
22 (|p+31| (1.10)
r_Ptgq 9( P+q “JJ)
el wt (- D(p+g) ),
¢ =55 (e=1)p+4q) e
where ¢ = (po + qo)/+/s. The energies are then
; _DPo+qo g
Py = 9 + 2\/5(“] (p+q)7
Po + qo g
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For a smooth function F(p) the collision operator satisfies

Po

1
/ <p> Q(F,F)(p)dp = 0.
R3

With this identity in hand, by integrating the relativistic Boltzmann equation (1.2), we
obtain the conservation of mass, momentum and energy for solutions as

d 1
E// p | F(t,x,p)dpdx = 0.
15 gs PO

We define the standard perturbation f(¢,x,p) to the relativistic Maxwellian (1.3) as
F = J ++/Jf. The Cauchy problem on the relativistic Boltzmann equation (1.2) for

f(t,x,p) is given by
atf+ﬁvxf+Lf:F(faf)7 f(0>x’p>:f0(xap)' (1'11)

Here the standard linearized collision operator L is (see [7,12])

1 1
Lf=—-——70(J,VJf)— — Jf,J) = - Kf.
f==5QUVIN = ZQWVIfI) = vip)f - Kf
Above the multiplication operator takes the form
v(p) ://%U(g,@)J(q) dqdw. (1.12)
R3 S2

Notice that K = Ky — K7 is given by [7,12]:

Kf = / / 050 (9. 0N/ T(@) T () (q) dade,

and
Kaf = [ [ voota. OVTDVT@) 1)+ VIWIH)) dad
R3 S2
The nonlinear collision operator I'(f1, f2) is defined by

P (fi, o) = %Q(ﬁfm/jfz): [ [ vaota. OVT@AG) () ~ 510)2la)] dade
R3 S2

(1.13)
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We now state the conditions on the collisional cross-section as in [7,28]:

Hypothesis on the collision kernel: For soft potentials we assume the collision kernel
o(g,0) in (1.7) satisfies the following growth/decay estimates:

01(%)94’00(9) < 0(g,0) < cag~loo(h). (1.14)

We consider b € (0,2) and angular factors 0 < gg(f) < C'sin”  with v > 0. Additionally
00(#) should be non-zero on a set of positive measure.

This hypothesis for soft potentials contains the general physical assumption on the
kernel which was introduced in [7] (and we add the corresponding necessary lower bounds
as in [28], where 0 < b < min{4,4 + v} is supposed). Due to some technical reason, we
impose that the collision kernel satisfies the above assumptions, particularly 0 < b < 2
for consideration of soft potentials.

It is well known that the linearized collision operator L is non-negative and self-adjoint.
And for fixed (¢, z), the null space of L is given by

N:span{\/j,plx/j,pgx/j,pgx/j,pox/j}. (1.15)

Define P as the orthogonal projection in LZ(Rg) to the null space A" and N+ denotes the
orthogonal complement of the null space N. Any function f(¢,z,p) can be decomposed
into

ft,z,p) =Pf(t,z,p) + (L-P)f(t,z,p),
where (¢, ) is taken as a parameter. According to the basis in (1.15), it holds that

3
Pf(t,z,p) = {a’ (t,x) + Y _bl(t,x)p; + ! (t,2)po} V'],

J=1

To present the results in this paper, the following notations are needed. Let a =
(1, a2, 3] and 0% = 031092093 If each component of a is not greater than the corre-
sponding one of @, we use the standard notation & < @. And a < @ means that o <@
and |a| < [@]. C% is the usual binomial coefficient. In addition, (-, ) is used to denote the
standard L? inner product in R?, and (-,-) for the one in R3 x R3. | - [ denotes the L?
norm in R3, and || - || denotes the L? norms in R or R? x R3 without any ambiguity in
the following discussion. And C denotes a generic positive constant which may vary from
line to line. The notation A ~ B means that there exist two generic positive constants
C1 < Cy such that C1B < A< OyB.

Define a weight function in p by

W
w=w(l,9)(p) = p§ exp (Tpg>.
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Here [ € R, 7 > 0 and ¥ € [0, 1]. Denote the L? norms as

|m:/u@ﬁm WW:/me
R3 T3

and the weighted L? norms as

l27’l9 dx.

o= [=COlWE b, o= [ 11
R3 T3
Define the weighted dissipation norm as

o= [ @O o, 1200 = [ 17810 d
R3

We also work with the L norms

[floo = esssup [f(p)], [|fllc = esssup |f(z,p)l,
pER3 €T3 peR3

|floo1,9 = esssup |@(l,9)f(P)|, || flloo0 = esssup |w(l,9)f(x,p)l
pER3 €T3, peR3

If some index is zero, we drop the index, for example, || fl,.1.0 = || f]lv if ¥ =0 and the
same for the other norms.

Corresponding to the linearized operator L, it is shown in [28] or Remark 2.2 that
there exists a constant § > 0 such that

(Lf, ) = 8l(T=P)f[3. (1.16)

For any nonnegative integer N, we define the following instant functionals as

Enia(N)E) = D 10 FOllcorss Exao(HE) ~ Y 0% FD)]F - (1.17)

lal=N |la|=N

Correspondingly, the energy dissipation functional Dy ¢(f)(t) satisfies

Do (1)) ~ Y 0% F@)II1.0- (1.18)

lo|=N

We will also write Eo1.0(f) () = E9(f)(t), Enio(f)(t) = Eni(f)(t) and also for the
other functionals.

By assuming that initially Fy(z,p) has the same mass, momentum and total energy
as the relativistic Maxwellian J(p), then for any ¢ > 0,
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1

// (p) VJ(p)f(t, z,p)dpdx = 0. (1.19)
T3 gs \PO

We are now ready to state the main results of the paper. The first one concerns the expo-

nential rate of convergence in terms of the L? energy functional & (f)(t) for global-in-time

solutions which exist in L perturbation framework as proved in [28].

Theorem 1.1. Let I > 0, lp > 3/b, ¥ € [0,1] and 7 > 0. If 9 = 1, restrict 7 > 0

small enough. Choose initial data Fo(x,p) = J(p)++/J(p) fo(x,p) > 0 such that fo(x,p)

satisfies (1.19) and is continuous in T® x R3. There ewists an instant L> functional

Eriio0(f)(t) such that if €y, 9(fo) is sufficiently small, there exists a unique global

solution f(t,z,p) to the relativistic Boltzmann equation (1.11) with F(t,x,p) = J(p) +
J(p)f(t,x,p) >0 and

sup  €1414,0(f)(t) < C€i1y,0(fo0)-

0<t<oc0

Moreover, there exist instant L? functionals £.9(f)(t) and Dyy(f)(t) as (1.17) and (1.18)
such that

%fw(f)(t) +Dro(f)(t) <0,

for all t > 0. In particular, if ¥ > 0 and 8 = ﬁfk , there exists a constant \g > 0 such
2
that for allt > 0,

E(f)() < Ce™ &y (fo). (1.20)

The second result is further related to the exponential rate of convergence in terms of
the higher order L? energy functional £y ;(f)(¢) under the additional assumption that
the momentum-weighted L°° norms of the higher order spatial derivatives of the initial
data are bounded, not necessarily small.

Theorem 1.2. Let all assumptions of Theorem 1.1 hold true. Suppose further that
ENitiy,0(fo) < Cn for some N € {1,2,...}, where Cn is finite, not necessarily small.
Then there exists a constant C'y > 0 such that

sup € i41,.0(f)(t) < Cly.
0<t<o0o

Moreover, there exist instant L? functionals En9(f)(t) and Do (f)(t) as in (1.17)
and (1.18) such that

SEN L) + Dxsa(H))
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<C Y G (HE) + €210 0 (O YDN—mao (£)(D),

0<m<[¥]

for allt > 0. In particular, if 9 > 0 and p =
An > 0 such that for all t >0,

+ , there exist constants Cy; > 0 and

MIU‘

Ena(f)(t) < Cle ",

In the spatially homogeneous setting, namely when F = F(t,p), the equation (1.2)
simplifies into the following form

Correspondingly the linearized equation (1.14) simplifies into the following equation

Wf+Lf=T(f 1), f(0,p) = fo(p). (1.22)

As before, we define the following instant functionals as

Co(N)E) = 1f)loons  Ero(N)E) ~ [FB)]F, (1.23)

and the energy dissipation functional Dy ;4 (f)(t) satisfies

Duo(f)(t) ~ [FO10- (1.24)

By the similar arguments as for showing Theorem 1.1, we have the following conver-
gence rate result for the spatially homogeneous equation (1.21).

Corollary 1.3. Let [ > 0, Iy > 3/b, 19 € [0 1] and T > 0. If9 =1, restrict 7 > 0
small enough. Choose initial data Fo(p p) ++/J(p)fo(p) > 0 such that fo(p) € N+
and is continuous in R3. There ea?zsts an mstant L functwnal &0 (f)(t) such that
if €11,.0(fo) is sufficiently small, there exists a um’que global solution f(t,p) to the
relativistic Boltzmann equation (1.22) with F(t,p) )+ v/ J(p)f(t,p) >0 and

sup  €p410,0(f)(t) < C€ip0(fo)-

0<t<o0

Moreover, there exists an instant L? functional &;.5(f)(t) as in (1.23) such that if 9 > 0
and 8 = b , then it holds that

El()t) < Ce_kotﬁgl,ﬁ(fo),

for allt > 0, where A\g > 0 is a constant.
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In what follows we would mention some mathematical results related to the topic
of the paper. A brief history of relativistic kinetic theory (cf. [4,14]) was given in [28];
interested readers may refer to that paper and references therein. Here, as far as the
relativistic Boltzmann equation is concerned, we only recall the local-in-time solution [1],
solutions and hydrodynamics for the linearized equation [7,6], large-data solutions [8,24]
by DiPerna-Lions’ renormalized theory [5], small-data solutions near vacuum [11,27],
asymptotic stability of the relativistic Maxwellian for hard potentials [12,13,21,23,36,37]
and for soft potentials [28,32], and stability of solutions with respect to initial data [20,
18,19].

One of motivations in the paper is due to the work [28] mentioned above, where
the unique global-in-time small-amplitude mild solution in the momentum weighted L>°
framework (cf. [16]) was constructed for the relativistic Boltzmann equation (1.11) with
soft potentials, and the polynomial rate of convergence towards the steady state was also
obtained. However, the exponential time-decay rate of global solutions has remained un-
known, even in the spatially homogeneous setting. On the other hand, for the classical
Boltzmann equation with soft potentials, the existence and large-time behavior of so-
lutions near Maxwellians were studied either in the whole space [22,26,29,33] or in the
torus [2,3,15,30,31]. Particularly, for the torus case, any smooth perturbation approaches
zero at the rate of exp(—\t?) for some A > 0and 0 < 3 < 1.

From those results on the large-time behavior of solutions to the Boltzmann equa-
tion in the torus for soft potentials mentioned before, one may see that the polynomial
time-decay rate obtained by [28] for the relativistic case could be improved to be ex-
ponential by using similar techniques as in [2,3,31] for the classical case. Note that the
method in [2,3] can not be directly used to treat the case of very soft potentials. More-
over, as for the approach in [31], one may need to make a crucial use of the momentum
derivatives and Sobolev imbedding in order to control singularity of the collision kernel.
However, as pointed out in [28,17], in the relativistic case, high derivatives of the post-
collisional variables (1.10) create additional high singularities which are hard to control.
Also, derivatives of the post-collisional momentum exhibit enough momentum growth
to make the method of [31] fail to be used. To overcome these difficulties, the main idea
of [28] is to adapt the similar method from [16] in terms of the weighted L? N L esti-
mates. As only the polynomial momentum weight functions are involved, the time-decay
rates are only polynomial.

