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1. Introduction

The relativistic Boltzmann equation, which is a fundamental model describing the 
motion of fast moving particles in kinetic theory, takes the form of

P ⊗ ∂XF = −C(F, F ). (1.1)

Here ⊗ represents the Lorentz inner product (+ −−−) of 4-vector. As is customary we 
write X = (x0, x) with x ∈ T3 and x0 = −t, and P = (p0, p) with momentum p ∈ R3

and energy p0 =
√

c2 + |p|2, where c denotes the speed of light. For convenience of 
presentation, we rewrite (1.1) supplemented with initial data as

∂tF + p̂ · ∇xF = Q(F, F ), F (0, x, p) = F0(x, p), (1.2)

with Q(F, F ) = C(F, F )/p0, where the unknown F = F (t, x, p) stands for the density 
distribution function of time t ≥ 0, space x ∈ T3 and momentum p ∈ R3. Here the dot 
represents the standard Euclidean dot product, and the normalized velocity of a particle 
is denoted as

p̂ = c
p

p0
= p√

1 + |p|2/c2
.

It is known that the constant equilibrium state of (1.1) is the global relativistic 
Maxwellian, also called the Jütter solution, in the form of

J(p) = exp{−cp0/(kBT )}
4πckBTK2(c2/(kBT ) ,

where K2(z) := z2

2
∫∞
1 e−zt(t2 − 1)3/2dt is the Bessel function, T is temperature and 

kB is the Boltzmann’s constant. For notational simplicity we normalize all the physical 
constants to be one. Then the normalized global relativistic Maxwellian takes the form 
of

J(p) = e−p0

, p0 =
√

1 + |p|2. (1.3)
4π
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Moreover, to describe the relativistic Boltzmann collision term, we introduce the relative 
momentum g as

g = g(p, q) =
√

2(p0q0 − p · q − 1), (1.4)

and also the quantity s as

s = s(p, q) = g2 + 4 = 2(p0q0 − p · q + 1). (1.5)

The Mφller velocity is given by

vφ = vφ(p, q) =

√∣∣∣ p
p0

− q

q0

∣∣∣2 − ∣∣∣ p
p0

× q

q0

∣∣∣2 = g
√
s

p0q0
. (1.6)

Then we may express the collision operator Q(F, G) in the form (see [7,12,14])

Q(F,G) =
∫
R3

∫
S2

vφσ(g, θ)[F (p′)G(q′) − F (p)G(q)] dqdω, (1.7)

where dω is the surface measure on the unit sphere S2 in R3, and σ(g, θ) is the scattering 
kernel. As is standard, we abbreviate F (t, x, p) by F (p), etc., and use primes to represent 
the results of collisions. The conservation of momentum and energy is

p′ + q′ = p + q, (1.8)√
1 + |p′|2 +

√
1 + |q′|2 =

√
1 + |p|2 +

√
1 + |q|2, (1.9)

for any p, q ∈ R3. Finally, the scattering angle θ is defined as follows. Given 4-vectors 
P = (p0, p) and Q = (q0, q), with the Lorentz inner product, the angle θ is given by

cos θ = (P −Q) ⊗ (P ′ −Q′)
(P −Q) ⊗ (P −Q) .

Here q0 =
√

1 + |q|2 and q′0 =
√

1 + |q′|2. As in [28], by (1.8) and (1.9), the post-
collisional momentum can be written:⎧⎪⎪⎨⎪⎪⎩

p′ = p + q

2 + g

2

(
ω + (�− 1)(p + q) (p + q) · ω

|p + q|2
)
,

q′ = p + q

2 − g

2

(
ω + (�− 1)(p + q) (p + q) · ω

|p + q|2
)
,

(1.10)

where � = (p0 + q0)/
√
s. The energies are then⎧⎪⎪⎨⎪⎪⎩

p′0 = p0 + q0
2 + g

2
√
s
ω · (p + q),

q′0 = p0 + q0 − g√ ω · (p + q).
2 2 s
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For a smooth function F (p) the collision operator satisfies

∫
R3

( 1
p
p0

)
Q(F, F )(p) dp = 0.

With this identity in hand, by integrating the relativistic Boltzmann equation (1.2), we 
obtain the conservation of mass, momentum and energy for solutions as

d

dt

∫
T3

∫
R3

( 1
p
p0

)
F (t, x, p) dpdx = 0.

We define the standard perturbation f(t, x, p) to the relativistic Maxwellian (1.3) as 
F = J +

√
Jf . The Cauchy problem on the relativistic Boltzmann equation (1.2) for 

f(t, x, p) is given by

∂tf + p̂ · ∇xf + Lf = Γ(f, f), f(0, x, p) = f0(x, p). (1.11)

Here the standard linearized collision operator L is (see [7,12])

Lf = − 1√
J
Q(J,

√
Jf) − 1√

J
Q(

√
Jf, J) = ν(p)f −Kf.

Above the multiplication operator takes the form

ν(p) =
∫
R3

∫
S2

vφσ(g, θ)J(q) dqdω. (1.12)

Notice that K = K2 −K1 is given by [7,12]:

K1f =
∫
R3

∫
S2

vφσ(g, θ)
√

J(q)J(p)f(q) dqdω,

and

K2f =
∫
R3

∫
S2

vφσ(g, θ)
√

J(q){
√
J(q′)f(p′) +

√
J(p′)f(q′)} dqdω.

The nonlinear collision operator Γ(f1, f2) is defined by

Γ(f1, f2) = 1√
J
Q(

√
Jf1,

√
Jf2) =

∫
R3

∫
S2

vφσ(g, θ)
√

J(q)[f1(p′)f2(q′) − f1(p)f2(q)] dqdω.

(1.13)
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We now state the conditions on the collisional cross-section as in [7,28]:

Hypothesis on the collision kernel: For soft potentials we assume the collision kernel 
σ(g, θ) in (1.7) satisfies the following growth/decay estimates:

c1

( g√
s

)
g−bσ0(θ) ≤ σ(g, θ) ≤ c2g

−bσ0(θ). (1.14)

We consider b ∈ (0, 2) and angular factors 0 ≤ σ0(θ) ≤ C sinγ θ with γ ≥ 0. Additionally 
σ0(θ) should be non-zero on a set of positive measure.

This hypothesis for soft potentials contains the general physical assumption on the 
kernel which was introduced in [7] (and we add the corresponding necessary lower bounds 
as in [28], where 0 < b < min{4, 4 + γ} is supposed). Due to some technical reason, we 
impose that the collision kernel satisfies the above assumptions, particularly 0 < b < 2
for consideration of soft potentials.

It is well known that the linearized collision operator L is non-negative and self-adjoint. 
And for fixed (t, x), the null space of L is given by

N = span{
√
J, p1

√
J, p2

√
J, p3

√
J, p0

√
J}. (1.15)

Define P as the orthogonal projection in L2(R3
p) to the null space N and N⊥ denotes the 

orthogonal complement of the null space N . Any function f(t, x, p) can be decomposed 
into

f(t, x, p) = Pf(t, x, p) + (I − P)f(t, x, p),

where (t, x) is taken as a parameter. According to the basis in (1.15), it holds that

Pf(t, x, p) = {af (t, x) +
3∑

j=1
bfj (t, x)pj + cf (t, x)p0}

√
J.

To present the results in this paper, the following notations are needed. Let α =
[α1, α2, α3] and ∂α ≡ ∂α1

x1
∂α2
x2

∂α3
x3

. If each component of α is not greater than the corre-
sponding one of α, we use the standard notation α ≤ α. And α < α means that α ≤ α

and |α| < |α|. Cᾱ
α is the usual binomial coefficient. In addition, 〈·, ·〉 is used to denote the 

standard L2 inner product in R3
p, and (·, ·) for the one in R3

x × R3
p. | · |2 denotes the L2

norm in R3
p, and ‖ · ‖ denotes the L2 norms in R3

x or R3
x ×R3

p without any ambiguity in 
the following discussion. And C denotes a generic positive constant which may vary from 
line to line. The notation A ∼ B means that there exist two generic positive constants 
C1 < C2 such that C1B ≤ A ≤ C2B.

Define a weight function in p by

� = �(l, ϑ)(p) ≡ p
lb
2
0 exp

(
τpϑ0

)
.



320 R. Duan, H. Yu / Advances in Mathematics 312 (2017) 315–373
Here l ∈ R, τ > 0 and ϑ ∈ [0, 1]. Denote the L2 norms as

|f |22 =
∫
R3

|f(p)|2 dp, ‖f‖2 =
∫
T3

|f |22 dx,

and the weighted L2 norms as

|f |2l,ϑ =
∫
R3

�2(l, ϑ)|f(p)|2 dp, ‖f‖2
l,ϑ =

∫
T3

|f |2l,ϑ dx.

Define the weighted dissipation norm as

|f |2ν,l,ϑ =
∫
R3

�2(l, ϑ)ν(p)|f(p)|2 dp, ‖f‖2
ν,l,ϑ =

∫
T3

|f |2ν,l,ϑ dx.

We also work with the L∞ norms

|f |∞ = ess sup
p∈R3

|f(p)|, ‖f‖∞ = ess sup
x∈T3,p∈R3

|f(x, p)|,

|f |∞,l,ϑ = ess sup
p∈R3

|�(l, ϑ)f(p)|, ‖f‖∞,l,ϑ = ess sup
x∈T3,p∈R3

|�(l, ϑ)f(x, p)|.

If some index is zero, we drop the index, for example, ‖f‖ν,l,0 = ‖f‖ν,l if ϑ = 0 and the 
same for the other norms.

Corresponding to the linearized operator L, it is shown in [28] or Remark 2.2 that 
there exists a constant δ > 0 such that

〈Lf, f〉 ≥ δ|(I − P)f |2ν . (1.16)

For any nonnegative integer N , we define the following instant functionals as

EN,l,ϑ(f)(t) =
∑

|α|=N

‖∂αf(t)‖∞,l,ϑ, EN,l,ϑ(f)(t) ∼
∑

|α|=N

‖∂αf(t)‖2
l,ϑ. (1.17)

Correspondingly, the energy dissipation functional DN,l,ϑ(f)(t) satisfies

DN,l,ϑ(f)(t) ∼
∑

|α|=N

‖∂αf(t)‖2
ν,l,ϑ. (1.18)

We will also write E0,l,ϑ(f)(t) = El,ϑ(f)(t), EN,l,0(f)(t) = EN,l(f)(t) and also for the 
other functionals.

By assuming that initially F0(x, p) has the same mass, momentum and total energy 
as the relativistic Maxwellian J(p), then for any t ≥ 0,



R. Duan, H. Yu / Advances in Mathematics 312 (2017) 315–373 321
∫
T3

∫
R3

( 1
p
p0

)√
J(p)f(t, x, p) dpdx = 0. (1.19)

We are now ready to state the main results of the paper. The first one concerns the expo-
nential rate of convergence in terms of the L2 energy functional El(f)(t) for global-in-time 
solutions which exist in L∞ perturbation framework as proved in [28].

Theorem 1.1. Let l ≥ 0, l0 > 3/b, ϑ ∈ [0, 1] and τ > 0. If ϑ = 1, restrict τ > 0
small enough. Choose initial data F0(x, p) = J(p) +

√
J(p)f0(x, p) ≥ 0 such that f0(x, p)

satisfies (1.19) and is continuous in T3 × R3. There exists an instant L∞ functional 
El+l0,ϑ(f)(t) such that if El+l0,ϑ(f0) is sufficiently small, there exists a unique global 
solution f(t, x, p) to the relativistic Boltzmann equation (1.11) with F (t, x, p) = J(p) +√

J(p)f(t, x, p) ≥ 0 and

sup
0≤t<∞

El+l0,ϑ(f)(t) ≤ CEl+l0,ϑ(f0).

Moreover, there exist instant L2 functionals El,ϑ(f)(t) and Dl,ϑ(f)(t) as (1.17) and (1.18)
such that

d

dt
El,ϑ(f)(t) + Dl,ϑ(f)(t) ≤ 0,

for all t ≥ 0. In particular, if ϑ > 0 and β = ϑ
ϑ+ b

2
, there exists a constant λ0 > 0 such 

that for all t ≥ 0,

El(f)(t) ≤ Ce−λ0t
βEl,ϑ(f0). (1.20)

The second result is further related to the exponential rate of convergence in terms of 
the higher order L2 energy functional EN,l(f)(t) under the additional assumption that 
the momentum-weighted L∞ norms of the higher order spatial derivatives of the initial 
data are bounded, not necessarily small.

Theorem 1.2. Let all assumptions of Theorem 1.1 hold true. Suppose further that 
EN,l+l0,ϑ(f0) ≤ CN for some N ∈ {1, 2, ...}, where CN is finite, not necessarily small. 
Then there exists a constant C ′

N > 0 such that

sup
0≤t<∞

EN,l+l0,ϑ(f)(t) ≤ C ′
N .

Moreover, there exist instant L2 functionals EN,l,ϑ(f)(t) and DN,l,ϑ(f)(t) as in (1.17)
and (1.18) such that

d EN,l,ϑ(f)(t) + DN,l,ϑ(f)(t)

dt
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≤ C
∑

0≤m≤[N2 ]

{Em,l+l0,ϑ(f)(t) + E2
m,l+l0,ϑ(f)(t)}DN−m,l,ϑ(f)(t),

for all t ≥ 0. In particular, if ϑ > 0 and β = ϑ
ϑ+ b

2
, there exist constants C ′′

N > 0 and 

λN > 0 such that for all t ≥ 0,

EN,l(f)(t) ≤ C ′′
Ne−λN tβ .

In the spatially homogeneous setting, namely when F = F (t, p), the equation (1.2)
simplifies into the following form

∂tF = Q(F, F ), F (0, p) = F0(p). (1.21)

Correspondingly the linearized equation (1.14) simplifies into the following equation

∂tf + Lf = Γ(f, f), f(0, p) = f0(p). (1.22)

As before, we define the following instant functionals as

El,ϑ(f)(t) = |f(t)|∞,l,ϑ, E l,ϑ(f)(t) ∼ |f(t)|2l,ϑ, (1.23)

and the energy dissipation functional DN,l,ϑ(f)(t) satisfies

Dl,ϑ(f)(t) ∼ |f(t)|2ν,l,ϑ. (1.24)

By the similar arguments as for showing Theorem 1.1, we have the following conver-
gence rate result for the spatially homogeneous equation (1.21).

Corollary 1.3. Let l ≥ 0, l0 > 3/b, ϑ ∈ [0, 1] and τ > 0. If ϑ = 1, restrict τ > 0
small enough. Choose initial data F0(p) = J(p) +

√
J(p)f0(p) ≥ 0 such that f0(p) ∈ N⊥

and is continuous in R3. There exists an instant L∞ functional El+l0,ϑ(f)(t) such that 
if El+l0,ϑ(f0) is sufficiently small, there exists a unique global solution f(t, p) to the 
relativistic Boltzmann equation (1.22) with F (t, p) = J(p) +

√
J(p)f(t, p) ≥ 0 and

sup
0≤t<∞

El+l0,ϑ(f)(t) ≤ CEl+l0,ϑ(f0).

Moreover, there exists an instant L2 functional E l,ϑ(f)(t) as in (1.23) such that if ϑ > 0
and β = ϑ

ϑ+ b
2
, then it holds that

E l(f)(t) ≤ Ce−λ0t
βE l,ϑ(f0),

for all t ≥ 0, where λ0 > 0 is a constant.



R. Duan, H. Yu / Advances in Mathematics 312 (2017) 315–373 323
In what follows we would mention some mathematical results related to the topic 
of the paper. A brief history of relativistic kinetic theory (cf. [4,14]) was given in [28]; 
interested readers may refer to that paper and references therein. Here, as far as the 
relativistic Boltzmann equation is concerned, we only recall the local-in-time solution [1], 
solutions and hydrodynamics for the linearized equation [7,6], large-data solutions [8,24]
by DiPerna-Lions’ renormalized theory [5], small-data solutions near vacuum [11,27], 
asymptotic stability of the relativistic Maxwellian for hard potentials [12,13,21,23,36,37]
and for soft potentials [28,32], and stability of solutions with respect to initial data [20,
18,19].

One of motivations in the paper is due to the work [28] mentioned above, where 
the unique global-in-time small-amplitude mild solution in the momentum weighted L∞

framework (cf. [16]) was constructed for the relativistic Boltzmann equation (1.11) with 
soft potentials, and the polynomial rate of convergence towards the steady state was also 
obtained. However, the exponential time-decay rate of global solutions has remained un-
known, even in the spatially homogeneous setting. On the other hand, for the classical 
Boltzmann equation with soft potentials, the existence and large-time behavior of so-
lutions near Maxwellians were studied either in the whole space [22,26,29,33] or in the 
torus [2,3,15,30,31]. Particularly, for the torus case, any smooth perturbation approaches 
zero at the rate of exp(−λtβ) for some λ > 0 and 0 < β < 1.

