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Abstract. The motion of collisional plasmas can be governed either by the Euler-
Maxwell system with damping at the fluid level or by the Vlasov-Maxwell-Boltzmann
system at the kinetic level. In the note, we present some recent results in [8] and [7] for
the study of the non-trivial large-time behavior of solutions to the Cauchy problem on
the related models in perturbation framework.

Keywords: collisional plasmas, damped Euler-Maxwell system, Vlasov-Poisson-
Boltzmann system, time-asymptotic stability.

Mathematical subject classification: Primary: 35Q20, 76P05; Secondary: 35B35,
35B40.

1 Motivations

Consider the two-fluid kinetic system with collisions (cf. [3, 24])

∂t Fα + ξ · ∇x Fα + qα
mα

(
E + ξ

c
× B

)
· ∇ξ Fα = Cα, α = i, e,

coupling to the Maxwell system

∂t E − c∇ × B = −4π J , ∂t B + c∇ × E = 0,

∇ · E = 4πρ, ∇ · B = 0,

with

J =
∑
α

qα

∫
R3
ξFα dξ,

ρ =
∑
α

qα

∫
R3

Fα dξ.
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Here Fα = Fα(t, x , ξ) stands for the number distribution function of particles
with position x and velocity ξ at time t , and E, B are the electric and magnetic
fields. Constants qα, mα, c are the charge, mass, and speed of light, respectively.
In general the term Cα depending on all Fα and particle masses denotes colli-
sions of α-species particles with all like and unlike particles in plasma. For fully
ionised plasma, the collision is grazing and the corresponding collision term Cα
is usually described by the Landau collision operator of the Fokker-Planck type.
Mathematically, in order to compute the macroscopic transport coefficients in
terms of the kinetic model, it is convenient to use the Boltzmann collision op-
erator which is of the integral form and acts only on the velocity variable. For
weakly ionised plasma, in the case when collisions of charged particles ions or
electrons with neutral particles are dominated, the collision term is determined
by the relaxation operator conserving only the mass. In the spatially homoge-
neous case without any force, due to the relaxation property of Cα, the system
tends in large time to the Maxwellian

M = M[n,u,T ](ξ) = n

(2π RT )3/2
e− |ξ−u|2

2T ,

where n is the number density, u is the bulk velocity, and T is the temperature.
One of the important goals of studying these models in mathematics is to establish
stability and convergence rates of solutions around a global Maxwellian or some
non-trivial profile (for instance, wave patterns and stationary solutions) in the
spatially inhomogeneous case, cf. [41].

To study the problems on the kinetic equations above, particularly for inves-
tigating the structure of the complex coupling system, it could be better to first
look at the corresponding fluid dynamic models with relaxations. Associated
with Fα(t, x , ξ), one can introduce the macroscopic moments

nα(t, x) ≡
∫
R3

Fα(t, x , ξ) dξ, uα(t, x) ≡ 1

nα(t, x)

∫
R3
ξFα(t, x , ξ) dξ,

θα(t, x) ≡ 1

3kαnα

∫
R3

|ξ − uα(t, x)|2Fα(t, x , ξ) dξ, kα = kB

mα

,

and the high-order moments (thermal quantities)

Pα(t, x) ≡ mα

∫
R3
(ξ − uα)⊗ (ξ − uα)Fα(t, x , ξ) dξ

= pα I +�α, pα = kBnαθα,

Bull Braz Math Soc, Vol. 47, N. 1, 2016
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hα(t, x) ≡ 1

2
mα

∫
R3

|ξ − uα |2(ξ − uα)Fα(t, x , ξ) dξ,

Rα(t, x) ≡
∫
R3

mα(ξ − uα)Cα dξ,

Qα(t, x) ≡
∫
R3

1

2
mα|ξ − uα|2Cα dξ.

At the formal level, one obtains the macroscopic fluid system which is unclosed
and takes the form of the Euler-Maxwell system:

(∂t + uα · ∇x)nα + nα∇x · uα = 0,

nαmα(∂t + uα · ∇x)uα + ∇x(kBnαθα)

= nαqα
(

E + uα
c

× B
)

− ∇x ·�α +Rα,

3

2
nα(∂t + uα · ∇x)kBθα + kB nαθα∇x · uα

= −�α : ∇x uα − ∇x · hα +Qα,

coupled to

∂t E − c∇ × B = −4π
∑
α

qαnαuα, ∂t B + c∇ × E = 0,

∇ · E = 4π
∑
α

qαnα, ∇ · B = 0.