In the present work, for the Cauchy problem (1.11) on the relativistic Boltzmann
equation for soft potentials in the torus, we try to first obtain the global existence of
solutions in the setting of L7°, with exponential weight functions of p. The method of
the proof is a little different from those used in [2,3,31,28]. We shall directly work on the

nonlinear equation in the space with the exponential weight function. Under the a priori
o
function of the relativistic equation with soft potentials and the property of the torus to

assumption on the solution in the weighted L2° space, we first use the compensation

get Li,p estimates with the exponential weight function of p for the nonlinear equation.
Then, as in [16] (also cf. [35]), we use the iterations of the solution for the nonlinear
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equation so as to close the a priori assumption in L*> space. Note that we would not

[ee]
z,p

completeness, we also give the proof of the local existence by the usual method and use

devote ourselves to getting the time-decay rate in the space LS as done in [28]. For
the standard continuity argument to show the global-in-time existence. Once we obtain
the global existence in the exponential p-weighted L*° framework, we are able to adopt
the method of [2,3,31] to obtain the exponential time-decay rate for soft potentials in L?
framework. Lastly we study the propagation of spatial regularity of the global solution
under the assumption on the derivatives of the initial data being bounded, not necessarily
small. And, we can also obtain the exponential time-decay rate of the derivatives of
solutions as in [34], where the authors considered the similar problem of the classical
Boltzmann equation for hard potentials.

The rest of the paper is organized as follows. In Section 2 we establish some basic
estimates on linear and nonlinear terms. Then we obtain weighted L? estimates and
L™ estimates on the nonlinear equation in Section 3 and Section 4, respectively. In
Section 5, we first prove the local existence of solutions for the nonlinear equation and
further obtain the global existence through uniform a priori estimates. Moreover, we
prove the exponential time decay rate. Finally, in Section 6 we prove the propagation of
the space regularity of the global solution and the exponential time decay of higher-order
energy functionals.

2. Basic estimates

In this section, we will prove some basic estimates used to obtain global existence of
solutions with an exponential weight in momentum p. We first start from the linearized
operator K. We know from [7,12,28] that Kf = Ksf — K1 f, where K; and Ky are
integral operators defined by

mﬂm:/mm®ﬂ®@,i:LZ

R3

with the symmetric kernels

h@ﬂ%j/%dm®¢ﬂ®ﬂmwh (2.1)

S2
_ O [ —1/y? 1 9 y(l VY 1) ;
kalp,a) = /e v U(sin(1/)/2)’w) T LGy)dy.  (2:2)
0

Here C' > 0 is a generic constant, the modified Bessel function of index zero is defined
by
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2
1
by = & e,
0

and we are also using the simplified notation

¥ V2g

sin — =

20 [P (P OV Y

and in addition

j_ Pot . lpxql
== J

2 0 T g
Next we will deduce some basic estimates on the operator kernels k1 (p, ¢) and k2 (p, q),
for instance (2.7) and (2.18). Some techniques in the proof are from [12,28]. We first
consider the simple kernel k1 (p, q). By [12,28], we recall the following estimates:
[lp x aI* + Ip — al*]"/?

v/Poqo

With (1.4), (1.5) and the M¢ller velocity (1.6), we have

<g<Ip—ql, and g<2ypogo. (2.3)

s=4+g¢* < Cpoqo, vy = M <C. (2.4)
Poqo

For b € (0, 1], it follows from (2.3) and (2.4) that

~ 5 . NI _ _
JVERRE < C%(ﬁo%)(l 0)/2 < C(pogo) 2. (2.5)

For b € (1,2), similarly we have that

b s Jt<c Vs (pogo) /2 < C(poqo)(bd)/2

v = < < 2.6
9 pow -t = o 20
It follows from (1.14), (2.1), (2.5) and (2.6) that

b-2)/2y . .

k1(p,q) < C((pOQO)_b/2 + %)6_70_70~ (2.7)
lp—dl

By using (1.12), (2.5) and (2.6), we can obtain that for any a > 0,

Va(p) = //v¢o(g, 0)J*(q)dgdw ~ po_b/2 ~ v(p). (2.8)

R3 §2
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By symmetry the same estimate holds if the roles of p and q are reversed. The full proof
of this estimate above was given in [28, Lemma 3.1].

Next we consider the estimates of the operator kernel ks (p, ¢). We recall the following
estimates in [12,28]:

Cl < 51n(1/J/2) < Cg

2.9
Vs(L+yHVt = g T gy 29)
and
Y
By the assumption (1.14), one has that
g sin(y/2)\® —b bt
O’(,i,w) < C’(—) sin” ¢ < Cg~"sin”"7(/2) cos™ (¢ /2).
e : (4/2) cos” (1/2)
Since v > 0 and b € (0,2), we have from (2.9) and (2.10) that
g~ sin”(/2) cos™ (1/2) < g7 (1 +y?) TV
Thus we can deduce from (2.2) and the above estimate that
ka(p, q) < 0873/2 ooe—l\/y2+1 Io(jy) (1 + 2)—(b+7)/4d (2.11)
2(p) < J yIo(jy y Y. :
To estimate the right hand side of (2.11), we define
(o)
Ka(i,j) = / e VY I (jy) (1 + ) dy.
0
Then for « € [—2,2], it is known from [12,28] that
Ko(i,j) < Clite/2e=clp=al, (2.12)

We also define
1
Is(l,j) = /e’lvy2+1y1’ﬁ1’o(jy)dy-
0

Then for 3 € [0,2), we have

I5(l,j) < Ce=eVP=7* < Ceclp=al/2, (2.13)



R. Duan, H. Yu / Advances in Mathematics 312 (2017) 315-373 327
By using (2.11), (2.12) and (2.13), for ¢ = min{2,b + 7}, we can obtain

033/2 B —elp—
ka(p, q) < m(l’o+%)l ¢/2g=clp=al/2, (2.14)

As in [28], we can show that
(po + go)e™ P~ 7® < C(pogo) /. (2.15)

We give the proof of (2.15) for completeness. If @ < |q| < 2|p|, this inequality is obvious.

It % > |q|, then |p —¢| > % and

(po + go)e~1P=41/8 < Cpgeelrl/16 < ¢

lg

If |q| > 2|p|, then |p —q| > 5 and

(Po + qo)e™ P~ U/8 < Cgoe=el9/10 < C.

Thus (2.15) holds. Noting that b € (0,2),v > 0 and ¢ = min{2, b++~}, one has from (2.15)
that

1-¢/2 —b/2
M6_0|P—q\/8 < (pO + q0> (pO + qo)e—c\p—q|/8
Poqo Poqo
< C(pogo) ™" (po + a0) ">, (2.16)

Noticing that s =4 + g% <4+ |p — ¢|? from (2.3) and (2.4), we can obtain
§3/2eclp=al/8 < ¢, (2.17)
By using (2.3), (2.14), (2.16) and (2.17) we can obtain

c _ b2 el
ka2(p,q) < ﬁ(po%) 2(po + qo) P/ 2eclp—al/4

C(PoQo)b/2
~ lp x ql? + [p — ¢[?]0+0)/2

(po + qo)~/2eclP—al/4, (2.18)

We remark that the estimates (2.7) and (2.18) of the operator K have the singularity
near p = q. As the classical version [15], a cutoff function (2.19) is introduced to get rid
of such a singularity.

Given a small € > 0, choose a smooth cut-off function x = x(r) € [0, 1] satisfying

x(r)=1, forr>2¢ x(r)=0, forr<e. (2.19)

We define by KX = KY — K{ and
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KXf(p) / KX (p,0) f(g)dg = / (o= dkip, ) fla)dg, i=1,2.  (2:20)

We also use the splitting K'=X = K — KX,
In what follows we deduce the main estimates of the operator K, which will be used
for the nonlinear L? energy analysis.

Lemma 2.1. Let 1 > 0, ¢ € [0,1] and 7 > 0. If ¥ = 1, restrict 7 > 0 small enough. For
any small n > 0, the operator K can be split into

K:KC+KS7

where K, is a compact operator in L?. In particular for some large constant R > 0, we
have

[(@®(1,0) Kchay ha)| < Cyll<rhala|1<rholo. (2.21)
Here 1<g is the indicator function of the ball of radius R. Furthermore,
(?(1,9)Ksh1, ha)| < Cn|hilvi0|halv- (2.22)

Proof. Since K = Ky — K7, K. and K are to be constructed separately for both K3
and K5 so that K. = K. — K1, and Ky = Ky; — K14 accordingly. We define

Kachi(p) :/1|p|+|q|§Rk§(p7 q)h1(q)dg.
R3

By using (2.18) and (2.19) we can obtain

@2 (1,9)(P)L1p)4 g <rkY (0, @) < Cree 1P 211 1<p.

The Hilbert—Schmidt theorem clearly shows that Ks. is a compact operator in L2, for
any given € > 0 and R > 0.
It follows from the above estimate and the Holder’s inequality that

@0 Kahntn)| < { [ dadom? 000 Lpsiaerk 0@}

R3 xR3

1/2
[ dadv= )<k 0,0 20
R3 xR3
< Cgr|l<ghi|2|1<rhzls.

We also define
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chhl(p) = /1\p\+|q|§Rki<(pv Q)hl(Q)dq
R3

By using (2.20) and (2.7) we can obtain

(1, 0)(P)Lpi 411 <rkY (9, 0) < Croee PO~ 01, 11y <.
Then we also obtain
(@?(1,9)K1ch1, ha)| < Cr|1<rhi|2|1<rh2l.

The similar arguments as for Ks. show that K. is a compact operator in L?,. Thus K,
is a compact operator in L2 and the estimate (2.21) holds.

Next we will prove the estimate (2.22). First we consider the operator K5. We define
by Kos = K3, + K, X, where

K3 (p) = /1|p|+|q\2Rk§(p7Q)hl(Q)dQ7
R3
and
Ky a) = [ B0 (0)da
R3
For the operator K., we have that
2 X 2 2 X 1/2
(w (laﬁ)K23h17h2>‘ < { lhi(q)"dq [ @=(1,9)(P)Lp|+1q1>RIKS (Z%CI)WP}
R3 R3

<{ [y [ 1111020080 0ld)
R3 R3
(2.23)

To estimate (2.23), we make some preparations. As in [12], we write ¢ x p=p X (p — q)
and set r = |p—¢|, |[p X (p — q)| = |p|rsinf. Then for any small € > 0, one has

/ x(|p — g|)eclp—al/32 p <07] e—er/32p1=b gin 0dOdr
q =
[ [
e 0

Ip x q|? + |p — ¢[2]0+0)/2 p|2 sin2 6 + 1)(1+0)/2

R3

IN

T sin 0o

c. . 9.24
/ [[p[2sin2 6 + 1](1+5)/2 (2:24)
0
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As in [12], by explicit computation, the angular integral is O(py*~¢) for large |p| and
b € (0,2). Thus we can obtain that

X(lp — g|)eclr—al/32 e
/ lp x g2+ |p — ¢|2](+b)/2 dg < Cepg ™" (2.25)

R(}
Notice that
R R 3R
{(p.a) = lpl + lal =2 By € {(p,@) : Ip| 2 Y UL @) = Ipl < o lal =2 =~}
Thus we can obtain that

clp—ql/32 an )e—clp—al/32 —cR/64
< Aoz + Lpcnlyg>an)e S

(2.26)

Lip|+1q1>RE

To estimate the second integral of (2.23), for any n > 0, we have from (2.8), (2.18), (2.25)
and (2.26) that

1| +1q/>rlF3 (P, 9)|dg
R3 xR3

C(poqo)b/2

—b/2 —clp— 8
Ip x q? + |p — q[2](1+0)/2 (o ao) ™20 dg

§/1p+|q|sz(p—QI)[
]R3

b/2 —c
SCpo/ (1|p|2%+6 R/64) /

[p—q|>e

efc‘p7Q|/32 d
(I x a2+ Ip — 2]+

< COpy " (Apynn + e M0 < COnp(p), (2.27)

where € > 0 is small enough and R > 0 large enough. For the second integral of (2.23),
we have that

[ =000y [ Vsl 00lda < Culhol?yg (225)
R3 R3

Next we consider the first integral of (2.23). We first notice that

(?)lbe—clp—q‘/lﬁ < CG—C\p—QI/32, (2.29)
0

which is an immediate consequence of

po < |p—ql + qo- (2.30)
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By the assumptions of the weight w?(l,9)(p), we see from (2.29) and (2.30) that

wz(l,19)(119)6_0“0_‘1‘/8 = Lz(l’ﬂ)(p) wQ(laﬁ)(q)e—CIP—ql/S

@*(1,9)(q)
= (B0t —clp—al/16 527 (py ~a5 ~Ip=aI") 52 (7 9) (q)e—clP—al/16+27Ip—al”
do
< Cw?(1,09)(q)eclP—al/32, (2.31)