From those results on the large-time behavior of solutions to the Boltzmann equa-
tion in the torus for soft potentials mentioned before, one may see that the polynomial 
time-decay rate obtained by [28] for the relativistic case could be improved to be ex-
ponential by using similar techniques as in [2,3,31] for the classical case. Note that the 
method in [2,3] can not be directly used to treat the case of very soft potentials. More-
over, as for the approach in [31], one may need to make a crucial use of the momentum 
derivatives and Sobolev imbedding in order to control singularity of the collision kernel. 
However, as pointed out in [28,17], in the relativistic case, high derivatives of the post-
collisional variables (1.10) create additional high singularities which are hard to control. 
Also, derivatives of the post-collisional momentum exhibit enough momentum growth 
to make the method of [31] fail to be used. To overcome these difficulties, the main idea 
of [28] is to adapt the similar method from [16] in terms of the weighted L2 ∩ L∞ esti-
mates. As only the polynomial momentum weight functions are involved, the time-decay 
rates are only polynomial.

In the present work, for the Cauchy problem (1.11) on the relativistic Boltzmann 
equation for soft potentials in the torus, we try to first obtain the global existence of 
solutions in the setting of L∞

x,p with exponential weight functions of p. The method of 
the proof is a little different from those used in [2,3,31,28]. We shall directly work on the 
nonlinear equation in the space with the exponential weight function. Under the a priori 
assumption on the solution in the weighted L∞

x,p space, we first use the compensation 
function of the relativistic equation with soft potentials and the property of the torus to 
get L2

x,p estimates with the exponential weight function of p for the nonlinear equation. 
Then, as in [16] (also cf. [35]), we use the iterations of the solution for the nonlinear 



324 R. Duan, H. Yu / Advances in Mathematics 312 (2017) 315–373
equation so as to close the a priori assumption in L∞ space. Note that we would not 
devote ourselves to getting the time-decay rate in the space L∞

x,p as done in [28]. For 
completeness, we also give the proof of the local existence by the usual method and use 
the standard continuity argument to show the global-in-time existence. Once we obtain 
the global existence in the exponential p-weighted L∞ framework, we are able to adopt 
the method of [2,3,31] to obtain the exponential time-decay rate for soft potentials in L2

framework. Lastly we study the propagation of spatial regularity of the global solution 
under the assumption on the derivatives of the initial data being bounded, not necessarily 
small. And, we can also obtain the exponential time-decay rate of the derivatives of 
solutions as in [34], where the authors considered the similar problem of the classical 
Boltzmann equation for hard potentials.

The rest of the paper is organized as follows. In Section 2 we establish some basic 
estimates on linear and nonlinear terms. Then we obtain weighted L2 estimates and 
L∞ estimates on the nonlinear equation in Section 3 and Section 4, respectively. In 
Section 5, we first prove the local existence of solutions for the nonlinear equation and 
further obtain the global existence through uniform a priori estimates. Moreover, we 
prove the exponential time decay rate. Finally, in Section 6 we prove the propagation of 
the space regularity of the global solution and the exponential time decay of higher-order 
energy functionals.

2. Basic estimates

In this section, we will prove some basic estimates used to obtain global existence of 
solutions with an exponential weight in momentum p. We first start from the linearized 
operator K. We know from [7,12,28] that Kf = K2f − K1f , where K1 and K2 are 
integral operators defined by

Kif(p) =
∫
R3

ki(p, q)f(q) dq, i = 1, 2,

with the symmetric kernels

k1(p, q) =
∫
S2

vφσ(g, θ)
√

J(q)J(p) dω, (2.1)

k2(p, q) = Cs3/2

gp0q0

∞∫
0

e−l
√

y2+1σ
( g

sin(ψ/2) , ψ
)y(1 +

√
y2 + 1

)
√
y2 + 1

I0(jy) dy. (2.2)

Here C > 0 is a generic constant, the modified Bessel function of index zero is defined 
by
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I0(y) = 1
2π

2π∫
0

ey cos ϕdϕ,

and we are also using the simplified notation

sin ψ

2 =
√

2g
[g2 − 4 + (g2 + 4)

√
y2 + 1]1/2

,

and in addition

l = p0 + q0
2 , j = |p× q|

g
.

Next we will deduce some basic estimates on the operator kernels k1(p, q) and k2(p, q), 
for instance (2.7) and (2.18). Some techniques in the proof are from [12,28]. We first 
consider the simple kernel k1(p, q). By [12,28], we recall the following estimates:

[|p× q|2 + |p− q|2]1/2
√
p0q0

≤ g ≤ |p− q|, and g ≤ 2√p0q0. (2.3)

With (1.4), (1.5) and the Mφller velocity (1.6), we have

s = 4 + g2 ≤ Cp0q0, vφ = g
√
s

p0q0
≤ C. (2.4)

For b ∈ (0, 1], it follows from (2.3) and (2.4) that

vφg
−b =

√
s

p0q0
g1−b ≤ C

√
p0q0

p0q0
(p0q0)(1−b)/2 ≤ C(p0q0)−b/2. (2.5)

For b ∈ (1, 2), similarly we have that

vφg
−b =

√
s

p0q0
g1−b ≤ C

√
s

p0q0

(p0q0)(b−1)/2

|p− q|b−1 ≤ C
(p0q0)(b−2)/2

|p− q|b−1 . (2.6)

It follows from (1.14), (2.1), (2.5) and (2.6) that

k1(p, q) ≤ C
(
(p0q0)−b/2 + (p0q0)(b−2)/2

|p− q|b−1

)
e−

p0
2 − q0

2 . (2.7)

By using (1.12), (2.5) and (2.6), we can obtain that for any a > 0,

νa(p) ≡
∫ ∫

vφσ(g, θ)Ja(q)dqdω ∼ p
−b/2
0 ∼ ν(p). (2.8)
R3 S2
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By symmetry the same estimate holds if the roles of p and q are reversed. The full proof 
of this estimate above was given in [28, Lemma 3.1].

Next we consider the estimates of the operator kernel k2(p, q). We recall the following 
estimates in [12,28]:

C1√
s(1 + y2)1/4

≤ sin(ψ/2)
g

≤ C2

g(1 + y2)1/4
, (2.9)

and

y

2(1 + y2)1/2
≤ cos(ψ/2) ≤ 1. (2.10)

By the assumption (1.14), one has that

σ
( g

sin(ψ/2) , ψ
)
≤ C

( sin(ψ/2)
g

)b

sinγ ψ ≤ Cg−b sinb+γ(ψ/2) cosγ(ψ/2).

Since γ ≥ 0 and b ∈ (0, 2), we have from (2.9) and (2.10) that

g−b sinb+γ(ψ/2) cosγ(ψ/2) ≤ g−b(1 + y2)−(b+γ)/4.

Thus we can deduce from (2.2) and the above estimate that

k2(p, q) ≤
Cs3/2

g1+bp0q0

∞∫
0

e−l
√

y2+1yI0(jy)(1 + y2)−(b+γ)/4dy. (2.11)

To estimate the right hand side of (2.11), we define

K̃α(i, j) =
∞∫
0

e−l
√

y2+1yI0(jy)(1 + y2)α/4dy.

Then for α ∈ [−2, 2], it is known from [12,28] that

K̃α(i, j) ≤ Cl1+α/2e−c|p−q|. (2.12)

We also define

Ĩβ(l, j) =
1∫

0

e−l
√

y2+1y1−βI0(jy)dy.

Then for β ∈ [0, 2), we have

Ĩβ(l, j) ≤ Ce−c
√

l2−j2 ≤ Ce−c|p−q|/2. (2.13)
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By using (2.11), (2.12) and (2.13), for ζ = min{2, b + γ}, we can obtain

k2(p, q) ≤
Cs3/2

g1+bp0q0
(p0 + q0)1−ζ/2e−c|p−q|/2. (2.14)

As in [28], we can show that

(p0 + q0)e−c|p−q|/8 ≤ C(p0q0)1/2. (2.15)

We give the proof of (2.15) for completeness. If |p|2 ≤ |q| ≤ 2|p|, this inequality is obvious. 
If |p|2 ≥ |q|, then |p − q| ≥ |p|

2 and

(p0 + q0)e−c|p−q|/8 ≤ Cp0e
−c|p|/16 ≤ C.

If |q| ≥ 2|p|, then |p − q| ≥ |q|
2 and

(p0 + q0)e−c|p−q|/8 ≤ Cq0e
−c|q|/16 ≤ C.

Thus (2.15) holds. Noting that b ∈ (0, 2), γ ≥ 0 and ζ = min{2, b +γ}, one has from (2.15)
that

(p0 + q0)1−ζ/2

p0q0
e−c|p−q|/8 ≤ (p0 + q0)−b/2

p0q0
(p0 + q0)e−c|p−q|/8

≤ C(p0q0)−1/2(p0 + q0)−b/2. (2.16)

Noticing that s = 4 + g2 ≤ 4 + |p − q|2 from (2.3) and (2.4), we can obtain

s3/2e−c|p−q|/8 ≤ C. (2.17)

By using (2.3), (2.14), (2.16) and (2.17) we can obtain

k2(p, q) ≤ C

g1+b
(p0q0)−1/2(p0 + q0)−b/2e−c|p−q|/4

≤ C(p0q0)b/2

[|p× q|2 + |p− q|2](1+b)/2 (p0 + q0)−b/2e−c|p−q|/4. (2.18)

We remark that the estimates (2.7) and (2.18) of the operator K have the singularity 
near p = q. As the classical version [15], a cutoff function (2.19) is introduced to get rid 
of such a singularity.

Given a small ε > 0, choose a smooth cut-off function χ = χ(r) ∈ [0, 1] satisfying

χ(r) ≡ 1, for r ≥ 2ε; χ(r) ≡ 0, for r ≤ ε. (2.19)

We define by Kχ = Kχ
2 −Kχ

1 and
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Kχ
i f(p) =

∫
R3

kχi (p, q)f(q)dq =
∫
R3

χ(|p− q|)ki(p, q)f(q)dq, i = 1, 2. (2.20)

We also use the splitting K1−χ = K −Kχ.
In what follows we deduce the main estimates of the operator K, which will be used 

for the nonlinear L2 energy analysis.

Lemma 2.1. Let l ≥ 0, ϑ ∈ [0, 1] and τ > 0. If ϑ = 1, restrict τ > 0 small enough. For 
any small η > 0, the operator K can be split into

K = Kc + Ks,

where Kc is a compact operator in L2
ν. In particular for some large constant R > 0, we 

have

|〈�2(l, ϑ)Kch1, h2〉| ≤ Cη|1≤Rh1|2|1≤Rh2|2. (2.21)

Here 1≤R is the indicator function of the ball of radius R. Furthermore,

|〈�2(l, ϑ)Ksh1, h2〉| ≤ Cη|h1|ν,l,ϑ|h2|ν,l,ϑ. (2.22)

Proof. Since K = K2 − K1, Kc and Ks are to be constructed separately for both K1
and K2 so that Kc = K2c −K1c and Ks = K2s −K1s accordingly. We define

K2ch1(p) =
∫
R3

1|p|+|q|≤Rk
χ
2 (p, q)h1(q)dq.

By using (2.18) and (2.19) we can obtain

�2(l, ϑ)(p)1|p|+|q|≤Rk
χ
2 (p, q) ≤ CR,εe

−c′|p−q|1|p|≤R1|q|≤R.

The Hilbert–Schmidt theorem clearly shows that K2c is a compact operator in L2
ν , for 

any given ε > 0 and R > 0.
It follows from the above estimate and the Hölder’s inequality that

∣∣∣〈�2(l, ϑ)K2ch1, h2〉
∣∣∣ ≤ { ∫

R3×R3

dqdp�2(l, ϑ)(p)1|p|+|q|≤Rk
χ
2 (p, q)|h1(q)|2

}1/2

×
{ ∫
R3×R3

dqdp�2(l, ϑ)(p)1|p|+|q|≤Rk
χ
2 (p, q)|h2(p)|2

}1/2

≤ CR|1≤Rh1|2|1≤Rh2|2.

We also define
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K1ch1(p) =
∫
R3

1|p|+|q|≤Rk
χ
1 (p, q)h1(q)dq.

By using (2.20) and (2.7) we can obtain

�2(l, ϑ)(p)1|p|+|q|≤Rk
χ
1 (p, q) ≤ CR,εe

−c′p0−c′q01|p|≤R1|q|≤R.

Then we also obtain ∣∣∣〈�2(l, ϑ)K1ch1, h2〉
∣∣∣ ≤ CR|1≤Rh1|2|1≤Rh2|2.

The similar arguments as for K2c show that K1c is a compact operator in L2
ν . Thus Kc

is a compact operator in L2
ν and the estimate (2.21) holds.

Next we will prove the estimate (2.22). First we consider the operator K2. We define 
by K2s = Kχ

2s + K1−χ
2s , where

Kχ
2sh1(p) =

∫
R3

1|p|+|q|≥Rk
χ
2 (p, q)h1(q)dq,

and

K1−χ
2s h1(p) =

∫
R3

k1−χ
2 (p, q)h1(q)dq.

For the operator Kχ
2s, we have that

∣∣∣〈�2(l, ϑ)Kχ
2sh1, h2〉

∣∣∣ ≤ {∫
R3

|h1(q)|2dq
∫
R3

�2(l, ϑ)(p)1|p|+|q|≥R|kχ2 (p, q)|dp
}1/2

×
{∫
R3

�2(l, ϑ)(p)|h2(p)|2dp
∫
R3

1|p|+|q|≥R|kχ2 (p, q)|dq
}1/2

.

(2.23)

To estimate (2.23), we make some preparations. As in [12], we write q × p = p × (p − q)
and set r = |p − q|, |p × (p − q)| = |p|r sin θ. Then for any small ε > 0, one has

∫
R3

χ(|p− q|)e−c|p−q|/32

[|p× q|2 + |p− q|2](1+b)/2 dq ≤ C

∞∫
ε

π∫
0

e−cr/32r1−b sin θdθdr

[|p|2 sin2 θ + 1](1+b)/2

≤ Cε

π∫ sin θdθ

[|p|2 sin2 θ + 1](1+b)/2 . (2.24)

0
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As in [12], by explicit computation, the angular integral is O(p−b−ε
0 ) for large |p| and 

b ∈ (0, 2). Thus we can obtain that

∫
R3

χ(|p− q|)e−c|p−q|/32

[|p× q|2 + |p− q|2](1+b)/2 dq ≤ Cεp
−b−ε
0 . (2.25)

Notice that

{(p, q) : |p| + |q| ≥ R} ⊂ {(p, q) : |p| ≥ R

4 } ∪ {(p, q) : |p| ≤ R

4 , |q| ≥ 3R
4 }.

Thus we can obtain that

1|p|+|q|≥Re
−c|p−q|/32 ≤ (1|p|≥R

4
+ 1|p|≤R

4
1|q|≥ 3R

4
)e−c|p−q|/32 ≤ 1|p|≥R

4
+ e−cR/64.

(2.26)

To estimate the second integral of (2.23), for any η > 0, we have from (2.8), (2.18), (2.25)
and (2.26) that∫

R3×R3

1|p|+|q|≥R|kχ2 (p, q)|dq

≤
∫
R3

1|p|+|q|≥Rχ(|p− q|) c(p0q0)b/2

[|p× q|2 + |p− q|2](1+b)/2 (p0 + q0)−b/2e−c|p−q|/8dq

≤ Cp
b/2
0 (1|p|≥R

4
+ e−cR/64)

∫
|p−q|≥ε

e−c|p−q|/32

[|p× q|2 + |p− q|2](1+b)/2 dq

≤ Cp
−b/2−ε
0 (1|p|≥R

4
+ e−cR/64) ≤ Cην(p), (2.27)

where ε > 0 is small enough and R > 0 large enough. For the second integral of (2.23), 
we have that∫

R3

�2(l, ϑ)(p)|h2(p)|2dp
∫
R3

1|p|+|q|≥R|kχ2 (p, q)|dq ≤ Cη|h2|2ν,l,ϑ. (2.28)

Next we consider the first integral of (2.23). We first notice that

(p0

q0
)lbe−c|p−q|/16 ≤ Ce−c|p−q|/32, (2.29)

which is an immediate consequence of

p0 ≤ |p− q| + q0. (2.30)
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By the assumptions of the weight �2(l, ϑ)(p), we see from (2.29) and (2.30) that

�2(l, ϑ)(p)e−c|p−q|/8 = �2(l, ϑ)(p)
�2(l, ϑ)(q)�

2(l, ϑ)(q)e−c|p−q|/8

= (p0

q0
)lbe−c|p−q|/16e2τ(pϑ

0−qϑ0 −|p−q|ϑ)�2(l, ϑ)(q)e−c|p−q|/16+2τ |p−q|ϑ

≤ C�2(l, ϑ)(q)e−c|p−q|/32. (2.31)

It follows from (2.18), (2.20), (2.31) and (2.27) that∫
R3

�2(l, ϑ)(p)1|p|+|q|≥R|kχ2 (p, q)|dp

≤
∫
R3

1|p|+|q|≥R�
2(l, ϑ)(p) c(p0q0)b/2χ(|p− q|)

[|p× q|2 + |p− q|2](1+b)/2 (p0 + q0)−b/2e−c|p−q|/4dp

≤ �2(l, ϑ)(q)
∫
R3

1|p|+|q|≥R
c(p0q0)b/2χ(|p− q|)

[|p× q|2 + |p− q|2](1+b)/2 (p0 + q0)−b/2e−c|p−q|/8dp

≤ Cην(q)�2(l, ϑ)(q). (2.32)

For the first integral of (2.23), we have from (2.32) that∫
R3

|h1(q)|2dq
∫
R3

�2(l, ϑ)(p)1|p|+|q|≥R|kχ2 (p, q)|dp ≤ Cη|h1|2ν,l,ϑ. (2.33)

By using (2.28) and (2.33), for the operator K2s, we have from (2.23) that∣∣∣〈�2(l, ϑ)Kχ
2sh1, h2〉

∣∣∣ ≤ Cη|h1|ν,l,ϑ|h2|ν,l,ϑ. (2.34)

For the operator K1−χ
2s , we have that

∣∣∣〈�2(l, ϑ)K1−χ
2s h1, h2〉

∣∣∣ ≤
{∫
R3

|h1(q)|2dq
∫
R3

�2(l, ϑ)(p)|k1−χ
2 (p, q)|dp

}1/2

×
{∫
R3

�2(l, ϑ)(p)|h2(p)|2dp
∫
R3

|k1−χ
2 (p, q)|dq

}1/2
. (2.35)

It follows from (2.24) and (2.25) that

∫ (1 − χ(|p− q|))e−c|p−q|/32

[|p× q|2 + |p− q|2](1+b)/2 dq ≤ C

2ε∫ π∫
e−cr/32r1−b sin θdθdr

[|p|2 sin2 θ + 1](1+b)/2

R3 0 0



332 R. Duan, H. Yu / Advances in Mathematics 312 (2017) 315–373
≤ Cε2−b

π∫
0

sin θdθ

[|p|2 sin2 θ + 1](1+b)/2 ≤ Cε2−bp−b−ε
0 .