To present the motivations for the study of collisional fluid and kinetic plas-
mas, we recall a few mathematical results on the Vlasov-Maxwell-Boltzmann
(VMB) system near global Maxwellians in perturbation framework. In the case
of the periodic box, the global existence of small-amplitude classical solutions to
the Cauchy problem was firstly obtained by Guo [16] through the robust energy
method, and the almost exponential time rate was later given by Jang [23] where
the diffusive limit to the incompressible Navier-Stokes-Poisson system is also
justified. In the case of the whole space, Strain [37] showed the global existence
by using the two-species’ cancelation property to control the electric field, and
Duan-Strain [11] further provided explicit polynomial convergence rates of so-
lutions to the constant steady state by carrying out the linearised analysis as well
as the bootstrap argument to the nonlinear problem. In particular, it was shown
in [11] by the Fourier energy method that for the linearised VMB system, there

Bull Braz Math Soc, Vol. 47, N. 1, 2016
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is an energy functionalE(t, k) equivalent with the natural one ‖û‖2
L2
ξ

+|[Ê, B̂]|2
such that

∂tE(t, k)+ λ‖ν1/2{I − P}û‖2
L2
ξ

+ λ|k|2
1 + |k|2 ‖Pû‖2

L2
ξ

+ λ|Ê |2 + λ|k|2
(1 + |k|2)2 |B̂|2 ≤ 0,

for all t ≥ 0 and k ∈ R3, where λ > 0 is a positive constant, u stands for the
perturbation, and P is the projection to the null space of the linearised Boltzmann
operator. Consider the case when ν = ν(ξ) has a positive lower bound. The
above energy inequality implies that the real part of eigenvalues of the linearised
system in the Fourier space is less than or equal to −λ|k|2/(1+|k|2)2. Therefore
there is no eigenvalue on the imaginary axis in the complex plane except at
k = 0, and one eigenvalue could tend to zero with the rate 1/|k|2 as |k| goes
to infinity. Hence, both 0 and ±i∞ are singular points of the resolvent of the
linear solution operator. Note that in the finite-dimensional case, there exists
an abstract spectral theory to study such complex system of the regularity-loss
type with many applications to the Bresse system for polynomial stability of the
semigroup; see Liu-Rao [28], Batty-Duyckaerts [1], Muñoz Rivera-Racke [35],
Ide-Kawashima [25], and reference therein.

The work [11] then motivates us to consider the following questions:

(a) Is the energy product rate optimal? To answer this question has to be based
on the spectral analysis as in Ukai [38] for the pure Boltzmann equation
without any force. The case with self-consistent forces has been recently
done by Li-Yang-Zhong [26].

(b) Can the fluid-type system, that is the damped Euler-Maxwell, enjoy a
similar property? In this direction, global existence and rates of conver-
gence of solutions near constant steady states were considered in Ueda-
Kawashima [40] and Duan [5]. Recently the analysis of eigenvalues for
the two-fluid system with general physical parameters was made in Duan-
Liu-Zhu [8], where the linear diffusion wave is also justified in the sense
of the generalised Darcy’s law in the context of plasma physics.

(c) What happens to the long-range potentials with/without angular cutoff
assumptions? The previous work on the VMB system mentioned above is
mainly for the hard sphere model. It is usually more difficult to generalise
those results to the non hard sphere case, particularly for the very soft

Bull Braz Math Soc, Vol. 47, N. 1, 2016
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potentials. The main breakthrough in this direction was recently made
by Guo [17] for the study of the Vlasov-Poisson-Landau system with the
Coulomb potential. For the VMB system, we may refer to Duan-Liu-Yang-
Zhao [10], Duan-Lei-Yang-Zhao [9] and references therein.

(d) Is there any abstract theory to treat such complex coupling system? At
the fluid level, Ueda-Duan-Kawashima [39] indeed provided a structure
condition to general hyperbolic conservation laws with degenerate dissi-
pations. We also expect to generalise the result to the coupled kinetic-fluid
system including the VMB system.