It follows from (2.18), (2.20), (2.31) and (2.27) that

/ 2 (1,9)(P) Ly 1 1l (s @)
R3

c(Pogo)"”*x(lp — al) b2 elpal/a
S/1")‘+|‘1‘>RwQ(Z’19)(17) 2 2 (po +qo) ™"/ e P71 dp
= B TIIGERYY
s [lp < >+ |p — q/?]

b/2 _
c{Poqo X\P—4q _ —clp—
SR L x(qup—( |q|2]<1pb>/z (po +q0) %0 dp
R3
< Onv(q)@?(1,9)(q). (2.32)

For the first integral of (2.23), we have from (2.32) that

/Ihl(q)l2dq/w2(l,19)(?)1|p|+|q|lek§(p,q)ldp < Cnlhl? - (2.33)
R3 R3

By using (2.28) and (2.33), for the operator Kss, we have from (2.23) that
(@2 D) K3k, ha)| < Clla oo lhaluso. (2.34)
For the operator K215_ X, we have that

N )| < { [ P [ @@ G0}

{ [enwimePa [ el " @)
R3 R3

It follows from (2.24) and (2.25) that

s

2e
C//e_”/?’?rl_bsinﬁder
[|p|? sinZ @ + 1](1+b)/2
0 0

dq

IN

/ (1 = x(lp — g))eclp—al/s2

[lp x gl + [p — q[?](1+0)/2

R3
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™

b sin 0d6f 9 b —be
<
S C€ / [|p‘2 Sin2 9 I 1](1+b)/2 ~ CE pO

(2.36)

By using this, (2.8) and (2.18), we can obtain

|p X q|2 + |p _ q|2](1+b)/2

_ C b/2 1— _ 3 3
/Iké *(p.q)ldg S/[(poqo) U= Xp = aD) ) 1 go)-br2e-clo-airsgg
R3

R3

b/2 (1 —x(p—al) —clp—q|/32 2-b
< Cpy / < a2+ |p = q|2](1+b>/26 dg < Ce*"v(p).
3

(2.37)

For the second integral of (2.35), we have from (2.37) that
/w (1,9)(0) | (p) dp/|k1 X(p, q)ldg < O |hal?, . (2.38)

It follows from (2.18), (2.31) and (2.37) that

/w2 (L )Pk (. ) ldp

pOQO)b/Q(l_ x(lp —al)) —b/2 _—c|p—ql|/4
w”(1,9)( Po + qo e~clp=al/ dp
/ Py x g5 [p = gz 0+ 00)

< Cw2(l,19)(q)/ C(pOQO)b/2(1 - (|p7 q|)) (pO + g0 ) b/zefclpfq‘/gdp
R

| llpx qf* + [p — gPP]0+0)/2
< 0 w(q)w?(1,9)(q)- (2.39)

We have from (2.35), (2.38) and (2.39) that
(@2 D) K3 R, ha)| < Colhulusolhaluso. (2.40)

Here we used the fact that b € (0,2) and choose € > 0 small enough.
It follows from (2.34) and (2.40) that

‘<w2(l,19)K25h1, h2>‘ < Cnlhalyaslhaluso- (2.41)

As for treating the operator K3, for the operator Ky, we have that

1s2
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@ L) < { [P / L) )Lyl o))

R3

/w OGPy [ Lyl olda)

R3

By using (2.7) and the assumptions of the weight w(l,¥)(p), we can obtain

Lpilq>r @ (1L D)D)K (, )] < CA(ROD2 4+ RV2))e %78 < Cape™ %74
Here we choose R > 0 large enough. It follows from these estimates that
(@2 D) KR h)| < Culha o lholuso. (2.42)
By using (2.7) and the assumptions of the weight w(l,?)(p), we can obtain
@ (1,9)(p) k1 (p, 9)ldp
R3
b-2)/2,
< / (L) x(lp— ) (o) 2 + PN E 2 g
<C / \p q|b 1) R Rdp < OtV + ) F (2.43)

[p—q|<2e

For the operator K 17X, by using (2.43) and choosing € > 0 small enough, one has that
1s g g

‘< " OK hl’h2 < /\hl ) dQ/w (1,9)(p) |k X(p, q)ldp} Yz

{ [0owe P [ B0l
R3 R3

< COnlhalvlh2lve- (2.44)
It follows from (2.44) and (2.42) that
(@®(L,9)K1shi, ha)| < Cnlhalu,olhzlvi,o.

This completes the estimate (2.22) for the operator K;. This and (2.41) complete the
proof of (2.22). O

Remark 2.2. By using Lemma 2.1 and the similar arguments as in [15,28], one can prove
the crucial coercive estimate (1.16) of the linearized Boltzmann operator.
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Next we derive other estimate of the operator K, which will be used to perform the
nonlinear L* estimate of (1.11).

Lemma 2.3. Let 1 > 0,9 € [0,1] and 7 > 0. If ¥ = 1, restrict 7 > 0 small enough. Denote
w =w(l,9)(p). Then for any j > 0, any small n = n(e) > 0 and some constant ¢y > 0
such that

. h
@K X (=)(p)| < Crw(p)[[h]oo-
Proof. It follows from (2.31) that

Mefc\pwlﬂ
=(1,9)(q) =¢ o

Recalling (2.18) and (2.20), for the operator K5, we have from (2.37) that

w b/2(1 — -
o = [HAER
R3

x /4 h(g)]dg

(POQO)b/z(l—X(\P—CID) —b/2_—clp—ql|/8
< Ol | oy o+ a0) e

R3

b/2 (1= x(p—4) —c|p—aq|/32
< Cllitllopo /[Ip>< g2+ |p— g0 02 ° 4

R3

< Ce v (p)||h]| s

For the operator K7, by using (2.7) and (2.20), one has that

w (b—2)/2
=
R3
x e~ 7% |h(q)|dg
< il (1= xp— a1+ e ¥ g

R3
2e 1
< Ce Pl [ (U4 )i < O + (e ] .
0

By using b € (0,2) and choosing ¢ > 0 small enough, we conclude the proof of the

lemma. O
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Next we shall construct the L? estimates of the nonlinear collision term. Recalling
(1.13), we have that

0°T(h1,ho) = Y CT(0%hy,0°?hy).

a1taz=a

Here I'(0“thy, 0*2hy) have the following expression

L(0* hy, 0% hy) z//dqdwv¢o(g,0)J1/2(q)60‘1h1(p')@”hg(q’)

R3 §2
—6a1h1(p)//dqdwv¢a(g,9)J1/2(q)8°‘2h2(q)
R3 §2
= Fgain (8a1h1, 8a2 h2) — Floss (80‘1h1, 3“2 hg) (246)

The first L? estimate about the nonlinear collision term is as follows.

Lemma 2.4. Assume that e(p) = P(p)\/J(p), where P(p) is a polynomial of any order.
Let o = ay + ag with |a| < N. If |a;| < |a]/2, then

(T (0%t b1, 0°2ha), e(p)) | < C||T*20% halloo | T/ 320 s
Alternatively, if |as| < |a|/2, then
(L@ by, °2ha), e(p)) | < C||TY/*20% ha|oc || T/ 20 b .

Proof. We first consider the loss term. It follows from (2.46) and (2.8) that

2
[(Ciows (07 1, 072 h2), e(p))

| [ [ [ vsot0.007 @10 a(a)0 p)apdads|

R3 R3 §2
< [ [ [vaote. 01701200 P07 1 ()P dpiad
R3 R3 §2
« / / / 0o (g, 0)T2(q) T2 (p) [P ()] |0° ha(q) |2 dpdqee
R3 R3 §2
2 2
< c]ﬂ 166“1h1’2‘Jl/168“2h2‘2. (2.47)

By this and the fact that s = 44 ¢2, we see that ¢ and s are invariant with respect to the
pre—post collision change of variables. Notice that dpdq = 2 990 dp'dq’, which is from [9].
For a function G: R? x R? x R? x R?® — R, it follows from (2 5) in [17] that
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vy0(g,0)G(p,q.p', ¢ )dwdqdp
R3 R3 §2

= ///vw(g,@)G(p’,q’,p,q)dwdqdp- (2.48)
R3 R3 §2
Then we have from (2.46), (1.9), (2.48) and (2.8) that
2
[(Cyain (0% b1, 0% ) €(p))|
2
=| [ [ [ vsota.007 " @etm)o a(w)0* hala'dpdads|
R3 R3 §2
2

<[ [ [uoota.0n1/ )10 /0% ha9)0% hate' ) dpdad )

R3 R3 §2

:C(///”W(g’9)J1/4(Q)J1/4(p)If)“lhl(p)8a2h2(Q)|dwdqdp)27

R3 R3 §2

and hence

2
‘ <Fgain(aa1 hla aaz h2)7 6(p)>

= C(///%"(9’9)J1/4(Q)J1/4(p)|3°‘1hl(p)8a2h2(Q)|dwdqdp)2

R3 R3 §2

<c / / / 050(9,0).74(q) T4 (0)[0% oy () Pdeodqdp

R3 R3 §2

<[] [sota. 0054 @r 0% hafo) Py

R3 R3 §2

2 2
< C‘Jl/w@"“hl‘2‘J1/168a2h2‘2. (2.49)
Thus, by the above estimates, if |a1] < |a|/2, we can obtain
2 2
{D(0% by, 8%2hs), e(p)) || < C [ |JY/¥60% hy| |JH100%2hy| da
2 2
T3

< O by |2 |V520% o

The case that |as| < |a|/2 can be handled in the same way. This concludes the proof of
Lemma 2.4. O
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The second L? estimate about the nonlinear collision term with the exponential
weight is given in the following lemma. The proof of Lemma 2.5 is more or less sim-
ilar as in [15,31]. However, some modifications are needed to facilitate the momentum
exponentially growing weight in the relativistic case. And more care will be paid to
conservations (1.8) and (1.9) and the momentum pre—post collision change of variables,
which are different from the classical version.

Lemma 2.5. Let o = o + oo with o) < N, 1 >0, lyp > 3/b, ¥ € [0,1] and 7 > 0. If
¥ =1, restrict 7 € (0,1). If |o1| < |a|/2, then

(@ ([, 9)T(07 b1, 07 h2), 0% h3)| < C€jay 410, (h1)[[0° hallu.0110 Pt o-
Alternatively, if |as| < |a|/2, then
(@ (1, 9)L (0% hy, 0% h2), 0% hs)| < CCay 10,0 (h2)10* hallv,1,0110 s .10

Proof. We divide it into two cases for the gain term and loss term, respectively.
Case 1: The Loss Term Estimate. If |ag| < |a|/2, we have from (2.8) that

dqdwvyo (g, 0)JY?(q)92 ha(z, q)

R3 SZ

< C //dqdw%a(g, 0)JY2(q)|0°2hs (2, q)| //dqdwvw 9.0)J"*(q )}
R3 §2 R3 S2

< Csup Jl/g(q)ﬁo""hg(m,q)‘{//dqdwv¢a(g,9)J1/4(q)}
z,q

R8 §2
< Cv(p)€jay),i(ha).

