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This paper is concerned with the large-time behavior of solutions to the Cauchy problem
on the two-fluid Euler-Maxwell system with dissipation when initial data are around a
constant equilibrium state. The main goal is the rigorous justification of diffusion phe-
nomena in fluid plasma at the linear level. Precisely, motivated by the classical Darcy’s
law for the nonconductive fluid, we first give a heuristic derivation of the asymptotic
equations of the Euler-Maxwell system in large time. It turns out that both the density
and the magnetic field tend time-asymptotically to the diffusion equations with diffusive
coefficients explicitly determined by given physical parameters. Then, in terms of the
Fourier energy method, we analyze the linear dissipative structure of the system, which
implies the almost exponential time-decay property of solutions over the high-frequency
domain. The key part of the paper is the spectral analysis of the linearized system, ex-
actly capturing the diffusive feature of solutions over the low-frequency domain. Finally,
under some conditions on initial data, we show the convergence of the densities and the
magnetic field to the corresponding linear diffusion waves with the rate (1+t)~5/4 in L2
norm and also the convergence of the velocities and the electric field to the corresponding
asymptotic profiles given in the sense of the geneneralized Darcy’s law with the faster
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rate (1 + t)’7/4 in L2 norm. Thus, this work can be also regarded as the mathematical
proof of the Darcy’s law in the context of collisional fluid plasma.

Keywords: Euler-Maxwell system; dissipation; diffusion waves; large-time behavior.
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1. Introduction

It is generally believed that the Darcy’s law governs the motion of the inviscid
flow with frictional damping 27 or the slow viscous flow ?° in large time. It is quite
nontrivial to mathematically justify the large-time behavior of solutions to those
relative physical systems, particularly in the case when vacuum appears, cf. 419:28:29,
Besides, there are also some results, for instance, see 2! and references therein, to
discuss the modified Darcy’s law for conducting porous media. In the paper, we
attempt to give a rigorous proof of Darcy’s laws and diffusion phenomena in the
context of collisional fluid plasma whenever the densities of fluids are close to non-
vacuum states.

In a weakly ionised gas with a small enough ionisation fraction, charged particles
will interact primarily by means of elastic collisions with neutral atoms rather than
with other charged particles, cf. '3 . In such situation, the motion of fluid plasmas
consisting of ions (a = 7), electrons (« = e) and neutral atoms is generally governed
by the two-fluid Euler-Maxwell system in three space dimensions

One + V- (nquy) =0,
MaNa (Ot + Ue - Vi) + VDo (ng)
= QaNa (E + Yo X B) — UaMaNala,
c

O:F —cV x B=—4n Z JaMala, (1.1)

8tB+CVXE:O,
V~E:47r2qana, V-B=0.

a=i,e

Here the unknowns are n, = ns(t,z) > 0 and u, = us(t,r) € R® with a =
i,e, denoting the densities and velocities of the a-species respectively, and also
E = E(t,z) € R? and B = B(t,z) € R3, denoting the self-consistent electron and
magnetic fields respectively, for t > 0 and z € R3. For the a-species, p,(+) depending
only on the density is the pressure function which is smooth and satisfies p/,(n) > 0
for n > 0, and for simplicity we assume in the paper that the fluid is isothermal and
hence p,(n) = Tyn for the constant temperature T, > 0. Constants mq > 0, gq,
Vo > 0, ¢ > 0 stand for the mass, charge and collision frequency of a-species and the
speed of light, respectively. The constant 47 appearing in the system is related to
the spatial dimension. Notice ¢. = —e and ¢; = Ze in the general physical situation,
where e > 0 is the electronic charge and Z > 1 is an positive integer. Without loss
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of generality, we may assume Z = 1 through the paper, since it can be normalized
to be unit under the transformation

n; =24n;, ¢ =e, m;= %7 pi(n) =p; (%) :
Initial data are given by
[Ny Uas E, Bllt=0 = [Na0; a0, Fo, Bol, (1.2)
with the compatibility condition
V-Ey=47 Y qanao, V-By=0. (1.3)

a=i,e

The paper is mainly concerned with the large-time asymptotic behavior of solu-
tions to the Cauchy problem on the two-fluid Euler-Maxwell system with collisions
whenever initial data are close to a constant equilibrium state [n, = 1,u, =0, E =
0, B = 0]. Notice that collision terms play a key role in the analysis of the problem;
see 33, for instance. For that purpose, we first state the global-in-time existence in
the following

Theorem 1.1. Let the integer N > 3. If

> llrao = 1 uaolllan + [[[Eo, Bollm

a=i,e

is sufficiently small then the Cauchy problem (1.1), (1.2), (1.3) admits a unique
global solution

Na — 1,uq, E, B € C([0,00); HY (R*)) N Lip([0, 00 ); HY ~H(R?)).

The more precise statement of Theorem 1.1 will be given in Section 5.1, and its
proof is based on the direct energy estimates, cf. %8, To further study the asymptotic
behaviour of solutions, we introduce the large-time asymptotic profile as follows. Let

Gult,a) = (Amut) ™2 exp{—|o]?/(4put)}

be the heat kernel with the diffusion coefficient ;¢ > 0. Let us define the ambipolar
diffusive coefficient p; > 0 and the magnetic diffusive coefficient po > 0 by

T, + T, i Emvimele
2

p1 = (1.4)

s = 5
M;V; + Mele 4me? (miv; + mele)

respectively. Corresponding to given initial data (1.2), we define the asymptotic
profile [7, Ty, E, B] by
n= Z —————— G, (t,+) % (nao — 1), (1.5)

< MV + Mele
a=i,e

B =Gy, (t,") * By, (1.6)
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and
T + T, _ & Mele 5]
Ug(t,z) = ——————Vn(t, V x B(t,z), (1.7
u( :c) m;V; + Mele n( ﬁlc)—|_47rq(x M Vi + Mele ( x) ( )
o ,I’iee_Teiif 1VillleVe o)
E(t, ) = —e” i Tt @) + ——s — e G Bt x), (1.8)

e(m;v; + mele) 4me? miv; + mete

for o = i,e. With the above notations, the main result of the paper regarding the
asymptotic behaviour of solutions is stated as follows.

Theorem 1.2. There are constants € > 0 and C' > 0 such that if

> a0 = 1, uaolllzinrr + |[Eo, Boll iz < e, (1.9)

a=t,e

then the solution to the Cauchy problem (1.1), (1.2), (1.3) satisfies

> llna —1=T7lz2 + B = Bllz2 < C(1+1)71, (1.10)
and
37 e = Tallze + 1B~ B2 < C(1+1)77, (1.11)
for allt > 0.

We give a few remarks on Theorem 1.2. First of all, from the proof later on,
under the assumption (1.9) the solution to the Cauchy problem (1.1), (1.2), (1.3)
around the constant equilibrium state enjoys the time-decay property

S e — Lualllze + 1B, Blll 2 < C(1+1)75,

where the time-decay rate must be optimal for general initial data with By # 0 due
to those results from the spectral analysis given in Section 4; see Corollary 4.2 for
instance. On the other hand the large-time asymptotic profile also satisfies

— _ 3 _ - _5
[lles + 1 Blle < CO+078, S lmallze + [ Fle < C+0)7,

which are also optimal in terms of the definition (1.5), (1.6), (1.7), (1.8) of
[, U, E, B]. Therefore it is nontrivial to obtain the faster time-decay rates (1.10)

and (1.11), and this also assures that [1 + 7, ,, E, B] indeed can be regarded as
the more accurate large-time asymptotic profile for solutions to the Cauchy problem
under consideration, compared to the trivial constant equilibrium state. Notice that
n and B are diffusion waves by (1.5) and (1.6) as well as (1.4), and %, and E are
defined in terms of those two diffusion waves by (1.7) and (1.8). From the heuristic
derivation of the large-time asymptotic profiles in the next section, we see that the
asymptotic profiles can be solved from the asymptotic equations obtained in a for-
mal way in the sense of the Darcy’s law. In the case without any electromagnetic
field, there have been extensive mathematical studies of the large-time behavior for
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11,18,28,29 and reference

the damped Euler system basing on the Darcy’s law; see
therein. However few rigorous results are known for such physical law in the context
of two-fluid plasma with collisions. This work can be regarded to some extent as
the generalisation of the Darcy’s law for the classical non-conductive fluid to the
plasma fluid under the influence of the self-consistent electromagnetic field.

The second issue is concerned with the condition (1.9) regarding the H'! reg-
ularity of initial data. In fact, as seen from Theorem 1.1, the global existence of
solutions can be assured for small initial data in H® only. Note that the damped
Euler-Maxwell is of the regularity-loss type, corresponding to the fact that eigen-
values of the linearized system may tend asymptotically to the imaginary axis as
the frequency goes to infinity; see ¢ in the one-fluid case. There has been a general
theory developed in 3% in terms of the Fourier energy method to study the decay
structure of general symmetric hyperbolic systems with partial relaxations of the
regularity-loss type. The main feature of time-decay properties for such regularity-
loss system is that solutions over the high-frequency domain can still gain the enough
time-decay rate by compensating enough regularity of initial data. Therefore, the
higher order Sobolev regularity is essentially used to complete the proof of Theorem
1.2 for the large-time behaviour of solutions, particularly for obtaining the explicit
time-decay rate over the high-frequency domain.

Third, the key point of Theorem 1.2 is to present the convergence in L? norm of
the solution [ng,uq, E, B] to the profile [1 +0,,, E, B] if initial data approach the
constant steady state in the sense of (1.9). There could be several direct generali-
sations of the current result. As in 37, it can be expected to obtain the convergence
rates for the derivatives up to to some order. In general, the higher the order of
derivatives is, the faster they decay in time. Another possible approach for obtain-
ing the global existence and convergence of solutions to the constant steady state is
to introduce as in '® the negative Sobolev space basing on the pure energy method
together with the functional interpolation inequalities, where the advantage is that
both L? norms of the higher derivatives and L' norms of the zero-order are not
necessarily small. However, it seems still nontrivial to apply such method to obtain
the large-time asymptotic behaviour (1.10) and (1.11).

The final remark is concerned with the nonlinear diffusion of the two fluid Euler-
Maxwell system with collisions. In fact, the current work is done at the linearized
level. Even for the general pressure functions P, (o = i, e), by using the same formal
derivation as in Section 2, the density satisfies the nonlinear heat equation

om — AP(m) =0,

where P(-) is in connection with P, (« = i, e) as well as other physical parameters.
The nonlinear heat equation above is also a type of the porous medium equation.
Thus, it would be interesting and challenging to further investigate the asymptotic
stability of the nonlinear diffusion waves, cf. '®. We hope to report it in the future
study.

To prove Theorem 1.2 we need to carry out the spectral analysis of the linearized
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system around the constant steady state; see 26, for instance. In fact, the solution
can be written as the sum of the fluid part and the electromagnetic part in the form

of
pa(t, ) pa(t, ) 0
Ue (t, ) _ | tay (t,x) Uq, 1 (t, )
B(t, x) 0 B(t,z

However it seems difficult to give an explicit representation of solutions to two
eigenvalue problems due to the high phase dimensions under consideration. The
main idea is to obtain the asymptotic expansions of solutions to the linearized
system as the frequency |k| — 0 (cf. 20); see Section 4. One trick to deal with
the electromagnetic part is to first reduce the system to the high-order ODE of
the magnetic field B only, then study the asymptotic expansion of B as |k| — 0,
and finally apply the Fourier energy method to estimate the other two components
uq, 1 and E| (cf. 1% and reference therein); see Lemma 4.4. For |k| — oo, it can be
directly treated by the Fourier energy method since the linearized solution operator
in the Fourier space behaves like

P L
R BTN TEE

which leads to the almost exponential time-decay depending on regularity of initial
data; see Section 3. In the mean time, we find that the large-time behavior of
solutions to the two-fluid Euler-Maxwell system (1.1) is governed by the following
two subsystems

O+ V - (ny)) =0,

VPy(n) = qank) — vamanu), o =i,e,
and

oty — VoMo, | = 0, a=ie,

—cV x B = —4mn Z Gala, 1 s
a=i,e

0:B+cVxE, =0.

For more details see Section 2 and Section 4.

Finally we would mention the following works related to the paper: some deriva-
tions and numerical computations of the relative models 12535 global existence and
large-time behavior for the damped Euler-Maxwell system 3:6:8:30,:32,34,37,38,39,40
global existence in the non-damping case 121422
parameters 16,31,32

The rest of the paper is organised as follows. In Section 2, we give the heuristic
derivation of diffusion waves motivated by the classical Darcy’s law. In Section 3 we
reformulate the Cauchy problem on the Euler-Maxwell system around the constant

, and asymptotic limits under small
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steady state, and study the decay structure of the linearized homogeneous system
by the Fourier energy method. In Section 4, we present the spectral analysis of the
linearized system by three parts. The fist part is for the fluid, the second one for
the electromagnetic field, and the third one for the extra time-decay of solutions
with special initial data. The result in the third part accounts for estimating the
inhomogeneous source terms. In Section 5, we first prove the global existence of
solutions by the energy method, show the time asymptotic rate of solutions around
the constant states and then obtain the main result concerning the time asymptotic
rate around linear diffusion waves.

Notations. Let us introduce some notations for the use throughout this paper. C
denotes some positive (generally large) constant and A denotes some positive (gen-
erally small) constant, where both C' and A may take different values in different
places. For two quantities a and b, a ~ b means Aa < b < %a for a generic constant
0 < A < 1. For any integerm > 0, we use H™, H™ to denote the usual Sobolev space
H™(R3) and the corresponding m-order homogeneous Sobolev space, respectively.
Set L? = H™ when m = 0. For simplicity, the norm of H™ is denoted by || - ||
with || - | = || - |Jo- We use (-, -) to denote the inner product over the Hilbert space
L?(R3), i.e.