(e) What about the stability issue for some existing non-trivial profiles such as
wave patterns? We may start from the simple case when only the potential
force is present, and mainly focus on the interesting situation where the
potential function is non-trivial, cf. Duan-Liu [6, 7].

In this note we consider the nontrivial large-time behaviour of fluid and kinetic
plasmas only related to questions (b) and (e).

2 Linear diffusion waves of Euler-Maxwell with damping

Consider the two-fluid (α = i, e) Euler-Maxwell system with damping in R3:

∂tnα + ∇ · (nαuα) = 0,

mαnα(∂tuα + uα · ∇uα)+ ∇ pα(nα)

= qαnα
(

E + uα
c

× B
)
−ναmαnαuα,

∂t E − c∇ × B = −4π J, J =
∑
α

qαnαuα,

∂t B + c∇ × E = 0,

∇ · E = 4πρ, ∇ · B = 0, ρ =
∑
α

qαnα.

We first mention that in the non damped case, the dispersive Euler-Maxwell
system near constant steady states has been studied by Germain-Masmoudi [13]
and Guo-Ionescu-Pausader [18] by using the tools in the harmonic analysis. In
the damped situation, it is easy to obtain the global existence of small ampli-
tude classical solutions near the constant steady state only basing on the energy
method. We mainly focus on the convergence of the obtained solutions to the lin-
ear diffusion waves, that is to show that the first-order approximation of ni,e − 1

Bull Braz Math Soc, Vol. 47, N. 1, 2016
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and B in large time are linear diffusion waves and the first-order approxima-
tion of ui,e and E are defined in terms of a generalised Darcy’s law. For that
purpose, as the extra time-decay rate is needed, it seems necessary to make a
complete analysis of the eigenvalue problem on the linearised system. In general
it is difficult to do so due to the fact that the size of the system is so large that
it is an impossible task to find out the explicit formulas of all eigenvalues in
the different frequency region. In what follows, we will state the main results
obtained in Duan-Liu-Zhu [8] for the study of the problem. Note that for the
damped Euler system without any force, there are a lot of works in different
aspects, for instance, Lions [27], Hsiao-Liu [20], Huang-Marcati-Pan [21] and
references therein. It would be interesting to extend those results to the damped
Euler-Maxwell system.

Let us give a heuristic derivation of diffusion waves. Assume that the desired
long-term asymptotic profile satisfies the quasi-neutral condition: ni = ne =
n(t, x), ui = ue = u(t, x), and the background magnetic field is zero. From the
momentum equations ∇ pα(n) = qαnE −ναmαnu (α = i, e), along the direction
parallel to the frequency mode we define u‖, E‖ by

nu‖ = − Ti + Te

miνi + meνe
∇n, nE‖ = Timeνe − Temiνi

miνi + meνe
∇n,

where we have assumed pα(n) = Tαn without loss of generality. Recalling the
conservation of mass ∂tn +∇ · (nu‖) = 0, then n satisfies the diffusion equation

∂t n − μ1�n = 0, μ1 := Ti + Te

miνi + meνe
.

Note that whenever the pressure function pα(·) takes the general form, for in-
stance, of the form of γ -law (γ > 1), the corresponding diffusion equation is
nonlinear. Moreover, we point out that the situation is completely different when
the background magnetic field is nonzero, and in that case, the diffusion coef-
ficients are anisotropic, namely, along the direction parallel to B diffusion is
independent of B and takes the similar form as above, but along the direction
perpendicular to B diffusion is inversely proportional to |B| that is the magnitude
of B, cf. [14]. Finally, the expected asymptotic equations for the electromagnetic
part are determined in the sense of the generalised Darcy’s Law:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
− eE⊥ + miνi ui,⊥ = 0,

eE⊥ + meνeue,⊥ = 0,

− c∇ × B + 4πn(eui,⊥ − eue,⊥) = 0,

∂t B + c∇ × E⊥ = 0,

Bull Braz Math Soc, Vol. 47, N. 1, 2016
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where ⊥ stands for the direction perpendicular to the frequency mode. Letting
n = 1, the above gives⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t B − μ2�B = 0, μ2 = c2miνi meνe

4πe2(miνi + meνe)
,

ui,⊥ = e

miνi
E⊥ = c

4πe

meνe

miνi + meνe
∇ × B,

ue,⊥ = − e

meνe
E⊥ = − c

4πe

miνi

miνi + meνe
∇ × B,

E⊥ = c

4πe2

miνi meνe

miνi + meνe
∇ × B.