Hence we see from (2.46) that
(@@ (1,9)T10ss (0% h1, 02 hy), 8% hs)

< C€ oy u(h2) / V(p)=2(L, 9) (0)|0% b (2, )0 hi(, p) | dpda
T3 xR3
< O€qy),1(h2) |0 hy

This completes the estimate for ['j,ss when |as| < |a|/2. Next, to consider I'j,ss with
|a1| < ]e|/2, the integration domain in (p, ¢) is split into three parts

Ipl

Ual = 2y 011 < By > 1y 0 it < 2l < 1y, (2.50)
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Case (1a): The Loss Term Estimate in the First Region {|g| > %} On this region we
have that

T <e W . (2.51)
Then the integral of @w?(l,9)[pss(0% h1,0*2he)0*hg over {|q| > %} is bounded by
/ vo0(g,0)e™ % @ (1,9)(p)0* b (p)9° ha ()0 hs (p) dgdpduwdax

3 2
Tox82 {1g)> 181}

=¢ / vp0(g,0)e” % e T w?(1,9)(p)|0°* hy (p) 92 h2 ()0 hs (p) | dgdpduwda

T3 xR3 xR3 xS2
a0 pQ 1/2
<o [ ol 0 e ¥ |0 ha(o) Pdadpds )
T3 xR3 xR3 xS?
—490 _ PO 4 2 1/2
X { / vg0(g,0)e” 3 e 5w (I,9)(p)|0" ha(p)0“hs(p)| dqdpdwdx}
T3 xR3 xR3 xS2

Note that for b € (1,2), we have from (2.6) that

T

/%a(g, 0)dw < C’/sinlJrv qubg*bdﬂ <C
2 0

(pogo)®=2)/2
lp —qlb1

With this, the first integral in the previous estimate is bounded as

a0

vy (g,0)e™ % e ¥ hy(q)[*dgdpdwda

T3 XR3 xR3 x§2
(b 2)/2
<o [ { ] e i) 0% hato) Papas
T3xR3 R3

=C / v(g)e™ T 9%ha(q)*dpda < C|l0°*hs |3,

T3 xR3

and the second integral is bounded as

vp0(g,0)e™ % e™ N (1,9)(p)|0° h (p) 0 h3(p) P dgdpdwda

T3 xR3 xR3 xS?
o272, )
e [{[* { [ ) e e B 1)) s (090 )
T3 xR3

< €y, 0,0(h)10%hs]7 1.9
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Here we have used the facts that || < |«|/2 and

sup {w2(z,19)(p)e*%8 |amh1(p)|2} <O, (). (2.52)

z,p

For b € (0, 1], by using (2.5), we handle it in the same way. We thus conclude the estimate
over the first region.

Case (1b): The Loss Term Estimate in the Second Region {|g| < ‘ ,[p| = 1}. When
lg| < @, it holds that

p
p—dl > ol — ol > . (2.53)
It follows from this, (2.6) and (2.8) that for b € (1,2),

(Pogo)"~)72

PR Cpogo) "~ 2/?p™" < Cw(p)a "2

%g_b <
By using this, it follows from (2.46) that

/ vy (g,0)e™ % @2 (1,9)(p)8 h(p)3 ha(q)0 ha(p)dgdpdwda

3 2
TxS? {|g|< 2L |p|>1)

= C/ / v(p)al P e F P (1,9)(p)0% b1 ()9 ha(q) 0 hs (p)|dgdpdix

T2 {lql< !5l Ip|21}
<c [{ [dmPe Horna@liah{ [ ve)=00)@)]0" )0 ha(p)ldp} ds
T R3S R3

<c / 10° a2 0% B |y.1.910% Bt o
’]1‘3
< COsup [0 halu,0]0% hallual[0%hs]]u,1,9-
xT

Since v(p) < C and |ay| < |a]/2, one has that for Iy > 3/b

sup [0% hilyi.0 < Csup |0 il < C€ oy 410,90 (P1)-
xT xT

For b € (0,1], by the similar arguments, we use (2.5) and (2 8) to get the same esti-
mate. Thus the term T'j,ss over the second region {|q| < % |p| > 1} is bounded by
CE o, 1410,0(h1) 0% halu 1,0 10%hs v 10-

Case (1c): The Loss Term Estimate in the Third Region {|¢| < | ,|p| < 1}. In this
region, for b € (1,2), we have from (2.6) and (2.53) that
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-b (Pqu)(b_z)/2< (pogqo)b=2)/2|p|(1=0)/2

. w2 (1,9)(p) < C. 2.54
|p— q|b—1 = lp— q|(b_1 2 (1,9)(p) < ( )

’U¢g

It follows from (2.54) and (2.46) that

/ vp0(g,0)e™ % @2 (1,9)(p)0* hi (p)3° ha(q)8° ha(p)dgdpdwda

3 2
ToxS? {|g|< 2] |p|<1}

<c / / D1 1p — 0l 'F* (poo) " e~ % 0% By ()% ()0 (p) |dgdlpz

3
T2 {lq)< 2l |p|<1}

sc/{/m—d%ﬂr%wwmwmmH:/|m%ﬂywh@m%dmmﬁw

T3 R3 Ipi<1
a 1/2 90 g 1/2
SC/{/\Z)—QP_%_%GZQ} {/e_ |0 th(q)lqu}
T3 R3 R3
1—b
><{ / IplTIaalhl(p)aahs(p)ldp}dx
[p|<1
1-b /2
<c / 0@l [ o m@las} [ 0hap) e
|p|<1 |p|<1

By the facts that b € (1,2) and || < |«|/2, we have

1/2
sup{ [ B0 )Py} < C sup (0% ha(p)] < Cjayalh).
x x <
Ipl<1 =t
Hence, if |a;| < |a/2, the last part is bounded by C'€,,|(h1)[|0%hy hsl|,;. The
case that b € (0,1] can be handled in the same way by using (2.5). This completes the

proof of Case 1(c) and hence the whole Case 1.

Case 2: The Gain Term Estimate. Once again the integration domain in (p,q) is split
into three parts as in (2.50).

Case (2a): The Gain Term Estimate in the First Region {|q| > %} By using (2.51), the
integral of @?(l,9)T gain (0% h1,0%2hs)0%hz over {|q| > %} is bounded by

/ vp0(g,0)e™ % @2 (1,9)(p)d* ha (p') 02 ha (g0 h3 (p)dgdpdwdz
TEXS? {]q|> 181}

<C / v¢a(g,9)6_%6_%1722(1,19)(p)|3°‘1hl(p’)ao‘?hg(q’)(‘)“hg(p)|dqdpdwdx

T3 xR3 xR3 x§2
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PO a0 1/2
< C{ / vgo (g, 0)e” s 5 w(l, ﬁ)(p)lao‘lh1(p’)l2|3°‘2h2(q’)l2dqdpdwdﬂc}

T3 xR3 xR3 xS2

(0] a0

PO _ 40 o 1/2
A [ verle e S )W) hslp) Padpd )
T3 xR3 xR3 xS2

By (2.8), the second factor can be bounded by C||0%hs]|,.1.9. By (1.9) and the assump-
tions of w(l,¥)(p), one has that

@%(1,9)(p) = PYe>P8 < (po + qo) " €2t — (pf) gl (PoHaD)”

< C(py)" (qh)"e>™@0)” 27(@0)" = O (1,0) ()2 (1, 9)(q). (2.55)
If o] < |al/2, as in (2.52),

sup w(l,9)(p)e” [0 hy (p)| < C€ay)1.0(h1). (2.56)

z,p
Then the integral in the first factor can be bounded by

/ 7

¢ / vp0(g,0)e ™18 18w (1,9) (") w? (1, 9)(¢')[0° b () 2|02 ha (') P dgdpdusdz
T3 xR3 xR3 xS2
—¢ [ veolg.0) B B0 0) (0 0,0) 0] In (6) 0% hala)Pdudpdad
T3 xR3 xR3 xS2
<Ce, o) / { / %0(9,9)6‘%dpdw}w2(17ﬂ)(q)lf')“zhz(q)\qudw
T3 xR3 R3xS2

< CE, 1 19(P)]|072ha |

Here we have used (2.8), (2.55), (2.56) and the pre—post collision change of variables
s (2.48). Thus if |a1| < |a|/2, the gain term estimate in this region is bounded by
C€ oy [1,0(h1) 102 hallu,0|0% s
If |as] < |a]/2, we switch 0*2hy with 9% hy. This completes the estimate for the gain
term over {|g| > m}.

Case (2b): The Gain Term Estimate in the Second Region {|q| < I ,|p| > 1}. For
b € (0, 1], we have from (2.5) and (2.8) that

%g_be_%l < Clpogo)~"?e™% < Cu(p)e™ 7.

2
On this region {|q| < Igl, pl > 1} lp—ql > |pl— gl > L and |p — q|* > 2. By this and

b € (1,2), it holds that
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1 P\ 1zt 1-b
P =G SO

For b € (1,2), it follows from this, (2.6) and (2.8) that
vpg e E < Cpogo) "2/ ?ps e < Cu(p)e™ %

By using these, it follows from (2.46) that

/ vpa(g,0)e” % w2 (1,9)(p)0 hi (p' )82 ha(q') 0 ha (p)dgdpdwda
TEXS? f1q)< 12l |p|>1}

a0

: C/ / v(p)e™ @ (1, 0)(p)|0* h(p')0°* ha(q') 0" hs (p) | dgdpde
T {lal< g pl>1}
. 12
<cf / v(p)e” F 2 (1,9) ()]0 b (1) 2107 o (q') P dqdpd |
T3 xR3 xR3

a0

([ e @ o) Pdadpr} (257)
T3 xR3 xR3

The last line is bounded by ||0%hs||,,1,9. On this region {|g| < I%l, |p| > 1}, we have
from (1.9) and (2.8) that

v(p) ~py"* < Clplhy + qb) % < Cmin{(pp) /2, (g5) "%} < Cmin{v(p), v(d)}.
(2.58)

It follows from (1.9) that

/ !
e,%op?q? <c {70/ < Opof,% <C.
Podp Podyp Podo

(2.59)

If || < |a|/2, by using dpdq = %dp'dq’, the integral of the first factor in (2.57) is
bounded by

¢ / v(q)e™ T @ (1, 0)(p)w? (1,0)(q)|0° ha (p) |2|0°2 ha(q') | P dgdpda:

T3 xR3 xR3

=C / V((J’)e_%WQ(l,ﬁ)(p')WQ(l»19)(Q’)Iac“h1(p')|2|5“2h2(Q’)IQZ—?Z?dq’dp’dx
0410
T3 xR3 xR3

<C v(q")w® (1, 9)(p") (1, 0) ()| 0™ b (p)|0°2 ha(¢) | *dy dp' ez

T3 xR3 xR3
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<csup/w (L 9) ()]0 by () [2dp' 02 hal2, 5, (2.60)

where we have used (2.55), (2.58) and (2.59). For Iy > 3/b

1/2
sup / (L)) )P} < Oty ().

Thus if |a;] < |a|/2, by this, (2.57) and (2.60), the gain term estimate in this region is
bounded by C€q, | i115,0(h1)[[0%?h2[v,1.0(10%hs|[v.1,0-
If |ao| < |a|/2, by the similar arguments, the gain term estimate is bounded by

C€ oy i+10,0(h2)[|0% hy

hsllv.i,6-

This completes the estimate for the gain term over {|g| < @, Ip| > 1}.
Case (2c): The Gain Term Estimate in the Third Region {|¢| < M ,|pl < 1}
For the last region {|g| < |p| ,|p| < 1}, it holds that |¢| < 1/2. For b € (1,2), we have
from (2.46) and (2.54) that
c [ [ wela ) ¥ S0 ) ()0 hald )0 s ()dadpdds
TS {lq|< 18l Ip|<1)

<c / / Pl 1 — a7 (podo) T e £ 0% b ()0 ha (¢ )0 s (p) dqdpdac

3
T2 {1g]< 12l |p|<1}

<c[ [ AwE [ e 0 )0 ha(@)lda} 0% ha(r) dpdo

T2 {IpI<1} {lgl< 'l

SC/ / { / 110 1 () P10 B Py

T2 {Ipl<1} {lq1<lgly

w V2
><{ / Ip—QIl’be’TdQ} |0%hs3(p)|dpda

{lal< !zl

1/2
< C/ / { / |p|1—b|80¢1hl(p/)|2|aa2h2(q/>|2dq} |8ah3(p>|dpd$(:

T2 {IpI<1}  {lq<2l}
1-b 9 N2 9 N2 1/2 feY
<cf P10 i () P10 ha (@) Pdadpdar } 10 Rallva. (2.61)
* {IpI<1,]al< 8}

We now estimate the first factor. Since |¢| < |p|/2 and |p| < 1, by using (1.4), (1.5) and
(2.3), we have from (1.10) that
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Po + qo

V4 + g?

Since 1 — b < 0, this implies

'l +1¢'| < Clpl + 92+ ) < Clpl+ Cpolp — q| < Clpl + C(lpl +lq]) < Clpl.

plt <t It < )

Thus we have

/ / Ip[1 210 b () 2102 ha (¢ Pdgdpdc

T2 {IpI<1,lql<

<c/ / It e 0% b ()10 ha(a') Pdadpda

3
T2 {Ip|<1,lql< 2Ly

<c[ [ e g O )P Ioha(o)PE R dd dy'da
040
T {|p'|<C,|q’'|<C}

<c[ [ i o ) P10 ()P dp .