(2.36)

By using this, (2.8) and (2.18), we can obtain

∫
R3

|k1−χ
2 (p, q)|dq ≤

∫
R3

c(p0q0)b/2(1 − χ(|p− q|))
[|p× q|2 + |p− q|2](1+b)/2 (p0 + q0)−b/2e−c|p−q|/8dq

≤ Cp
b/2
0

∫
R3

(1 − χ(|p− q|))
[|p× q|2 + |p− q|2](1+b)/2 e

−c|p−q|/32dq ≤ Cε2−bν(p).

(2.37)

For the second integral of (2.35), we have from (2.37) that∫
R3

�2(l, ϑ)(p)|h2(p)|2dp
∫
R3

|k1−χ
2 (p, q)|dq ≤ Cε2−b|h2|2ν,l,ϑ. (2.38)

It follows from (2.18), (2.31) and (2.37) that∫
R3

�2(l, ϑ)(p)|k1−χ
2 (p, q)|dp

≤
∫
R3

�2(l, ϑ)(p) c(p0q0)b/2(1 − χ(|p− q|))
[|p× q|2 + |p− q|2](1+b)/2 (p0 + q0)−b/2e−c|p−q|/4dp

≤ C�2(l, ϑ)(q)
∫
R3

c(p0q0)b/2(1 − χ(|p− q|))
[|p× q|2 + |p− q|2](1+b)/2 (p0 + q0)−b/2e−c|p−q|/8dp

≤ Cε2−bν(q)�2(l, ϑ)(q). (2.39)

We have from (2.35), (2.38) and (2.39) that∣∣∣〈�2(l, ϑ)K1−χ
2s h1, h2〉

∣∣∣ ≤ Cη|h1|ν,l,ϑ|h2|ν,l,ϑ. (2.40)

Here we used the fact that b ∈ (0, 2) and choose ε > 0 small enough.
It follows from (2.34) and (2.40) that∣∣∣〈�2(l, ϑ)K2sh1, h2〉

∣∣∣ ≤ Cη|h1|ν,l,ϑ|h2|ν,l,ϑ. (2.41)

As for treating the operator Kχ
2s, for the operator Kχ

1s, we have that
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∣∣∣〈�2(l, ϑ)Kχ
1sh1, h2〉

∣∣∣ ≤
{∫
R3

|h1(q)|2dq
∫
R3

�2(l, ϑ)(p)1|p|+|q|≥R|kχ1 (p, q)|dp
}1/2

×
{∫
R3

�2(l, ϑ)(p)|h2(p)|2dp
∫
R3

1|p|+|q|≥R|kχ1 (p, q)|dq
}1/2

.

By using (2.7) and the assumptions of the weight �(l, ϑ)(p), we can obtain

1|p|+|q|≥R�
2(l, ϑ)(p)|kχ1 (p, q)| ≤ Cε(R(b−2)/2 + R−b/2))e−

p0
8 − q0

8 ≤ Cεηe
− p0

8 − q0
8 .

Here we choose R > 0 large enough. It follows from these estimates that∣∣∣〈�2(l, ϑ)Kχ
1sh1, h2〉

∣∣∣ ≤ Cη|h1|ν,l,ϑ|h2|ν,l,ϑ. (2.42)

By using (2.7) and the assumptions of the weight �(l, ϑ)(p), we can obtain∫
R3

�2(l, ϑ)(p)|k1−χ
1 (p, q)|dp

≤
∫
R3

�2(l, ϑ)(p)(1 − χ(|p− q|))
(
(p0q0)−b/2 + (p0q0)(b−2)/2

|p− q|b−1

)
e−

p0
2 − q0

2 dp

≤ C

∫
|p−q|≤2ε

(
1 + 1

|p− q|b−1

)
e−

p0
8 − q0

8 dp ≤ C(ε4−b + ε3)e−
q0
8 . (2.43)

For the operator K1−χ
1s , by using (2.43) and choosing ε > 0 small enough, one has that

∣∣∣〈�2(l, ϑ)K1−χ
1s h1, h2〉

∣∣∣ ≤
{∫
R3

|h1(q)|2dq
∫
R3

�2(l, ϑ)(p)|k1−χ
1 (p, q)|dp

}1/2

×
{∫
R3

�2(l, ϑ)(p)|h2(p)|2dp
∫
R3

|k1−χ
1 (p, q)|dq

}1/2

≤ Cη|h1|ν,l,ϑ|h2|ν,l,ϑ. (2.44)

It follows from (2.44) and (2.42) that∣∣∣〈�2(l, ϑ)K1sh1, h2〉
∣∣∣ ≤ Cη|h1|ν,l,ϑ|h2|ν,l,ϑ.

This completes the estimate (2.22) for the operator K1. This and (2.41) complete the 
proof of (2.22). �
Remark 2.2. By using Lemma 2.1 and the similar arguments as in [15,28], one can prove 
the crucial coercive estimate (1.16) of the linearized Boltzmann operator.
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Next we derive other estimate of the operator K, which will be used to perform the 
nonlinear L∞ estimate of (1.11).

Lemma 2.3. Let l ≥ 0, ϑ ∈ [0, 1] and τ > 0. If ϑ = 1, restrict τ > 0 small enough. Denote 
� = �(l, ϑ)(p). Then for any j ≥ 0, any small η = η(ε) > 0 and some constant c0 > 0
such that ∣∣∣�K1−χ( h

�
)(p)

∣∣∣ ≤ Cην(p)‖h‖∞.

Proof. It follows from (2.31) that

�(l, ϑ)(p)
�(l, ϑ)(q)e

−c|p−q|/8 ≤ C. (2.45)

Recalling (2.18) and (2.20), for the operator K2, we have from (2.37) that

∣∣∣�K1−χ
2 ( h

�
)(p)

∣∣∣ ≤ C

∫
R3

�(l, ϑ)(p)
�(l, ϑ)(q)

(p0q0)b/2(1 − χ(|p− q|))
[|p× q|2 + |p− q|2](1+b)/2 (p0 + q0)−b/2

× e−c|p−q|/4|h(q)|dq

≤ C‖h‖∞
∫
R3

(p0q0)b/2(1 − χ(|p− q|))
[|p× q|2 + |p− q|2](1+b)/2 (p0 + q0)−b/2e−c|p−q|/8dq

≤ C‖h‖∞p
b/2
0

∫
R3

(1 − χ(|p− q|))
[|p× q|2 + |p− q|2](1+b)/2 e

−c|p−q|/32dq

≤ Cε2−bν(p)‖h‖∞.

For the operator K1, by using (2.7) and (2.20), one has that

∣∣∣�K1−χ
1 ( h

�
)(p)

∣∣∣ ≤ C

∫
R3

(1 − χ(|p− q|))�(l, ϑ)(p)
�(l, ϑ)(q) ( (p0q0)(b−2)/2

|p− q|b−1 + (p0q0)−b/2)

× e−
p0
2 − q0

2 |h(q)|dq

≤ C‖h‖∞
∫
R3

(1 − χ(|p− q|))(1 + 1
|p− q|b−1 )e−

p0
4 − q0

4 dq

≤ Ce−
p0
4 ‖h‖∞

2ε∫
0

(1 + 1
rb−1 )r2dr ≤ C(ε3 + ε4−b)ν(p)‖h‖∞.

By using b ∈ (0, 2) and choosing ε > 0 small enough, we conclude the proof of the 
lemma. �
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Next we shall construct the L2 estimates of the nonlinear collision term. Recalling 
(1.13), we have that

∂αΓ(h1, h2) =
∑

α1+α2=α

Cα1
α Γ(∂α1h1, ∂

α2h2).

Here Γ(∂α1h1, ∂α2h2) have the following expression

Γ(∂α1h1, ∂
α2h2) =

∫
R3

∫
S2

dqdωvφσ(g, θ)J1/2(q)∂α1h1(p′)∂α2h2(q′)

− ∂α1h1(p)
∫
R3

∫
S2

dqdωvφσ(g, θ)J1/2(q)∂α2h2(q)

≡ Γgain(∂α1h1, ∂
α2h2) − Γloss(∂α1h1, ∂

α2h2). (2.46)

The first L2 estimate about the nonlinear collision term is as follows.

Lemma 2.4. Assume that e(p) = P (p)
√
J(p), where P (p) is a polynomial of any order. 

Let α = α1 + α2 with |α| ≤ N . If |α1| ≤ |α|/2, then

‖〈Γ(∂α1h1, ∂
α2h2), e(p)〉‖ ≤ C‖J1/32∂α1h1‖∞‖J1/32∂α2h2‖.

Alternatively, if |α2| ≤ |α|/2, then

‖〈Γ(∂α1h1, ∂
α2h2), e(p)〉‖ ≤ C‖J1/32∂α2h2‖∞‖J1/32∂α1h1‖.

Proof. We first consider the loss term. It follows from (2.46) and (2.8) that∣∣∣〈Γloss(∂α1h1, ∂
α2h2), e(p)〉

∣∣∣2
=

∣∣∣ ∫
R3

∫
R3

∫
S2

vφσ(g, θ)J1/2(q)e(p)∂α2h2(q)∂α1h1(p)dpdqdω
∣∣∣2

≤ C

∫
R3

∫
R3

∫
S2

vφσ(g, θ)J1/2(q)J1/2(p)|P (p)||∂α1h1(p)|2dpdqdω

×
∫
R3

∫
R3

∫
S2

vφσ(g, θ)J1/2(q)J1/2(p)|P (p)||∂α2h2(q)|2dpdqdω

≤ C
∣∣∣J1/16∂α1h1

∣∣∣2
2

∣∣∣J1/16∂α2h2

∣∣∣2
2
. (2.47)

By this and the fact that s = 4 +g2, we see that g and s are invariant with respect to the 
pre–post collision change of variables. Notice that dpdq = p0q0

p′
0q

′
0
dp′dq′, which is from [9]. 

For a function G: R3 × R3 × R3 × R3 → R, it follows from (2.5) in [17] that
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∫
R3

∫
R3

∫
S2

vφσ(g, θ)G(p, q, p′, q′)dωdqdp

=
∫
R3

∫
R3

∫
S2

vφσ(g, θ)G(p′, q′, p, q)dωdqdp. (2.48)

Then we have from (2.46), (1.9), (2.48) and (2.8) that

∣∣∣〈Γgain(∂α1h1, ∂
α2h2), e(p)〉

∣∣∣2
=

∣∣∣ ∫
R3

∫
R3

∫
S2

vφσ(g, θ)J1/2(q)e(p)∂α1h1(p′)∂α2h2(q′)dpdqdω
∣∣∣2

≤ C
(∫
R3

∫
R3

∫
S2

vφσ(g, θ)J1/4(q′)J1/4(p′)|∂α1h1(p′)∂α2h2(q′)|dpdqdω
)2

= C
(∫
R3

∫
R3

∫
S2

vφσ(g, θ)J1/4(q)J1/4(p)|∂α1h1(p)∂α2h2(q)|dωdqdp
)2

,

and hence

∣∣∣〈Γgain(∂α1h1, ∂
α2h2), e(p)〉

∣∣∣2
≤ C

(∫
R3

∫
R3

∫
S2

vφσ(g, θ)J1/4(q)J1/4(p)|∂α1h1(p)∂α2h2(q)|dωdqdp
)2

≤ C

∫
R3

∫
R3

∫
S2

vφσ(g, θ)J1/4(q)J1/4(p)|∂α1h1(p)|2dωdqdp

×
∫
R3

∫
R3

∫
S2

vφσ(g, θ)J1/4(q)J1/4(p)|∂α2h2(q)|2dωdqdp

≤ C
∣∣∣J1/16∂α1h1

∣∣∣2
2

∣∣∣J1/16∂α2h2

∣∣∣2
2
. (2.49)

Thus, by the above estimates, if |α1| ≤ |α|/2, we can obtain

‖〈Γ(∂α1h1, ∂
α2h2), e(p)〉‖2 ≤ C

∫
T3

∣∣∣J1/16∂α1h1

∣∣∣2
2

∣∣∣J1/16∂α2h2

∣∣∣2
2
dx

≤ C‖J1/32∂α1h1‖2
∞‖J1/32∂α2h2‖2.

The case that |α2| ≤ |α|/2 can be handled in the same way. This concludes the proof of 
Lemma 2.4. �
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The second L2 estimate about the nonlinear collision term with the exponential 
weight is given in the following lemma. The proof of Lemma 2.5 is more or less sim-
ilar as in [15,31]. However, some modifications are needed to facilitate the momentum 
exponentially growing weight in the relativistic case. And more care will be paid to 
conservations (1.8) and (1.9) and the momentum pre–post collision change of variables, 
which are different from the classical version.

Lemma 2.5. Let α = α1 + α2 with |α| ≤ N , l ≥ 0, l0 > 3/b, ϑ ∈ [0, 1] and τ > 0. If 
ϑ = 1, restrict τ ∈ (0, 1). If |α1| ≤ |α|/2, then

|(�2(l, ϑ)Γ(∂α1h1, ∂
α2h2), ∂αh3)| ≤ CE|α1|,l+l0,ϑ(h1)‖∂α2h2‖ν,l,ϑ‖∂αh3‖ν,l,ϑ.

Alternatively, if |α2| ≤ |α|/2, then

|(�2(l, ϑ)Γ(∂α1h1, ∂
α2h2), ∂αh3)| ≤ CE|α2|,l+l0,ϑ(h2)‖∂α1h1‖ν,l,ϑ‖∂αh3‖ν,l,ϑ.

Proof. We divide it into two cases for the gain term and loss term, respectively.
Case 1: The Loss Term Estimate. If |α2| ≤ |α|/2, we have from (2.8) that∫

R3

∫
S2

dqdωvφσ(g, θ)J1/2(q)∂α2h2(x, q)

≤ C
{∫
R3

∫
S2

dqdωvφσ(g, θ)J1/2(q)|∂α2h2(x, q)|2
}1/2{∫

R3

∫
S2

dqdωvφσ(g, θ)J1/2(q)
}1/2

≤ C sup
x,q

∣∣∣J1/8(q)∂α2h2(x, q)
∣∣∣{ ∫

R3

∫
S2

dqdωvφσ(g, θ)J1/4(q)
}

≤ Cν(p)E|α2|,l(h2).

Hence we see from (2.46) that∣∣∣(�2(l, ϑ)Γloss(∂α1h1, ∂
α2h2), ∂αh3)

∣∣∣
≤ CE|α2|,l(h2)

∫
T3×R3

ν(p)�2(l, ϑ)(p)|∂α1h1(x, p)∂αh3(x, p)|dpdx

≤ CE|α2|,l(h2)‖∂α1h1‖ν,l,ϑ‖∂αh3‖ν,l,ϑ.