(f.g) = g f@)g(x)dz, f=f(x), g=g(x)e L*R®).

For a multi-index a = [a1, az, az], we denote 9% = 991052052, The length of « is
|a] = a1 + a2 + az. For simplicity, we also set 0; = 0, for j = 1,2,3.

2. Heuristic derivation of diffusion waves

In this section we would provide a heuristic derivation of the large-time asymptotic
equations of the densities, velocities and the electromagnetic field. Indeed, both
the densities and the magnetic field satisfy the diffusion equations with different
diffusion coefficients in terms of those physical parameters appearing in the system,
and the velocities and the electric field are defined by the densities and the magnetic
field according to the Darcy’s law.

2.1. Diffusion of densities

We first give a formal derivation of the large-time asymptotic equations of densities
and velocities. Assume the quasineutral condition
Ny =MNe = n(t,x), U; = Ue = u(t,x), (21)

and also assume that the background magnetic field is a constant vector, for in-
stance, B = (0,0,|B|) is constant along xzs-direction. Note that |B| here is not
necessarily assumed to be zero.

We start from the asymptotic momentum equations for & =i and e:

Vpa(n) = qan (E + % X B) — UpMa N (2.2)
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Along B, (2.2) reduces to
Vpa(n) - B =qunE - B —v,manu - B.
ie.,

Vpi(n)-B=enE - B —v;m;nu - B,
Vpe(n) - B=—enE - B — vemenu - B.

It can be further written in the matrix form:

Vpi-BY [ en —vmmn FE-B
Vpe-B) \—en —vemen w-B /)

One can solve E - B and u- B as

VeMe + ;M n
1 (vPi _ Vpe ) . B
miv; MelVe
E-B=-—

Notice that since B = (0,0, |B|) is along the z3-direction, then

_ 1 95(pi(n) + pe(n))
uz = — 9
VeMe + VM n
i(n o (n 2.3
R Gl 2
E3 = € € — —
vim; VeMe n

Along the x1x2-plane normal to B, noticing ux B = (uz|B|, —u1|B], 0), (2.2) reduces

to
_— ]
1Pa = Gan | B1 + o U2 ) ~ VaMant,
P g, Bl
2Pa = qaN 2 c U VaMManug,
ie.,

—MalVah M|B‘ (VA1 E1 81pa
¢ « = . 2.4
(—‘1“0”|B| —mauan> <U2>+qn(E2> (62pa (2.4)
This implies
w) _ (=mavan  EBI N[ (B (O 25)
uz ) _%|B| —MalVah o E, 0a2pa ’ '

for a = 7 and e. We denote

. (—mavan %\B\ )

f%|B| —Ma Vo
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Then letting the right-hand terms of (2.5) be equal for a = i and e further implies

_ Eq _ (91]?1 — E, — alpe
—q; A 1 —+ A 1 ( = —(e A 1 + A L .
qinAa; (E2> i a2pi Gen A, E2 e 82]96

Due to the isothermal assumption p,(n) = Ton, one has

oA-1 -1 ( En — _1\ [ Oin
(ginA; genA, )<E2> (TA —T. A )(3271 .

Therefore,

E _ i _ _ on
() = @i = aonart)Hmas = may (Gn). (2o)

Plugging (2.6) back into (2.5) gives

(“l)={—%nAi%mnAi“—%nA;U‘%Twal—JnA;U—%ﬂA@1 (&”)27>

Ug (92’/7,
Let us give an explicit computation of the coefficient matrix in (2.7):

G = —qnA; (gnA;' — qnA7H) TN AT — TLATY) + T AT (2.8)

Notice ¢; = e, ¢. = —e, and
A1 1 —mavan — 12| B _ 1 AT
@ det A, \ %|B| —mavan det A,

2
where det A, = n?(m2v2 + 2%|B|?). To cancel n? in det Ay, we write

mgv, 4o | B
aVa
_ n T _ m2v2+5e2[B]2 m2uv2+ 5 e?(B[?
nA, A, = — v = —K,.
detA —|B| mave

miui+c%e2|3|2 miui-}-u%eQ\BP
Then one can compute (2.8) as

G = —qinA; (gnA; " — qenAZ) TN TATT — TLA]Y) + T A

-1
en en en T; T,
= — AT AT r AT e qT AT
dot A, |der 4,7 T der A, ] [detA- A T +detA
4 I _
= detAAT( M) At th Al (eM)™ G A + (meM)(—eM)™
T, T.
T -1 T -1 T
detAA( M) thA th ( M) thA
T T,

= —eK, —(K +K)

T, T, _
= K (K + K) 'K; — *K;(K; + K.) ' K.,
n n

() + () (K )T (K

where M = K; + K.. Denoting

C; = m2v? + 2|B|2 C, =m?v? + 2|B|2
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one has
e|B| el B|
1 miv c 1 Mele  ——4
K+ K. = + —
Ci \ _aBl ., e \ eBl
c s c ele
mivi | meve eBl (1 _ 1
C; Ce c C; Ce
6|B| 1 1 miv; + Mele
c C; Ce C; Ce
2 2
mivitmeve) | mivimeve+ <15 )
( ) <2 e|B| (mivi+meve)(meve—miv;)
CI‘CC c C,,CC
o 2|52
o] B (muvitmeve)(meve—miv) (mivi+meve) mivimeVe+— 73—
C chg C’,;C’E
mivimeve + SBEeBln b0 ma)
mlyz+meye 171 ee C2 c eve 171
GG e|B] 2|B|?
=== (Mele —Miv;)  MuViMele + —5
Hence,

1 2
e, + 1) — (v mere)”

where we have used the identity

2 2 2 2\ 2
e“|B e“|B
| | (”z‘zliz mz’/g) ( |C2| > .

2.2 2 2
CiCe =miv,miv: +

It is therefore straightforward to see

mivimeve + B Bl (i p )
1 1 lltee c2 c ee (g’

(K +K,) ' =

miV; + Mele e|B|
c

2 2
e?|B|
(MelVe — miv;)  MiVimele + =

C
After strenuous computations, one can verify that

) ) 1 10
K. (Ki+K.,) K=K, (K;+K.,) K.=———
miVi + Mele 0 1

Here we have omitted the proof of the above identity for brevity. Plugging this
identity into (2.9) yields that the coefficient matrix G in (2.7) is given by

1 __ Ti+T. 0
MiVi+meVe
G=-=- 2.10
n 0 __ Ti+4T, ( )
MiVi+mMele
This together with (2.3) imply that
(5% 77””@217{;&5”6 0 0 8177,
nlu | = 0 — e 0 oen | . (2.11)

__ Ti+Te
us O 0 MVt mavs 6371
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Therefore, using the first equation of (1.1) for the conservation of mass under the
quasineutral assumption (2.1), we obtain that n satisfies the diffusion equation

omn — &An =0. (2.12)

It remains to determine the components of F normal to B, namely F; and Fs.
In fact, (2.4) implies that

E1 _ Ul - 8171
~adte <E2) = Ao <u2) T (32”> ’

for @ = 4 and e. Taking o = ¢ for instance and then using (2.7), (2.8) and (2.10),

one has
E1 :_i —m;v;n %|B| G 8111 +2 8111
Es en \ —<[B] —mun Oan en \ Oan
B L (—myvin 2| B| G (10 oin
“en \ —2B| —main ) T
c T 0 1 Oamn
Timeve—=Tem,v; elB| _ T;4T. B
1 mivi+meve C miVitmele mn
en \ _eBl  Ti+T, Timeve—Tem,v; )
C MiVitMmele miVi+meVe
This together with (2.3) imply that
Timeve—Tem,v; e|B| T;+Te 0
E; mivi+meVe ¢ mivitmeVe on
1| _elBl__Ti+T. Timeve—Tem,v; 0
n| By | =~ c mivitmeve miv;+meve dan [(2.13)
e
Es d3n
0 0 Timeve—Temiv;

MmiVi+mMmeVle
We point out that in the coefficient matrix on the right of (2.13), the diagonal
entries are equal and independent of B, and the non-diagonal entries are skew-
symmetric and linear in |B|.

2.2. Diffusion of the magnetic field

Notice that the large-time asymptotic profiles of u and E given by (2.11) and
(2.13) are along the gravitational direction of the diffusive density n determined by
(2.12). Let uq,1 (o = i,e) and E; be the asymptotic profiles along the direction
normal to the gravitation of the density. Then by taking the background densities
as n; = ne = 1, we expect that the large-time profile of the magnetic field B is
governed by the following system

—eE| +mivu; ) =0,

eE | +mevete, 1 =0,

—cV x B+4m(eu; | — €ue, 1) =0,
B +cV x B =0.
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It is easy to obtain that B satisfies the diffusion equation

CQmi ViMele

o.B AB =0,

" 4re? (mv; + mele)

and uq, 1 (@ =1,e) and E| are given by

e c Mele
U, | = Einiva,
m;V; dme miv; + Mele
e c m;V;
Ue,| = — EL:_iil ! VXB7
MeVe 4me miv; + Mele
C miViMele
E V x B.

4me? miv; + mele

3. Decay property of linearized system

In this section, we study the time-decay property of solutions to the linearized
system basing on the Fourier energy method. The result of this part is similar
to the case of one-fluid in ¢, and also similar to the study of two-species kinetic
Vlasov-Maxwell-Boltzmann system in . The main motivation to present this part
is to understand the linear dissipative structure of such complex system as in 3¢
in terms of the direct energy method and also provide a clue to the more delicate
spectral analysis to be given later on. Notice that the key estimate (3.17) in this
section will be used to deal with the time-decay property of solutions over the
high-frequency domain in the next sections.

3.1. Reformulation of the problem
We assume that the steady state of the Euler-Maxwell system (1.1) is trivial, taking

the form of

ne=1, u, =0, E=B=0.

Before constructing the more accurate large-time asymptotic profile around the triv-
ial steady state, we first consider the linearized system around the above constant
state. For that, let us set p, = no — 1 for @« = ¢ and e. Then U := [pa, Ua, E, B|
satisfies

8tpoc +V. U = Glas
MaOitiq +ToVpa — qo B+ malatia = g2a,

OFE — ¢V X B+ 4r Z alla = g3,
a=i,e (31)

OB+ cV x E =0,
V-E=47 Y qapa, V-B=0.

a=i,e

Initial data are given by

[pa7ua7E7B]|t:0 = [nOéO - 1,UQO7E0,BO}, (32)
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with the compatibility condition
V-Ey=47 Y qapao, V-By=0. (3.3)

Here the inhomgeneous source terms are

Jia = =V (patia) ==V - fa,

! +1 (1
920 = —Male - Vg — (Pa(Pa ) _pa( )>vpoz+Qauca x B,

Pa +1 1 (3.4)

g3 = —4m Z GaPale-

a=i,e

Notice in the isothermal case that p/,(n) = T, for any n > 0.

3.2. Linear decay structure

In this section, for brevity of presentation we still use U = [pq, Ua, E, B] to denote
the solution to the linearized homogeneous system

8tpa+v'ua :07

maatua + Tavpa - an + Malala = 07

OE —cV x B+ 4r qalthe =0,

a:zi,e (35)
0:B+c¢V x E =0,
V.- E=dm Z daPa; V- B =0,

a=i,e

with given initial data

[,DavuOHEa B]|t:0 = [PaO»U(anEOvBOL (36)
satisfying the compatibility condition
V-Ey=47 Y qapao, V-By=0. (3.7)

a=i,e

The goal of this section is to apply the Fourier energy method to the Cauchy
problem (3.5), (3.6), (3.7) to show that there exists a time-frequency Lyapunov
functional which is equivalent with | (¢, k)|> and moreover its dissipation rate can
also be characterized by the functional itself. Let us state the main result of this
section as follows.

Theorem 3.1. Let U(t,z), t >0, x € R3, be a well-defined solution to the system

(3.5)-(3.7). There is a time-frequency Lyapunov functional E(U(t, k)) with

E(U(tvk)) ~ |U2| = Z Hﬁaa'&a]lg + ‘EA‘|2 + |B|27 (3.8)

a=i,e
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such that, for some A > 0, the Lyapunov inequality

d Ak |2

o Ws(fm, k)) <0 (3.9)

EU(t, k) +
holds for any t > 0 and k € R>.