T {|p’|<C,|¢’|<C}

Here we used the fact that e({TOIMS% < C. Assume |o| < |a]/2 and majorize the above
by

c[{ [ wrtemePay{ [ 0mn@)Pd s
T {|p'|<C} {le'|1<C}
<O s W )10 Ry S O ()7l
z,|p'|<

If |as| < |a|/2, we have

c[{ [ emeipa}{ [ 1o e
T {|p'|<C} {lg'I<C}

<C |Su\lic 0% ha(p ) P10° R |12, < C€ay,0 (R2) 10 hall?
z,|p’|<

Then for b € (1,2), we combine this upper bound with (2.61) to complete the estimate
for the gain term over the last region. The case that b € (0,1] can be handled in the
same way by using (2.5). Thus we complete the proof of Lemma 2.5. O

The following corollary is used to prove existence of global solutions to the homoge-
neous equation (1.22), which can be shown by the similar arguments as for obtaining
Lemma 2.5.
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Corollary 2.6. Let I > 0, lp > 3/b, ¥ € [0,1] and 7 > 0. If 9 = 1, restrict 7 € (0,1). It
holds that

(@ (1, )T (ha, ha), hs)| < C€yiy 0(h1)halviolhsluo-
Alternatively, we have that
(@ (1, )T (ha, ha), hs)| < C€py 9(h2)|halvi0|hsluo-

The next lemma concerns the L°° estimates of the nonlinear collision operator
T'(hy, he) with the exponential weight function of p.

Lemma 2.7. Under the assumptions of Lemma 2.5, we have the following estimates:

hy he

’wF(
w w

)(p)| < Cv(p)l[haloollhzllo-

Proof. We have from (1.13), (2.55) and (2.8) that

hl h2 —4o0 1
wF(E’ E)(p)‘ §R3X/S2 dwdqugo(g,0)e /2m|h1(p)h2(q)|
waqueo e 0/2 @(l,9)(p) . /
+R342 d dq 9} (ga 9) w(l, ﬁ)(p’)w(l,z?)(q/) |h1(p )hg(q )|

< O[] oolhzloo / dwdqugo(g,0)e="* < Cv(p)|[ha ool lh2|oo-

R3 xS2

This completes the proof of Lemma 2.7. 0O
3. Nonlinear L? estimates

In this section we will deduce the nonlinear L? estimates for the relativistic Boltzmann
equation (1.11) with soft potentials by using the Fourier transform and the compensation
function method (cf. [25]). For the case of hard potentials the compensation functions
of the relativistic Boltzmann equation (1.10) have been derived in [13,37]. Here we will
represent the details of the proof in order to take into account the effect of soft potentials
and the periodic domain.

For the purpose mentioned above, we start from the following linear inhomogeneous
relativistic Boltzmann equation with a source term G:

{0 +p-Ve+L}f =G. (3.1)

Let us first recall the definition of a compensation function for the relativistic Boltzmann
equation (3.1), which has been introduced in [25] as well as in [13,37].
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Definition 3.1. A bounded linear operator S(w) with w € S? on L?(R3) is called a
compensation function for (3.1) if

(i) S(-) is C*° on S? with values in the space of bounded linear operators on L?(R3),
and S(—w) = —S(w) for all w € $2.

(ii) iS(w) is self-adjoint on L?(R?) for all w € S2.

(iii) There exists ¢y > 0 such that for all f € L%(R?) and w € §?,

R(S()(@D-w)f, ) + (Lf, f) = co (IPf3+ [T =P)[[}) . (32)
Here Rz is the real part of z € C.

To construct the compensation function S(w), we first consider the fourteen moments
in the relativistic case as in [13,10]. The subspace W for the 14 moments is defined as
the space generated by N and the images of N under the mappings f(p) — p;f(p)
(j =1,2,3). That is,

W = span{VJ,|j = 1, ..., 14},

where

v1 =1, @jt1=Dj, @5 =D0, ¥j+5=D;iDj
Y9 = p1P2, P10 = DP2P3, P11 =Dp3P1, Y41 =p; (j=1,2,3).
Here, N' C W and the operator of multiplication by p- maps A into . Denote an

orthogonal basis for this 14 dimensional space spanned by e;, 1 < j < 14 as in [13,10].
Let Py be the orthogonal projection from L?(R2) onto W:

14
P f = Z(ﬁ ek)Ck-

k=1

Set Wi, = (f, ex). Then we have by using (3.1) that

OW +Y V0, W+IW =G +R,

J

where V7 (j = 1,2,3) and L are the symmetric matrices given by

L={(Llaer)}ihor, V€ =D V& = {{(b-ersen) o,

Jj=1

and G is the vector component (G,e;). Here R is the remaining term which has the
factor (I — Py) f. We denote
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W= [Wr,Wr*, Wr=[Wy,.,Ws|", Wi =[Ws,.. W'

To construct the compensation function of the relativistic equation (3.1), the following
lemma was proved in [13,10].

Lemma 3.2. There exist three 14 x 14 real constant skew-symmetric matrices R7 (j =
1,2,3) and positive constants ¢ and co such that

R(w) = Z Riwj, (3.3)

satisfies
RUR(W)V ()W, W)) > e1[Wr[? = co| Wiy |?
for all W € C*. Here ({-,-)) represents the inner product on C*.

Now a compensation function for the relativistic equation (3.1) can be defined as

follows. Given w € 82, set R(w) = {ry;(w)}}4-, as in (3.3), and let

14
Sw)f = Z Arie(w)(fred)en,  fe L*(R?), (3.4)
k=1

where A\ > 0 is a constant to be chosen later.

Lemma 3.3. There exists A > 0 such that S(w) : L2(R?) — W is a compensation function
for the relativistic equation (3.1).

Proof. The first two properties can be verified straightforwardly by using (3.4). It suffices
to verify (3.2). Note

(SW)P-w)f, /)= > Arre(w)((p-w)freo)(fen)-

k,f=1

One can compute that

It follows that
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RSW)(B-w)f, f) = RS W) (B - w)[Pof + (L= Fo)fl, f)

14 14
= RA Y el [ 3 Vi Wy + ()= Podhea) | T
k=1 Jj=1

The first term in this expression is RA((R(w)V (w)W, W)). Notice that

5
Wil =" [(f.e)? = PfI,
j=1

and

14 14

Wi =) [(fe)> =D (T =P)f,e;)]* < Cl(T-P)f[3.

Jj=6 Jj=6

Here we have used the fast decay in p for e;. It follows from Lemma 3.2 that
RA(R(@)V (@)W, W) > Ales|Pf[5 — cal (1= P) f[2].
The second term is dominated by

CAmax |{(p- w)(T = Fo)f,e)| - [{f, ex)| < CAT = Po)fu| 1

S CAX=P)f[2 4+ CA|(Py = P)fI2 + CeA| 2
< CINI =P)f2 + CAe|Pf3.

Here we have used the fact that
14
(Po=P)fI; < Cl(Po=P)f3 < C Y |(fre)]* < Cl(T-P)f[.
j=6

By choosing € > 0 small enough we have
R(S(w)(B-w)f, f) = CLAIPf|3 — C2A (1= P) f[7.
By choosing A > 0 small enough, (3.2) then follows from (1.16). O

We now use the compensation function S(w) to derive an energy estimate. Set w =
¢/)¢] and take the Fourier transform in z of (3.1). We have

Of +ilé|(p-w)f+Lf=G. (3.5)

By multiplying (3.5) by the conjugate of f, we have
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1 o ~ A
Then applying —i|¢|S(w) to (3.5) gives

—i[¢]S(w)arf + [EPS(@)((B - w) ) — ilé|S(w)Lf = —il¢|S(w)G.

The inner product of the above equation with fyields

~ o~

R(=ilgS@)0F, J) + EPRIS@) (0 w) T, ) = [ER{ (S @)LF, ) = (S ()G, ) }.
(3.7)

o~

Since iS(w) is self-adjoint, the first term is just —%8t[|§|<i3(w)f, }]- By multiplying
(1+ |€]?) by (3.6), and adding & times (3.7), we have

o [0 s~ 8l 7. 7]
+<1+|5|27n|5| WL, ) + KIEPR(S (@) (D~ w) f. ) + (L], )}
= (1+ [¢PYRUF. G) + RIER{ GSWILT. F) = (iS@)G. ) }- (3.8)

For the second term on the left hand side of (3.8), when 0 < k < 1, we have

1+ €12 = RIEPVWLE, F) > (1 — &)1+ [€]%) - o] (X — P) fI2.

And by (3.2), the third term on the left hand side of (3.8) is bounded by

~ o~

RIEPARIS @) (P ) F. )+ (LF )} = lél - co[PFI3 + (1= P)FI7).
Now we estimate the last term in (3.8). By using (3.4), we see that
14
wlEINES ()G, )] < Orle] Z (el - [(Fsen)] < eneleP|FI2 + con > [(Gler)]
k=1 =1
Recalling Lf = I'[v/J, f] + T'[f,V/J], we have from (2.47) and (2.49) that
(Lf,ee)| = (LT =P) [ eq)| < Cl(T=P)flo.
By using (3.4), we see that

KIE[(iS(W)LF, F)| < corl(I—P)fI? + welé[?|f]2.

The last term on the right hand side of (3.8) is dominated by
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slel{ 1S @)LF, Pl + [iS@)G, P}

< coh|(I—P) 12 + Crel¢ P[(1— P)JI2 + Crel€¢PPF3 +c Y (G en)?.
/=1

If we choose k, € > 0 small enough and combine the above estimates, we know that there
exist d1, d2 > 0 such that

o~

O0|(1+ €213 = KIS @) T, )] + 811+ €T = P)JI2 + Sale 2P F3

14
<CA+EPR(FLG) + e Y [(Gen)]”. (3.9)
{=1

~

By (1.19), it holds that |Pf(¢,0,-)|2 = 0. Since the domain considered is the torus, £
here is a vector with integer components. Thus there exists a small constant 65 > 0 such
that

5|E2|PFI2 > a5(1 + [¢2) P F]2.

With this and (3.9), we can obtain

~

14

00 [(1+HEPNTB=RIENIS @) ], D] +61 A+ IER)ITIZ < CO+EPRIF, GV +C D7 (G, e 2
=1

This implies that

14
- +€||£|2 <ZS(W)J?, J/c\>] + 5|f|,% < C’R(f, G) + CZ |<@7e€>|2. (3.10)

(=1

3t{|f|§ —K

We will use the crucial estimate (3.10) to deduce the desired L? estimates.

Lemma 3.4. Assume thatl >0, Iy > 3/b, ¥ € [0,1] and 7 > 0. If ¥ = 1, restrict 7 > 0
small enough. Let f(t,x,p) be the solution to (1.11) satisfying (1.19). There exists M > 0
small enough such that if

€rii,0(f)(t) < M, (3.11)

we have

SE0(HO) + Dua(H(H) <0, (312
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Proof. Let G = I'(f, f) and integrate (3.10) over Z?3 to give

~

d €l g7
G = [ g s fae] + el

73

< [REGD) P+ Y 10T 7). e0) P
73

=17

It follows from Lemma 2.5 and Lemma 2.4 that

| / (T(F, ), Frae| + / (CCF, D) ee) Pdg < C(E10()() + € o (HEISIE.
Z3 z3

By choosing M > 0 small enough we can have from the properties of the Fourier trans-
form that

~

d € g ?
GIrE—x [ S s@F Dag] sl < carnisiz. 13)

73

Multiply w?(l,9)(p)f by (1.11) and then integrate over T2 x R? to get

1d, ..,
S I1Es + 1171

oo — (@ GOES, f) < (@O, f), f)- (3.14)
It follows from Lemma 2.1 that, for any small n > 0

(@ NKF, P < CnllfI50.0 + CIFIS-

Notice that Lemma 2.5 implies

(@ (LTS, )y P < CELgo () f

|2
v,l,09°

By plugging these estimates into (3.14), we have from (3.11) that

d
Iz + 0l fIl00 < CMIFIZ00 + CILIE- (3.15)

By using a suitable linear combination of (3.13) and (3.15) and choosing M > 0 small
enough, we have

%‘%(f )(t) + Duo(f)(t) < 0.