This completes the estimate for Γloss when |α2| ≤ |α|/2. Next, to consider Γloss with 
|α1| ≤ |α|/2, the integration domain in (p, q) is split into three parts

{|q| ≥ |p| } ∪ {|q| ≤ |p|
, |p| ≥ 1} ∪ {|q| ≤ |p|

, |p| ≤ 1}. (2.50)
2 2 2
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Case (1a): The Loss Term Estimate in the First Region {|q| ≥ |p|
2 }. On this region we 

have that

e−
q0
2 ≤ e−

q0
4 e−

p0
8 . (2.51)

Then the integral of �2(l, ϑ)Γloss(∂α1h1, ∂α2h2)∂αh3 over {|q| ≥ |p|
2 } is bounded by∫

T3×S2

∫
{|q|≥ |p|

2 }

vφσ(g, θ)e−
q0
2 �2(l, ϑ)(p)∂α1h1(p)∂α2h2(q)∂αh3(p)dqdpdωdx

≤ C

∫
T3×R3×R3×S2

vφσ(g, θ)e−
q0
4 e−

p0
8 �2(l, ϑ)(p)|∂α1h1(p)∂α2h2(q)∂αh3(p)|dqdpdωdx

≤ C
{ ∫
T3×R3×R3×S2

vφσ(g, θ)e−
q0
4 e−

p0
8 |∂α2h2(q)|2dqdpdωdx

}1/2

×
{ ∫
T3×R3×R3×S2

vφσ(g, θ)e−
q0
4 e−

p0
8 �4(l, ϑ)(p)|∂α1h1(p)∂αh3(p)|2dqdpdωdx

}1/2
.

Note that for b ∈ (1, 2), we have from (2.6) that

∫
S2

vφσ(g, θ)dω ≤ C

π∫
0

sin1+γ θvφg
−bdθ ≤ C

(p0q0)(b−2)/2

|p− q|b−1 .

With this, the first integral in the previous estimate is bounded as∫
T3×R3×R3×S2

vφσ(g, θ)e−
q0
4 e−

p0
8 |∂α2h2(q)|2dqdpdωdx

≤ C

∫
T3×R3

{∫
R3

(p0q0)(b−2)/2

|p− q|b−1 e−
p0
8 dp

}
e−

q0
4 |∂α2h2(q)|2dpdx

≤ C

∫
T3×R3

ν(q)e−
q0
4 |∂α2h2(q)|2dpdx ≤ C‖∂α2h2‖2

ν,l,

and the second integral is bounded as∫
T3×R3×R3×S2

vφσ(g, θ)e−
q0
4 e−

p0
8 �4(l, ϑ)(p)|∂α1h1(p)∂αh3(p)|2dqdpdωdx

≤ C

∫
T3×R3

{∫
R3

(p0q0)(b−2)/2

|p− q|b−1 e−
q0
4 dq

}
e−

p0
8 �4(l, ϑ)(p)|∂α1h1(p)∂αh3(p)|2dpdx

≤ CE2
|α |,l,ϑ(h1)‖∂αh3‖2

ν,l,ϑ.
1
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Here we have used the facts that |α1| ≤ |α|/2 and

sup
x,p

{
�2(l, ϑ)(p)e−

p0
16 |∂α1h1(p)|2

}
≤ CE2

|α1|,l,ϑ(h1). (2.52)

For b ∈ (0, 1], by using (2.5), we handle it in the same way. We thus conclude the estimate 
over the first region.

Case (1b): The Loss Term Estimate in the Second Region {|q| ≤ |p|
2 , |p| ≥ 1}. When 

|q| ≤ |p|
2 , it holds that

|p− q| ≥ |p| − |q| ≥ |p|
2 . (2.53)

It follows from this, (2.6) and (2.8) that for b ∈ (1, 2),

vφg
−b ≤ C

(p0q0)(b−2)/2

|p− q|b−1 ≤ C(p0q0)(b−2)/2p1−b
0 ≤ Cν(p)q(b−2)/2

0 .

By using this, it follows from (2.46) that∫
T3×S2

∫
{|q|≤ |p|

2 ,|p|≥1}

vφσ(g, θ)e−
q0
2 �2(l, ϑ)(p)∂α1h1(p)∂α2h2(q)∂αh3(p)dqdpdωdx

≤ C

∫
T3

∫
{|q|≤ |p|

2 ,|p|≥1}

ν(p)q(b−2)/2
0 e−

q0
2 �2(l, ϑ)(p)|∂α1h1(p)∂α2h2(q)∂αh3(p)|dqdpdx

≤ C

∫
T3

{∫
R3

q
(b−2)/2
0 e−

q0
2 |∂α2h2(q)|dq

}{∫
R3

ν(p)�2(l, ϑ)(p)|∂α1h1(p)∂αh3(p)|dp
}
dx

≤ C

∫
T3

|∂α2h2|ν,l|∂α1h1|ν,l,ϑ|∂αh3|ν,l,ϑdx

≤ C sup
x

|∂α1h1|ν,l,ϑ‖∂α2h2‖ν,l‖∂αh3‖ν,l,ϑ.

Since ν(p) ≤ C and |α1| ≤ |α|/2, one has that for l0 > 3/b

sup
x

|∂α1h1|ν,l,ϑ ≤ C sup
x

|∂α1h1|l,ϑ ≤ CE|α1|,l+l0,ϑ(h1).

For b ∈ (0, 1], by the similar arguments, we use (2.5) and (2.8) to get the same esti-
mate. Thus the term Γloss over the second region {|q| ≤ |p|

2 , |p| ≥ 1} is bounded by 
CE|α1|,l+l0,ϑ(h1)‖∂α2h2‖ν,l,ϑ‖∂αh3‖ν,l,ϑ.

Case (1c): The Loss Term Estimate in the Third Region {|q| ≤ |p|
2 , |p| ≤ 1}. In this 

region, for b ∈ (1, 2), we have from (2.6) and (2.53) that
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vφg
−b ≤ C

(p0q0)(b−2)/2

|p− q|b−1 ≤ C
(p0q0)(b−2)/2|p|(1−b)/2

|p− q|(b−1)/2 , �2(l, ϑ)(p) ≤ C. (2.54)

It follows from (2.54) and (2.46) that∫
T3×S2

∫
{|q|≤ |p|

2 ,|p|≤1}

vφσ(g, θ)e−
q0
2 �2(l, ϑ)(p)∂α1h1(p)∂α2h2(q)∂αh3(p)dqdpdωdx

≤ C

∫
T3

∫
{|q|≤ |p|

2 ,|p|≤1}

|p| 1−b
2 |p− q| 1−b

2 (p0q0)
b−2
2 e−

q0
2 |∂α1h1(p)∂α2h2(q)∂αh3(p)|dqdpdx

≤ C

∫
T3

{∫
R3

|p− q| 1−b
2 e−

q0
4 |∂α2h2(q)|dq

}{ ∫
|p|≤1

|p| 1−b
2 |∂α1h1(p)∂αh3(p)|dp

}
dx

≤ C

∫
T3

{∫
R3

|p− q|1−be−
q0
4 dq

}1/2{∫
R3

e−
q0
4 |∂α2h2(q)|2dq

}1/2

×
{ ∫
|p|≤1

|p| 1−b
2 |∂α1h1(p)∂αh3(p)|dp

}
dx

≤ C

∫
T3

|∂α2h2(q)|ν,l
{ ∫
|p|≤1

|p|1−b|∂α1h1(p)|2dp
}1/2{ ∫

|p|≤1

|∂αh3(p)|2dp
}1/2

dx.

By the facts that b ∈ (1, 2) and |α1| ≤ |α|/2, we have

sup
x

{ ∫
|p|≤1

|p|1−b|∂α1h1(p)|2dp
}1/2

≤ C sup
x,|p|≤1

|∂α1h1(p)| ≤ CE|α1|,l(h1).

Hence, if |α1| ≤ |α|/2, the last part is bounded by CE|α1|,l(h1)‖∂α2h2‖ν,l‖∂αh3‖ν,l. The 
case that b ∈ (0, 1] can be handled in the same way by using (2.5). This completes the 
proof of Case 1(c) and hence the whole Case 1.

Case 2: The Gain Term Estimate. Once again the integration domain in (p, q) is split 
into three parts as in (2.50).

Case (2a): The Gain Term Estimate in the First Region {|q| ≥ |p|
2 }. By using (2.51), the 

integral of �2(l, ϑ)Γgain(∂α1h1, ∂α2h2)∂αh3 over {|q| ≥ |p|
2 } is bounded by

∫
T3×S2

∫
{|q|≥ |p|

2 }

vφσ(g, θ)e−
q0
2 �2(l, ϑ)(p)∂α1h1(p′)∂α2h2(q′)∂αh3(p)dqdpdωdx

≤ C

∫
3 3 3 2

vφσ(g, θ)e−
q0
4 e−

p0
8 �2(l, ϑ)(p)|∂α1h1(p′)∂α2h2(q′)∂αh3(p)|dqdpdωdx
T ×R ×R ×S
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≤ C
{ ∫
T3×R3×R3×S2

vφσ(g, θ)e−
p0
8 − q0

8 �2(l, ϑ)(p)|∂α1h1(p′)|2|∂α2h2(q′)|2dqdpdωdx
}1/2

×
{ ∫
T3×R3×R3×S2

vφσ(g, θ)e−
p0
8 − q0

8 �2(l, ϑ)(p)|∂αh3(p)|2dqdpdωdx
}1/2

.

By (2.8), the second factor can be bounded by C‖∂αh3‖ν,l,ϑ. By (1.9) and the assump-
tions of �(l, ϑ)(p), one has that

�2(l, ϑ)(p) = pbl0 e
2τpϑ

0 ≤ (p0 + q0)ble2τ(p0+q0)ϑ = (p′0 + q′0)ble2τ(p′
0+q′0)

ϑ

≤ C(p′0)bl(q′0)ble2τ(p′
0)

ϑ

e2τ(q′0)
ϑ

= C�2(l, ϑ)(p′)�2(l, ϑ)(q′). (2.55)

If |α1| ≤ |α|/2, as in (2.52),

sup
x,p

�(l, ϑ)(p)e−
p0
32 |∂α1h1(p)| ≤ CE|α1|,l,ϑ(h1). (2.56)

Then the integral in the first factor can be bounded by

C

∫
T3×R3×R3×S2

vφσ(g, θ)e−
p′0
16 − q′0

16 �2(l, ϑ)(p′)�2(l, ϑ)(q′)|∂α1h1(p′)|2|∂α2h2(q′)|2dqdpdωdx

= C

∫
T3×R3×R3×S2

vφσ(g, θ)e−
p0
16 − q0

16 �2(l, ϑ)(p)�2(l, ϑ)(q)|∂α1h1(p)|2|∂α2h2(q)|2dqdpdωdx

≤ CE2
|α1|,l,ϑ(h1)

∫
T3×R3

{ ∫
R3×S2

vφσ(g, θ)e−
p0
32 dpdω

}
�2(l, ϑ)(q)|∂α2h2(q)|2dqdx

≤ CE2
|α1|,l,ϑ(h1)‖∂α2h2‖2

ν,l,ϑ.

Here we have used (2.8), (2.55), (2.56) and the pre–post collision change of variables 
as (2.48). Thus if |α1| ≤ |α|/2, the gain term estimate in this region is bounded by 
CE|α1|,l,ϑ(h1)‖∂α2h2‖ν,l,ϑ‖∂αh3‖ν,l,ϑ.

If |α2| ≤ |α|/2, we switch ∂α2h2 with ∂α1h1. This completes the estimate for the gain 
term over {|q| ≥ |p|

2 }.

Case (2b): The Gain Term Estimate in the Second Region {|q| ≤ |p|
2 , |p| ≥ 1}. For 

b ∈ (0, 1], we have from (2.5) and (2.8) that

vφg
−be−

q0
2 ≤ C(p0q0)−b/2e−

q0
2 ≤ Cν(p)e−

q0
4 .

On this region {|q| ≤ |p|
2 , |p| ≥ 1}, |p − q| ≥ |p| − |q| ≥ |p|

2 and |p − q|2 ≥ p2
0
8 . By this and 

b ∈ (1, 2), it holds that
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1
|p− q|b−1 ≤ (p

2
0
8 )

1−b
2 ≤ Cp1−b

0 .

For b ∈ (1, 2), it follows from this, (2.6) and (2.8) that

vφg
−be−

q0
2 ≤ C(p0q0)(b−2)/2p1−b

0 e−
q0
2 ≤ Cν(p)e−

q0
4 .

By using these, it follows from (2.46) that∫
T3×S2

∫
{|q|≤ |p|

2 ,|p|≥1}

vφσ(g, θ)e−
q0
2 �2(l, ϑ)(p)∂α1h1(p′)∂α2h2(q′)∂αh3(p)dqdpdωdx

≤ C

∫
T3

∫
{|q|≤ |p|

2 ,|p|≥1}

ν(p)e−
q0
4 �2(l, ϑ)(p)|∂α1h1(p′)∂α2h2(q′)∂αh3(p)|dqdpdx

≤ C
{ ∫
T3×R3×R3

ν(p)e−
q0
4 �2(l, ϑ)(p)|∂α1h1(p′)|2|∂α2h2(q′)|2dqdpdx

}1/2

×
{ ∫
T3×R3×R3

ν(p)e−
q0
4 �2(l, ϑ)(p)|∂αh3(p)|2dqdpdx

}1/2
. (2.57)

The last line is bounded by ‖∂αh3‖ν,l,ϑ. On this region {|q| ≤ |p|
2 , |p| ≥ 1}, we have 

from (1.9) and (2.8) that

ν(p) ∼ p
−b/2
0 ≤ C(p′0 + q′0)−b/2 ≤ C min{(p′0)−b/2, (q′0)−b/2} ≤ C min{ν(p′), ν(q′)}.

(2.58)

It follows from (1.9) that

e−
q0
4
p0q0
p′0q

′
0
≤ C

p0

p′0q
′
0
≤ C

p′0 + q′0
p′0q

′
0

≤ C. (2.59)

If |α1| ≤ |α|/2, by using dpdq = p0q0
p′
0q

′
0
dp′dq′, the integral of the first factor in (2.57) is 

bounded by

C

∫
T3×R3×R3

ν(q′)e−
q0
4 �2(l, ϑ)(p′)�2(l, ϑ)(q′)|∂α1h1(p′)|2|∂α2h2(q′)|2dqdpdx

= C

∫
T3×R3×R3

ν(q′)e−
q0
4 �2(l, ϑ)(p′)�2(l, ϑ)(q′)|∂α1h1(p′)|2|∂α2h2(q′)|2

p0q0
p′0q

′
0
dq′dp′dx

≤ C

∫
3 3 3

ν(q′)�2(l, ϑ)(p′)�2(l, ϑ)(q′)|∂α1h1(p′)|2|∂α2h2(q′)|2dq′dp′dx

T ×R ×R
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≤ C sup
x

∫
R3

�2(l, ϑ)(p′)|∂α1h1(p′)|2dp′‖∂α2h2‖2
ν,l,ϑ, (2.60)

where we have used (2.55), (2.58) and (2.59). For l0 > 3/b

sup
x

{∫
R3

�2(l, ϑ)(p′)|∂α1h1(p′)|2dp′
}1/2

≤ CE|α1|,l+l0,ϑ(h1).

Thus if |α1| ≤ |α|/2, by this, (2.57) and (2.60), the gain term estimate in this region is 
bounded by CE|α1|,l+l0,ϑ(h1)‖∂α2h2‖ν,l,ϑ‖∂αh3‖ν,l,ϑ.

If |α2| ≤ |α|/2, by the similar arguments, the gain term estimate is bounded by

CE|α2|,l+l0,ϑ(h2)‖∂α1h1‖ν,l,ϑ‖∂αh3‖ν,l,ϑ.

This completes the estimate for the gain term over {|q| ≤ |p|
2 , |p| ≥ 1}.

Case (2c): The Gain Term Estimate in the Third Region {|q| ≤ |p|
2 , |p| ≤ 1}.

For the last region {|q| ≤ |p|
2 , |p| ≤ 1}, it holds that |q| ≤ 1/2. For b ∈ (1, 2), we have 

from (2.46) and (2.54) that

C

∫
T3×S2

∫
{|q|≤ |p|

2 ,|p|≤1}

vφσ(g, θ)e−
q0
2 �2(l, ϑ)(p)∂α1h1(p′)∂α2h2(q′)∂αh3(p)dqdpdωdx

≤ C

∫
T3

∫
{|q|≤ |p|

2 ,|p|≤1}

|p| 1−b
2 |p− q| 1−b

2 (p0q0)
b−2
2 e−

q0
2 |∂α1h1(p′)∂α2h2(q′)∂αh3(p)|dqdpdx

≤ C

∫
T3

∫
{|p|≤1}

{
|p| 1−b

2

∫
{|q|≤ |p|

2 }

|p− q| 1−b
2 e−

q0
4 |∂α1h1(p′)∂α2h2(q′)|dq

}
|∂αh3(p)|dpdx

≤ C

∫
T3

∫
{|p|≤1}

{ ∫
{|q|≤ |p|

2 }

|p|1−b|∂α1h1(p′)|2|∂α2h2(q′)|2dq
}1/2

×
{ ∫
{|q|≤ |p|

2 }

|p− q|1−be−
q0
2 dq

}1/2
|∂αh3(p)|dpdx

≤ C

∫
T3

∫
{|p|≤1}

{ ∫
{|q|≤ |p|

2 }

|p|1−b|∂α1h1(p′)|2|∂α2h2(q′)|2dq
}1/2

|∂αh3(p)|dpdx

≤ C
{∫
T3

∫
{|p|≤1,|q|≤ |p|

2 }

|p|1−b|∂α1h1(p′)|2|∂α2h2(q′)|2dqdpdx
}1/2

‖∂αh3‖ν,l. (2.61)

We now estimate the first factor. Since |q| ≤ |p|/2 and |p| ≤ 1, by using (1.4), (1.5) and 
(2.3), we have from (1.10) that
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|p′| + |q′| ≤ C|p| + g(2 + p0 + q0√
4 + g2

) ≤ C|p| + Cp0|p− q| ≤ C|p| + C(|p| + |q|) ≤ C|p|.