The main results in [8] can be divided into two parts. For the first part, indeed
one can show

|Û (t, k)− Û (t, k)| � χ|k|≤1|k|e−λ|k|2 t |Û0(k)| + χ|k|≥1e
− λ

|k|2 t |Û0(k)|,
where U is the solution to the linearized Cauchy problem with initial data U0,
and U is the solution to the constructed-above diffusion equations with the same
initial data. The estimate above implies that at the linear level, as long as initial
data are smooth enough, U converges to U in L2 norm with the extra time-rate
(1+t)−1/2, and hence the diffusion equations are justified to be good approxima-
tions in large time for the more complex Euler-Maxwell system. For the proof,
the upper bound over the high-frequency domain is obtained directly in terms of
the Fourier energy estimates on U as U itself has a much better bound, and over
the low-frequency domain it is based on solving the eigenvalue problem which
is a key issue of our work.

In the second part, one can further prove that solutions to the nonlinear
Cauchy problem tend time-asymtotically toward the diffusion waves with a
faster time-rate than the one in which solutions themselves decay. Precisely,
let U = [nα − 1, uα, E, B] be the solution to the perturbed Cauchy prob-
lem on the Euler-Maxwell system with initial data U0. The asymptotic profile
U = [n, uα, E, B] is defined by

n =
∑
α=i,e

mανα

miνi + meνe
Gμ1(t, ·) ∗ (nα0 − 1),

B = Gμ2(t, ·) ∗ B0,

Bull Braz Math Soc, Vol. 47, N. 1, 2016
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and

uα(t, x) = − Ti + Te

miνi + meνe
∇n(t, x)+ c

4πqα

meνe

miνi + meνe
∇ × B(t, x),

α = i, e,

E(t, x) = Timeνe − Temiνi

e(miνi + meνe)
∇n(t, x)+ c

4πe2

miνi meνe

miνi + meνe
∇ × B(t, x).

Theorem 2.1. One has

‖(U − U )(t)‖L2 � (1 + t)−
5
4 ,

for all t ≥ 0, provided that∑
α=i,e

‖[nα0 − 1, uα0]‖H 11∩L1 + ‖[E0, B0]‖H 11∩L1 ,

is sufficiently small.

The complete proof of the above theorem is given in [8]. We remark that H 11

is a technical condition on initial data, and the optimal Sobolev regularity is
not pursued yet. The final remark is concerned with the nonlinear diffusion of
the two fluid Euler-Maxwell system with damping. In fact, the current work is
done at the linearized level. Even for the general pressure functions Pα (α =
i, e), the density in large time satisfies the nonlinear heat equation. It would be
interesting and challenging to further investigate the asymptotic stability of the
nonlinear diffusion waves.

3 Rarefaction waves of Vlasov-Poisson-Boltzmann system

In this section we consider the large-time behaviour of the kinetic plasma with
collisions which is governed by the following Vlasov-Poisson-Boltzmann sys-
tem: ⎧⎪⎨

⎪⎩
∂t F + ξ1∂x F−∂xφ∂ξ1 F = Q(F, F),

−∂2
xφ = ρ − ρe(φ), ρ =

∫
R3

F dξ,

with F(0, x , ξ) = F0(x , ξ) ≥ 0. We assume

lim
x→±∞ F0(x , ξ) = ρ±

(2πθ±)3/2
e− |ξ−u±|2

2θ± , u± = [u1±, 0, 0],

lim
x→±∞φ(t, x) = φ±, ρ± = ρe(φ±).

Bull Braz Math Soc, Vol. 47, N. 1, 2016
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Also, the following assumption on ρe(·) holds:

(A) ρe(φ) : (φm, φM) → (ρm, ρM) is a positive smooth function with

ρm = inf
φm<φ<φM

ρe(φ), ρM = sup
φm<φ<φM

ρe(φ),

and
(A1) ρe(0) = 1 with 0 ∈ (φm, φM);
(A2) ρe(φ) > 0, ρ ′

e(φ) > 0 for each φ ∈ (φm, φM);
(A3) ρe(φ)ρ

′′
e (φ) ≤ [ρ ′

e(φ)]2 for each φ ∈ (φm, φM).