Proof. Asin %, we use the following notations. For an integrable function f : R? —
R, its Fourier transform is defined by

3
flk) = /RS exp(—ix - k) f(z)dx, x-k:= ijkj, k € R3,

j=1

where ¢ = y/—1 € C is the imaginary unit. For two complex numbers or vectors a
and b, (a|b) denotes the dot product of a with the complex conjugate of b. Taking
the Fourier transform in z for (3.5), U = [pq, ta, E, B] satisfies

Otfa + ik - Uo = 0,

maat'aa + Taikﬁa - an + MaVolla = 0,

O F — cik x B + 41 Galia = 0,
a;e (3.10)

OB + cik x E =0,
ik E=47 3 qupa, ik-B=0, t>0, FeR®.

a=i,e

First of all, it is straightforward to obtain from the first four equations of (3.10)
that

l1d
2di

> H\/ﬁﬁa,\/m*aaa”er%ﬁ%HE,B] g 3" mavalial® =0. (3.11)

a=i,e a=i,e

By taking the complex dot product of the second equation of (3.10) with ikpq,
replacing 0;p, by the first equation of (3.10), taking the real part, and taking
summation for o = i, e, one has

2

0 Y R(matalikpe) + > TalkPlpal +47 | Y qapa

a=1i,e a=1i,e a=1i,e
=3 malk-dal = Y mavaR(ialikpa),

a=i,e a=i,e
which by using the Cauchy-Schwarz inequality, implies
2

0 Y R(matalikpa) + A Y kPpal® +47 | Y qaba| <COA+[EP) D lial*.

a=i,e a=i,e a=i,e a=1i,e
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Dividing it by 1+ |k|? gives
> R(matalikpa) 2

a=i,e

= L 2,47 .
Oy — A o wPa| <C ol
¢ 1+ k]2 * 1+|k|2Z‘p| L+ k2 qu D lial

(3.12)
In a similar way, by taking the complex dot product of the second equation of
(3.10) with —47qo FE /Ty, replacing 0, E by the third equation of (3.10), and taking
summation for o = i, e, one has

4Tmaqa 4rq? 2o 4Tmaqa
—o, Y oo | B)+ kB2 + = d \E|2 3 Tedo (4, | —cikx B)

a=i,e Ta a=i,e a=i,e Ta
47Tmaq, R R 4mq I
+ Z % Uo |4 Z Galia | + Z Taa (MaVatialE), (3.13)

s

where we have used ik - E = 47 3 qapa. Taking the real part of (3.13) and using

the Cauchy-Schwarz inequality imply

AT maqa 47ra -
—8tZT7q (i1 E) + |k - E|2+Z q|E|2

a=i,e a=i,e

< Z 47Tmo¢(I(x |—CZk><B +C Z |Ua|2

aze (XZC

which further multiplying it by |k|?/(1 + |k|?)? gives

o Z4wmaqa|k\2m<aa|ﬁ) [k2|k - B2 Zmﬁ kB>
' To  (L+[kP)? 7 (1+[kP)2 2T, (1+ [k[?)?

a=i,e

4 maqe [k*R(le| — cik x B)
< o 14
S CiEE T 2l (319)

a=i,e a=i,e

Similarly, it follows from equations of the electromagnetic field in (3.10) that
Oi(E| — ik x B) + clk x B> = clk x E|> + 47 > (¢atia|ik x B),
which after using Cauchy-Schwarz and dividing it by (1 + |k|?)?, implies
R(E| —ik x B)  MNkxB|> _ clk]?|E]? )
< 5 +C Qe
G+ EE e < e+ O 2 fel

o= ZE

O (3.15)

Finally, let’s define
> R(malalikpa)

EOR) = % |[VTapor vl [* + 18, BIF +1: "= e
AT M qe |k2R (g | E R(E| — ik x B
oY TMaqa [k*R (00| E) (E| )

+ Kikg———— 7
omre  To (L4 ][K[2)? T+ [RP)?
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for constants 0 < ko, k1 < 1 to be determined. Notice that as long as 0 < k; < 1 is
small enough for i = 1,2, then E(U(t, k)) ~ |U(t)|? holds true and (3.8) is proved.
The sum of (3.11), (3.12) X k1, (3.14) X k1 and (3.15) X k1Ko gives

: PN LN
< .
QEWDR) A Yl + A7t 3 Ioal + 5 el B BIP < 0,3.16)

a=i,e a=i,e

where we have used the identity |k x B|?> = |k|?|B|? due to k- B = 0 and also used
the following Cauchy-Schwarz inequality

47Tmaqa k2R (1| — ik x B)
P> (1+ [k]2)2

OC’LG

< Z 4t maqe  K1lk|*ba|? Z AT Moo €k1ka|k|?| B2
= To  dera(1+ |K2)2 To  (1+]k?)?

a=i,e a=i,e
First, we chose € > 0 such that
maQa
edm — <A
> 1.
a=i,e

for A appearing on the left of (3.15), and then let k3 > 0 be fixed and let k1 > 0
be further chosen small enough. Therefore, (3.9) follows from (3.16) by noticing

N k|2 )\|k| PN /\|lc|2 -
2 2 E B A b B U 2
This completes the proof of Theorem 3.1. D

Theorem 3.1 directly leads to the pointwise time-frequency estimate on the

modular |U(t, k)| in terms of initial data modular |Uy(k)|, which is the same as © .

Corollary 3.1. Let U(t,z), t > 0, x € R? be a well-defined solution to the system
(3.5)-(3.7). Then, there are A > 0, C' > 0 such that

Ot k)] < Cexp (— i ) 10o(k)] (3.17)
holds for any t > 0 and k € R>.

Based on the pointwise time-frequency estimate (3.17), it is also straightfor-
ward to obtain the LP-LY time-decay property to the Cauchy problem (3.5)-(3.6).
Formally, the solution to the Cauchy problem (3.5)-(3.6) is denoted by

U(t) = [pomuomE7B] = etLUOa

where e*” for t > 0 is said to be the linearized solution operator corresponding to
the linearized Euler-Maxwell system.
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Corollary 3.2 (see ¢ for instance). Let 1 < p,r <2< ¢ < o0, £ >0 and let
m > 1 be an integer. Define

1 1 L if £ is integer and r = q = 2,
ft-2).-
LA [¢+3(% - %)]_ + 1, otherwise,
(3.18)
where [-]— denotes the integer part of the argument. Suppose Uy satisfying (3.7).
Then et satisfies the following time-decay property:

3,1 1, m
IV X Ug||pa < C(L+ 1) 2™ 0) ™ 2 ||Up| s

for any t > 0, where C = C(m, p, 7“7(]a€)~

4. Spectral representation

In order to study the more accurate large-time asymptotic profile, we need to carry
out the spectral analysis of the linearized system.

4.1. Preparations

As in ©) the linearized system (3.5) can be written as two decoupled subsystems
which govern the time evolution of py, V -y, V- E and V X 4, VX E and V x B
respectively. We decompose the solution to (3.5)-(3.7) into two parts in the form of

palt, ) pa(t, ) 0

ua(tvx) _ ua,\l(t7x) ua,l_(tvx)

Btz |~ | Byte) | 7| Elta) | (4.1)
B(t, z) 0 B(t, )

where u,, |, Ua, 1 are defined by
Uq,| = —(fA)flvv Uy, Ul = (—A)flv X (V X ugq),
and likewise for E, E| . For brevity, the first part on the right of (4.1) is called the
fluid part and the second part is called the electromagnetic part, and we also write
Uy = [pi, per Ui ||, e ), UL = [ug 1,1, E1, B
Notice that to the end, F is always given by
B = 4meA™'V(p; — pe).
We now derive the equations of U and U, and their asymptotic equations that

one may expect in the large time. Taking the divergence of the second equation of
(3.5), it follows that

{atpaw-ua:o,

4.2
Ma0t(V - ua) — @aV - E 4+ ToApa + mavaV - ug = 0. (42)
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Applying A=1V to the second equation of (4.2) and noticing V - u, = V - Uq,||, We
see that the fluid part U} satisfies

Ospa +V -uq | =0,
MaOiUa || — G b)| + TaVpa + Mavala,) = 0.
Initial data are given by
[pav ua,”]'t:O = [pa07 uaO,H]' (44)

As seen later on and also in the sense of the Darcy’s law, the expected asymptotic
profile of the fluid part satisfies

8tﬁ+v-’l]|| =0,
ToVp— anH + mavat) =0,
with initial data

m;V; Mele

pli=o = po = pio + Pe0-
miv; +mel/e mgv; +mel/e

Therefore, p, 4 and EH are determined according to the following equations

T+ T

o0p— ————Ap=0,
M;iV; + Mele
T +Te _
= ———— ¢V 4.
“l M; Vi + Mele P ( 5)
— /—Tz ele — Te Vi~
E” _ mel, m;v, Vp7

e(miv; + mele)

where initial data 4o and EO,H of ) and E'” are determined by pp in terms of the
last two equations of (4.5), respectively. For later use, let us define P!(ik), P2(ik),
P3(ik) to be three row vectors in R® by

~1. [ muy MeVe

Pl(ik) = : , 0, 0],
LMV + Mele MV + Mele

5 . ,-sz + Te miv; . Tz + Te Mele .

P2(ik) =: |- ik, — ik, 0,01,
L Ml + MelVe TV + Mele m;v; + MelVe MGV5 + Mele

PS(Zk‘) . Timeve — Temv; m;V; i Timeve — Temiv; Mele ik. 0. 0

- ) b b .

L e(miv; + meve) miv; + meve e(miv; + mele) miv; + mele

Then the large-time asymptotic profile can be expressed in terms of the Fourier
transform by

~ ji je 2 =17 ~T
=exp| —-—m—-— P U 4.
p=p ( M;V; + Mele 14 t) (iF) llo> (4.6)

miVi + Mele
T, +Te
miVi + Mele

3 T, + T, A
) = exp (—+|k2t>P2(zk)U|TO, (4.7)

E| = exp |k|2t) P3(ik)U}f. (4.8)
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The electromagnetic part satisfies the following equations:

m;Ou;, 1 — el +myvzu; 1 =0,

MeOpe, | + eE | + mevetie, 1 =0,

(4.9)
0:FE, —cV x B+ 477(€ui,J_ - 6U67J_) =0,
OhB+cV xE, =0,
with initial data
[ua,1, E1,Blli=0 = [tao,1, Eo,1,Bo. (4.10)

The expected large-time asymptotic profile for the electromagnetic part is deter-
mined by the following equations in the sense of Darcy’s law again:

—el | +mvu; . =0,

eE | +mevetle, 1 =0,

€ (4.11)
—cV x B+4m(et; | — €le,1) =0,
0tB+cV X EL =0.
As before, it is straightforward to obtain
8tB _ c2mil/imeue AB _ 07
471'62(7’)11‘%' + meVe)
G C B - M oop
m;V; dme muv; + Mele (412)
o= B - mt g g
’ Mele 4me m;v; + Mele
_ cC mM;ViMele D,
E| = V xB
L7 4ne? MiVi + Mele 7
with initial data
B|t=0 = BO7

where initial data @;o, 1, Ueo, 1, EO, | are given from By according to the last three
equations of (4.12). Notice that the asymptotic profile B of the magnetic field can
be expressed in term of the Fourier transform by

62 mi;ViMelVe

3 = eX 2 3 . .
Blt,k) = p( 1 t) Bo(k) (4.13)

B dmre?(miv; + mele
4.2. Spectral representation for fluid part
4.2.1. Asymptotic expansions and erpressions

After taking the Fourier transformation in z for (4.3), replacing EI\ by —47r% (ep;—
epe), the fluid part Uy = [pi, fe, Uy, |, tie,||] satisfies the following system of 1st-order



April 8, 2015 9:21 WSPC/INSTRUCTION FILE ws-m3as

20 R. Duan, Q. Liu, C. Zhu

ODEs
Owpi + ik - ﬁi,H =0,
O¢pe + ik -t = 0,

T; 4dre? ik dre? ik
9 Ai 7z.kAi 77Ai_77Ae iAZ_ -0 (414)
|+ mil pit m; |k|2p m; |k\2p + Vit ’
Ot 1 + T. s +47re2 ik 4dre? ik T 0
ue —1 e - T7oFe — T 779/t Veue - .
el Me p Me |k|2p Me |k\2p 4

Initial data are given as
Uy (t, k)| e=o = Ujo(k) =t [pios peos kk - tizo, kk - iieo)- (4.15)
Then the solution to (4.14), (4.15) can be written as
ﬁ\l(tv k)T = eA(ik)tUHO(k)T’

with the matrix A(ik) defined by

0 0 ¢ 0
ik 0 0 0 —
= . e re? )
N R - A =
4me? ¢ _ Te ,  4me® ¢ _
me 1O me S ez 0 e

where we have denoted ( = ik on the right. In the sequel, for brevity, with a little
abuse of notation, for a positive integer £, we also use ¢! to denote |[¢[¢71¢ if £ is
odd, and [¢|* if ¢ is even.
By direct computation, we see that the characteristic polynomial of A(() is
: 4 3 T, | Te\ e e? )
det(M — A(ik)) = X\* + (v + ve) N + (l/iVe - (Tm + ) ¢“+4m (m + )) A

e (2 m@

T; T. 2 2
+ (— (Ve—l—u,) ¢4 4n (eue—l— c 1/1>> A
m; Me my; Me

n (Tz‘TeCzL _ 47TM<2> . (4.16)

m;Mme m;Mme

It follows from (4.16) that

4

Z)\j = —(V; + ve),

i=1
Ti Te 2 2
S s (s B (12,
m; m m; Me

1<iztj<4 ¢ € '

1 T.T. , 4Axe*(T;+T.) ,
Iy = ¢ = ¢
m;Me

. m;me
=1
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First, we analyze the roots of the above characteristic equation (4.16) and their
asymptotic properties as || — 0. The perturbation theory (see 17 or 24) for one-

parameter family of matrix A(¢) for || — 0 implies that A;(¢) has the following
asymptotic expansions:

+oo
NS PP
=0

Notice that )\;0) are the roots of the following equation:

Ag(A) =0,
with
2 e? e? e2
g(A) = AP+ (vi + Ve)>\2 + (I/Z'Ve + 47 ( + >) A+4n (Ve + I/i> .
7 Me 7 Me
For later use we also set
g(N) =X + ) + X + . (4.17)

One can list some elementary properties of the function g(\) as follows:
e g(0)=4rm (fn—ive + r%l/l) > 0;
o g(—(vi+1v.)) = —V2ve — 2 — 4w (%Vi + %V‘f) < 0;
e gd(\) = 32 + 2 + v\ + (uiye + 47 (% + %)) > yre +
4%(%—#%) > 0 for A > 0;
e d(N) = A 4+ 20\ + v + v\ + (Vil/€+47r (;—2+ < )) > vive +

Me

47 (i 4 ;Ti) >0, for A < —(v; + ve);

m;

e g(A) is strictly increasing over A < —(v; + v,) or A > 0.

The above properties imply that the equation g(A) = 0 has at least one real root
denoted by o which satisfies —(v; + v.) < 0 < 0. At this time, although we have
known that there is at least one real root, it is not clear whether these roots are
distinct or not. We can distinguish several possible cases using the discriminant,

A = 18cycico — 4cscy + et — 4ct — 27c3.

e A >0, then g(\) = 0 has three distinct real roots;

e A <0, then g(\) = 0 has one real root and two nonreal complex conjugate
roots;

e A =0, then g(A) = 0 has a multiple root and all its roots are real.