Since 1 − b < 0, this implies

|p|1−b ≤ C ′|p′|1−b, |p|1−b ≤ C ′|q′|1−b.

Thus we have∫
T3

∫
{|p|≤1,|q|≤ |p|

2 }

|p|1−b|∂α1h1(p′)|2|∂α2h2(q′)|2dqdpdx

≤ C

∫
T3

∫
{|p|≤1,|q|≤ |p|

2 }

|p|1−be−
q0
4 |∂α1h1(p′)|2|∂α2h2(q′)|2dqdpdx

≤ C

∫
T3

∫
{|p′|≤C,|q′|≤C}

e−
q0
4 min{|p′|1−b, |q′|1−b}|∂α1h1(p′)|2|∂α2h2(q′)|2

p0q0
p′0q

′
0
dq′dp′dx

≤ C

∫
T3

∫
{|p′|≤C,|q′|≤C}

min{|p′|1−b, |q′|1−b}|∂α1h1(p′)|2|∂α2h2(q′)|2dq′dp′dx.

Here we used the fact that e
q0
4 I|q|≤ 1

2
≤ C. Assume |α1| ≤ |α|/2 and majorize the above 

by

C

∫
T3

{ ∫
{|p′|≤C}

|p′|1−b|∂α1h1(p′)|2dp′
}{ ∫

{|q′|≤C}

|∂α2h2(q′)|2dq′
}
dx

≤ C sup
x,|p′|≤C

|∂α1h1(p′)|2‖∂α2h2‖2
ν,l ≤ CE|α1|,l,ϑ(h1)‖∂α2h2‖2

ν,l.

If |α2| ≤ |α|/2, we have

C

∫
T3

{ ∫
{|p′|≤C}

|∂α1h1(p′)|2dp′
}{ ∫

{|q′|≤C}

|q′|1−b|∂α2h2(q′)|2dq′
}
dx

≤ C sup
x,|p′|≤C

|∂α2h2(p′)|2‖∂α1h1‖2
ν,l ≤ CE|α2|,l,ϑ(h2)‖∂α1h1‖2

ν,l.

Then for b ∈ (1, 2), we combine this upper bound with (2.61) to complete the estimate 
for the gain term over the last region. The case that b ∈ (0, 1] can be handled in the 
same way by using (2.5). Thus we complete the proof of Lemma 2.5. �

The following corollary is used to prove existence of global solutions to the homoge-
neous equation (1.22), which can be shown by the similar arguments as for obtaining 
Lemma 2.5.
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Corollary 2.6. Let l ≥ 0, l0 > 3/b, ϑ ∈ [0, 1] and τ > 0. If ϑ = 1, restrict τ ∈ (0, 1). It 
holds that

|〈�2(l, ϑ)Γ(h1, h2), h3〉| ≤ CEl+l0,ϑ(h1)|h2|ν,l,ϑ|h3|ν,l,ϑ.

Alternatively, we have that

|〈�2(l, ϑ)Γ(h1, h2), h3〉| ≤ CEl+l0,ϑ(h2)|h1|ν,l,ϑ|h3|ν,l,ϑ.

The next lemma concerns the L∞ estimates of the nonlinear collision operator 
Γ(h1, h2) with the exponential weight function of p.

Lemma 2.7. Under the assumptions of Lemma 2.5, we have the following estimates:∣∣∣�Γ(h1

�
,
h2

�
)(p)

∣∣∣ ≤ Cν(p)‖h1‖∞‖h2‖∞.

Proof. We have from (1.13), (2.55) and (2.8) that∣∣∣�Γ(h1

�
,
h2

�
)(p)

∣∣∣ ≤ ∫
R3×S2

dωdqvφσ(g, θ)e−q0/2 1
�(l, ϑ)(q) |h1(p)h2(q)|

+
∫

R3×S2

dωdqvφσ(g, θ)e−q0/2 �(l, ϑ)(p)
�(l, ϑ)(p′)�(l, ϑ)(q′) |h1(p′)h2(q′)|

≤ C‖h1‖∞‖h2‖∞
∫

R3×S2

dωdqvφσ(g, θ)e−q0/2 ≤ Cν(p)‖h1‖∞‖h2‖∞.

This completes the proof of Lemma 2.7. �
3. Nonlinear L2 estimates

In this section we will deduce the nonlinear L2 estimates for the relativistic Boltzmann 
equation (1.11) with soft potentials by using the Fourier transform and the compensation 
function method (cf. [25]). For the case of hard potentials the compensation functions 
of the relativistic Boltzmann equation (1.10) have been derived in [13,37]. Here we will 
represent the details of the proof in order to take into account the effect of soft potentials 
and the periodic domain.

For the purpose mentioned above, we start from the following linear inhomogeneous 
relativistic Boltzmann equation with a source term G:

{∂t + p̂ · ∇x + L}f = G. (3.1)

Let us first recall the definition of a compensation function for the relativistic Boltzmann 
equation (3.1), which has been introduced in [25] as well as in [13,37].
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Definition 3.1. A bounded linear operator S(ω) with ω ∈ S2 on L2(R3) is called a 
compensation function for (3.1) if

(i) S(·) is C∞ on S2 with values in the space of bounded linear operators on L2(R3), 
and S(−ω) = −S(ω) for all ω ∈ S2.

(ii) iS(ω) is self-adjoint on L2(R3) for all ω ∈ S2.
(iii) There exists c0 > 0 such that for all f ∈ L2(R3) and ω ∈ S2,

R〈S(ω)(p̂ · ω)f, f〉 + 〈Lf, f〉 ≥ c0
(
|Pf |22 + |(I − P)f |2ν

)
. (3.2)

Here Rz is the real part of z ∈ C.

To construct the compensation function S(ω), we first consider the fourteen moments 
in the relativistic case as in [13,10]. The subspace W̃ for the 14 moments is defined as 
the space generated by N and the images of N under the mappings f(p) �→ p̂jf(p)
(j = 1, 2, 3). That is,

W̃ = span{
√
Jϕj |j = 1, ..., 14},

where

ϕ1 = 1, ϕj+1 = pj , ϕ5 = p0, ϕj+5 = pj p̂j ,

ϕ9 = p1p̂2, ϕ10 = p2p̂3, ϕ11 = p3p̂1, ϕj+11 = p̂j (j = 1, 2, 3).

Here, N ⊂ W̃ and the operator of multiplication by p̂· maps N into W̃ . Denote an 
orthogonal basis for this 14 dimensional space spanned by ej, 1 ≤ j ≤ 14 as in [13,10].

Let P0 be the orthogonal projection from L2(R3
p) onto W̃ :

P0f =
14∑
k=1

〈f, ek〉ek.

Set Wk = 〈f, ek〉. Then we have by using (3.1) that

∂tW +
∑
j

V j∂xj
W + LW = G + R,

where V j (j = 1, 2, 3) and L are the symmetric matrices given by

L = {〈L[el], ek〉}14
k,l=1, V (ξ) =

3∑
j=1

V jξj = {〈(p̂ · ξ)ek, el〉}14
k,l=1,

and G is the vector component 〈G, ej〉. Here R is the remaining term which has the 
factor (I − P0)f . We denote
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W = [WI ,WII ]T , WI = [W1, ...,W5]T , WII = [W6, ...,W14]T .

To construct the compensation function of the relativistic equation (3.1), the following 
lemma was proved in [13,10].

Lemma 3.2. There exist three 14 × 14 real constant skew-symmetric matrices Rj (j =
1, 2, 3) and positive constants c1 and c2 such that

R(ω) ≡
3∑

j=1
Rjωj , (3.3)

satisfies

R〈〈R(ω)V (ω)W,W 〉〉 ≥ c1|WI |2 − c2|WII |2

for all W ∈ C14. Here 〈〈·, ·〉〉 represents the inner product on C14.

Now a compensation function for the relativistic equation (3.1) can be defined as 
follows. Given ω ∈ S2, set R(ω) ≡ {rij(ω)}14

i,j=1 as in (3.3), and let

S(ω)f ≡
14∑

k,�=1

λrk�(ω)〈f, e�〉ek, f ∈ L2(R3), (3.4)

where λ > 0 is a constant to be chosen later.

Lemma 3.3. There exists λ > 0 such that S(ω) : L2(R3) → W̃ is a compensation function 
for the relativistic equation (3.1).

Proof. The first two properties can be verified straightforwardly by using (3.4). It suffices 
to verify (3.2). Note

〈S(ω)(p̂ · ω)f, f〉 ≡
14∑

k,�=1

λrk�(ω)〈(p̂ · ω)f, e�〉〈f, ek〉.

One can compute that

〈(p̂ · ω)P0f, e�〉 =
14∑
j=1

Wj(V (ω))�j .

It follows that
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R〈S(ω)(p̂ · ω)f, f〉 = R〈S(ω)(p̂ · ω)[P0f + (I − P0)f ], f〉

= Rλ
14∑

k,�=1

rk�(ω)
[ 14∑
j=1

V�j(ω)Wj + 〈(p̂ · ω)(I − P0)h, e�〉
]
W k.

The first term in this expression is Rλ〈〈R(ω)V (ω)W, W 〉〉. Notice that

|WI |2 =
5∑

j=1
|〈f, ej〉|2 = |Pf |22,

and

|WII |2 =
14∑
j=6

|〈f, ej〉|2 =
14∑
j=6

|〈(I − P)f, ej〉|2 ≤ C|(I − P)f |2ν .

Here we have used the fast decay in p for ej . It follows from Lemma 3.2 that

Rλ〈〈R(ω)V (ω)W,W 〉〉 ≥ λ[c3|Pf |22 − c4|(I − P)f |2ν ].

The second term is dominated by

Cλmax
k,�

|〈(p̂ · ω)(I − P0)f, e�〉| · |〈f, ek〉| ≤ Cλ|(I − P0)f |ν |f |ν

≤ Cελ|(I − P)f |2ν + Cελ|(P0 − P)f |2ν + Cελ|f |2ν
≤ C ′

ελ|(I − P)f |2ν + Cλε|Pf |22.

Here we have used the fact that

|(P0 − P)f |2ν ≤ C|(P0 − P)f |22 ≤ C
14∑
j=6

|〈f, ej〉|2 ≤ C|(I − P)f |2ν .

By choosing ε > 0 small enough we have

R〈S(ω)(p̂ · ω)f, f〉 ≥ C1λ|Pf |22 − C2λ|(I − P)f |2ν .

By choosing λ > 0 small enough, (3.2) then follows from (1.16). �
We now use the compensation function S(ω) to derive an energy estimate. Set ω =

ξ/|ξ| and take the Fourier transform in x of (3.1). We have

∂tf̂ + i|ξ|(p̂ · ω)f̂ + Lf̂ = Ĝ. (3.5)

By multiplying (3.5) by the conjugate of f̂ , we have
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1
2∂t|f̂ |

2
2 + 〈Lf̂, f̂〉 = R〈f̂ , Ĝ〉. (3.6)

Then applying −i|ξ|S(ω) to (3.5) gives

−i|ξ|S(ω)∂tf̂ + |ξ|2S(ω)((p̂ · ω)f̂) − i|ξ|S(ω)Lf̂ = −i|ξ|S(ω)Ĝ.

The inner product of the above equation with f̂ yields

R〈−i|ξ|S(ω)∂tf̂ , f̂〉 + |ξ|2R〈S(ω)(p̂ · ω)f̂ , f̂〉 = |ξ|R
{
〈iS(ω)Lf̂, f̂〉 − 〈iS(ω)Ĝ, f̂〉

}
.

(3.7)

Since iS(ω) is self-adjoint, the first term is just −1
2∂t[|ξ|〈iS(ω)f̂ , f̂〉]. By multiplying 

(1 + |ξ|2) by (3.6), and adding κ times (3.7), we have

∂t

[ (1 + |ξ|2)
2 |f̂ |22 −

κ|ξ|
2 〈iS(ω)f̂ , f̂〉

]
+ (1 + |ξ|2 − κ|ξ|2)〈Lf̂, f̂〉 + κ|ξ|2{R〈S(ω)(p̂ · ω)f̂ , f̂〉 + 〈Lf̂, f̂〉}

= (1 + |ξ|2)R〈f̂ , Ĝ〉 + κ|ξ|R
{
〈iS(ω)Lf̂, f̂〉 − 〈iS(ω)Ĝ, f̂〉

}
. (3.8)

For the second term on the left hand side of (3.8), when 0 < κ < 1, we have

(1 + |ξ|2 − κ|ξ|2)〈Lf̂, f̂〉 ≥ (1 − κ)(1 + |ξ|2) · δ0|(I − P)f̂ |2ν .

And by (3.2), the third term on the left hand side of (3.8) is bounded by

κ|ξ|2{R〈S(ω)(p̂ · ω)f̂ , f̂〉 + 〈Lf̂, f̂〉} ≥ κ|ξ|2 · c0(|Pf̂ |22 + |(I − P)f̂ |2ν).

Now we estimate the last term in (3.8). By using (3.4), we see that

κ|ξ||〈iS(ω)Ĝ, f̂〉| ≤ Cκ|ξ|
14∑

k,�=1

|〈Ĝ, e�〉| · |〈f̂ , ek〉| ≤ cκε|ξ|2|f̂ |2ν + cεκ
14∑
�=1

|〈Ĝ, e�〉|2.

Recalling Lf = Γ[
√
J, f ] + Γ[f, 

√
J ], we have from (2.47) and (2.49) that

|〈Lf, e�〉| = |〈L[(I − P)f ], e�〉| ≤ C|(I − P)f |ν .

By using (3.4), we see that

κ|ξ||〈iS(ω)Lf̂, f̂〉| ≤ cεκ|(I − P)f̂ |2ν + κε|ξ|2|f̂ |2ν .

The last term on the right hand side of (3.8) is dominated by
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κ|ξ|
{
|〈iS(ω)Lf̂, f̂〉| + |〈iS(ω)Ĝ, f̂〉|

}
≤ cεκ|(I − P)f̂ |2ν + Cκε|ξ|2|(I − P)f̂ |2ν + Cκε|ξ|2|Pf̂ |22 + cε

14∑
�=1

|〈Ĝ, e�〉|2.

If we choose κ, ε > 0 small enough and combine the above estimates, we know that there 
exist δ1, δ2 > 0 such that

∂t

[
(1 + |ξ|2)|f̂ |22 − κ|ξ|〈iS(ω)f̂ , f̂〉

]
+ δ1(1 + |ξ|2)|(I − P)f̂ |2ν + δ2|ξ|2|Pf̂ |22

≤ C(1 + |ξ|2)R〈f̂ , Ĝ〉 + cε

14∑
�=1

|〈Ĝ, e�〉|2. (3.9)

By (1.19), it holds that |Pf̂(t, 0, ·)|2 = 0. Since the domain considered is the torus, ξ
here is a vector with integer components. Thus there exists a small constant δ′2 > 0 such 
that

δ2|ξ|2|Pf̂ |22 ≥ δ′2(1 + |ξ|2)|Pf̂ |22.

With this and (3.9), we can obtain

∂t

[
(1+|ξ|2)|f̂ |22−κ|ξ|〈iS(ω)f̂ , f̂〉

]
+δ1(1+|ξ|2)|f̂ |2ν ≤ C(1+|ξ|2)R〈f̂ , Ĝ〉+C

14∑
�=1

|〈Ĝ, e�〉|2.

This implies that

∂t

[
|f̂ |22 − κ

|ξ|
1 + |ξ|2 〈iS(ω)f̂ , f̂〉

]
+ δ|f̂ |2ν ≤ CR〈f̂ , Ĝ〉 + C

14∑
�=1

|〈Ĝ, e�〉|2. (3.10)

We will use the crucial estimate (3.10) to deduce the desired L2 estimates.