A typical example takes the form of

ρe(φ) =
[

1 + γe − 1

γe

φ

Ae

] 1
γe−1

,

with γe > 1. This is motivated by the momentum equation of electrons under the

assumption that the electron mass is sufficiently small. Note that ρe(φ) = e
φ

Ae

as γe → 1, which corresponds to the isothermal case for electrons.
There recently has been some progress on the nonlinear stability of three basic

wave patterns for the Boltzmann equation with slab symmetry for the shock,
rarefaction wave and contact discontinuity, respectively; see [2, 31, 32, 42], for
instance. Here we also mention the fundamental work [15, 22, 33, 34] in the
context of gas dynamic equations. However, for the Boltzmann equation with
forces, to the best of our knowledge, there are few results on the same issue.
In [7], we have showed the time-asymptotic stability of the rarefaction wave for
the model mentioned above. In particular, the potential function may take the
distinct states at both far fields x = ±∞. In what follows, we will present the
main result of [7].

Recall that

ψ0 = 1, ψi = ξi (i = 1, 2, 3), ψ4 = 1

2
|ξ |2

are five collision invariants. As in [30], one can introduce the maro-micro de-
composition:

F(t, x , ξ) = M(t, x , ξ)+ G(t, x , ξ),

with

M[ρ(t ,x),u(t ,x),θ(t ,x)](ξ) ≡ ρ(t, x)

(2π Rθ(t, x))
3
2

exp

(
−|ξ − u(t, x)|2

2Rθ(t, x)

)
,

Bull Braz Math Soc, Vol. 47, N. 1, 2016
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through

ρ(t, x) ≡
∫
R3

F(t, x , ξ) dξ,

ρ(t, x)ui(t, x) ≡
∫
R3
ψi (ξ)F(t, x , ξ) dξ, i = 1, 2, 3,[

ρ

(
3

2
Rθ(t, x)+ 1

2
|u(t, x)|2

)]
≡

∫
R3
ψ4(ξ)F(t, x , ξ) dξ.

Then, the VPB system can be rewritten in the form of the Euler-Poisson system
with unknown high moments:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tρ + ∂x(ρu1) = 0,

∂t (ρu1)+ ∂x(ρu2
1)+ ∂x P+ρ∂xφ = −

∫
R3
ξ2

1 ∂x G dξ,

∂t (ρui)+ ∂x(ρu1ui ) = −
∫
R3
ξiξ1∂xG dξ, i = 2, 3,

∂t

[
ρ

(
3

2
Rθ + 1

2
|u|2

)]
+ ∂x

[
u1

(
ρ

(
3

2
Rθ + 1

2
|u|2

)
+ P

)]

+ ρu1∂xφ = −1

2

∫
R3

|ξ |2ξ1∂x G dξ,

−∂2
xφ = ρ − ρe(φ).

To capture viscosity and heat-conductivity, one can plug into the above system

G = L−1
M

(
PM

1 (ξ1∂xM)
)

+�,

with
� = L−1

M

[
∂tG + PM

1 (ξ1∂x G)−∂xφ∂ξ1 G
] − L−1

M [Q(G,G)],
so as to obtain the Navier-Stokes-Poisson type system with unknown higher-
order moments.

To construct the large-time rarefaction wave, it is natural to make use of the
quasineutral Euler system by ignoring all high-order terms:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂tρ + ρ∂xu1 + u1∂xρ = 0,

∂tu1 + u1∂xu1 + ∂x [P + Pφ(ρ)]
ρ

= 0,

∂tθ + u1∂xθ + P∂xu1

ρ
= 0.

Bull Braz Math Soc, Vol. 47, N. 1, 2016
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As in [29], we let [ρ R, u R
1 , θ

R](x/t) denote the 3-rarefaction solution with Rie-
mann data consistent with far-field data given before, and let [ρr , ur

1, θ
r ](t, x)

denote the usual smooth approximation in terms of the Burgers’ equation with
initial data of the form

w(0, x) = 1

2
(w+ +w−)+ 1

2
(w+ − w−) tanh(εx),

where w± are values of the 3rd eigenfunction at both far-field data, and ε > 0
is a small constant to be chosen later on.