Through the paper, we only consider the first two cases. Note that the third case
is much harder to study as Puiseux expansions of the eigenvalues have to be used
in that case. Under this assumption, in order to give the asymptotic expressions of
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AR A(ik)

as |k| — 0, we see that the solution matrix e ¢ has the spectral decom-

position
‘ 4
ARt _ Z exp(A; (ik)t) P;(ik),
=1

where \;(¢) are the eigenvalues of A(¢) and P;(¢) are the corresponding eigenpro-
jections. Notice that P;(¢) can be written as
A(Q) = Ae(O)]
PO=15G="wG
o ¢

where we have assumed that all A;({) are distinct to each other for |k| small enough.
In terms of the graph of g(\), one can see when A > 0, g(A\) = 0 has three
distinct negative real roots. When A < 0, assuming that a + bi, a — bi are two

conjugate complex roots and plugging a + bi into g(A) = 0, one has the following
two equations:

2 2
Re: a® —3ab” + (v; + v)(a® — V%) + (ViVe+47T <e+ < ))a

m; Me
e? e?
+ 4 (I/e + I/i> =0,
m m

2 2
Im : 3a%b — b® 4+ 2(v; + ve)ab + <I/il/e + 4 <€ + 6>) b=0.
m; me
Since b # 0, substituting
e? e?
b? = 3a® + 2(v; + ve)a + (I/il/e + 47 ( + ))
m; Me

back into the equation of the real part above, we have

@@3+2@@%w+ua+2acm@+4w<é%+62>+@q+%f>

3 me

( 9 5 4re? 4re? )
+ |\ Vvive + VY + v; + ve | = 0.
A Me

Then the above equation must have only one real negative root. By straightforward
computations and using (4.16), we find that

T+ T, 2 (4) 4 5
—— ATt o(¢P),
o mo S TATC (I¢1”) (4.18)
Ai(lkl) = o; + O(C),  for j=2,3,4,

A([k]) = -

where o, (j = 2,3,4) are the roots of g(A) = 0, satisfying

4 62 62

%Uj <0, E 0 :_(Vi+l/e), 090304 = —4mw | —Ve + —1; |,
5 mg Me
j=

and )\54) is to be defined later on.
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After checking the coefficient of (* in (4.16), we can get some information of )\§4)
which is necessary for the coefficient of (2 in A\gA3\s. In the case A = A\; in (4.16),
the coefficient of ¢* is

dre?  dme? 2 T; T.
(Vﬂ/e +Ie m) (Agz)) - (,Ve + Vi) AP

m; Me m; Me
2 2 T-T
+4m (ue + 1/1> )\§4) + (’ c > =0,

i e m;me

which implies that
2
2 2 . 1. . s
A0 (l/iVe + 4n (ﬁT + 576)) - (iﬁ_ Ve + HTTGEVZ') mifitfrere | Tile {ml;;i?:"e}

() v

mivimeve + 4me?(m; +me) — (Tymeve + Tom,v;) %’%@:V" + 1T, [%}

9

4mwe?(mv; + mele)

and
T,T, 4 _ A (Ti+Te) -2
A2dshy = T.T"’T’"eg RO ‘ ;
miu;+mecucé- +)\1 C +O(|<| )
(DT o AneTA T [mivitmere Ao oo
- \myme mime T+ T. ()@)2
1
e? e? T,T. mw; + meve | Ane®(T, +T,) AV
— _4 _ . e 17 eve (3 e 1 2 O 3 )
" (mZ Vet Me V7/> mimMme T+ T, mM;Me ()\(2)>2 C + (‘C| )
1
Next, we estimate P;({) exactly. In the following, we denote
A Qé(@)) A Sé(@)) _
QP2 (o)L AP 2 (o)
One can compute
T; C2 _ M 4me? V’C 0
dne” L2 dme? 0 ve(
[AQ)? = - R . ,
T A L
4e? ¢ T, 4dre? ¢ 4me? T. -2 4re? 2
Vel mivel t R VerE e me T e T



April 8, 2015 9:21 WSPC/INSTRUCTION FILE ws-m3as

24 R. Duan, Q. Liu, C. Zhu

and
7&1/_4-24» 4me? U 74#521/_ 7£<3+ 471'624‘71/2( 7471’62<
m; "t m; ¢ m; 7t m; m; @ m;
_471'621/ —LI/ C2+4W62V _47T€2C _LC3+47T62<_V2C
AP R " S
e o e e
31 32 33 34
(3) (3) (3) (3)
Gy Q42 (43 Gy
where

T; z . T, Amwe? T; 4me? 2 4me? 4dme? 4me?
afy = - — ) G2 —— - )+ —) i %7
m; mg mig o my m; m; m;  me | |(]

T, 4me? T, 4me? are2\?  4rme? Ame? 4me?
e (D Tty () e e ¢

m; m; Me M, m; m; m;  Me |C|2,
T; 4re?
afy) = —2—1;¢% +2 ;e vi — v},
(3 (]
a(g) _ _47‘(’62 B 47re21/
34 — m; 2 ; (2}
aﬁ) _ &47T62 n £47re2 ‘- dre?\? _ 4mre? e 4me? 4re? i’
m; Me Me Me Mme mMe ms;  Me |<|2
2 2
afé) _ T, 34 2& 4me? T 2 ¢+ 4me? - 4me? e 4me? 4me? i,
Me Me Me Me Me Me m; me | |C]?
(3) 4me? 4me?
ayq = — - Ve — - Vi,
T. 4re?
aéﬁ) = _ZmiyeCQ + 2 e Ve — Vg

Note that we must deal with terms involving ﬁ carefully, since they contain sin-
gularity as |k| — 0. By using (4.18), we estimate the numerator and denominator
of P (ik), respectively, in the following way that

+o0 2 2
e e
pien = 3" g0¢t = dx <m * ”em) +9?¢ +0(¢P),

—0 e 0
and
PP =[A(Q))? — (A2 4 Az + A)[A(O]?) + (A2As 4 Aada + AsAa)[A(Q)] — AsAs Al
=[A(Q]* + (v + ve + M)[A(Q))?

A 2 2
n (We _ (T L L ) 2y (4”6 | dre ) MO+ As M)) LAC)] = Aodshal

m; me m; me
= (fij)4><4-
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Notice that
(2)

1 1 gt
[9©]

den 2 2
Pl 47T(l/i%€—|—]/e€>

3¢ +O(¢P).

m;

Let us compute f;; (1 <1i,j <4) as follows. For fi1, one has

T; 4e? T; 4e? = .
Q) =~ 2wt vw+@+%+h)@ﬁ@— J}agg4:§jﬁ8q4
2 (2 (2 1 (=0
where
(0) 4me? 4me? 4rre? 4dme? 4me?
1 = Vi — (Vi +ve) + v + Ve = Vi,
m; m; me m; Me
1) _
1 =Y
T; T; dre? T+ T,
U Y
m; m; m; M;V; + Mele
T, T, myv; +mev,  4me?(T; +T,) /\54)
mime Ty + T mime <A<2))2
1
_47re2 T+ T, n Timeve — Tem,v; miv;
Cme mavi + Mmeve mime mivi + meve’

and therefore,

fu(() =

e

4dme? dre? T, + T, Timeve — Tom;v; m;Vv;
et " )¢+ olet)

Me M4V + Mele m;imMme miVi + Mele

In a similar way, we can get

4me? dre? T+ 1T, 9 4
fa(€) = T+ T2 o),
47re?
fi13(Q) = — ¢+0([¢)?),
Me
4dme?
f14(<) = - Cv
m;
and
4re? dme? Ty + 1T, 9 4
f21(¢) = -~ vi + o~ miyi+meVeC +O(|¢I%).
For f22((), one has
T, 4me? T, 4re? =
f22(¢) = —E'VeCQ + Ve + (Vi + Ve + A1) (mCQ - ) — AaA3Ag = Zféé)ce,
€ € e € ZZO
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where
47re? 4dme? 4re? dre?  4qe?
fg(g) _ dme v Te (i + 1) + v e L me® _ dme v,
Me Me Me m; m;
£33 =0,
T, T, dre? T, + T,
e 2 e (VR B
e e Me MiV; + Mele
T.T. miv; +meve  4Ame?(T; +T,) )\54)
mime  T; +Te mime (/\<2>)2 ’
1
747T€2 T, + T, Timeve — Tomuv; Mele
©omi miv; + meve mime mivi + meve
Therefore,
4me? dre? T, +T. Timeve — Tem;v; Mele
) = v - )¢+ oleP).
i mi MilV; + Mele miMe miV; + Mele
Similarly, one has
4re? 4e?
f23(¢) = — ¢ fau(Q)=— ¢+ O(¢P).
Me my;

Moreover, it holds that

T; 2 T; 4me? T; 4re2\?  4me? dme? dme?
f(@ = () ¢4 (2 TmE T oy S "
m; m; m; m; m; m; m; me | |C]

T; 4me?
+ (I/i + Ve + )\1) (mViC + ml/zKCP)

(2

LT dre?  dme? T dme?
+ (z/lvz/e - ( + ) ¢+ ( e ) >\1()\2+/\3+)\4)> <C 7re§2> .
: mi mi (]

my; Me mg Me

In the expression of f31({) above, since the coefficient of ﬁ is vanishing, i.e.

are?\*  Ame? 5 Ame? dme? 4re? e? e? 4me?
— v + + (vi + ve) vi — | vive + 47 [ — + =0,
mg m mi Me mg mi  Me m;

and the coefficient of ( is given by

Ti 4 2 Ti Tz j‘z T; 4 2
(2 ™ 2) + (Vi +ve) —vi — ha dea

V’L
m; MiV; + Mele My

dre?  Ame? T; T; T. \ 4me? T, +7T;, 4me
— | vive + + — | + it ve)
m; Me m; mi;  Me i miV; + Mele My
471'62 (Ti + Te) m;v;
mime  MiV; + Mele’

2

it follows that
Awe?(T; + T, m;v;
i + L) ¢+ O(¢l?).

m;imMme miV; + Mele

f51(¢) = —
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Similarly we can calculate f32(C), f33(¢), f34(¢) and f4;(¢) (4 = 1,2,3,4) as follows:

_ Ame?(T; +T,) Mele

3
f32(¢) = e +m@y@C*'O(|C| )s
f33(¢) = O(I¢1?),
f34(¢) = O(I¢1?),
B 4re*(T; + T.) m;v; 3
fa(Q) =~ e — +meyeC+O(|<| ),
4 2 711 Te ere
fiafQ) = - TEIET) __Tele .y oigp)

f13(Q) = O(I¢I),
F1a(Q) = O(I¢).

Let P} (ik), P?(ik), P}(ik), Pj}(ik) be the four row vectors of P;(ik), j =
1,2,3,4. According to the above computations, we have

4me? vi + (4-rre2 T;+T, + Timeve—Tem v miv; ) <2 + O(|C|3)

Me Me MiVi+MeVe mMiMme MiVi+tmeve
dme? dme® _ Ti+T. 2 3
e R 4 e+ OCP)
Fi —met 4 O(I¢P)
4 2
- <

2 2 )
m%“i‘m Ti+Te §2+O(|C|3)

Me Me MiVi+MelVe

4re? 4re? T;+Te Timeve—Tem;v; Mele 2 3
PQ('k) —_ 1 ;rn Ve + ( 77;11 mivitmeve emim: - LmiVi‘T’mch ¢ +O(|C| )
1\ Pden Are?
1 — ¢

—dme e O([¢fP)

2(. U
eI (4 O(P)

M Me MiVi+MeVle

dme* (T;+Te) Mele
PYiK) = s | e i HOUCE) |
Pi O(|¢P)
o([¢[?)
and
) S 2 4 O(C)
dne® (Ti4Te)  meve 3
Piik) = — | T e+ OC)
Pi O(¢P?)
o(l¢?)

Based on the definitions of P}, P2, P#, P}, we have the expressions of pq (¢), .| ()
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and E'|‘(C) for |k] — 0 as follows:

Z exp (A P} (ik)Ujo (k)"

= exp (M1 (#4)) P Ujo (k)" + O((k]) exp (ha (#4)1) | U0 (k)|

+Zexp P}(ik)Uyo (k)"
Z exp (A P?(ik)Ujjo (k)™
=exp (Al(zk) )P Ujo (k)™ + O(Ik) exp (A1 (ik)t)|Uyo (k)|
+ Z exp (A (zk‘)UHO(k;) ,
a, (¢ ZGXP P (ik)Uyo (k)"
—exp(Al(zk) VP2 Ujo(k)" + O([k[*) exp (A1 (ik)) U0 (k)]
+Zexp P(ik)Ujo (k)7
e, (¢ ZGXP P} (ik)Ujo(k)"

—exp(M(Zk) )P?Ujo(k)" + O(|K[?) exp (A1 (ik)1) [ Ujo (k)|

+Zexp P} (ik)Uyo(k)T.