Lemma 3.4. Assume that l ≥ 0, l0 > 3/b, ϑ ∈ [0, 1] and τ > 0. If ϑ = 1, restrict τ > 0
small enough. Let f(t, x, p) be the solution to (1.11) satisfying (1.19). There exists M > 0
small enough such that if

El+l0,ϑ(f)(t) ≤ M, (3.11)

we have

d

dt
El,ϑ(f)(t) + Dl,ϑ(f)(t) ≤ 0. (3.12)
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Proof. Let G = Γ(f, f) and integrate (3.10) over Z3 to give

d

dt

[
‖f‖2 − κ

∫
Z3

|ξ|
1 + |ξ|2 〈iS(ω)f̂ , f̂〉dξ

]
+ δ‖f‖2

ν

≤ C

∫
Z3

R〈Γ̂(f, f), f̂〉dξ + C

14∑
�=1

∫
Z3

|〈Γ̂(f, f), e�〉|2dξ.

It follows from Lemma 2.5 and Lemma 2.4 that∣∣∣ ∫
Z3

〈Γ̂(f, f), f̂〉dξ
∣∣∣ +

∫
Z3

|〈Γ̂(f, f), e�〉|2dξ ≤ C(El0,ϑ(f)(t) + E2
l0,ϑ(f)(t))‖f‖2

ν .

By choosing M > 0 small enough we can have from the properties of the Fourier trans-
form that

d

dt

[
‖f‖2 − κ

∫
Z3

|ξ|
1 + |ξ|2 〈iS(ω)f̂ , f̂〉dξ

]
+ δ‖f‖2

ν ≤ CM‖f‖2
ν . (3.13)

Multiply �2(l, ϑ)(p)f by (1.11) and then integrate over T3 × R3 to get

1
2
d

dt
‖f‖2

l,ϑ + ‖f‖2
ν,l,ϑ − (�2(l, ϑ)Kf, f) ≤ (�2(l, ϑ)Γ(f, f), f). (3.14)

It follows from Lemma 2.1 that, for any small η > 0

|(�2(l, ϑ)Kf, f)| ≤ Cη‖f‖2
ν,l,ϑ + C‖f‖2

ν .

Notice that Lemma 2.5 implies

|(�2(l, ϑ)Γ(f, f), f)| ≤ CEl+l0,ϑ(f)(t)‖f‖2
ν,l,ϑ.

By plugging these estimates into (3.14), we have from (3.11) that

d

dt
‖f‖2

l,ϑ + δ1‖f‖2
ν,l,ϑ ≤ CM‖f‖2

ν,l,ϑ + C‖f‖2
ν . (3.15)

By using a suitable linear combination of (3.13) and (3.15) and choosing M > 0 small 
enough, we have

d

dt
El,ϑ(f)(t) + Dl,ϑ(f)(t) ≤ 0.

Here Dl,ϑ(f)(t) is as in (1.18) and El,ϑ(f)(t) is defined as
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El,ϑ(f)(t) = C

δ
‖f‖2 − Cκ

δ

∫
Z3

|ξ|
1 + |ξ|2 〈iS(ω)f̂ , f̂〉dξ + ‖f‖2

l,ϑ.

Since κ > 0 is small enough and S(ω) is bounded, we see that

κ
∣∣∣ ∫
Z3

|ξ|
1 + |ξ|2 〈iS(ω)f̂ , f̂〉dξ

∣∣∣ ≤ Cκ‖f‖2.

By this we know that El,ϑ(f)(t) ∼ ‖f‖2
l,ϑ and this completes the proof of (3.12) and 

hence Lemma 3.4. �
4. Nonlinear L∞ estimates

In this section we will prove the L∞ estimates of (1.11) with the exponential 
p-weighted function in order to close the a priori estimate (3.11) in Lemma 3.4. Namely 
we will show the following lemma.

Lemma 4.1. Assume that l ≥ 0, l0 > 3/b, ϑ ∈ [0, 1] and τ > 0. If ϑ = 1, restrict 
τ > 0 small enough. Let f(t, x, p) be the solution to (1.11) satisfying (1.19). Then for 
any T > 0, we have

sup
0≤s≤T

El+l0,ϑ(f)(t) ≤ CEl+l0,ϑ(f0)+C sup
0≤s≤T

{El+l0,ϑ(f)(t)}2+C sup
0≤s≤T

‖f(s)‖. (4.1)

Proof. Let � = �(l+ l0, ϑ)(p) with �0 > 3/b and K�g = �K( g
� ). Let h = �f . Noticing 

that

El+l0,ϑ(f)(t) = ‖�(l + l0, ϑ)(p)f(t, x, p)‖∞ = ‖h(t)‖∞, (4.2)

we have from (1.11) that

∂th + p̂ · ∇xh + ν(p)h−K�h = �Γ( h
�
,
h

�
). (4.3)

Note that K� = Kχ
� + K1−χ

� . By Duhamel’s principle, we then expand out

h(t, x, p) = e−ν(p)th0(x− p̂t, p) +
t∫

0

e−ν(p)(t−s1)K1−χ
� h(s1, y1, p)ds1

+
t∫

0

e−ν(p)(t−s1)Kχ
�h(s1, y1, p)ds1 +

t∫
0

e−ν(p)(t−s1)�Γ( h
�
,
h

�
)(s1, y1, p)ds1,

(4.4)



R. Duan, H. Yu / Advances in Mathematics 312 (2017) 315–373 353
with y1 = x − p̂(t − s1). We now estimate (4.4) term by term. It is direct to see that

‖e−ν(p)th0(x− p̂t, p)‖∞ ≤ ‖h0‖∞.

By Lemma 2.3, for any small η > 0, the second term on the right of (4.4) is bounded by

Cη sup
0≤s≤t

‖h(s)‖∞
t∫

0

e−ν(p)(t−s1)ν(p)ds1 ≤ Cη sup
0≤s≤t

‖h(s)‖∞.

By Lemma 2.7, the fourth term on the right of (4.4) is bounded by

C{ sup
0≤s≤t

‖h(s)‖∞}2
t∫

0

e−ν(p)(t−s1)ν(p)ds1 ≤ C{ sup
0≤s≤t

‖h(s)‖∞}2.

It remains to estimate the third term on the right of (4.4). By (4.4) we have

h(s1, y1, q1) = e−ν(q1)s1h0(y1 − q̂1s1, q1) +
s1∫
0

e−ν(q1)(s1−s2)K1−χ
� h(s2, y2, q1)ds2

+
s1∫
0

e−ν(q1)(s1−s2)Kχ
�h(s2, y2, q1)ds2

+
s1∫
0

e−ν(q1)(s1−s2)�Γ( h
�
,
h

�
)(s2, y2, q1)ds2, (4.5)

with y2 = y1 − q̂1(s1 − s2). Let kχ�(p, q) be the integral kernel of the operator Kχ
�, i.e.,

kχ�(p, q) = kχ,2� (p, q) − kχ,1� (p, q), kχ,i� (p, q) = kχi (p, q)�(l, ϑ)(p)
�(l, ϑ)(q) , i = 1, 2.

By using (2.18), (2.19), (2.20), (2.45) and the assumption of the weight function, one has

|kχ,2� (p, q1)| = |kχ2 (p, q1)|
�(l, ϑ)(p)
�(l, ϑ)(q1)

≤ C(p0q10)b/2χ(|p− q1|)
[|p× q1|2 + |p− q1|2](1+b)/2 (p0 + q10)−b/2e−

c
8 |p−q1|e−

c
8 |p−q1| �(l, ϑ)(p)

�(l, ϑ)(q1)

≤ C(p0q10)b/2χ(|p− q1|)
[|p× q1|2 + |p− q1|2](1+b)/2 (p0 + q10)−b/2e−

c
8 |p−q1|. (4.6)

By using (4.6) and (2.25), for any ε > 0 small enough, we can obtain
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∫
R3

|kχ,2� (p, q1)|dq1 ≤
∫
R3

C(p0q10)b/2χ(|p− q1|)
[|p× q1|2 + |p− q1|2](1+b)/2 (p0 + q10)−b/2e−

c
8 |p−q1|dq1

≤ Cp
b/2
0

∫
R3

χ(|p− q1|)e−c|p−q1|/32

[|p× q1|2 + |p− q1|2](1+b)/2 dq1 ≤ Cν(p)p−ε
0 .

By using (2.7), (2.19), and (2.20), one has

|kχ,1� (p, q1)| = |kχ1 (p, q1)|
�(l, ϑ)(p)
�(l, ϑ)(q1)

≤ Cχe
− p0

8 − q0
8 . (4.7)

This implies that ∫
R3

|kχ,1� (p, q1)|dq1 ≤ Ce−
p0
8 .

Thus, for any ε > 0 small enough, we can obtain∫
R3

|kχ�(p, q1)|dq1 ≤ Cν(p)p−ε
0 . (4.8)

By using (4.5), we can expand out the third term on the right of (4.4) as

t∫
0

e−ν(p)(t−s1)Kχ
�h(s1, y1, p)ds1 = H1(t, x, p) + H2(t, x, p) + H3(t, x, p) + H4(t, x, p),

(4.9)

where Hi(t, x, p) (i = 1, 2, 3, 4) are defined as

H1(t, x, p) =
t∫

0

∫
R3

dq1ds1e
−ν(p)(t−s1)kχ�(p, q1)e−ν(q1)s1h0(y1 − q̂1s1, q1),

H2(t, x, p) =
t∫

0

s1∫
0

∫
R3

dq1ds2ds1e
−ν(p)(t−s1)kχ�(p, q1)e−ν(q1)(s1−s2)K1−χ

� h(s2, y2, q1),

H3(t, x, p) =
t∫

0

s1∫
0

∫
R3

dq1ds2ds1e
−ν(p)(t−s1)kχ�(p, q1)e−ν(q1)(s1−s2)�Γ( h

�
,
h

�
)(s2, y2, q1),

H4(t, x, p) =
t∫

0

s1∫
0

∫
R3

∫
R3

dq2dq1ds2ds1e
−ν(p)(t−s1)kχ�(p, q1)

× e−ν(q1)(s1−s2)kχ�(q1, q2)h(s2, y2, q2).
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We now estimate (4.9) term by term. It follows from (4.8) that

|H1(t, x, p)| ≤ ‖h0‖∞
∫
R3

|kχ�(p, q1)|dq1
t∫

0

e−ν(p)(t−s1)e−ν(q1)s1ds1

≤ ‖h0‖∞ν−1(p)
∫
R3

|kχ�(p, q1)|dq1 ≤ C‖h0‖∞.

For the term H2(t, x, p), we use Lemma 2.3, for any η > 0, to obtain

|H2(t, x, p)| ≤
t∫

0

s1∫
0

∫
R3

dq1ds2ds1|kχ�(p, q1)|e−ν(p)(t−s1)e−ν(q1)(s1−s2)|K1−χ
� h(s2, y2, q1)|

≤ Cη sup
0≤s≤t

‖h(s)‖∞
t∫

0

s1∫
0

∫
R3

dq1ds2ds1|kχ�(p, q1)|e−ν(p)(t−s1)

× e−ν(q1)(s1−s2)ν(q1)

≤ Cη sup
0≤s≤t

‖h(s)‖∞
∫
R3

dq1|kχ�(p, q1)|ν−1(p).

Thus we can obtain from (4.8) that

|H2(t, x, p)| ≤ Cη sup
0≤s≤t

‖h(s)‖∞.

By (4.8) and Lemma 2.7 it holds that

|H3(t, x, p)| ≤ sup
0≤s≤t

‖ν−1�Γ( h
�
,
h

�
)(s)‖∞

∫
R3

|kχ�(p, q1)|dq1

×
t∫

0

s1∫
0

e−ν(p)(t−s1)e−ν(q1)(s1−s2)ν(q1)ds2ds1

≤ C sup
0≤s≤t

‖h(s)‖2
∞ν−1(p)

∫
R3

|kχ�(p, q1)|dq1

≤ C sup
0≤s≤t

‖h(s)‖2
∞.

We now concentrate on the last term in (4.9), which will be estimated as in
[16, Theorem 6]. We first consider the case |p| ≥ N .

Case 1: For |p| ≥ N , we have from (4.8) that
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1|p|≥N

∫
R3

|kχ�(p, q1)|dq1 ≤ Cν(p)p−ε
0 1|p|≥N ≤ CN−εν(p).

Similarly it holds that ∫
R3

|kχ�(q1, q2)|dq2 ≤ Cν(q1).

We thus have that

|H4(t, x, p)1|p|≥N | ≤ sup
0≤s≤t

‖h(s)‖∞
∫
R3

∫
R3

1|p|≥N |kχ�(p, q1)kχ�(q1, q2)|dq2dq1

×
t∫

0

s1∫
0

e−ν(p)(t−s1)e−ν(q1)(s1−s2)ds2ds1

≤ sup
0≤s≤t

‖h(s)‖∞
∫
R3

∫
R3

1|p|≥N |kχ�(p, q1)kχ�(q1, q2)|ν−1(p)ν−1(q1)dq2dq1

≤ CN−ε sup
0≤s≤t

‖h(s)‖∞.

Case 2: For either |p| ≤ N , |q1| ≥ 2N or |q1| ≤ 2N , |q2| ≥ 3N . Notice that we have 
either |p − q1| ≥ N or |q1 − q2| ≥ N , and either one of the following is valid for some 
small η > 0:

|kχ,2� (p, q1)| ≤ e−ηN |kχ,2� (p, q1)|eη|p−q1|

≤ Ce−ηN (p0q10)b/2χ(|p− q1|)
[|p× q1|2 + |p− q1|2](1+b)/2 (p0 + q10)−b/2e−( c

8−η)|p−q1|,

|kχ,2� (q1, q2)| ≤ e−ηN |kχ,2� (q1, q2)|eη|q1−q2|

≤ Ce−ηN (q10q20)b/2χ(|q1 − q2|)
[|q1 × q2|2 + |q1 − q2|2](1+b)/2 (q10 + q20)−b/2e−( c

8−η)|q1−q2|.

Here we have used (4.6). It follows from the arguments of (4.8) and the above inequalities 
that ∫

R3

|kχ�(p, q1)|eη|p−q1|dq2 ≤ Cν(p),
∫
R3

|kχ�(q1, q2)|eη|q1−q2|dq2 ≤ Cν(q1). (4.10)

Thus we use these to obtain

t∫ s1∫ ∫ ∫
dq2dq1ds2ds11|p|≤N,|q1|≥2Ne−ν(p)(t−s1)kχ�(p, q1)
0 0 R3 R3
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× e−ν(q1)(s1−s2)kχ�(q1, q2)h(s2, y2, q2)

≤ sup
0≤s≤t

‖h(s)‖∞
∫
R3

∫
R3

1|p|≤N,|q1|≥2N |kχ�(p, q1)kχ�(q1, q2)|dq2dq1

×
t∫

0

s1∫
0

e−ν(p)(t−s1)e−ν(q1)(s1−s2)ds2ds1

≤ e−ηN sup
0≤s≤t

‖h(s)‖∞
∫
R3

∫
R3

|kχ�(p, q1)|eη|p−q1||kχ�(q1, q2)|ν−1(p)ν−1(q1)dq2dq1

≤ Ce−ηN sup
0≤s≤t

‖h(s)‖∞.

Similarly we also have that

t∫
0

s1∫
0

∫
R3

∫
R3

dq2dq1ds2ds11|q1|≤2N,|q2|≥3Ne−ν(p)(t−s1)kχ�(p, q1)

× e−ν(q1)(s1−s2)kχ�(q1, q2)h(s2, y2, q2) ≤ Ce−ηN sup
0≤s≤t

‖h(s)‖∞.

Case 3: |p| ≤ N , |q1| ≤ 2N and |q2| ≤ 3N . This is the last remaining case because if 
|q1| ≥ 2N , it is included in Case 2; while if |q2| ≥ 3N , either |q1| ≤ 2N or |q1| ≥ 2N is 
also included in Case 2. We further assume that s1−s2 ≤ κ for κ > 0 small. Notice that

1|p|≤N,|q1|≤2Ne−ν(p)(t−s1)e−ν(q1)(s1−s2) ≤ e−C(t−s2)/Nb/2
. (4.11)

Noticing that ν(p) ≤ C, we have from (4.10) and (4.11) that

t∫
0

s1∫
s1−κ

∫
R3

∫
R3

dq2dq1ds2ds11|p|≤N,|q1|≤2N,|q2|≤3N

× e−ν(p)(t−s1)kχ�(p, q1)e−ν(q1)(s1−s2)kχ�(q1, q2)h(s2, y2, q2)

≤ sup
0≤s≤t

‖h(s)‖∞
∫
R3

∫
R3

1|p|≤N,|q1|≤2N,|q2|≤3N |kχ�(p, q1)kχ�(q1, q2)|dq2dq1

×
t∫

0

s1∫
s1−κ

e−C(t−s2)/Nb/2
ds2ds1

≤ Cκ sup
0≤s≤t

‖h(s)‖∞.

Case 4: |p| ≤ N , |q1| ≤ 2N , |q2| ≤ 3N and s1 − s2 ≥ κ. It follows from (4.6) and (4.7)
that
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∫
R3

∫
R3

1|p|≤N,|q1|≤2N,|q2|≤3N |kχ�(p, q1)kχ�(q1, q2)|2dq2dq1 ≤ CN .