To state the result, we need to introduce a reference weight function M∗ =
M∗(ξ) = M[ρ∗,u∗ ,θ∗](ξ) which is a global Maxwellian such that the constant
state [ρ∗, u∗, θ∗] with u∗ = [u1∗, 0, 0] satisfies⎧⎪⎪⎨
⎪⎪⎩

1

2
sup

(t ,x)∈R+×R
θ r (t, x) < θ∗ < inf

(t ,x)∈R+×R
θ r(t, x),

sup
(t ,x)∈R+×R

{|ρr(t, x)− ρ∗| + |ur (t, x)− u∗| + |θ r (t, x)− θ∗|} < η0,

for a constant η0 > 0 which is not necessarily small.

Theorem 3.1. Assume that [ρ+, u1+, θ+] is connected to [ρ−, u1−, θ−] by the
third rarefaction wave, ρ± = ρe(φ±) with φ± ∈ (φm, φM), and ρe(·) satisfies
(A). Denote δr to be the wave strength which is not necessarily small. There
are ε0 > 0, 0 < σ0 < 1/3 and C0 > 0, which may depend on δr and η0, such
that if F0(x , ξ) ≥ 0 and

∑
|α|+|β|≤2

∥∥∥∂αx ∂βξ (
F0(x , ξ)− M[ρr ,ur ,θr ](0,x)(ξ)

)∥∥∥2

L2
x

(
L2
ξ

(
1√

M∗(ξ )
)) + ε ≤ ε2

0,

then the Cauchy problem on the Vlasov-Poisson-Boltzmann system admits a
unique global solution [F(t, x , ξ), φ(t, x)], satisfying F(t, x , ξ) ≥ 0 and

sup
t→+∞

sup
x∈R

{ ∥∥F(t, x , ξ)− M[ρR,uR ,θ R ](x/t)(ξ)
∥∥

L2
ξ

(
1√

M∗(ξ )
)

+ ∣∣φ(t, x)− ρ−1
e

(
ρ R(x/t)

)∣∣ } = 0.

Readers may refer to [7] for the complete proof of the above theorem. The
main idea is based on the study of the same problem on the Navier-Stokes-
Poisson system; see [6]. Here we remark that the similar results should also hold

Bull Braz Math Soc, Vol. 47, N. 1, 2016



�

�

“main” — 2016/2/29 — 9:52 — page 318 — #12
�

�

�

�

�

�

318 RENJUN DUAN

true for the two-fluid models. Indeed, we also considered in [6] the two-fluid
Navier-Stokes-Poisson system:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂t ni + ∂x(niui ) = 0,

mini (∂tui + ui∂xui )+ Ti∂x ni − ni∂xφ = μi∂
2
x ui,

∂t ne + ∂x(neue) = 0,

mene(∂tue + ue∂x ue)+ Te∂x ne + ne∂xφ = μe∂
2
x ue,

∂2
xφ = ni − ne, t > 0, x ∈ R.

The large-time behavior for rarefaction waves can be determined by the quasi-
neutral Euler system⎧⎨

⎩
∂t n + ∂x(nu) = 0,

n(∂tu + u∂x u)+ Ti + Te

mi + me
∂xn = 0,

with the potential function φ in large time determined by

φ = Time − Temi

mi + me
ln n.

Finally we conclude the note with discussions on several closely relative prob-
lems arising from the current work [7]. First of all, it is of course an interesting
problem to justify the fluid dynamic limit of the VPB system to the one-fluid
Euler-Poisson system for ions, cf. [19]. In the mean time, motivated by [12]
and [36], we point out that it should be an even more interesting and challenging
problem to study the current model on the half space, which is related to the
justification of the kinetic Bohm criterion (cf. [4]). In the end, we note that in
the context of plasma, collisions between particles are usually described by the
Boltzmann operator for long-range potentials or more physically by the classical
Landau operator for the Coulomb potential taking into account the grazing effect
of plasma. Thus, it is a problem to extend the result in [7] to those interesting
cases, cf. [17].
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References

[1] C. Batty and T. Duyckaerts. Non-uniform stability for bounded semi-groups on
Banach spaces. J. Evol. Equ., 8(4) (2008), 765–780.

Bull Braz Math Soc, Vol. 47, N. 1, 2016



�

�

“main” — 2016/2/29 — 9:52 — page 319 — #13
�

�

�

�

�

�

FLUID AND KINETIC PLASMAS WITH COLLISIONS 319

[2] R.E. Caflisch and B. Nicolaenko. Shock profile solutions of the Boltzmann
equation. Comm. Math. Phys., 86 (1982), 161–194.