Here Dy (f)(t) is as in (1.18) and & »(f)(t) is defined as
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Cr gl . ~
7 [ igsen

&0 (f)(t) = —||f||2

Since k > 0 is small enough and S(w) is bounded, we see that

)/1+5P W)F. Pie| < Cnl 7).

By this we know that & 9(f)(t) ~ [ f||7y and this completes the proof of (3.12) and
hence Lemma 3.4. O

4. Nonlinear L°° estimates

In this section we will prove the L estimates of (1.11) with the exponential
p-weighted function in order to close the a priori estimate (3.11) in Lemma 3.4. Namely
we will show the following lemma.

Lemma 4.1. Assume that I > 0, lo > 3/b, ¥ € [0,1] and 7 > 0. If 9 = 1, restrict
7 > 0 small enough. Let f(t,z,p) be the solution to (1.11) satisfying (1.19). Then for
any T > 0, we have

sup €1, (f)(8) < C€ii0(fo) +C sup {€rpo(f)(0)}+C sup [f(s)].  (4.1)

0<s<T 0<s<T 0<s<T

Proof. Let w = w(l+1y,¥)(p) with £y > 3/band K9 = wK(Z). Let h = w f. Noticing
that

€rp0,0(f) () = @l + 1o, ) (p) f(t, 2, )0 = [7(t)]] oo, (4.2)

we have from (1.11) that

Och +p - Vah + v(p)h — Koh = wl( (4.3)

8=
S\I/v

Note that K, = KX + KL~X. By Duhamel’s principle, we then expand out

t
h(t,z,p) = e_”(”)tho(x —pt,p) + /e_”(p)(t_sl)K};Xh(sl, y1,p)ds1
0

8=
gl=

t i
—I—/e_”(p)(t_‘“)Kéh(Sl,y1,p)d81 _|_/ —v(p)(t— el)wr( )(Sl,yl,p)d81,
0 0

(4.4)
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with y1 = — p(t — s1). We now estimate (4.4) term by term. It is direct to see that

le™ " ho(ax — pt, p)lloo < [[Aolloo-

By Lemma 2.3, for any small 7 > 0, the second term on the right of (4.4) is bounded by

0<s<t <s<t

t
Cp sup [h(s)]ow [ P (p)dsy < Oy sup ()]
J 0
By Lemma 2.7, the fourth term on the right of (4.4) is bounded by
t
C{ sup Hh(S)Iloo}2/6_”@)“_31)V(p)d81 < C{ sup |[h(s)llo}*.
0<s<t J 0<s<t

It remains to estimate the third term on the right of (4.4). By (4.4) we have

S1

h(s1,y1,q1) = e " ho(y) — Gis1, qu) + /6_"(‘11)(51_82)K;_Xh(82,yz,th)dsz

0

S1
+ 671/(111)(81752)K§h(327yQ,ql)dSQ

0

T’ ho h
+/67V(‘h)(81*82)wr(77i)(527y2’q1)d,§2’ (45)

w w
0

with y2 = y1 — §1(s1 — s2). Let kX (p, q) be the integral kernel of the operator KX, i.e.,

) w(l, Y
kX (p,q) = kX*(p,q) — kX' (p.q), kX' (p,q) = kX(p.q) w( )

By using (2.18), (2.19), (2.20), (2.45) and the assumption of the weight function, one has

1,9)(p)
feX:2 , = |kX(p, @(l,
C(poq10)"*x(Ip — q - ()12
= 1p X(qf|2u_)2 p _((|]1|2](11+|1)>)/2 (po + quo) ¥ 2e~slPalg=5lP—a w((l,ﬂ))((ql))
C b/2 _ .
(Pog10)”*x(Ip — q1l) (p0+q10)7b/267§\p7q1|. (4.6)

Tl x @l +Ip - q@P]0r0/2

By using (4.6) and (2.25), for any € > 0 small enough, we can obtain
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C<p0q10)b/2 (|p Q1|) _c
2 a b/2
/|ké (p7(I1)| q1 < / [|p X LI1\2 |p Lh‘ ](1 b)/2 (Po + Q10) / e slp ql‘dql
3 R2

X(lp — qu])eclp—al/32
C’pb/2/ dq, < Cv(p)p©.
o x a2 + o — ey 4 < Cv(ipo

By using (2.7), (2.19), and (2.20), one has

3 _P0o __ 40
|k73;’1(p7 q1)| = |/€i((p, QI)|w(Z ﬂ)(QI) < Cxe s 8 (47)
This implies that
[ 10 .l < 0.
R3
Thus, for any € > 0 small enough, we can obtain
[ avldar < Coim©. (48)

By using (4.5), we can expand out the third term on the right of (4.4) as

t
/e_y(p)(t_$1)K;h(Sl7 ylvp)dsl = Hl(t?xap) + H2(taxap) + H3(t,.’1),p) + H4(t,x,p),
0

(4.9)

where H;(t,z,p) (i = 1,2,3,4) are defined as

Hi(t,z,p) //dChdSle VO E=SOEX (g1 )e % ho(y1 — Gis1, q1),
0 RS

t s1
Hoy(t,z,p) :///dQ1d82d81€7V(p)(t751)ké(p,Q1)€7V(q1)(51782)K11{Xh(52,y2afh)a
0 Rs

t s1

3(t,x,p) ///dqldSstle vP) =) X (g eV (@) (s1752) o (

0 0 R3

h
;)(527?427 q1)7

8=

4(t,z,p) ////dQQdfhd82d8167V(p)(t781)k3é(P7Q1)
0 0 RS RS

x e =2k (g1 g5)h(s3, Y2, G2)-
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We now estimate (4.9) term by term. It follows from (4.8) that

t
|Hi(t,z,p)| < ||ho\|oo/|kf§,(p,q1)|dq1/e_”(p)(t_sl)e_”(ql)sldsl
R3 0

< Iholloer™ () / X (0, ) dar. < Clholloc-
R3

For the term Hs(t,x,p), we use Lemma 2.3, for any n > 0, to obtain

\Ha(t,2,p)| < / / / dgydsadsy KX (p, qu)|e™ @ (=91 =V @)61=92) [ K1Xh (55, s )|
0 R3

< Cy sup [I1(s)] / / [ dasdsadss i )l e

0<s<t
0 R3
~ e*l’(fh)(slfsz)y(ql)

<Cn sup IIh(S)Hoo/dmlké(p,m)lfl(p)-
0<s<t
RS

Thus we can obtain from (4.8) that

|Hy(t, @, p)] < Cn sup [|A(s)]|so-
0<s<t
By (4.8) and Lemma 2.7 it holds that

h h
Halt,z,p)] < sup o T )5 / KX (p, 1) |day
<s<t w w

t s1
x// )t gmra)(51752) (0 Vdsodsy
0

<C sup [|h(s)|Z0" / KX (p. ¢1)|dgs
0<s<t

< C sup |[A(s)]%.

0<s<t

We now concentrate on the last term in (4.9), which will be estimated as in
[16, Theorem 6]. We first consider the case |p| > N.

Case 1: For |p| > N, we have from (4.8) that
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1\p\2N/\k‘3%(p7 q1)ldgr < Cv(p)py Ljpj=n < CN ™ “v(p).
]R3

Similarly it holds that

/ KX (g1 o)l dae < C(ay).
R3

We thus have that

[Ha(t, ,p)1jp=N] < sw IIh(S)Iloo//1|p|ZN|k3§,(p,ql)ké(ql,qz)ldqzdm
s<t
- R3 R3

S1

t
X//e—l’(?)(t_sl)e_y(ql)(sl_82)d52d81
0 0

< sup ()] / / 158 KX (2, 4R (g1, 42) v (0)v " (¢1)dadan
8% R3 R3

< ON~° sup [[h(8)]]oo-
0<s<t

Case 2: For either |p| < N, |q1] > 2N or |¢1] < 2N, |g2] > 3N. Notice that we have
either |[p — 1] > N or |g1 — g2| > N, and either one of the following is valid for some
small n > 0:

52 (poar)| < e N RS (p, g )P

- Ce™ (pogi0)”*x(Ip — ¢1)
T lpxq@l?+p— @ P]OH0/2

kX2 (q1, q2)] < e ™V |EX2(q1, o) e B!

Ce™ ™ (q1020)" *x (|1 — q2])
g1 x @22 + |1 — q2[2]1HD)/2

(po + quo) ¥ 2e~Gnlp—al,

(fho + q20)*b/267(§77;)\q17q2‘.

Here we have used (4.6). It follows from the arguments of (4.8) and the above inequalities
that

/ KX (p, )P~ dgy < Cu(p), / KX (g1, @)% dgy < Clgr).  (4.10)
R3 R3

Thus we use these to obtain

t s1
////dquQIdSstll\p\gNJql\22N€7V(p)(tisl)ké(pvQ1)
00

R3 R3
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x e V=920 X (g1 o) (52,12, q2)

< sup )] / / i< a2 K (9, @1 )R (a1, @2) | dgaday
== R3 R3

t s
0 0

<o sup (o) [ [ 1B 0| (g )l (0 e
=55 R3 R3

< Ce ™ sup s)]
0<s<t

Similarly we also have that

t S1
////dqwads?dgl1Iq1\g2N,lqz|23N€_V(p)(t_sl)ké(19a‘11)
0 0 R3 R3

x e @)1= X (g1 goYh(s2,y2,q2) < Ce™™ sup |[h(s)] co-
0<s<t

Case 3: |p| < N, |g1| < 2N and |gz2| < 3N. This is the last remaining case because if
lg1] > 2N, it is included in Case 2; while if |g2| > 3N, either |¢1| < 2N or |¢1]| > 2N is
also included in Case 2. We further assume that s; — sy < k for k > 0 small. Notice that

1\p\§N,|q1\§2N€_V(p)(t_sl)e_y(ql)(sl_82) < e—C(t—sz)/Nb/z‘ (4.11)

Noticing that v(p) < C, we have from (4.10) and (4.11) that

t S1
////dq2dq1d52d511|p|§N,\q1|§2N,|q2\33N

0 s;—k R3 R3
X e_y(p)(t_sl)k‘é(l% (J1)€_V(QI)(SI_S2)/€3§(Q1, q2)h(s2, Y2, q2)
< sup Hh(S)Iloo//1|p|§N,\q1|§2N,|q2\53NIkié(p,ql)ké(qhqz)ldqqul

0<s<t
R3 R3

t 81
x/ / (3*6*(%82)/1\"’/2d$2ds1

0 s1—k

< Ck sup |[h(3)]co-
0<s<t

Case 4: |p| < N, |g1| < 2N, |¢2] < 3N and s1 — s2 > &. It follows from (4.6) and (4.7)
that
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L1/ <N g1 |<2N, g | <3 KX (D, 1) KX (g1, ¢2) [Pdgadgy < Ci.
R3 R3

We use this to obtain that

‘//dQ2dQ11\p|§N,\q1|32N,|q2\53Nk3§(p7Q1)ké(Q1,Q2)h(827y2>Q2)‘
R3 R3

1/2
< (//1|p|§N,\q1|§2N7|q2\§3N\k3é(p, Q1)k$§,(q1,qQ)|2dquQ1)
R3 R3

) 1/2
X ( / / |h(s2,92,q2)| dQ2dQ1)
lg1|<2N |g2|<3N

) 1/2
SC( / / |h(s2,92,q2)] dqzdm) .

l[q1|<2N |g2|<3N

Since y2 = y1 — §1(s1 — s2), we make a change of variable g1 — y2. In [28],

d 5mn 20— mYlnn
(12, = ~tos )Pttt
g1/ mn 410

Thus the Jacobian is

_ 3 3
’: (51— 82)|° _ 8

dy> s
(ﬁo NG

dq

Recalling that h = wf, we can obtain

12
( / / \h(82ayzqu)|2dQ2dQ1>

lg1|<2N [g2|<3N

< C(;—z)l/z( / / |h(82,y2,q2)|2dq2dy2) v

|y2—z|<c(t—s2) |g2| <3N

, 1/2
< CN,R( / / |f(s2,92,q2)] dQ2dy2)

ly2—z|<c(t—s2) |g2| <3N
3/2 2 1/2
<Oyt (=52 ([ [ 170620200 Pdaadye)
T3 R3
Thus we have from the above estimates that

t s1—kK

////qudqldszdsl1|p|§N,\q1|s2N,|q2\g3N
0 0

R3 R3
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x e VPE=s)pX (i gy)e @)1= kX (g, o) h(s2, Yo, g2)

S1—K

t
Sc/ / dsads;e~Ct=sD)/N"? =Cls1=s2) /N2
0 0

X} / / dqadqi kX (p, q1)kX (g1, g2)h(52, Y2, g2)
[g1|<2N [g2|<3N

t s1

< Cwie sup |1£(5)] / / e Clt=s2)/@N"?) (=Clt=s2)/@N") £1 L (4 — 5,)3/2}dsyds;
0<s<t o0
< Cnw sup [If(s)].