We use this to obtain that∣∣∣ ∫
R3

∫
R3

dq2dq11|p|≤N,|q1|≤2N,|q2|≤3Nkχ�(p, q1)kχ�(q1, q2)h(s2, y2, q2)
∣∣∣

≤
(∫
R3

∫
R3

1|p|≤N,|q1|≤2N,|q2|≤3N |kχ�(p, q1)kχ�(q1, q2)|2dq2dq1
)1/2

×
( ∫
|q1|≤2N

∫
|q2|≤3N

|h(s2, y2, q2)|2dq2dq1
)1/2

≤ C
( ∫
|q1|≤2N

∫
|q2|≤3N

|h(s2, y2, q2)|2dq2dq1
)1/2

.

Since y2 = y1 − q̂1(s1 − s2), we make a change of variable q1 → y2. In [28],

(dy2

dq1

)
mn

= −(s1 − s2)
(δmnq

2
10 − q1mq1nn

q3
10

)
.

Thus the Jacobian is ∣∣∣dy2

dq1

∣∣∣ = |(s1 − s2)|3
q5
10

≥ C
κ3

N5 .

Recalling that h = �f , we can obtain( ∫
|q1|≤2N

∫
|q2|≤3N

|h(s2, y2, q2)|2dq2dq1
)1/2

≤ C
( κ3

N5

)1/2( ∫
|y2−x|≤c(t−s2)

∫
|q2|≤3N

|h(s2, y2, q2)|2dq2dy2

)1/2

≤ CN,κ

( ∫
|y2−x|≤c(t−s2)

∫
|q2|≤3N

|f(s2, y2, q2)|2dq2dy2

)1/2

≤ CN,κ{1 + (t− s2)3/2}
(∫
T3

∫
R3

|f(s2, y2, q2)|2dq2dy2

)1/2
.

Thus we have from the above estimates that

t∫ s1−κ∫ ∫ ∫
dq2dq1ds2ds11|p|≤N,|q1|≤2N,|q2|≤3N
0 0 R3 R3
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× e−ν(p)(t−s1)kχ�(p, q1)e−ν(q1)(s1−s2)kχ�(q1, q2)h(s2, y2, q2)

≤ C

t∫
0

s1−κ∫
0

ds2ds1e
−C(t−s1)/Nb/2

e−C(s1−s2)/Nb/2

×
∣∣∣ ∫
|q1|≤2N

∫
|q2|≤3N

dq2dq1k
χ
�(p, q1)kχ�(q1, q2)h(s2, y2, q2)

∣∣∣
≤ CN,κ sup

0≤s≤t
‖f(s)‖

t∫
0

s1∫
0

e−C(t−s2)/(2Nb/2)e−C(t−s2)/(2Nb/2){1 + (t− s2)3/2}ds2ds1

≤ CN,κ sup
0≤s≤t

‖f(s)‖.

To summarize, if we take any small κ > 0, any small ε > 0 and η > 0, and large N > 0, 
we have established, for any T > 0

sup
0≤s≤T

{‖h(s)‖∞} ≤ C‖h0‖∞ + C(η + N−ε + e−ηN + κ) sup
0≤s≤T

{‖h(s)‖∞}

+ C sup
0≤s≤T

{‖h(s)‖2
∞} + CN,κ sup

0≤s≤T
‖f(s)‖.

Thus we can obtain that

sup
0≤s≤T

{‖h(s)‖∞} ≤ C‖h0‖∞ + C sup
0≤s≤T

{‖h(s)‖∞}2 + C sup
0≤s≤T

‖f(s)‖.

This implies that (4.1) holds by (4.2). The proof of Lemma 4.1 is complete. �
5. Existence and time-decay

In this section, we will first construct local-in-time solutions to the relativistic Boltz-
mann equation and then give the proofs of Theorem 1.1 and Corollary 1.3.

The construction of local-in-time solutions is based on the uniform estimate for a 
sequence of iterative approximate solutions.

Theorem 5.1. Let any l ≥ 0, l0 > 3/b, ϑ ∈ [0, 1] and τ > 0. If ϑ = 1, restrict τ > 0 small 
enough. There exist both ε > 0 and T ∗ > 0 small enough such that if

El+l0,ϑ(f0) ≤ ε,

then there exists a unique solution f(t, x, p) to the relativistic Boltzmann equation (1.11)
in [0, T ∗] × T3 × R3 such that

sup
∗
El+l0,ϑ(f)(s) ≤ CEl+l0,ϑ(f0).
0≤s≤T
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These solutions are continuous provided that it is so initially. We further have the posi-
tivity, i.e., F = J +

√
Jf ≥ 0 if F0 = J +

√
Jf0 ≥ 0. Furthermore, the conservation laws 

(1.19) hold for all t ∈ (0, T ∗] if they are valid initially at t = 0.

Proof. We consider the following iterative sequence {Fn(t, x, p)} by solving the original 
relativistic Boltzmann equation (1.2):

{∂t + p̂ · ∇x}Fn+1 + R(Fn)Fn+1 = Qgain(Fn, Fn), (5.1)

with the initial data Fn+1(0, x, p) = F0(x, p) and starting with F 0(t, x, p) ≡ F0(x, p). 
Here we have used the notations

R(Fn)Fn+1 = Fn+1(p)
∫
R3

∫
S2

vφσ(g, θ)Fn(q)dqdω,

and

Qgain(Fn, Fn) =
∫
R3

∫
S2

vφσ(g, θ)Fn(p′)Fn(q′)dqdω.

Since Fn+1(t, x, p) = J +
√
Jfn+1(t, x, p), equivalently fn+1(t, x, p) satisfies

{∂t + p̂ · ∇x + ν(p)}fn+1 = K(fn) + Γgain(fn, fn) − Γloss(fn, fn+1), (5.2)

with the initial data fn+1(0, x, p) = f0(x, p) for all n ≥ 0 and with f0(t, x, p) ≡ f0(x, p). 
The first goal of the proof is to get a uniform-in-n estimate for El+l0,ϑ(fn+1)(t). The 
crucial estimate is given as follows.

Lemma 5.2. Let any l ≥ 0, l0 > 3/b, ϑ ∈ [0, 1] and τ > 0. If ϑ = 1, restrict τ > 0 small 
enough. There exist both ε > 0 and T ∗ = T ∗(ε) small enough such that

El+l0,ϑ(f0) ≤ ε, and sup
0≤t≤T∗

El+l0,ϑ(fn)(t) ≤ CEl+l0,ϑ(f0), (5.3)

we have

sup
0≤t≤T∗

El+l0,ϑ(fn+1)(t) ≤ CEl+l0,ϑ(f0). (5.4)

Suppose that f̃n+1(t, x, p) = fn+1(t, x, p) − fn(t, x, p). It holds that

sup
0≤t≤T∗

El+l0,ϑ(f̃n+1)(t) ≤ 1
2 sup

0≤t≤T∗
El+l0,ϑ(f̃n)(t). (5.5)
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Proof. Let � = �(l + l0, ϑ)(v) with l0 > 3/b and K�g = �K( g
� ). If we suppose that 

hn = �fn and hn+1 = �fn+1, we have from (5.2) that

{∂t + p̂ · ∇x + ν(p)}hn+1 = K�(hn) + �Γgain(h
n

�
,
hn

�
) −�Γloss(

hn

�
,
hn+1

�
).

By Duhamel’s principle, we then expand out

hn+1(t, x, p) = e−ν(p)th0(x− p̂t, p) +
t∫

0

e−ν(p)(t−s1)K�hn(s1, y1, p)ds1

+
t∫

0

e−ν(p)(t−s1)�Γgain(h
n

�
,
hn

�
)(s1, y1, p)ds1

−
t∫

0

e−ν(p)(t−s1)�Γloss(
hn

�
,
hn+1

�
)(s1, y1, p)ds1. (5.6)

Here y1 = x − p̂(t − s1). By Lemma 2.3 and (4.8) we have for any t ∈ (0, T ∗)

t∫
0

e−ν(p)(t−s1)K�hn(s1, y1, p)ds1 ≤ Ct sup
0≤s≤t

‖K�hn(s)‖∞ ≤ CT ∗ sup
0≤s≤T∗

‖hn(s)‖∞.

By Lemma 2.7 we can obtain for any t ∈ (0, T ∗)

t∫
0

e−ν(p)(t−s1)�Γgain(h
n

�
,
hn

�
)(s1, y1, p)ds1

+
t∫

0

e−ν(p)(t−s1)�Γloss(
hn

�
,
hn+1

�
)(s1, y1, p)ds1

≤ C sup
0≤s≤t

‖ν−1�Γgain(h
n

�
,
hn

�
)(s)‖∞ + C sup

0≤s≤t
‖ν−1�Γloss(

hn

�
,
hn+1

�
)(s)‖∞

≤ C{ sup
0≤s≤T∗

‖hn(s)‖∞}2 + C sup
0≤s≤T∗

‖hn(s)‖∞ sup
0≤s≤T∗

‖hn+1(s)‖∞.

By these estimates we have from (5.6) that for any t ∈ (0, T ∗)

‖hn+1(t)‖∞ ≤ ‖h0‖∞ + CT ∗ sup
0≤s≤T∗

‖hn(s)‖∞ + C{ sup
0≤s≤T∗

‖hn(s)‖∞}2

+ C sup
0≤s≤T∗

‖hn(s)‖∞ sup
0≤s≤T∗

‖hn+1(s)‖∞. (5.7)

If we choose ε > 0 and T ∗ > 0 small enough, (5.4) follows from (5.3) and (5.7).
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Suppose that f̃n+1 = fn+1 − fn and h̃n+1 = hn+1 − hn. Then h̃n+1 satisfies

{∂t + p̂ · ∇x + ν(p)}h̃n+1 = K�(h̃n) + �Γgain(h
n+1

�
,
h̃n+1

�
)

+ �Γgain( h̃
n+1

�
,
hn

�
) −�Γloss(

h̃n

�
,
hn+1

�
) −�Γloss(

hn−1

�
,
h̃n+1

�
),

with h̃n+1(0, x, p) = 0. The similar arguments as for (5.7) imply that for any t ∈ (0, T ∗)

‖h̃n+1(t)‖∞ ≤ CT ∗ sup
0≤s≤T∗

‖h̃n(s)‖∞ + C sup
0≤s≤T∗

‖h̃n+1(s)‖∞

×
(

sup
0≤s≤T∗

‖hn+1(s)‖∞ + sup
0≤s≤T∗

‖hn(s)‖∞ + sup
0≤s≤T∗

‖hn−1(s)‖∞
)

+ C sup
0≤s≤T∗

‖h̃n(s)‖∞ sup
0≤s≤T∗

‖hn+1(s)‖∞. (5.8)

By using (5.3), (5.4) and (5.8), we have

‖h̃n+1(t)‖∞ ≤ C(T ∗ + ε) sup
0≤s≤T∗

‖h̃n(s)‖∞ ≤ 1
2 sup

0≤s≤T∗
‖h̃n(s)‖∞.

Here we choose both ε > 0 and T ∗ > 0 small enough. This concludes the proof of (5.5)
and hence Lemma 5.2. �

By Lemma 5.2, {fn} is a Cauchy sequence and the limit f is a desired solution. Now 
for uniqueness, there is another solution f̄ to the relativistic Boltzmann equation with 
the same initial condition as f . Assume that sup0≤t≤T∗ El+l0,ϑ(f̄)(t) is also sufficiently 
small. Then the difference between h = �f and h̄ = �f̄ satisfies

{∂t + p̂ · ∇x + ν(p)}{h− h̄} = K�{h− h̄} + �Γ(h− h̄

�
,
h

�
) + �Γ( h̄

�
,
h− h̄

�
).

By the similar arguments as for (5.7), we can obtain

‖h− h̄‖∞ ≤ CT ∗‖h− h̄‖∞ + C
(

sup
0≤t≤T∗

‖h‖∞ + sup
0≤t≤T∗

‖h̄‖∞
)

sup
0≤t≤T∗

‖h− h̄‖∞.

Since T ∗ > 0, sup0≤t≤T∗ ‖h‖∞ and sup0≤t≤T∗ ‖h̄‖∞ are small enough, we deduce h = h̄. 
This completes the proof of the uniqueness.

Next we prove that the solution h(t, x, p) is continuous in [0, T ∗] × T3 × R3 by the 
similar arguments as in [16]. We claim that hn+1(t, x, p) is continuous in [0, T ∗] ×T3×R3

inductively. To prove this claim for any given fixed n, we can use another iteration to 
solve the linear problem for hn+1 in (5.6) as the limit of n′ → ∞:
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{∂t + p̂ · ∇x + ν(p)}hn+1,n′+1 = K�hn+1,n′
+ �Γ(h

n

�
,
hn

�
).

By induction in n′, hn+1,n′+1 is continuous in [0, T ∗] × T3 × R3, and by Corollary 2.6, 
it is standard to verify that K1−χ

� hn+1,n′ is continuous in [0, T ∗] × T3 × R3. It follows 
from (4.7), (4.6) and (2.27) that∫

R3

1|p|+|q|≥N |kχ�(p, q)|dq ≤ Cην(p).

By (4.7), (4.6) and (2.19), we can choose kN (p, q) smooth with compact support such 
that for some ζ > 0 and some large N > 0,

sup
|p|≤N

∫
|q|≤N

|kχ�(p, q) − kN (p, q)|dq ≤ C

N ζ
.

By the above two estimates and the induction hypothesis on continuity of hn+1,n′ in 
[0, T ∗] × T3 × R3, it is also routine to verify that Kχ

�hn+1,n′ is continuous in [0, T ∗] ×
T3 ×R3. From Lemma 2.5 and the induction hypothesis on continuity of hn in [0, T ∗] ×
T3 × R3, it is also straightforward to verify that �Γ[h

n

� , h
n

� ] is continuous in [0, T ∗] ×
T3 × R3. By the similar equation as (5.6), we deduce that hn+1,n′+1 is continuous in 
[0, T ∗] × T3 × R3. Finally we have

{∂t + p̂ · ∇x + ν(p)}{hn+1,n′+1 − hn+1,n′} = K�{hn+1,n′ − hn+1,n′−1}.

It follows from (5.6), (5.7), (2.21), Corollary 2.6 and the above equation that

sup
0≤t≤T∗

‖hn+1,n′+1(t) − hn+1,n′
(t)‖∞ ≤ C

T∗∫
0

‖hn+1,n′
(s) − hn+1,n′−1(s)‖∞ds

≤ ... ≤ (CT ∗)n′

n′! .

Therefore, {hn+1,n′} is Cauchy in L∞, and its limit hn+1 is continuous in [0, T ∗] ×T3×R3. 
We conclude our claim. We can then deduce that as the limit of hn+1, h preserves the 
continuity in [0, T ∗] × T3 × R3 from uniform convergence.

Finally we show the positivity of F (t, x, p) = J(p) +
√

J(p)f(t, x, p). As for obtain-
ing (5.6), for (5.1) we may also write it as the mild form

Fn+1(t, x, p) = e
∫ t
0 R(Fn)(s1,x−p̂s1,p)ds1F0(t, x− p̂t, p)

+
t∫
e
∫ t
s1

R(Fn)(s2,x−p̂s2,p)ds2Qgain(s1, x− p̂(t− s1), p)ds1.
0
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By this and induction on n, Fn+1 ≥ 0 if Fn ≥ 0. This implies that the limit F ≥ 0 if 
the initial data F0 ≥ 0. Since sup0≤s≤T∗ El+l0,ϑ(f)(s) ≤ Cε, f(t, x, p) is bounded and 
continuous [0, T ∗] ×T3 ×R3. By these it is straightforward to verify that classical mass, 
total momentum and total energy conservations hold for such solutions constructed. We 
thus conclude Theorem 5.1. �
Proof of Theorem 1.1. There exists ε > 0 small enough such that Theorem 5.1 is valid. 
We choose a constant C1 > 1 such that for any t ≥ 0,

1
C1

‖f(t)‖2
l,ϑ ≤ El,ϑ(f)(t) ≤ C1‖f(t)‖2

l,ϑ.

From Theorem 5.1, we may denote T > 0 so that for some constant C0 > 0,

T = sup
t>0

{t : El+l0,ϑ(f)(t) ≤ C0ε} > 0.

Set M = C0ε where M is as in Lemma 3.4. By Lemma 3.4 we can obtain that

sup
0≤t≤T

‖f(t)‖2
l,ϑ ≤ C1 sup

0≤t≤T
El,ϑ(f)(t) ≤ C1El,ϑ(f0) ≤ C2

1‖f0‖2
l,ϑ ≤ C2

1E
2
l+l0,ϑ(f0).

By this and Lemma 4.1 we have

sup
0≤t≤T

El+l0,ϑ(f)(t) ≤ CEl+l0,ϑ(f0) + sup
0≤t≤T

‖f(t)‖l,ϑ + C{ sup
0≤t≤T

El+l0,ϑ(f)(t)}2

≤ (C + C1)El+l0,ϑ(f0) + CC0ε sup
0≤t≤T

El+l0,ϑ(f)(t).