[3] S. Chapman and T.G. Colwing. The Mathematical Theory of Non-uniform Gases.
3rd ed., Cambridge Math. Lib., Cambridge University Press, Cambridge, (1990).

[4] F. Chen. Introduction to Plasma Physics and Controlled Fusion. Second edition.
Plenum Press, (1984).

[5] R.-J. Duan. Global smooth flows for the compressible Euler-Maxwell system. The
relaxation case. J. Hyperbolic Differ. Equ., 8 (2011), 375–413.

[6] R.-J. Duan and S.-Q. Liu. Stability of rarefaction waves of the Navier-Stokes-
Poisson system. J. Differential Equations, 258(7) (2015), 2495–2530.

[7] R.-J. Duan and S.-Q. Liu. Stability of the rarefaction wave of the Vlasov-Poisson-
Boltzmann system. SIAM J. Math. Anal. 47(5) (2015), 3585–3647.

[8] R.-J. Duan, Q.-Q. Liu and C.-J. Zhu. Darcy’s law and diffusion for a two-fluid
Euler-Maxwell system with dissipation. Math. Models Methods Appl. Sci., 25(11)
(2015), 2089–2151.

[9] R.-J. Duan, Y.-J. Lei, T. Yang and H.-J. Zhao. The Vlasov-Maxwell-Boltzmann
system near Maxwellians in the whole space with very soft potentials, preprint
(2014), arXiv:1411.5150.

[10] R.-J. Duan, S.-Q. Liu, T. Yang and H.-J. Zhao. Stabilty of the nonrelativistic Vlasov-
Maxwell-Boltzmann system for angular non-cutoff potentials. Kinetic and Related
Models, 6(1) (2013), 159–204.

[11] R.-J. Duan and R.M. Strain. Optimal large-time behavior of the Vlasov-Maxwell-
Boltzmann system in the whole space. Comm. Pure. Appl. Math., 24(11) (2011),
1497–1546.

[12] R.-J. Duan and X.-F. Yang. Stability of rarefaction wave and boundary layer for
outflow problem on the two-fluid Navier-Stokes-Poisson equations. Commun. Pure
Appl. Anal., 12(2) (2013), 985–1014.

[13] P. Germain and N. Masmoudi. Global existence for the Euler-Maxwell system.
Ann. Sci. Éc. Norm. Supér. (4), 47(3) (2014), 469–503.

[14] R.J. Goldston and P.H. Rutherford. Introduction to Plasma Physics. Taylor & Fran-
cis (1995).

[15] J. Goodman. Nonlinear asymptotic stability of viscous shock profiles for conser-
vation laws. Arch. Rational Mech. Anal., 95(4) (1986), 325–344.

[16] Y. Guo. The Vlasov-Maxwell-Boltzmann system near Maxwellians. Invent. Math.,
153(3) (2003), 593–630.

[17] Y. Guo. The Vlasov-Poisson-Landau system in a periodic box. J. Amer. Math. Soc.,
25 (2012), 759–812.

[18] Y. Guo, A.D. Ionescu and B. Pausader. The Euler-Maxwell two-fluid system in 3D.
Annals of Mathematics, 183 (2016), 377–498.

Bull Braz Math Soc, Vol. 47, N. 1, 2016



�

�

“main” — 2016/2/29 — 9:52 — page 320 — #14
�

�

�

�

�

�

320 RENJUN DUAN

[19] Y. Guo and J. Jang. Global Hilbert expansion for the Vlasov-Poisson-Boltzmann
system. Comm. Math. Phys., 299(2) (2010), 469–501.

[20] L. Hsiao and T.-P. Liu. Convergence to nonlinear diffusion waves for solutions
of a system of hyperbolic conservation laws with damping. Comm. Math. Phys.,
143(3) (1992), 599–605.

[21] F.-M. Huang, P. Marcati and R.-H. Pan. Convergence to the Barenblatt solution for
the compressible Euler equations with damping and vacuum. Arch. Ration. Mech.
Anal., 176(1) (2005), 1–24.

[22] F.-M. Huang and T. Yang. Stability of contact discontinuity for the Boltzmann
equation. J. Differential Equations, 229 (2006), 698–742.