Here Finally, noticing

TimeZzi;niem'V miv; +m Ve <2 +O(|<| )

1 Timeve—Temiv; C2+O(|C|)
PLik) — P2(ik) = —— mime mu+mu
1( ) 1( ) Plden (|C|)
o(I¢l*)
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we also have
. ik
EH = |k|2 anpa = - |k|2<€pz €Pe)

4m| k|2 exp(\i (ik)t) (Pi(ik) — PE(ik)) Uyjo (k)T

|k:|2 Z exp (A P} (ik) — P} (ik)) U‘|0(k)T (4.19)
=exp<xl(ik>t>P3U”0 + O(kf?) exp(\i (ik)1) | Do k)|

|k|2 Zexp (P} (ik) — P2(ik)) Ujo (k)"

4.2.2. Error estimates

Lemma 4.1. There is 19 > 0 such that for |k| < ro and t > 0, the error term
|U; — Uy can be bounded as

|pa(t, k) — At k)| < Clk| exp (—Alk|*t) ‘Uno(k)‘ + Cexp (—At) ‘Uﬂo(k)’ , (4.20)
i (1) = iy (1, )] < CIRP exp (~A[K[20) [To k)|
+Cexp () (‘Uuo(k)‘ + ’Euo(k)’) . (4.21)
By (£, k) — By (£, k)| < C|k[? exp (—Alk[2t) ‘UHO (k) (4.22)
+Cexp(— (‘UHO ‘ + ’E\|0(k)‘> . (4.23)

where C' and \ are positive constants.

Proof. It follows from the expressions of p,(¢) and p(¢) that

pi(C) = p(C)

=exp ()\1 (ik)t)Plﬁﬂo(k‘)T — exp (—% k|2t> Plﬁuo(k)T
O]} exp (A i)2) | k)| + Z exp (; (ik)) PL(ik) 0o (k)"

:=Ry1(ik) + Ria(ik) + Rys(ik).
We have from (4.18) that

. Ti +Te
Ai(ik) + ————[k[* = O(|k[*),

MV + Mele
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and

. Tz + Te
exp ()\1 (Zk')t) — eXp (—W|k|2t> )

Ti Te . T‘z Te
= exp (—+|k2t> exp (Al(zk)t + +|k‘|2t) - 1’

miVi + Mele miVi + Mele

T, + 1T,
< Cexp <_mu—|—m

< Clk|? exp (=A|k[*t),

2 )t exp (CIAT )

as |k| — 0. Therefore, we obtain that
‘Ru(ik)‘ < Clk|2 exp (= Alk[2t) ‘Uuo(k)‘ as |k| — 0.

Note that R A1 (ik) < —A|k|? and |exp(A;(ik)t)| < exp(—=A|k|?t) as |k| — 0. Conse-
quently, we find that

]1%12(¢k)] < Clklexp(—Ak[2t) as |k| — 0.

Now it suffices to estimate ‘ng(zk)‘ Recall Re 0; < 0 for j = 2,3, 4. This together
with (4.18) give exp(A;(ik)t) < exp(—At) as [k| — 0. Also notice P} (ik) = O(1).
Thus we have
lélg(z‘k)] < Cexp(=Ai) ]UHO(k)] as k| = 0.
In a similar way, we can get
19e(k) = 5()| < Clk|exp (~Alk[2) | Do (k)| + Cexp (~8) [ To k)]

This then proves the desired estimate (4.20).
To consider the rest estimates, one has to prove that

. 4
PIUf k), PLUG(R), UZII;Z(P]-l(ik)—Pf(ik)) Ullo(k),

are all bounded. Notice that those terms include # which is singular as |k| — 0.
For j = 2,3, 4, by using (4.18), we see that

Pl =TT (0) = (€)= 0(1),
LF£]
and
PP =TA(OP + (v + ve + \)[AQ))

A 2 2
+ (1/1-1/6 - (nz;l Te) CC+dn <§u+ ¢ >+Aj(yi+u@+Aj)> A(Q)

Me

7 me

— Ao Ag A
2=(9§;)4x4~ (4.24)
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We have to be careful to treat the third row and the fourth row involving # It is

straightforward to compute g§1 as

, T \* T; 4re® T,
@ == () @ (2 - Tt
Are?\?  dme? o  Admedme?\ (¢
+ - — Vi + ==
m; m; mg;  Me |C|
T, 4me?
+ (Vi +ve + Nj) (ZViC + Vi<>

m; mi []?
T, T, Are?  dme?
+ <V1'Ve_ (+> C2+< T >+/\j(yi+ye+/\j)>

mg Me m; Me

NEPRELENA)

m; m; [C?

The coefficient of # in the above expression of g§1 (¢) is further simplified as

4re? 4me? 4me?
ﬁVin—Uj(VH-Ve'FUj) =- 0j(ve +0j),

i m; m;
where we recall that o; (j = 2,3,4) are the three roots of g(\) = 0. Therefore,
; 4me? ¢ 4me? ik
i ) N> 10 =—— 0 N——s + O(|k]).
931 m; UJ(V€+U])|C|2 + (|§|) m; O-J(V€+U])|k|2 + (| D

We now turn to estimate g},. It follows that

; T; 4me? T, 4me? 4me?\?  Are? 4me? 4me?\ (¢
R )c—(( ) - )

m; m; Me M, my; m; m;  Me W
4me? (¢ )
+ (Vi Fre+ A (—Vi
( ]) m; |<‘2
T; T, dwe? Ame? 4me?
+ vive— | —+ = )C+[—+ + Xj(vi + ve + X)) %
m; Me m; Me m; |C|

The coefficient of IC% in the above expression is further simplified as

4dme? 4dme? 47e?
———vio; + 0, (Vi + Ve + 0;) = oj(ve +0;),
mg mg m;

which hence implies that
4re?

; ¢ 4re? ik
Gho = ——0j(Ve + Uj)W +O(|¢]) = ?Uj(l/e +0;5)

7
— k).
. l T + O([k])

Checking the third row of A(ik), [A(ik)]? and [A(ik)]?, we can obtain that

933 =0(1), g4y =0(1),
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as k| — 0. It is direct to verify that

P (ik)Uyo (k)" =g% pio + ghabeo + Fhstiio,| + Fhatieo,)

4me? ik . R ~
= - TUJ'(Ve + Uj)W(piO — peo) + O(1) ’UHO(’“)’

%

=0y (ve +03) By (k) + O(1) |y (h)

where we have used the compatible condition EAHO = 747‘(%(6ﬁ10 —epeo). Then the

expressions of i, (¢) and @ (¢) imply that

T+ T,
miVi + Mele

[z, (C) — ()] = exp (A1 (ik)t) P*Ujo (k)" — exp < |k2t> P?Uyo(k)"
O([k|?) exp (A1 (ik)1) [Ty ()| + ZEXP P (ik)Ujo(k)
<CJk? exp (—AlK[28) U)o (k)] + Cexp(—At) (\UHO \ [Bo(h)]) -

In a similar way, we can get

i ()= (k)] < CIRP exp (=ARPE) [T ()] +C exp (=t) ([Tok)| + | Bpo(w)])

This proves (4.21).
It now remains to estimate

e > (P} (ik) — PP(ik)) Ujo (k)" (4.25)

appearing in (4.19). Since the first row minus the second row of I, A(ik), [A(ik)]?
and [A(ik)]® are respectively given by

(17 _1a 07 O)7
(07 07 7(7 C)a
T; dre?  4qe? T, dre?  Aqe?
(—42 SIS T e Ty ,uic,—m) ,
my; mg Me Me m; Me
and
(—TiViCQ N 4re? vt 4rre? ", EVeCQ  Adme? . 4mre? ",
m; T Me Me 7 e

—ECS‘F (471'62 +47T62)C—Vi2<aTe<3— (47762 4re? ><+ 2C)
m ; Mme

m; m; Me
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one can compute (4.25) by (4.24) as
ik
[k[2
Lok i iys i A i i i iy
:@W ((911 — G51)Pio + (912 — 932)Pe0 + (913 — 923)tio,|| + (914 — 924)%0,“)

1 e2 e2 ik . R .
= — Pden4ﬂ'< +) O'jW(pio—peo)—FO(l)‘Uuo(k)‘
J

m; Me

)

1 <€ € >ng”0(k)+O(1) ’Uno(’f)

= 4+
dee“ m; M

which is bounded when |k| — 0. Then the expressions of EAH(O and EH(O imply

that
A A . N Tz —+ Te N
1E(¢) — By (Q)] = |exp(Ai (ik)) PPUjy — exp (—W|k|2t> P3Uo(k)"
+ O(|f2) exp(M (ik)) |Ujo k)|
ik o .
—47reW > exp (X;(ik)t) (P} (ik) — P(ik)) Ujo (k)"
j=2
<Ok|? exp (—AJk[2¢) ‘Uﬂo(k)) + Cexp (—At) (‘Uﬂo(k)‘ + ‘E||0(k)‘) .

This proves (4.23) and then completes the proof of Lemma 4.1. O

Next, we consider the properties of po (), @qa,)(¢) and E”(C) as k| — oo. It
follows from (3.17) that

R Cexp(=\k[*t)|Uo (k)| k| < ro,
|U(t,k)|§{ p( ||2)| (1( )l k| < 7o
Cexp(—=Ak|~“0)|Uo(k)[, [k > 70.

Here rq is defined in Lemma 4.1. Combining (4.26) with (4.6), (4.7) and (4.8), we
have the following pointwise estimate for the error terms pq (k) —p(k), tq, (k) —u(k)

and Ejj(k) — E(k) as |k| — cc.

(4.26)

Lemma 4.2. Let rg > 0 be given in Lemma 4.1. For |k| > ro and t > 0, the error
|Uy — Uy| can be bounded as

[Palts k) = At )| < Cexp (=AJk|~2t) [ (k)| + Cexp (=) [[5io (k). peo ()]

Gt (£, k) = iy (8 )| < Cexp (=AkI=22) [To(k)]| + C exp (=) k] 3o (k). peo (B,

By (1K) — By (1, K)] < Cexp (<MK 1) |00(k) | + C exp (M)l [ [pk). Aok
where C and X\ are positive constants.

Based on Lemma 4.1 and 4.2 together with ¢ , the time-decay properties for the
difference terms p, — p, Uq,| — ) and Ej — EH are stated as follows.
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Theorem 4.1. Let 1 < p,r <2< qg< 00, >0, and let m > 1 be an integer.
Suppose that [pa,uq,|] is the solution to the Cauchy problem (4.3)-(4.4). Then U =
[Pa> Ua,|] and By satisfy the following time-decay property:

m

_3¢1_1y_m+1
V™ (pa(t) = p() | o < C(1+ )" 2G =D~ Uyl o + Cexp(—At)||Uo | o
+C(1 4 )2 |V HERE= D gy |1+ Coxp(=A8) |V BGE=D [0, peo] |12

1 1 )_ m+2

IV (g, (£) = Ty (£) | Lo < C(L+1) 72570772 | Ug|| o + Cexp(=AL)||Up| o
+C(+1)" 2 | VHEBG =Dl Ul e + Cexp (=) |V BG4 [0, peol|

L,
and

m+2

IV™(Ey(8) — Ey()|pe < C(L+ )" 25797557 [Up| o + Cexp(—AL)||U|| v
F O+ )75 ||VHEBG=DI Uy | 1+ Cexp(=A)|[V™HFBEE=DM [ni0, peo]ll ey
for any t >0, where C = C(m,p,r,q,0) and [( + 3(+ — 1)} is defined in (3.18).

1
q

4.3. Spectral representation for electromagnetic part

4.3.1. Asymptotic expansions and expressions for B

Taking the curl for the equations of dyu; |, Ostte, 1, O,E 1 in (4.9) and using AB =

-V x (V x B), it follows that
m;O(V xu; 1) —eV X El +mvi(V xu;1)=0,
MOy (V X te 1)+ eV X Bl +mee(V X ue 1) =0,
(VX E)+cAB+4me(V xu; | —V XU 1) =0,
0:B+cVxE, =0.

(4.27)

Taking the time derivative for the fourth equation of (4.27) and then using the third
equations to replace 0;(V x E, ) gives

OB — *AB —4mce(V x uj | — V X ue 1) = 0. (4.28)
Further taking the time derivative for (4.28) and replacing 9;(V x u; 1 ) and 9;(V x
Ue, 1) give
e? e?
0wt B— 2 AB, + 4w (m + - ) Oy B+4mc(ev;V X u; | —eveV Xue 1) =0. (4.29)

Here we have replaced V x E, by —%@B. Further taking the time derivative for
(4.29) and replacing 0,(V x u;, 1) and 9,(V X ue, 1) gives

2 2 2 2
(3th - C2ABtt + 47 (e + e) attB — 4 <6VZ‘ + eVe> 8tB
. . m

i Me i e
—Arc(ev?V x u; | — ev?V X ue ) =0. (4.30)
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Taking the summation of (4.30), (4.29) x (v; + v.) and (4.28) x v;v, yields

2 2
OunB + (v + ve) 0w B — *ABy; + 4w <e + ;) OuB + viv. 0B
e2 €2
- 02(1/1- + ve)AB;, + 47 <1/e + I/i) 9B — vv.c*AB = 0.
m; Me

In terms of the Fourier transform in x of the above equation, one has

me?  dme?
+

. . 4
6mtB + (Vi —|— z/e)amB + (C2|k|2 —|— 7

7 e

+ Vi”e) 6ttf3

47e? 4dre?
Ve +
m; me

+ <(yi + ve) P |k|? + ,,i) OB + vive|k|?2B = 0. (4.31)

Initial data are given as
B\t:o = By,
8tB|t:0 = —cik x EAO’J_,

8ttB|t:0 = 702|k‘2B0 + 4me (ezk X ﬂio,i — etk X ﬂeO,L) , (4 32)
~ 62 62 ~ .
8tttB|t:0 = (02|k|2 + 4 ( + )) cik x EO’J_
m; Me

— dmeev;ik X U0, 1 + 4mceveik X Ue, | -

The characteristic equation of (4.31) reads

4 3 207,12 e’ e’ 2

AN+ Wi+ v) X+ Clk)*+4dn | — + — | +vive | A
m; e

2 2

+ (Cz(Vi + ve) [k|* + 4 (;Ve + ;W)) A+ vived® |k = 0.
i

e
For the roots of the above characteristic equation and their basic properties, one
has