If we choose both ε > 0 and El+l0,ϑ(f0) small enough, we have that

sup
0≤t≤T

El+l0,ϑ(f)(t) ≤ C + C1

1 − CC0ε
El+l0,ϑ(f0) ≤

C0ε

2 < C0ε.

We thus deduce T = ∞ from the continuity of El+l0,ϑ(f)(t), and the existence of global 
solution follows.

Next we will prove the exponential decay of the global solution to (1.11) by using 
the similar idea as [31,2,3]. The key point is to split El(f)(t) into a time dependent low 
momentum

E0 = {p0 ≤ ρtβ
′}, and Ec

0 = {p0 > ρtβ
′}. (5.9)

Here β′ > 0 and ρ > 0 will be chosen later.
Let E low

l (f)(t) be the instant energy El(f)(t) restricted to E0. Then we have that

Dl(f)(t) ≥ Cρ−b/2t−bβ′/2E low
l (f)(t).
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By this and (3.12) with ϑ = 0 we can obtain

d

dt
El(f)(t) + Cρ−b/2t−bβ′/2E low

l (f)(t) ≤ 0.

Letting Ehigh
l (f)(t) = El(f)(t) − E low

l (f)(t), we have

d

dt
El(f)(t) + Cρ−b/2t−bβ′/2El(f)(t) ≤ Cρ−b/2t−bβ′/2Ehigh

l (f)(t).

Define λ0β = Cρ−b/2 and β − 1 = −bβ′/2 where β′ > 0 will be chosen later. Then

d

dt
El(f)(t) + λ0βt

β−1El(f)(t) ≤ λ0βt
β−1Ehigh

l (f)(t).

This implies that

d

dt

(
eλ0t

βEl(f)(t)
)
≤ λ0βt

β−1eλ0t
βEhigh

l (f)(t).

It follows from this that

El(f)(t) ≤ e−λ0t
β
(
El(f0) + λ0β

t∫
0

sβ−1eλ0s
βEhigh

l (f)(s)ds
)
. (5.10)

Notice that β − 1 = −bβ′/2. Letting ϑβ′ = β, then β = ϑ
ϑ+ b

2
. It follows from (3.12) that 

El,ϑ(f)(s) ≤ El,ϑ(f0). By these facts we can obtain

Ehigh
l (f)(s) =

∫
T3

∫
Ec

0

pbl0 |f(s, x, p)|2dpdx ≤
∫
T3

∫
Ec

0

e2τpϑ
0

e2τρϑsϑβ′ p
bl
0 |f(s, x, p)|2dpdx

= e−2τρϑsϑβ′

El,ϑ(f)(s) ≤ e−2τρϑsβEl,ϑ(f0).

Further choose ρ > 0 large enough so that λ0 = C
β ρ

−b/2 < 2τρϑ. With this we have from 
the above inequality that

t∫
0

sβ−1eλ0s
βEhigh

l (f)(s)ds ≤ El,ϑ(f0)
t∫

0

sβ−1eλ0s
β

e−2τρϑsβds ≤ CEl,ϑ(f0). (5.11)

By (5.10) and (5.11) we see that (1.20) holds. This then completes the proof of Theo-
rem 1.1. �
Proof of Corollary 1.3. We only deduce the a priori estimate. Multiply f by (1.22), 
integrate over R3 to get
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1
2
d

dt
|f |22 + δ|(I − P)f |2ν ≤ 〈Γ(f, f), f〉. (5.12)

Due to the fact that f0 ∈ N⊥, it holds that f ∈ N⊥ and Pf = 0. By Corollary 2.6 it 
follows that

〈Γ(f, f), f〉 ≤ CEl0(f)(t)|f |2ν .

By these facts it follows from (5.12) that

d

dt
|f |22 + δ0|f |2ν ≤ CEl0(f)(t)|f |2ν . (5.13)

Multiply �2(l, ϑ)(p)f by (1.22), integrate over R3 to get

1
2
d

dt
|f |2l,ϑ + |f |2ν,l,ϑ − 〈�2(l, ϑ)Kf, f〉 ≤ 〈�2(l, ϑ)Γ(f, f), f〉. (5.14)

It follows from Lemma 2.1 that, for any η > 0

|〈�2(l, ϑ)Kf, f〉| ≤ Cη|f |2ν,l,ϑ + C|f |2ν .

It follows from Corollary 2.6 that

|〈�2(l, ϑ)Γ(f, f), f〉| ≤ CEl+l0,ϑ(f)(t)|f |2ν,l,ϑ.

By plugging these estimates into (5.14), we have that

d

dt
|f |2l,ϑ + δ1|f |2ν,l,ϑ ≤ CEl+l0,ϑ(f)(t)|f |2ν,l,ϑ + C|f |2ν . (5.15)

By using a suitable linear combination of (5.13) and (5.15) and assuming that 
El+l0,ϑ(f)(t) is small enough, we have

d

dt
E l,ϑ(f)(t) + Dl,ϑ(f)(t) ≤ 0. (5.16)

Here Dl,ϑ(f)(t) is (1.24) and E l,ϑ(f)(t) is defined as

E l,ϑ(f)(t) = C|f |22 + |f |2l,ϑ ∼ |f |2l,ϑ.

To close the a priori estimate, the similar arguments as for Lemma 4.1 imply that for 
any T > 0, if f0 ∈ N⊥ and El+l0,ϑ(f0) is small enough, the solution f(t, p) to the 
equation (1.22) satisfies

sup
0≤s≤T

El+l0,ϑ(f)(t) ≤ CEl+l0,ϑ(f0) + C sup
0≤s≤T

{El+l0,ϑ(f)(t)}2 + C sup
0≤s≤T

|f(s)|2.

(5.17)
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Once we obtain (5.16) and (5.17), the similar arguments as for Theorem 1.1 conclude 
the proof of Corollary 1.3. �
6. Propagation of spatial regularity

In this section we will show the propagation of space regularity and also the large 
time behavior of the higher-order energy functional of global solutions obtained in The-
orem 1.1.

Proof of Theorem 1.2. Since the local solution obtained in Theorem 5.1 is unique, we 
can use the proof of Theorem 5.1 and the assumption of Theorem 1.2 to prove the 
propagation of space regularity. We omit the proof for simplicity and we focus on the 
uniform bounds and the large time behavior of the higher-order energy functional of 
global solutions. We shall use induction in the nonnegative integer N . The case N = 0
is just a direct consequence of Theorem 1.1. Suppose that Theorem 1.2 is true up to the 
case k ≤ N − 1, that is, it holds that for all nonnegative integers k ≤ N − 1,

d

dt
Ek,l,ϑ(f)(t) + Dk,l,ϑ(f)(t)

≤ C
∑

0≤m≤[ k2 ]

{
Em,l+l0,ϑ(f)(t) + E2

m,l+l0,ϑ(f)(t)
}
Dk−m,l,ϑ(f)(t), (6.1)

and there exist positive constants C ′
k, C ′′

k and a decreasing number sequence λk > 0 such 
that

sup
0≤t<∞

Ek,l+l0,ϑ(f)(t) ≤ C ′
k and Ek,l(f)(t) ≤ C ′′

k e
−λkt

β

, t ≥ 0. (6.2)

We need to show the theorem in the case k = N . Letting G = Γ(f, f) in (3.10), multi-
plying (3.10) by |ξ|2N and integrating over ξ yield

d

dt

⎡⎣ ∑
|α|=N

‖∂αf‖2 − κ

∫
Z3

|ξ|2N+1

1 + |ξ| 〈iS(ω)f̂ , f̂〉dξ

⎤⎦ + δ1
∑

|α|=N

‖∂αf‖2
ν

≤
∫
Z3

|ξ|2NR〈f̂ , Γ̂(f, f)〉dξ + C
14∑
�=1

∫
Z3

|ξ|2N |〈Γ̂(f, f), e�〉|2dξ. (6.3)

By Lemma 2.5 and the properties of the Fourier transform, it follows that∣∣∣ ∫
Z3

|ξ|2NR〈f̂ , Γ̂(f, f)〉dξ
∣∣∣ ≤ C

∑
|α|=N

|(∂αΓ(f, f), ∂αf)|

≤ C
∑

N

Em,l+l0,ϑ(f)(t)DN−m,l,ϑ(f)(t).

0≤m≤[ 2 ]
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Similarly one has from Lemma 2.4 that∫
Z3

|ξ|2N |〈Γ̂(f, f), e�〉|2dξ ≤ C
∑

|α|=N

∫
Z3

|〈∂αΓ(f, f), e�〉|2dξ

≤ C
∑

0≤m≤[N2 ]

E2
m,l+l0,ϑ(f)(t)DN−m,l,ϑ(f)(t).

Plugging the above two estimates into (6.3) gives

d

dt

⎡⎣ ∑
|α|=N

‖∂αf‖2 − κ

∫
Z3

|ξ|2N+1

1 + |ξ| 〈iS(ω)f̂ , f̂〉dξ

⎤⎦ + δ′1
∑

|α|=N

‖∂αf‖2
ν

≤ C
∑

0≤m≤[N2 ]

{
Em,l+l0,ϑ(f)(t) + E2

m,l+l0,ϑ(f)(t)
}
DN−m,l,ϑ(f)(t). (6.4)

We take the ∂α of (1.11), multiply �2(l, ϑ)(p)∂αf by the resulting equation, and integrate 
it over T3 × R3 to deduce the following estimate

∑
|α|=N

{1
2
d

dt
‖∂αf‖2

l,ϑ + (�2(l, ϑ)L∂αf, ∂αf)
}

= (�2(l, ϑ)∂αΓ(f, f), ∂αf). (6.5)

Notice that Lemma 2.1 implies

(�2(l, ϑ)L∂αf, ∂αf) = ‖∂αf‖2
ν,l,ϑ − (�2(l, ϑ)K∂αf, ∂αf) ≥ 1

2‖∂
αf‖2

ν,l,ϑ − C‖∂αf‖2
ν ,

and also Lemma 2.5 implies

(�2(l, ϑ)∂αΓ(f, f), ∂αf) ≤ C
∑

0≤m≤[N2 ]

Em,l+l0,ϑ(f)(t)DN−m,l,ϑ(f)(t).

Plugging the above estimates into (6.5), one has

∑
|α|=N

{ d

dt
‖∂αf‖2

l,ϑ + ‖∂αf‖2
ν,l,ϑ − C‖∂αf‖2

ν

}
≤ C

∑
0≤m≤[N2 ]

Em,l+l0,ϑ(f)(t)DN−m,l,ϑ(f)(t). (6.6)

A suitable linear combination of (6.4) and (6.6) yields

d

dt
EN,l,ϑ(f)(t) + DN,l,ϑ(f)(t)

≤ C
∑

N

{Em,l+l0,ϑ(f)(t) + E2
m,l+l0,ϑ(f)(t)}DN−m,l,ϑ(f)(t), (6.7)
0≤m≤[ 2 ]
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where DN,l,ϑ(f)(t) is given in (1.18) and EN,l,ϑ(f)(t) is defined as

EN,l,ϑ(f)(t) =
∑

|α|=N

‖∂αf‖2
l,ϑ + 2C

∑
|α|=N

‖∂αf‖2 − 2Cκ

∫
Z3

|ξ|2N+1

1 + |ξ|2 〈iS(ω)f̂ , f̂〉dξ.

Since S(ω) is bounded, it holds that

∣∣∣ ∫
Z3

|ξ|2N+1

1 + |ξ|2 〈iS(ω)f̂ , f̂〉dξ
∣∣∣ ≤ C

∑
|α|=N

‖∂αf‖2.

Further due to the fact that κ > 0 is small enough, one can see EN,l,ϑ(f)(t) ∼∑
|α|=N ‖∂αf‖2

l,ϑ. This concludes the proof of (6.1) for k = N .
Recall by Theorem 1.1 that El+l0,ϑ(f)(t) is small enough. It follows from (6.7) that

d

dt
E1,l,ϑ(f)(t) + D1,l,ϑ(f)(t) ≤ 0. (6.8)

For N ≥ 2, one has

d

dt
EN,l,ϑ(f)(t) + DN,l,ϑ(f)(t)

≤ C
∑

1≤m≤[N2 ]

{Em,l+l0,ϑ(f)(t) + E2
m,l+l0,ϑ(f)(t)}DN−m,l,ϑ(f)(t). (6.9)

As El+l0,ϑ(f0) is small enough, it follows from (3.12) that

El,ϑ(f)(t) +
t∫

0

Dl,ϑ(f)(s)ds ≤ El,ϑ(f0) ≤ CE2
l+l0,ϑ(f0), (6.10)

and hence by (6.8), (6.9) and the induction assumption, we have from (6.1) that for any 
|k| ≤ N − 1,

Ek,l,ϑ(f)(t) +
t∫

0

Dk,l,ϑ(f)(s)ds ≤ C. (6.11)

By using (6.10), (6.11) and the induction assumption again, we have from (6.8) and (6.9)
that

EN,l,ϑ(f)(t) +
t∫
DN,l,ϑ(f)(s)ds ≤ C. (6.12)
0
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In terms of (4.2), (4.3), (6.10), Lemma 2.3 and Lemma 2.7, the similar arguments as in 
the proof of Lemma 4.1 imply that for any T > 0,

sup
0≤s≤T

EN,l+l0,ϑ(f)(t) ≤ CEN,l+l0,ϑ(f0) + C sup
0≤s≤T

∑
|α|=N

‖∂αf(s)‖

+ C{ sup
0≤s≤T

El+l0,ϑ(f)(t)}{ sup
0≤s≤T

EN,l+l0,ϑ(f)(t)} + C{
∑

1≤k≤N−1

sup
0≤s≤T

Ek,l+l0,ϑ(f)(t)}2.

Notice that El+l0,ϑ(f0) is small enough. By using (6.2) and (6.12) we have from the above 
inequality that for some constant C ′

N > 0,

sup
0≤t≤∞

EN,l+l0,ϑ(f)(t) ≤ C ′
N .

Next we shall prove the exponential time decay for the Nth-order spatial derivative 
of the solution. Let ϑ = 0 in (6.9). We have from (6.2) that for N ≥ 2,

d

dt
EN,l(f)(t) + DN,l(f)(t) ≤ C

∑
[N2 ]≤m≤N−1

Dm,l(f)(t) ≤ C
∑

[N2 ]≤m≤N−1

Em,l(f)(t),

(6.13)

where we have used (1.17), (1.18) and the fact that ν(p) ≤ C. For any m ∈ {1, 2, ..., N}, 
as (5.9), we define

Em = {p0 ≤ (2mρ)tβ
′} and Ec

m = {p0 > (2mρ)tβ
′}.

Let E low
N,l (f)(t) be the instant energy restricted to EN . Then we have that

DN,l(f)(t) ≥ C(2Nρ)−b/2t−bβ′/2E low
N,l (f)(t).

Define λNβ = C(2Nρ)−b/2. Recalling β−1 = −bβ′/2, we have from this and (6.13) that

d

dt
EN,l(f)(t) + λNβtβ−1EN,l(f)(t) ≤ λNβtβ−1Ehigh

l (f)(t) + C
∑

[N2 ]≤m≤N−1

Em,l(f)(t),

where Ehigh
N,l (f)(s) is the instant energy functional EN,l(f)(s) restricted to the set Ec

N . It 
follows from the above inequality that

EN,l(f)(t) ≤ e−λN tβ
(
EN,l(f0) + λNβ

t∫
sβ−1eλNsβEhigh

N,l (f)(s)ds

0
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+ C
∑

[N2 ]≤m≤N−1

t∫
0

eλNsβEm,l(f)(s)ds
)
. (6.14)

Choose ρ > 0 large enough so that for m ∈ {1, 2, ..., N},

λm = C

β
(2mρ)−b/2 < 2τ(2mρ)ϑ. (6.15)

Then λm is decreasing in m. By (6.2) we have that for m < N ,

t∫
0

eλNsβEm,l(f)(s)ds ≤ C ′′
m

t∫
0

eλNsβe−λmsβds ≤ C ′′
m. (6.16)

Notice that

Ehigh
N,l (f)(s) ≤ e−2τ(2Nρ)ϑsϑβ′

EN,l,ϑ(f)(s) ≤ Ce−2τ(2Nρ)ϑsβEN,l,ϑ(f0).

By this we can obtain from (6.15) that

t∫
0

sβ−1eλNsβEhigh
N,l (f)(s)ds ≤ CEN,l,ϑ(f0)

t∫
0

sβ−1eλNsβe−2τ(2Nρ)ϑsβds ≤ CEN,l,ϑ(f0).

(6.17)

It follows from (6.12), (6.14), (6.16) and (6.17) that

EN,l(f)(t) ≤ C ′′
Ne−λN tβ .

This completes the proof of Theorem 1.2 for the case N ≥ 2. In the case N = 1, one can 
use (6.8) and the similar proof as (5.9) and (5.10) to get the desired results. This then 
completes the proof of Theorem 1.2. �
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