0<s<t

To summarize, if we take any small k > 0, any small € > 0 and 1 > 0, and large N > 0,
we have established, for any 7" > 0

sup {[[7(s)]loc} < Cllhollos +C(n+ N~ + ™™ + k) sup {||h(s)]oo}
0<s<T 0<s<T
+C sup {[A(s)]%} + O sup_ [If(s)l.
0<s<T 0<s<T
Thus we can obtain that
sup {[[A(s)llos} < Cllholloe +C sup {[|A(s)]loc}? +C sup [If(s)]l.

0<s<T 0<s<T 0<s<T
This implies that (4.1) holds by (4.2). The proof of Lemma 4.1 is complete. O
5. Existence and time-decay

In this section, we will first construct local-in-time solutions to the relativistic Boltz-
mann equation and then give the proofs of Theorem 1.1 and Corollary 1.3.

The construction of local-in-time solutions is based on the uniform estimate for a
sequence of iterative approximate solutions.

Theorem 5.1. Let anyl >0, lo > 3/b, 9 € [0,1] and 7 > 0. If ¥ = 1, restrict 7 > 0 small
enough. There exist both € > 0 and T* > 0 small enough such that if

€l+loﬂ9(f0) < €,

then there exists a unique solution f(t,x,p) to the relativistic Boltzmann equation (1.11)
in [0,T%] x T3 x R3 such that

sup  €py1,,0(f)(s) < C€pyy0(f0)-
0<s<T™
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These solutions are continuous provided that it is so initially. We further have the posi-
twvity, i.e., F = J+\Jf >0 if Fy = J+VJfy > 0. Furthermore, the conservation laws
(1.19) hold for all t € (0,T*] if they are valid initially at t = 0.

Proof. We consider the following iterative sequence {F™(t,z,p)} by solving the original
relativistic Boltzmann equation (1.2):

{0y + P Vi }F" ™+ R(F™)F™" M = Qgain(F™, F™), (5.1)

with the initial data F"*1(0,2,p) = Fy(x,p) and starting with FO(t,x,p) = Fy(x,p).
Here we have used the notations

R(F™)F"t = FrHl(p) //v¢a(g, 0)F"(q)dgdw,
R3 §2
and
Quusn (B F") = [ [ voot0.0)F" ()P (g
R3 S2
Since F™"t(t,z,p) = J + VT fH1(t, z,p), equivalently f*+1(t,z,p) satisfies
{at + ﬁ : V.L + V(p)}fn+l = K(fn) + Fgain(fnv fn) - Floss(fn7 fn+1)7 (52)

with the initial data f*+1(0,z,p) = fo(x,p) for all n > 0 and with fO(¢,2,p) = fo(x,p).
The first goal of the proof is to get a uniform-in-n estimate for &, 9(f"1)(¢). The
crucial estimate is given as follows.

Lemma 5.2. Let any 1 >0, lo > 3/b, ¥ € [0,1] and 7 > 0. If 9 = 1, restrict 7 > 0 small
enough. There exist both € > 0 and T* = T*(¢) small enough such that

Criip,0(fo) <€ and  sup € 9 (f)(t) < CEyp0(fo), (5.3)
0<t<T*
we have
sup €00 (f" (1) < C€ig0(fo)- (5.4)
0<t<T*

Suppose that frL(t, x,p) = frTL(t, @, p) — f(t, 2, p). It holds that

~ 1 -
sup  Cryy o (fH)(E) < 5 sup Erag o (F7)(8). (5.5)
0<t<T* 0<t<T*
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Proof. Let w = w(l + lp,¥)(v) with lp > 3/b and Kog = wK(Z). If we suppose that
h" = wf™ and A"t = wf" ! we have from (5.2) that

A h™ h™ hn hn+1
{0, +p Ve +vp)}h"t = K, (h”)erFgam(w, ) — @lpss(—, ).

w w W

By Duhamel’s principle, we then expand out

t
h"*l(t,x,p) — e*l/(}?)tho(x _ ﬁt,p) + /eiu(p)(tisl)Kwhn(Sl,y1,p)d81
0

t
h™ h"
+/ef”(”)(t751)wfgam(g,g)(sl,yl,p)dsl

(b= hn hn+1
/6 p)( Sl)'[E]:‘loss( P )(31,y1,p)d81. (56)
0

Here y; = 2 — p(t — s1). By Lemma 2.3 and (4.8) we have for any ¢ € (0,7*)

t

/efy(p)(tfsl)Kwh"(sl,yl,p)dsl < Ct sup ||[Koh"(8)]|loo < CT* sup [|h"($)]co-
A 0<s<t 0<s<T*

By Lemma 2.7 we can obtain for any ¢t € (0,7*)

t
h™ R™
—v(P)(t=s)op (2 d
/6 w gmn(wa w)(shylap) 51
0

t . hn hn+1
+/ —v@)t=s) g, (1 )(s1,y1,p)ds1
w w
0

h™ R" R pntl
<C sup [v~ wrgam( s —)(8)|loc +C sup |lv~ wrloas( ) )(8)lloo
0<s<t w w 0<s<t w w

<C{ sup [[B"(5)]lo}? +C sup [[A"(s)[oc sup A" (5)lloo
0<s<T* 0<s<T* 0<s<T

By these estimates we have from (5.6) that for any t € (0,7*)

1B (O)]loo < [[holloo + CT* sup  [|B"(5)[loc + C{ sup [|h" ()00}
0<s<T* 0<s<T*

+C sup [[h"(s)[oe sup [[B"FH(s)]|oo- (5.7)
0<s<T™ 0<s<T*

If we choose € > 0 and T™* > 0 small enough, (5.4) follows from (5.3) and (5.7).
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Suppose that f*+1 = fr+l — fm and pntl = pntl — pr Then bt satisfies

5 ~ 1 hn+1 hn+1
D - Vz h" = K hn r ain )
{0 +p-Vao+vip)} (h") + @l gain(—— —
En—&-l hn hn pntl pn—1 En-i—l
+ wrgain(—a _) wrloss( ) ) - wrloss(—a )v
w w w w w w

with %”‘H(O, x,p) = 0. The similar arguments as for (5.7) imply that for any ¢ € (0,T*)
" (D)l < CT* sup A" (s)lloc +C sup [[R"H(s)]oo
0<s<T* 0<s<T*

(s )+ sup [1(5) oo+ sup (A7 (5) o)
0<s<T*

0<s<T* 0<s<T*
+C sup [h"(s)]eo sup [A"F(8) ] oo (5.8)
0<s<T* 0<s<T*

By using (5.3), (5.4) and (5.8), we have

~’ﬂ * ~’ﬂ 1 n
[R" 1 () loo < C(T* 4 €) sup  [[h"(s)]|oo < 7,5 IIh (8)[oo-
0<s<T* 0<s<

Here we choose both € > 0 and T™* > 0 small enough. This concludes the proof of (5.5)
and hence Lemma 5.2. O

By Lemma 5.2, { "} is a Cauchy sequence and the limit f is a desired solution. Now
for uniqueness, there is another solution f to the relativistic Boltzmann equation with
the same initial condition as f. Assume that supg<;<q« €41,.0(f)(t) is also sufficiently
small. Then the difference between h = wf and h =w f satisfies

:\
m\

h—

w

h —

{0y +p Ve +v(pHh—h} =Kg{h—h} +ol( ?).

o=

h

—)+ @l
w) @I
By the similar arguments as for (5.7), we can obtain

Ih—Hlle < OT* 1~ Bl + C( sup (Bl + sup [Allsc) sup b —hls.
<t< 0<t<T* 0<t<T*

Since T™* > 0, SupOStST*

hl|oo and supg<;<p- |2/l are small enough, we deduce h = h.
This completes the proof of the uniqueness.

Next we prove that the solution h(t,z,p) is continuous in [0,7*] x T3 x R3 by the
similar arguments as in [16]. We claim that A" *1(¢, z, p) is continuous in [0, T*] x T3 x R3
inductively. To prove this claim for any given fixed n, we can use another iteration to
solve the linear problem for A"t in (5.6) as the limit of n’ — oo:
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hn h'rl

{8t+ﬁ~vm+u(p)}h"+l’”'+1 K, hn-i—ln + F(
w’ w

)-

By induction in n’, k"1™ *+1 is continuous in [0,7%] x T? x R?, and by Corollary 2.6,
it is standard to verify that KL Xh"*t17" is continuous in [0, 7%] x T3 x R3. It follows
from (4.7), (4.6) and (2.27) that

/1|p|+|q|zzv|k3é(p, q)ldg < Cnr(p).

R3

By (4.7), (4.6) and (2.19), we can choose kx(p,q) smooth with compact support such
that for some ¢ > 0 and some large N > 0,

C
sup [ K .0) ~ kv (pr)lda < -
[pI<N

lg|<N

By the above two estimates and the induction hypothesis on continuity of R’ in
[0,7%] x T3 x R3, it is also routine to verify that KXA"t1"" is continuous in [0, 7] x
T3 x R3. From Lemma 2.5 and the induction hypothesis on continuity of h™ in [0, 7] x
T3 x R3, it is also straightforward to verify that wF[%, %] is continuous in [0, T*] x
T3 x R3. By the similar equation as (5.6), we deduce that R TLn '+ s continuous in
[0,7%] x T? x R3. Finally we have

{at +]§ . vm 4 l/(p)}{hn+1,n'+1 _ hn-i—l,n/} _ Kw{hn—i-l,n/ o hn-‘rl;ﬂ'—l}.

It follows from (5.6), (5.7), (2.21), Corollary 2.6 and the above equation that

sup ||hn+1,n’+1(t) _ hn+1,n o < C/ ||hn+1 n’ hn+1 n 71( )Hoods
0<t<T™

(cr)”

<. <
-~ n’!

Therefore, {h"+17"} is Cauchy in L, and its limit A"t is continuous in [0, 7] x T3 x R3.
We conclude our claim. We can then deduce that as the limit of A"+, h preserves the
continuity in [0,7*] x T? x R? from uniform convergence

Finally we show the positivity of F(t,z,p) = J(p) + /J(p)f (¢, z,p). As for obtain-
ing (5.6), for (5.1) we may also write it as the mild form

F(t, 2, p) = elo R (sva=psin)ds gy (¢ 0 — pt, p)

/ j F ) T P527p)dS2ngn<sl’ T — ﬁ(t - 81)7P)d81~
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By this and induction on n, F**1 > 0 if F™ > 0. This implies that the limit F > 0 if
the initial data Fy > 0. Since supgc <= €141,.0(f)(s) < Ce, f(t,z,p) is bounded and
continuous [0, 7*] x T? x R3. By these it is straightforward to verify that classical mass,
total momentum and total energy conservations hold for such solutions constructed. We
thus conclude Theorem 5.1. 0O

Proof of Theorem 1.1. There exists ¢ > 0 small enough such that Theorem 5.1 is valid.
We choose a constant C7 > 1 such that for any ¢ > 0,

SR < (DO < CIFOIR.
From Theorem 5.1, we may denote T' > 0 so that for some constant Cjy > 0,
T = igg{t : Crpy 0 (f)(t) < Coe} > 0.
Set M = Cye where M is as in Lemma 3.4. By Lemma 3.4 we can obtain that
S IF @9 < Ca S Ea(F)(t) < Ci&o(fo) < CEllfollls < CTELL, 9(fo)-
By this and Lemma 4.1 we have

sup €py50.0(f)(t) < CEyyp0(fo) + sup [If(B)llw + C{ sup €y 0(f)(1)}
0<t<T 0<t<T 0<t<T

< (C+ C1)€p41y,0(fo) + CCoe sup €1, 9(f) (1)
0<t<T
If we choose both € > 0 and €1, 9(fo) small enough, we have that

C+C
sup €y 0(f)(t) < -

006
i < Coe .
0<t<T - 1- Ccoeelﬂo,ﬁ(fo) =5 < Cope

We thus deduce T' = oo from the continuity of ;4 ¢(f)(t), and the existence of global
solution follows.