CQ’ITLZ‘ ViTele

A ([k]) = K[> + O(Ik[*),

_47762(mi7/i + mel’e) (4.33)
Ni(k) = o+ O(|k]?), for j=23,4,

as |k| — 0. Here we note that o; (j = 2,3,4) with Ro; < 0 are the solutions to
g(A) = 0 with g(\) still defined in (4.17). One can set the solution of (4.31) to be

B =" ¢;(ik) exp{); (ik)t}, (4.34)

j=1
where ¢; (1 < i <4) are to be determined by (4.32) later. In fact, (4.34) implies

1 11117 e Bli=o
C2 A1 A2 >\3 A4 C2 5’tB|t:0

M = = A , 4.35
es| T2z ez | es| T | GuBlis (4:35)

C4 A? Ag )‘g /\i Cq 6tttB|t:0
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where the right-hand term is given in terms of (4.32) by

B‘tzo 0 0 0 1 g0, 1
O Bli—o | _ 0 0 —cikx 0 oo L
attB|t:0 - dmceikx  —4mceikx ()2 2 —2|k|? ]@07L
6ttt3|t:0 —4mcev;ikx dmeev, ik x (c2|k|2 + 47 (7% + 7%)) cik x 0 Bo

(4.36)

It is straightforward to check that

det M = H (Ai = Aj) #0,

1<j<i<d
as long as A;(|k|) are distinct to each other, and
My Moy Mzy My
1 1 Mo May M3y My

- det M | My3 Mos Msz Mys ’
My Mag M3y Myy

where M;; is the corresponding algebraic complement of M. Notice that (4.35)
together with (4.36) give

c1 0 0 O 1 0,1
| A 0 0 —cik x 0 Tleo, 1
s | dmceikx  —4dmeeikx O2 ) —2|k|? Eo.1
cy —dmeev;ikx dmeeveikx (02\k|2 + 47 (:;T + ;—)) cikx 0 By
which after plugging M ~!, implies
1
c1 = [(47TC€M31 — 47TC€M41Vi)iki X ’&1‘071_
[T i—=A)
1<j<i<4

+ (—4AmceMsy + dmce My ve )ik X Geo, 1

62 62 ~
+ <M21+M41 <02|]{32+47T <+ >)>Ci]€XE07L

mg Me

+ (My1 — k> M3) Bo}

My, By .
= O(kDTo. L |.
0 (Ai_Aj)Jr (IkDUo, 1|

1<j<i<4

We deduce that 7]”8\_7)\_) has the following asymptotic expansion as |k| — 0:
I1 i J
1<j<i<4

M = e
= > clkl,
[T (A=) ; !

1<j<i<4
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where
A2 A Ay
M= MMM =X [ i-A).
PEDTIY 2<5<i<4

By straightforward computations, ¢! = 1 holds true and this implies that

c1(ik) = Bo + O(|k[)|Uo, 1 [[1,1,1]7 (4.37)

4.3.2. Error estimates

In this section, we first give the error estimates for B— B, and then apply the energy
method in the Fourier space to the difference problem for (4.9) and (4.11) to get
the error estimates for uq, | —Uq, 1 and £ — E | . It should be pointed out that it is
also possible to carry out the same strenuous procedure as in the previous section
to obtain the error estimates on uqa, 1 — %o, and Ey | — Ea7J_. The reason why we
choose the Fourier energy method is just for the simplicity of representation, since

the estimates on uo, | — %q,1 and E, | — E,, 1 can be directly obtained basing on
the estimate on B — B.

Lemma 4.3. There is 1o > 0 such that for |k| < 1o and t >0,

|B(t,k) — B(t,k)| < C (|Klexp(—Ak[*t) + exp(~At)) |Uo, L, (4.38)
where C and X\ are positive constants.
Proof. It follows from (4.34) and (4.13) that

02 mi;ViMele

B(t,k) — B(t,k) = ¢;(ik) exp{\; (i)t} — exp (

kFt) Bo(k)

B dme?(m;v; + mele)

= cll(ik) — Bo)exp{ A (ik)t}
+ By (exp{/\l(ik)t} — exp {— Cmivimeve ) |k|2t})

4me? (mv; + mel,

4

+ ) exp{);(ik)t}e;(ik)

j=2
2:R21(ik) + RQQ (lk) + Rgg (Zk)
Using (4.33) and (4.37), one has
| Ra1 (k)| < Clklexp(=Alk[*t)| o, L,
| Ra2(ik)| < Clk[Pexp(=Alk[*t)| Byl
| Ry (ik)| < Cexp(—At)|Us, L |.

This proves (4.38) and then completes the proof of Lemma 4.3. O
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Next, in order to get the error estimates for uq, | — o, and £ — E |, we write
i = U,y — U0, E=E, —E,, B=B-B.

Combining (4.9) with (4.11), then [Gq, F] satisfies

maatﬁa - an + mayaaa = *maataa,La
OE — ¢V x B+ 4w Z Golia = —O.E | . (4.39)
a=i,e

Lemma 4.4. There is ro > 0 such that

(Clk|Pexp(—=AE[*t) + exp(=At)) [Uo, 1|, for |k| < ro,

i1 (£, ) — i1 (8, )] < { Cexp (=A[k|7%t) ‘Uo(k)‘ (4.40)
+ Cexp (—A|k|*t) k| | Bo(k)|, for |k| > 7o,
and
(ClkPexp(=AE[*t) + exp(=At)) [Uo, 1|, for k| < ro,
B (t k) — EL(t, k)| < { Cexp (=Ak|7%) ‘ﬁo(’f)‘ (4.41)

+ Cexp (—A[k[2t) K| ’Bo(k:)

, for |k| > ro,

where C' and X are positive constants.

Proof. It is straightforward to obtain the error estimates for |k| > r¢ due to (3.17),
(4.12) and (4.13). In the case |k| < r¢, the desired result can follow from the Fourier
energy estimate on the system (4.39). Indeed, after taking the Fourier transform in
x, (4.39) gives

maataa - an + ma”af’/a = _maatﬂaAJ

8té — cik x é + 4r Z qaﬁa = —atEJ_. (442)

a=i,e

By taking the complex dot product of the first equation of (4.42) with lo, taking

the complex dot product of the second equation of (4.42) with E, and taking the
real part, one has

1d Lo 11d 2, o
a 3. a|Ya 777E alVo|la
2dta§,:?m el + 22 7P +a;em Valtal

a 2 1 E 1 . 2 2
=— Z MaR(Olia, 1 |Ua) — EER (@EQE) + Em(czk x B|E),

a=i,e
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which by using the Cauchy-Schwarz inequality with 0 < e < 1, implies

1d 2 1 2 2
5% Z ma|utx|2 + E'EF + Z mocVa|ua|2
a=i,e a=1,e (443)
<€ > o> + €lE’ + Ce Y |04tia 1 |* + Celik x BI? + Cc|0,EL|*.
a=i,e a=i,e

By taking the complex dot product of the first equation of (4.42) with —gqoF,
replacing OE by the second equation of (4.42) and taking the real part, one has

O Z %(maﬁa| —qal%)—&— Z Q- Er

a=i,e a=i,e

=— Z qaﬂ%(maﬁa|cik X é) + 47 Z gaR maﬁa| Z Jalla

a=i,e a=t,e a=1i,e
+ Z qgaR (ma'&a|atEL) + Z %(ma’/(xﬁaM(xE) + Z m(maatﬁa,L|QaE~l)a
a=i,e a=i,e a=i,e

which by using the Cauchy-Schwarz inequality with 0 < e < 1, implies

% Y R(maiial —aaB)+ S @2 ‘Er

) ) O (444)
<Ce Y lial? + €lEl> + Ce > [04ita, [ + Celik x B + Cc|0,EL|?,

a=i,e a=i,e
for 0 < € < 1. We now define
~ 1 =2 ~ 2
E(t) = 3 malital® + B +5 D, Rimatia| - guF),
for a constant 0 < kK < 1 to be determined. Notice that as long as 0 < kK < 1 is
small enough, then
Et)~ > lual> +|E] (4.45)

holds true. On the other hand, the sum of (4.43) and (4.44) x k gives

HEW + M| X fial? +1EP | <C Y [0pita, 1 2 + Clik x B + C|o,EL

a=i,e a=i,e
A 12 N
< C|k[Cexp{—2A[k[2t} ‘Bo‘ + Clk[? (ClkPexp{—2|k[2t} + exp{—2At}) UL |2

< Clk|exp{—=2X|k|*t}|Uo. 1 |> + C|k2exp{—2t}|Up 1 |?, (4.46)
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for |k| < ro, where we have used the expressions of g, |, Fo,1 in (4.12), the expres-

sion of B in (4.13) and Lemma 4.3. Multiplying (4.46) by exp(At) and integrating
the resulting inequality over (0,¢) yield that

E(t) < exp(=M) | 3 Jiiaol® + By

¢
+ Cexp(—)\t)/ exp(A\s) (\k;|4exp(—2)\|k|28)|(A]07L|2 + C|k|2€xp(—2/\s)|(AJO,L|2> ds
0

< Cexp(—A)|Uo, 1 |2 + Clk|*exp(—=2A|k|?t)|Uo 1 |*.  (4.47)

Therefore, (4.40) and (4.41) follows from (4.47) by noticing (4.45). This then com-
pletes the proof of Lemma 4.4. O

From Lemma 4.4 together with  , one has

Theorem 4.2. Let 1 < p,r <2< qg< 00, >0, and let m > 1 be an integer.
Suppose that Uy = [uq, 1, E1, B] is the solution to the Cauchy problem (4.9)-(4.10).
Then one has the following time-decay property:

1y m42

V™ (1 () = T, 1 ()| 20 < C(L+8)"EETD 755 | Up|| o + Cexp(—At) | Uo|| o
O 44)72 | VGOl g e 4 Cexp(—At) | VHIHBG=D By

L7,

m

_ _3¢1_1y_ +2
IV™EL(t) = EL(t)|pe < C(L+ )~ 2G=D 757 | Ug|| 1o + Cexp(—A)||Uo|
+ O (1 +8)~ 5 [VHEBG= DI Uy e 4 Cexp(=A8) ||V HBG=0) B0,

and

1)J"T“|

— B Le < -5G—3 |Uollzr + Cexp(=At)||Uol||Lr
IV (B(t) = B(t))||Le <C(A+1)"2

+ O+ )5 [VHEE Dy Coxp(=A) [V =01 By | 1,
for any t > 0, where C = C(m,p,r,q,0) and [( + 3(+ — é)]+ is defined in (3.18).

We now define the expected time-asymptotic profile of [pa,uq, F, B] to be
[P, U, E, B], where p and B are diffusion waves, and [ii, E] is given by

Uq =U| + Ua,., E=FE+E..
Combining Theorem 4.1 with Theorem 4.2, one has

Corollary 4.1. Let 1 < p,r <2< g <00, >0, and let m > 1 be an integer.
Suppose that U(t) = e*t'Uy is the solution to the Cauchy problem (3.5)-(3.7) with
ingtial data Uy = [pao, Uao, Eo, Bo| satisfying (3.7). Then U = [pqa, uq, E, B] satisfies
the following time-decay property:
_ _3(1_1y_mt1
IV (pa(t) = p() | e < C(1+ )72 6707557 Ug| o + Cexp(=At)[|Uo | v
1

+ C(1 4 1) 2 [V DI || e + Cexp(— M) [V BG =01 [pig, ool
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P g

_3 _m+2
IV (e (t) = e ()]s < C(L+ )2 G075 Ug|| 1o + Cexp(—A8)||Uo| 1
+O(14) =5 |V FERBGE =Dl U || o4 Cexp(—A8) [V BG4 0. oo, Bol|l2r

— _3¢(1_1y_m+2
IV™(E(t) = E()|ze < C(1+ )" 26975 |Up| 1» + Cexp(—At)||Uo| s
FO(1+t) 5[V G =Dl g | Lo Cexp(—A) [V HFEG =D (0, peo, Boll| -

and

— _3¢1_1 _m+1
IV™(B(t) — B(t))l|s < C(1+ 1) 3G =077 U 1o + Cexp(—At)||Uo| L
+ O+ )5 VTG Ul e + Cexp(—At)||[ VT BG =Dl By |10,
for any t > 0, where C' = C(m,p,r,q,¢) and [ +3(% — 1], is defined in (3.18).
roq

Corollary 4.2. Under the same assumptions of Corollary 4.1, it holds that

2

+1
|Uol|» + Cexp(—=At)||Uol|Lr
+O(1+ )8 [ VG Gyl e + Cexp(=A8) [V BE =D [pig peo] e

IV pa(t) e < C(1+1)" 3G9

_3(1_1y_m
+C(1+1¢) 2Go=) 2 [|[pios peo]ll e

_3(1_1y_m+2

IV o ()| 20 < C(1+14)"2670) =" || Ug|| v + Cexp(—At)||Us|| e

+O(1+1) 7 [T HESG =Dl ||+ Coxp(= ) [V HEG=01 [, peo, Byl 1+
+ O+ )7 2ED7" [pio, peo, Bolll e,

—2(( £ - = 7m+2
IV E(t)|re < C(1+ )2 G077 |Ug|| 1o + Cexp(—A)||Uo|
+O(1+1) 75 [T HESG =Dl ||+ Coxp(= ) [V HEG=01 [, peo, Byl
— 2 &2 - = 7m+1
—|—C(1—|—t) 2Gm)= H[Pio,PemBo]HLl’a

and

IV B(#)|[za < C(L+ 1)~ 2G5 |Up| 1o + Cexp(—At)||Uo|

+ O+ 8) 5V HEBG =Dl |+ Cexp(— ) [V HEG — 01 By |1

+ O+ 073677 By,
for any t >0, where C = C(m,p,r,q,¢) and [( + 3(+ — %)]Jr is defined in (3.18)
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4.4. Extra time-decay for special initial data