[23] J. Jang. Vlasov-Maxwell-Boltzmann diffusive limit. Arch. Ration. Mech. Anal.,
194(2) (2009), 531–584.

[24] N.A. Krall and A.W. Trivelpiece. Principles of Plasma Physics, McGraw-Hill,
(1973).

[25] K. Ide and S. Kawashima. Decay property of regularity-loss type and nonlin-
ear effects for dissipative Timoshenko system. Math. Models Methods Appl. Sci.,
18(7) (2008), 1001–1025.

[26] H.-L. Li, T. Yang and M.Y. Zhong. Spectrum structure and behaviors of the Vlasov-
Maxwell-Boltzmann systems, preprint (2014).

[27] J.-L. Lions. Remarks on Darcy’s law. IMA J. Appl. Math., 46(1-2) (1991), 29–38.

[28] Z. Liu and B. Rao. Characterization of polynomial decay rate for the solution of
linear evolution equation. Z. Angew. Math. Phys., 56(4) (2005), 630–644.

[29] T.-P. Liu and Z.-P. Xin. Nonlinear stability of rarefaction waves for compressible
Navier-Stokes equations. Comm. Math. Phys., 118 (1988), 451–465.

[30] T.-P. Liu, T. Yang and S.-H. Yu. Energy method for the Boltzmann equation.
Physica D, 188(3-4) (2004), 178–192.

[31] T.-P. Liu, T. Yang, S.-H. Yu and H.-J. Zhao. Nonlinear stability of rarefaction
waves for the Boltzmann equation. Arch. Rational Mech. Anal., 181(2) (2006),
333–371.

[32] T.-P. Liu and S.-H. Yu. Boltzmann equation: Micro-macro decompositions and
positivity of shock profiles. Comm. Math. Phys., 246(1) (2004), 133–179.

[33] A. Matsumura and K. Nishihara. Asymptotics toward the rarefaction waves of
the solutions of a one-dimensional model system for compressible viscous gas.
Japan J. Appl. Math., 3 (1986), 1–13.

[34] A. Matsumura and K. Nishihara. On the stability of travelling wave solutions
of a one-dimensional model system for compressible viscous gas. Japan J. Appl.
Math., 2(1) (1985), 17–25.

[35] J.E. Muñoz Rivera and R. Racke. Global stability for damped Timoshenko
systems. Discrete Contin. Dyn. Syst., 9(6) (2003), 1625–1639.

Bull Braz Math Soc, Vol. 47, N. 1, 2016



�

�

“main” — 2016/2/29 — 9:52 — page 321 — #15
�

�

�

�

�

�

FLUID AND KINETIC PLASMAS WITH COLLISIONS 321

[36] M. Suzuki. Asymptotic stability of stationary solutions to the Euler-Poisson equa-
tions arising in plasma physics. Kinet. Relat. Models, 4(2) (2011), 569–588.

[37] R.M. Strain. The Vlasov-Maxwell-Boltzmann system in the whole space. Comm.
Math. Phys., 268(2) (2006), 543–567.

[38] S. Ukai. On the existence of global solutions of mixed problem for non-linear
Boltzmann equation. Proceedings of the Japan Academy, 50 (1974), 179–184.

[39] Y. Ueda, R.-J. Duan and S. Kawashima. Decay structure for symmetric hyperbolic
systems with non-symmetric relaxation and its application. Arch. Ration. Mech.
Anal., 205(1) (2012), 239–266.

[40] Y. Ueda and S. Kawashima. Decay property of regularity-loss type for the Euler-
Maxwell system. Methods Appl. Anal., 18 (2011), 245–268.

[41] C. Villani. A review of mathematical topics in collisional kinetic theory. North-
Holland, Amsterdam, Handbook of mathematical fluid dynamics, Vol. I, 2002,
pp. 71–305.

[42] S.-H. Yu. Nonlinear wave propagations over a Boltzmann shock profile. J. Amer.
Math. Soc., 23(4) (2010), 1041–1118.

Renjun Duan
Department of Mathematics
The Chinese University of Hong Kong
Shatin, Hong Kong
P.R. CHINA

E-mail: rjduan@math.cuhk.edu.hk

Bull Braz Math Soc, Vol. 47, N. 1, 2016