Next we will prove the exponential decay of the global solution to (1.11) by using
the similar idea as [31,2,3]. The key point is to split &(f)(¢) into a time dependent low
momentum

Eo={po < pt”}, and E§={po>pt"}. (5.9)

Here ' > 0 and p > 0 will be chosen later.
Let E°(f)(t) be the instant energy &(f)(t) restricted to Ey. Then we have that

Di(f)(t) > Cp~ /24700 2glow () 1)
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By this and (3.12) with ¢ = 0 we can obtain
SEPD) +Co P PR (1) (0) <.
Letting &""(f)(t) = E(f)(t) — €[ (f)(t), we have
SEF)) + Co P PE(f)(0) < Op b PER () o),
Define \g8 = Cp~/? and f — 1 = —bp3’/2 where ' > 0 will be chosen later. Then

%a(f)(@ F 2B TLE(F) () < MoBPTLEN (1)),
This implies that

d

2 anm) < aopr e g () 1),

It follows from this that
t
(N0 < e (&(fo) + 2o / ST g (£) (5)ds ). (5.10)
0

Notice that 8 — 1 = —bf’/2. Letting 98’ = 3, then 8 = 19_%. It follows from (3.12) that
2
Eo(f)(s) < & w(fo). By these facts we can obtain

hzgh ‘rpg
// |fsmp\dpdx<// 2TpﬁM/po|f(sxp)| dpdx

s Fe T3 E§
- e—QTp%M,&,ﬂ(f)(S) <e 2" & 5 (fo)-

Further choose p > 0 large enough so that \y = %p‘b/g < 27pY. With this we have from
the above inequality that

t t

/sﬁfle%sﬁelh"gh(f)(s)ds < el,ﬂ(fo)/sﬁflekosﬁe*fﬂﬁsﬁds <C&(fo).  (5.11)

0 0

By (5.10) and (5.11) we see that (1.20) holds. This then completes the proof of Theo-
rem 1.1. O

Proof of Corollary 1.3. We only deduce the a priori estimate. Multiply f by (1.22),
integrate over R3 to get
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1d

§E\f|§+5I(I—P)f|3 <(T(f, 1), f)- (5.12)

Due to the fact that fo € A+, it holds that f € Nt and Pf = 0. By Corollary 2.6 it
follows that

(L(f, 1), f) < C&L(NHOIFI

By these facts it follows from (5.12) that
d o 2 = 2
o1 fl2 + 0l flo < C&, () DF]L- (5.13)

Multiply w?(1,9)(p)f by (1.22), integrate over R? to get

%%If Lo T 11009 — (@KL, ) < (@S, ), ] (5.14)

It follows from Lemma 2.1 that, for any n > 0
(@ (LK, )] < Cnlfl} 10+ CIFIL.
It follows from Corollary 2.6 that
(@ LTS, 1) )] < CCriag o (NI 1,0

By plugging these estimates into (5.14), we have that

d _
%|f|l2,19 + 51|f\3,z,19 < C€l+loﬂ9(f)(t)‘f|12/,l,ﬂ +CIf2 (5.15)

By using a suitable linear combination of (5.13) and (5.15) and assuming that
&4 1,.9(f)(t) is small enough, we have

CEH (W) +Dia(H) <0 (5.16)

Here Dy »(f)(t) is (1.24) and &, 4(f)(t) is defined as

Eo()(t) =CIf3+1f

Lo ~ | flL-

To close the a priori estimate, the similar arguments as for Lemma 4.1 imply that for
any T > 0, if fo € Nt and &y, 9(fo) is small enough, the solution f(t,p) to the
equation (1.22) satisfies

sup €pp1,0(f)(t) < C€ypy9(fo) +C sup {€ryp,0(f)()} +C sup [f(s)lo-
0<s<T 0<s<T 0<s<T

(5.17)



R. Duan, H. Yu / Advances in Mathematics 312 (2017) 315-373 367

Once we obtain (5.16) and (5.17), the similar arguments as for Theorem 1.1 conclude
the proof of Corollary 1.3. O

6. Propagation of spatial regularity

In this section we will show the propagation of space regularity and also the large
time behavior of the higher-order energy functional of global solutions obtained in The-
orem 1.1.

Proof of Theorem 1.2. Since the local solution obtained in Theorem 5.1 is unique, we
can use the proof of Theorem 5.1 and the assumption of Theorem 1.2 to prove the
propagation of space regularity. We omit the proof for simplicity and we focus on the
uniform bounds and the large time behavior of the higher-order energy functional of
global solutions. We shall use induction in the nonnegative integer N. The case N = 0
is just a direct consequence of Theorem 1.1. Suppose that Theorem 1.2 is true up to the
case k < N — 1, that is, it holds that for all nonnegative integers k < N — 1,

%&e,l,ﬂ(f)(t) + Dio(f)()

<C D AN + € i o (D)} Diomuo (), (6.1)
0<m<[%]

and there exist positive constants Cj, C}/ and a decreasing number sequence A, > 0 such
that

sup Crino(f)(t) <CL and  E(f)(t) < Cle ™ > 0. (6.2)

0<t<o0o

We need to show the theorem in the case k = N. Letting G = I'(f, f) in (3.10), multi-
plying (3.10) by [£|?" and integrating over ¢ yield

d a r12 |€‘2N+1 . R a r)12

la|=N |a]=N

/|£|2NR d£+CZ/IEI2NI D eol2de. (63)

(=173
By Lemma 2.5 and the properties of the Fourier transform, it follows that
/\£I2NRf FU D] < € 3 1@0°T(f, £),0% )
loe|=N

<C Z Cnitto 0 (F)E)DN—m1,0(f)(t)-

0<m<[5]
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Similarly one has from Lemma 2.4 that

/\€|2N| Fheafic<c Y [ 10T 1) el

la|= st

<C Z em’l+l0’r,9(f)(t)DN7m,lﬂ9(f)(t)'

0<m<[4]

Plugging the above two estimates into (6.3) gives

>N+

[Z o £11? - [ 157 <i5(w)f,f>d£] +01 > 10°fI

la|]=N la|=N

<C Z { €t 0 () + €0 11100} DN _mpo(f)(E). (6.4)

0<m<[ 5]

We take the 9% of (1.11), multiply w?(I,9)(p)0“ f by the resulting equation, and integrate
it over T2 x R3 to deduce the following estimate

S {5l 12 + @@L 1,070} = (221 DT, 1,0 (65)

la]=N

Notice that Lemma 2.1 implies
(@*(1,0)LO* f,0°f) = |0° fII} 1,0 — (@ (1, ) KO f,0°f) > ”aafHulﬁ Cllocfl,
and also Lemma 2.5 implies

(@ (L,O)IT(f, £),0°F) < C > gt H)ODN—mio(f)(1).

0<m<[ 5]

Plugging the above estimates into (6.5), one has

S {10 A1 + 10° 1210 — ClO™ 1)

le|=N

<C Y Crto (N ODN-mo (). (6.6)

0<m<[§]

A suitable linear combination of (6.4) and (6.6) yields

SEnL()(0) + Dy (1))
<C > A€o (N + €Ly o (HOYDN mro (), (6.7)

0<m<[F]
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where Dy ;.9(f)(t) is given in (1.18) and En9(f)(¢) is defined as

|£|2N+1

T ep @), e

Exao(H)B) = Y 10°fl7s+2C Y 110°f|° = 2Cx

la|=N la|=N 7

Since S(w) is bounded, it holds that

‘ |§|2N+1

e S g < 3T oI
73

|a]=N

Further due to the fact that x > 0 is small enough, one can see Eno(f)(t) ~
2 lal=N ||8af||l2’19. This concludes the proof of (6.1) for k = N.
Recall by Theorem 1.1 that &4, ¢(f)(¢) is small enough. It follows from (6.7) that

d

E&,z,ﬁ(f)(t) + D119 (f)(t) <0. (6.8)

For N > 2, one has

d

%51\!71,19(]")@) + DN (f)(t)

<C Y Al (HE) + €1 o (HDOYDN—m10(f)(E). (6.9)

1<m<[4]

As €144, 9(fo) is small enough, it follows from (3.12) that

Eua(PE)+ [ DLo(Ps)ds < Eualf) < Oy oo, (6.10)

and hence by (6.8), (6.9) and the induction assumption, we have from (6.1) that for any
k| <N -1,

t

Eraw(f)() + /Dk,l,ﬂ(f)(s)ds <C. (6.11)

0

By using (6.10), (6.11) and the induction assumption again, we have from (6.8) and (6.9)
that

Enao(f)(t) + /DN,l,ﬁ<f)(3)d3 <C. (6.12)
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In terms of (4.2), (4.3), (6.10), Lemma 2.3 and Lemma 2.7, the similar arguments as in
the proof of Lemma 4.1 imply that for any 7" > 0,

sup Eniti0.0(f)(t) < CEn i 0(fo) +C sup Y [0 f(s)]|
0<s<T 0<s<T | 5=y

+C{ sup €0 (f)OH sup Ena(HOF+HCL D sup Epupa(f)()}

0<s< 0<s< |<hon_10Ss<T

Notice that €4, 9(fo) is small enough. By using (6.2) and (6.12) we have from the above
inequality that for some constant C'y > 0,

sup € i41,.0(f)(t) < Cly.

0<t<oo

Next we shall prove the exponential time decay for the Nth-order spatial derivative
of the solution. Let ¥ = 0 in (6.9). We have from (6.2) that for N > 2,

LEDNH DN SC Y DalNOSC Y Enilh)

[F1<m<N-1 [§]<m<N-1

(6.13)

where we have used (1.17), (1.18) and the fact that v(p) < C. For any m € {1,2,..., N},
as (5.9), we define

={po < (2"p)t?'} and ES, = {po > (2" p)t"'}.
Let Sl"“’( f)(t) be the instant energy restricted to Ex. Then we have that
D a(£)(t) = C@Np) 2 RPEGY (£)(1).

Define Ay = C(2V p)~%/2. Recalling # —1 = —bB’/2, we have from this and (6.13) that

L ena(F)(®) + AnBE T Ena(1)(E) < AP TIEN (£)(8) + C Yo (D).

dt
[F]<m<N-1

where ng?h(f)(s) is the instant energy functional En ;(f)(s) restricted to the set E. It
follows from the above inequality that

t
Ex i) < e (Exalfo) +AwB [ 51N ERH () (5)ds
0
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t

+c Y / e*NS‘*em,l(f)(s)ds). (6.14)

[F]<m<N-17

Choose p > 0 large enough so that for m € {1,2,..., N},
C
A = E(2%)—"/2 < 2r(2mp)?. (6.15)

Then )\, is decreasing in m. By (6.2) we have that for m < N,

t t
/e)‘NSﬁEm,l(f)(s)ds < C%/eANsﬁe*Amsﬁds <cr. (6.16)
0 0

Notice that

/
ﬁsﬁﬂ

ENIM(F)(s) < 72T ey (f)(s) < Cem2 @ ey (fo).

By this we can obtain from (6.15) that

t t
/Sﬂ—le)\Nsﬁ g]]’\b[l,?h (f) (S)ds é CSN,lﬂ? (fO) /85—16)\1\7356—2T(2Np)1935 ds S OgN’lﬂg(fO),
0 0

(6.17)

It follows from (6.12), (6.14), (6.16) and (6.17) that
Ena(f)(t) < Cle ",

This completes the proof of Theorem 1.2 for the case N > 2. In the case N = 1, one can
use (6.8) and the similar proof as (5.9) and (5.10) to get the desired results. This then
completes the proof of Theorem 1.2. O
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