Recall that the solution U = [pq,, ua, E, B] to the Cauchy problem (3.1)-(3.2) with
initial data Uy = [pa0, Uao, Eo, Bo] satisfying (3.3) can be formally written as

U(t) =ettU, —|—/0 e(t_s)L[gla(s),gga(s),g3(s),O]ds
(4.48)

t
:etLUO+/ eIV - £u(3), 920 (5), g3(s), 0]ds,
0

where et is the linearized solution operator. We expect that the nonlinear Cauchy
problem (3.1)-(3.3) can be approximated by the corresponding linearized problem
(3.5)-(3.7) in large time with a faster time-rate, namely the difference U (t) — e!LUy
should decay in time faster than both U(¢) and e!LUy. Therefore the nonlinear term

/ e ILIV - £0(5), g2a(s), 3(s), O]ds

0
is expected to decay in time with an extra time rate. For this purpose, let’s consider
the linearized problem (3.5) with the following initial data in the special form:

NO = [V'foc792avg370]|t20- (449)

Notice that the diffusion wave [ﬁ,QH,EH] given by (4.5) with the corresponding

initial data
Mele

plimo =—————V - fio + ————— V- feo
MiV; + Mele mMilV; + Mele
m;v; mel,
=V — fio + - feo] )
mM; Vi + Mele M;Vi + Mele
_ Ti + Te _
uj| lt=0 = — WVP|t:O (4.50)
__ T+ T, vV . |: m;v; f + Mele f :|
miv; + meve miv; +meve” " mavi +meve” )
_ Timeve — Tom;v; m;V; Mel,
E _ — 3 ee e 171 . 17 . + ee ;
Ile=o e(miv; + meve) MV + Mele fio MV + Mele Jeo

should have the following LP-L? time-decay property:

1 m+1

_3(1_1y_
IBllze < C(1+1)"2% =22 ||[fio, feol | v
+ Cexp(—\) [V HHBG=Dl 1,0 £l
_3/1_1y_ m+2
<CO+ )7 3GD7|[f0, feolll o
+ Cexp(—)\t)||Vm+2+[3(%7%)br [fio, feolllLr,

where the indices are chosen as in Theorem 4.2. On the other hand, the solution
[tio. 1, E1,B] to (4.12) with special initial data B|;—o = 0 corresponding to (4.49)
must be zero. i.e.,

(4.51)

[y, Byl

’l]a’J_ZO, EJ_:07 B=0.
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Based on LP-LY time-decay property (4.51) of diffusion wave [p, ), E)] with
special initial data (4.50) and Corollary 4.1, we obtain the extra time-decay for

the solution to the linearized problem (3.5) with special initial data (4.50) in the
following

Theorem 4.3. Let 1 < p,r <2< q<o00,l >0, and let m > 1 be an integer.
Suppose that e* Ny is the solution to the Cauchy problem (3.5) with initial data

= [V fas 924,93, 0]|t=0 satisfying (3.7). Then one has the following time-decay
property:

m—+1

IV Praet Nolps < C(1+ 1) 7250757 || No| o + Cexp(—At)|| No|»

+ (1 + )73 [V HESG DI Ny || e+ Cexp(— M) [V B =D [ £ o] e

1_1y_ m+1
GO [fuo, feol -

+C(1+1t) 2

IV Paae™ Nollza < C(1+ 1)~ 3G "3% | Ny | 1o + Cexp(—At) || No||»
+CO(1+ )~ 5| VERGE=Dl Ny | 1 4 Cexp(=A8) ||V BG=D1 [ £0 Foo]| e

I[fios feo)ll Lo+

1 ) m+2

+C(1+1)726G-

1

V™ P3etENol|pe < C(1+1) 2w

| z» 4+ Cexp(—At)[|Uo]| e
+ O+ 1) |V HEBG Dl Ny |+ Cexp(— At)llvm+2+[3(“”]+[fo,feo]llu

+C’(1+t)_5(5_5 B [inafeO]“Lp'

IV Pt Nollpo < C(1+1)" 263

||Lp + CeXp(—At)HN()HLP
+CO(L+1) " ||Vm+[¢+3(*—*)]+NO

for any t > 0, where C = C(m,p,r,q,0), [( +3(+ — 6)]+ is defined in (3.18), and
Pi,, Paon, Ps, Py are the projection operators along the component ps, e, E, B
of the solution et Ny, respectively.

5. Asymptotic behaviour of the nonlinear system

5.1. Global existence

To the end, we assume the integer N > 3. For U = [pq, tq, F, B], we define the full
instant energy functional £ (U(t)) and the high-order instant by

ot ) .
Z Z / pa P |6lpa\2 +ma(pa + 1)|8lua‘2)d$+ E”[E’B]”%\]

|l|<N a=i,e Pa +1
l ! 1 do 41
DD DERCINCL/NETED DD SRR CONSE S )
[[SN—1a=ie l|<N—-1a=ie
—r3 Y. (0'E,V x9'B),
[I<N—2

(5.1)
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and

Palpa +1) !
= X X [ 00 P (DI Phs + IV B
L<[I[<N a=ie Pa '

+ K1 Z Z ma@lua,@lv,oa) + Ko Z Z ma< Ua,—*al >

1<[|[<N—1a=ie 1<|l|[<N—1a=ie

—rs Y (0'E,Vx'B),
1<[I|<N -2
(5.2)
respectively, where 0 < k3 < ko < k1 < 1 are constants to be properly chosen in
the proof of Lemma 5.1 later on. Notice that since all constants ; (i = 1,2,3) are
small enough, one has

En(U()) ~ ”[pa» Ua, B, B} H%\h gJ}\LT(U(t)) ~ ||V[Pa, Ua, B, B]”?Vfl
We further define the corresponding dissipation rates Dy (U(t)), D (U(t)) by

-y / S malpa + DI ual2de + 3 [Vpallds

l|I<N a=i,e a=i,e
+IIVIE, Bl|% 2 + | EII?, (5.3)
and

S / > malpa +1)|0walde + Y [V0all3

1<|l|KN a=i,e a=i,e
+ V2B, Bl}—s + IVE|?, (5.4)

respectively. Then, the global existence of the reformulated Cauchy problem (3.1)-
(3.4) with small smooth initial data can be stated as follows.

Theorem 5.1. There is Ex(-) in the form of (5.1) such that the following holds
true. If Ex(Up) > 0 is small enough, the Cauchy problem (3.1)-(3.4) admits a unique
global solution U = [pa, ua, F, B] satisfying

U € C([0,00); HY(R*)) N Lip([0, 00); HNH(R?)),

and
+ )\/ DN ds < 5N(U0)

for any t > 0.

To prove Theorem 5.1 it suffices to show the following global-in-time a priori
estimate, cf. 23. As its proof is quite similar to that in 8, we would only give a sketch
of the proof for completeness.
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Lemma 5.1 (a priori estimates). Suppose that U = |[pa,ua,E,B] €
C([0,T); HN(R?)) is smooth for T > 0 with

sup U(t)[|v <1,
0<t<T

and that U solves the system (3.1) over 0 <t < T. Then, there is Ex(-) in the form
(5.1) such that

da
dt
forany0<t<T.

En(U() + ADN(U (1) < CEN(U(1))% + En(UM)DN(U()  (55)

Proof. First of all, from (3.1) it is straightforward to obtain the basic energy
estimate involving the dissipation of u, only:

1 d pa pOé+]- 1 2 1 2 1 2
sl 2 > 9'pal? + mapa + 1)[0"ua*)dz + 2. Bl

[l|<N a=ie Pa +1
/ Zmapa+1|alu|dx
|l|<N a=i,e
CUIUN + 1U1R) Y (luall? + 1V [oaual | F—1)-

(5.6)
To obtain the dissipation of p,, it is also standard to deduce from the first two
equations of (3.1) together with V- E =47 )" q¢opa that

2

% D> mal@ua, @ Vpa) + X Y IVpalli—r +47| Y dapa

[l|<N-1a=ie a=i,e a=i,e N1
<C Y ualZ +C | D Mpasuas BlIX | | D IVIoawrwalli—r |- (57)
a=1i,e a=i,e a=i,e

Moreover, the dissipation of F can be derived from the second and third equations
of (3.1) that

! da o 1 2 2
> Y ma(Oua - + LIV B+ AL

[|<KN—1a=ie

<O Y ualF +C Y uallwlIVB]n-2

a=i,e a=i,e

+C [ Y Mpaua BlIZ | | Do IVIpaswalli—y |- (58)

a=i,e a=ti,e
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Finally, as in 6, the evolution equations of E, B in (3.1) yield the dissipation of B
in the way that

d
- > (0'E,V x9'B)+ M| VB|l3_s

l|<N—2

<CIEIR-1 + Y lluali +C | D loaualli | | D IVloas uallli—s

a=i,e a=t,e a=i,e

(5.9)
Therefore, by choosing the proper constants 0 < k3 < ko K k1 < 1 with 53/2 < K3,
the sum of (5.6), (5.7) x &1, (5.8) X K2, (5.9) X k3 implies that there are A > 0,
C' > 0 such that (5.5) holds true with Dy(-) defined in (5.3). Here, we have used
the following Cauchy-Schwarz inequality:

1/2 3/2
260 O uallNIVBIn-2 < 532 3 fluald + 53 2IVBI3 s

a=i,e a=i,e

Due to mi“ < k3, both terms on the r.h.s. of the above inequality were absorbed.
This completes the proof of Theorem 5.1. O

5.2. Asymptotic rate to constant states

Moreover, the solutions obtained in Theorem 5.1 indeed decay in time with some
rates under some extra regularity and integrability conditions on initial data. For
that, given Uy = [pa0, Uao, Fo, Bo], set €, (Uy) as

€m(Uo) = |Uollm + |Uol| L1, (5.10)
for the integer m > 0. Then one has the following

Theorem 5.2. Under the assumptions of Proposition 5.1, if en+6(Up) > 0 is small
enough, then the solution U = [pa,uq, F, B] satisfies

IU(t)|lx < Cenga(Uo)(1+ )77, (5.11)
and
IVU ()|l v-1 < Cenro(Up)(1+1) 75, (5.12)
for any t > 0.

For completeness, we also give the proof of Theorem 5.2.

5.2.1. Time rate for the full instant energy functional

Recall from the proof of Lemma 5.1 that

%SN(U(t)) + Dy (U(t)) <0, (5.13)
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for any t > 0. We now apply the time-weighted energy estimate and iteration to
the Lyapunov inequality (5.13). Let £ > 0. Multiply (5.13) by (1 + ¢)¢ and taking
integration over [0,t] gives

(1+ ) En(U(t)) + A /Otu +5)'Dn (U(s))ds

t
<En(Us) + e/ (14 ) En (U (s))ds.
0
Noticing
En(U(1) < C(Dn+1(U®) + 1B + ll[pi: pe] %)
it follows that

(140" Ex V() +A [ (149 Dy (U(s)ds
<En(Up) + CI / (1+ )11 BI2 + 1o pelll?)ds

el /Ot(l ) D1 (U(s))ds.

Similarly, it holds that

(L+8) TN (U®) + )\/0 (1+ )" '"Dny1(U(s))ds
<En41(Uo) + C (€ — 1)/0 (L+9)2UBIP + oz, pel)ds

o1 / (1+ ) 2Dy an (U(s))ds,
and
ExsaU(1) + A / Dy 42(U(s))ds < En42(T).

Then, for 1 < ¢ < 2, it follows by iterating the above estimates that

(1+ ) En(U() + A / (14 5)'Dy (U(5))ds
.Y (5.14)
<CEx42(U0) +C [ (145 (UBIE + P

On the other hand, to estimate the integral term on the r.h.s. of (5.14), let’s define
ENoo(U(t)) = sup (1+ 8)2EN(U(s)). (5.15)
0<s<t
Lemma 5.2. For anyt > 0, it holds that
_3
IBI + o pelll® < C(1L+ )73 (€2 (U E))

+ llpios peos BollFanze + 10250 ) (5:16)
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Proof. By applying the first linear estimate on p, and the fourth linear estimate
on B and lettingm =0, g=r=2,p=1, { = % in Corollary 4.2 to the mild form
(4.48) respectively, one has

IBOI < C+8)"% ([Uollprnp> + 1 BollLrnr2)

+C/O(1+t—8)’%II[gm(S),gza(S),93(8)]IIL10H2d8, (5.17)

and
_3
[pis pelll < C(A+1)"% (|Uoll L1ngzz + l[pios peolllLinr2)

+C/O (14t = )7 (llg1a(5): 92a(8), g3l gz + 910 () 302) ds. (5.18)

Recall the definition (3.4) of g14, g2 and gs. It is straightforward to verify that for
any 0 < s <t

1[g10(5), 920(5), 93(3)]l| 1z < CEN(U(5)) < (14 5)"2En,o0(U (1)),

lg1a(5) | 1nze < CEN(U(5) < (14 5)"2En00 (U (1))

Here we have used (5.15). Putting the above two inequalities into (5.17) and (5.18)
respectively gives

IBOI < CL+ )75 (0ol prnp= + I Bolliniz + Ene(U (1)),
_3
loe pelll < €A+ )71 ([Uoll 12 + lloios peolllinrz + En oo (U (1)),
which imply (5.16). This completes the proof of Lemma 5.2. D

Now, the rest is to prove the uniform-in-time bound of £y, (U(t)) which yields
the time-decay rates of the Lyapunov functional Ex(U(t)) and thus ||U(¢)[|3. In
fact, by taking £ = 2 + ¢ in (5.14) with € > 0 small enough, one has

L+ )3t En(Ut) + A/t(l +5)2T Dy (U(s))ds
0

<C&n42(Uo) + C/O (L+8)2 (B + lloi(s), pe ()] ds.

Here, using (5.16) and the fact that En,00(U(t)) is non-decreasing in ¢, it further
holds that

/0 L+ )T BIP + [l[pi(s). pe(5)]|?)ds

<C(1+ t)6<512v,oo(U(t)) + lpio; peos Bolllzimze + 1Uoll7: 1 12) -
Therefore, it follows that

(1+ t)%+€£N(V(t)) + )\/Ot(l + s)%+€DN(V(s))ds

<CEN12(Vo) + C(1+ 1) (ER oo (U (1) + llloi0, pev, BollZingz + 100l 52) -
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which implies

(L+D)ZEN U ) <C (Ent2(Uo) + EX oo (U (1) + lllpi0s pe0s BollFzz + [Uol31 1 2)

Thus, one has

Enoo(U(t) < O (ed12(Uo) + X oo (U (1)) -

Here, recall the definition of en12(Up). Since en12(Up) > 0 is sufficiently small,
EN,oo(U(t)) < Ce%,5(Up) holds true for any ¢ > 0, which implies

IU(0)lln < CENU1))? < Censa(Uo)(1+1)71,

for any ¢ > 0. This proves (5.11) in Theorem 5.2.0]

5.2.2. Time rate for the higher-order instant energy functional

Lemma 5.3. Let U = [po, o, E, B] be the solution to the Cauchy problem (3.1)-
(3.2) with initial data Uy = [pao, Uaos Eo, Bo] satisfying (3.3) in the sense of Propo-
sition 5.1. Then if En(Up) is sufficiently small, there are the high-order instant
energy functional E%(-) and the corresponding dissipation rate D% (-) such that

SENUW) + XD UH) <O Y [l (5.19)

a=1i,e

holds for any t > 0.

Proof. The proof can be done by modifying the proof of Theorem 5.1 a little.
In fact, by making the energy estimates on the only high-order derivatives, then
corresponding to (5.6), (5.7), (5.8) and (5.9), it can be re-verified that

1d pa pa+1) 1
il X X [ 0 bt + DI Pads + - IVIE B
1<|I|<N a=i,e

+ 3 [ Y malpn+ D0 uaPde < CULY + 101D 3 19 lpuallfe

1<[l|<KN a=t,e a=i,e

2

% S0 M0, 8'Vpa) + A D IV palX—2 47 || Y 4aVpa

1<[l|[<N—1a=i,e a=i,e a=i,e N—2

<C Y Vuali—s +CIUIN | D I1VIpas uallli—y | -

a=t,e a=i,e
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d da 1
- 2. DM <alua, —TalE> + VY Elf + AIVE(R -

1<|I|<N—1a=ie

<C Y IVualy_s +C Y IVuallv-1V2Blv—s + CIUI% | D IV[pas ualllR—s

a=i,e a=i,e a=1i,e
and

d
- > (0'E,Vx0'B)+ A|V’B|}_3
llI<N-2

<CIVZElR—s + > IVualZ—s + CIUIR [ D IVIpas uallF—1 | -

a=i,e a=i,e

Here, the details of proof are omitted for simplicity. Now, similar to (5.1), let us
define % (U(t)) by (5.2). Then, as before, one can choose 0 < k3 < ky < K1 <
1 with 53/2 < kg such that EX(U(t)) ~ ||[VU(t)||%_,. Furthermore, the linear
combination of previously obtained four estimates with coefficients corresponding
to (5.2) yields (5.19) with D% () defined in (5.4). This completes the proof of Lemma
5.3. O

By comparing (5.4) with (5.2) for the definitions of E& (U(t)) and D (U(2)), it
follows from (5.19) that

4

ZENU®) + AR (UW) < C | [IVBI* + VY [E, B]|* + > IVeal? ],

which implies
EX(U()) < exp(=M)EN (Uo)

t 5.20
e / exp{AE— )} [ IVBEIE + IV B+ Y [Vpa()? | T

a=i,e
To estimate the time integral term on the r.h.s. of the above inequality, one has

Lemma 5.4. Under the assumptions of Theorem 5.1, if ex6(Uy) defined in (5.10)
18 sufficiently small then

IVBOI + IV¥E@, BOIP+ Y IVpal®)? < CéberslU0)(1+ )% 5.9

holds for any t > 0.

For this time, suppose that the above lemma is true. Then by applying (5.21)
to (5.20), it is immediate to obtain

ER(U()) < exp{—AMYER (Up) + Cer6(Uo) (1 + )75,
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which proves (5.12) in Theorem 5.2.

Proof of Lemma 5.4: Suppose that en;6(Ug) > 0 is sufficiently small. Notice that,
by the first part of Theorem 5.2,

[U@x+a < Cenro(Ua)(1+) 2. (5.22)
Similar to obtaining (5.17), one can apply the linear estimate on p,, B and letting

m=1qg=r=2,p=1,¢= 3 in Corollary 4.2 to the mild form (4.48) respectively,

5
and the linear estimate on F, B and letting m =N, g=r=2, p=1, { = 5 SO

that
IVpa()ll SCA + )| Usll pargga + exp{=At}|V[pio, peol| (5.23)
t
+ c/ (L4+t—35)7"[91a(5), 92a(5), 93(8)]|| L1 fyads
0
t
+ C/ exp{—A(t — $)}[|V[91i(5), g1 (s)]|ds,
0
IVB(®)|| < C(1+8) 3| Uol 14 + Cexp{—At}|VBo]
t . (5.24)
4 c/ (1+t—5)"1l[g1a(5), 920(5), 93(5)]ll L1 72 s,
0
and

IVYE®)]| <C(L+8) 73 [Uoll panrvss + ep{=XHIVN* [pio, peo, Bol|

+C/O (14t =) [[g910(5), g20(5), 93(5)]l| 11 v s ds (5.25)
+ C/O exp{=A(t = )}V g1:(5), g1e ()]l ds,

IVNB)|| <C(L+) "3 Vol pajgwss + exp{=XeH|VV Bo|
¢ . (5.26)
+ C/ (1 +t- S)iz ”[gloc(s)a92(1(8)’93(3)}‘|L10HN+3d3-
0

Recalling the definition (3.4), it is straightforward to verify
g1a(5), 92a(5), 93()] | Lrrpra < CIU D)2,
g10(5), 92a(5), 93() parprves < CUU )13 1as

IVig1i(s), gre () < CNUMDIZ, 1V g1a(s), g1e ()]l < CIU B |3 12-
The above estimates together with (5.22) give

Il910(5); 920 (), 93 ()]l L1 pra + 910(8), 920(8), 93(8)]l| L1 prvrs
HV[91:(5), 1 ON+IV¥ [g1:(5), g1 < CIU@) 44 < Cergs(Uo)(145) 2.



April 8, 2015 9:21 WSPC/INSTRUCTION FILE ws-m3as

52 R. Duan, Q. Liu, C. Zhu

Then it follows from (5.23), (5.24), (5.26) and (5.25) that

IVB@I+ IVNE®, B+ D IVpa(®)l* < Censo(Uo)(1+1)71,

a=i,e

where the smallness of €y 6(Up) has been used. The proof of Lemma 5.4 is complete.

5.2.3. Time rate in L>
Recall that Theorem 5.1 shows that for N > 3, if ey 42(Up) is sufficiently small then

U@y < Censa(Uo)(1 +1)7 5, (5.27)
and if ey y6(Up) is sufficiently small then
IVU@)lln-1 < Censs(Uo)(1+6)7E.
Now, we write down the L? time-decay rates of [pq, B] and [u,, E] as follows.

Estimate on ||[pa, B]||L2. It is easy to see from (5.27) that

IBOI+ 3 llpall < Ces(Uo) (1 +1) 1. (5.28)

i=1,€e

Estimate on |[[uq, E]||r2. Applying the second and the third linear estimate on
[to, E] with m =0, ¢g=r=2, p=1, £ =5/2 in Corollary 4.2 to the mild form
(4.48), one has

I[wa, EJOI < O+ )71Vl 11z + exp{=At}|V[pio, peo, Boll

+C/O 1+t — )" F][g1a(5), 920 (5), 93()]l| 11 gyeds

t
e / exp{-A(t — )} V[g1i(s), g1 (s)]]lds.
0
By (5.27), it follows that

IV1g1i(s), gre()]ll +lg1a(5), 92a(5), 93()l| Lrprs < CIU@IG < Ce(Uo)(1+4)7 2.

Therefore, one has

l[ta, E] ()] < Ces(Up)(1 + t)*%. (5.29)

5.3. Asymptotic rate to diffusion waves

In this section we shall prove the main Theorem 1.2 on the large-time asymptotic
behavior of the obtained solutions.

First of all, we prove in the following lemma that the solution U(z,t) =
[pas Ua, E, B] to the nonlinear Cauchy problem (3.1)-(3.3) can be approximated
by the one of the corresponding linearized problem (3.5)-(3.7) in large time.
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Lemma 5.5. Suppose that e11(Uy) > 0 is sufficiently small, and U(z,t) =
[Py Ua, E, B] is a solution to the Cauchy problem (3.1)-(3.3) with initial data Uy.
Then it holds that

[pa(t) = Prae™Ts|| < C(1+1)7F, (5.30)

[t (t) = PonetLUpl| < C(1 +1)71, (5.31)

|E(t) — PsetTUp|| < C(1 + )77, (5.32)

| B(t) — Pae'" U] <C+1)74, (5.33)
for anyt > 0.

Proof. We rewrite each component of solutions U(x,t) = [pa, ta, E, B] to (3.1) as
the mild forms by the Duhamel’s principle:

t
pa(xvt) = PlaetLUO + / Plae(tis)L[v ! fa(s)ag2a(3)a93(s)v O}d& (534)
0

t
ua(xv t) = P2aetLU0 + / P2ae(t_S)L[v : fa(8)7 gQa(S)Lg?)(s)a O]dS, (535)
0

for a =i, e, and

t
E({E,t) = P3€tLUO + / P36(tis)L[v : fa(s)’gml(s)vgfi(s)a O]dS,
0

t
B(x,t) = Pl U, +/ P4e(t_5)L[V - fa(8), g2a(8), g3(s),0]ds.
0

Denote N(s) = [V - fa(s), g24(5), g3(s),0] as in Section 4.4. In what follows we only
prove (5.30) and (5.31), and the other two estimates (5.32) and (5.33) can be proved
in a similar way. One can apply the linear estimate on P1,et” Ny to the mild form
(5.34) by lettingm =0, g=r=2, p=1, £ =15/2 in Theorem 4.3, so as to obtain

t
[a0) = Prac™ Vi < [ [Pract 17 £u(s). gaa(s) 25). 0] s
0

t
< C/O (It=5)"3 (IN(S)l pamgs + ILfis fel ()l Lr)+exp{A(t = $)HIVfi, fe] (s)l|ds.
(5.36)
Recalling the definition (3.4), it is straightforward to verify
IN) | pings + Ifir £ (9o < CU)F < CGUo)(1+5)72,
and
IV 1, £l()]l < CNUs)IIF < Ce§(Un)(1+ )72

Plugging these estimates into (5.36), it follows that

[pa(t) — Prae™Us| < C(1+ 1)~ 1.



April 8, 2015 9:21 WSPC/INSTRUCTION FILE ws-m3as

54 R. Duan, Q. Liu, C. Zhu

Applying the linear estimate on Py,e!“ Ny to the mild form (5.35) by letting m =
0, g=r=2, p=1, £="7/2 in Theorem 4.3 gives

o) = Paae 0] < [ [Paae =T - ), 2005, (60, 0] s

<C/ (1+t=5) "5 (IN()l 1 aggs + | [fis F) ()]0 )+exp{A(t — ) HIV(fi, fel(5)|ds.
(5.37)

As before, recall the definition (3.4) and the time-decay rates (5.28) and (5.29). We
first estimate L' norms of those terms without any derivative as

lta x Bllzr < lluall| Bll < Ceg(Uo)(1+5)"4(1+5)7% < Ceg(Uo)(1 + )%,
lpatiallzr < lualllpall < Ceg(Uo) (1 +5)~F (1 +5)"% < Ceg(Uo)(1 +5) 7,
fal)zr < ltallloall < CeR(U)(1+ )" (1 +5)7F < C(Uo)(1+ )2
For other terms with one derivative, for p,V - u,, one has
1paV - tallzr < [ Vualllloall < Ceo(To)(1+5) " Fes(Uo)(1 +5) "% < Cej(Uo)(1+ )%,
and similarly it follows that
[ua - Voallor + [lua - Vualr +[lpaVealr < Ceg(Uo)(1 + )72
For L? norms, by calculating for |I| = 4,
10" (ua x B)|| <[[uallze 10"Bl + Bl 1~ [0"uall < CIVUI3 < €5(Uo)(1 + )",
and
18" (ta-Vpa)ll < tallze< 0"V pall+Voal L= 18" uall < CVU|F < €1 (Uo)(145) 2,
it is direct to verify that
5
IN () s + IV2[fir fl(3)]| < CIVU(8) 17 < Cedy(Uo)(1 + )73,
Plugging the above inequalities into (5.37) gives
[ta(t) — PaaeXUp|| < C(1 + )%,
This then completes the proof of Lemma 5.5. O
For the solution U(z,t) = [pa, Ua, E, B] to the Cauchy problem (3.1)-(3.3) and

the desired large-time asymptotic profile U(z,t) = [p, U, E, B], their difference can
be rewritten as

U-U= (U —e'TUy) + (e'FUy — T),
that is,

Po— P = (pa — PlaetLUo) + (PmetLUg — ﬁ) ,
U — To = (Ua — Paae™Up) + (P2ac Uy —1a),
E—E = (E—P3e'"Up) + (P3e'"Uy — E),
B—B = (B—Pye'"Uy) + (Pse'"Uy — B) .



April 8, 2015 9:21 WSPC/INSTRUCTION FILE ws-m3as

Two fluid Euler-Mazwell system 55

Therefore Theorem 1.2 follows from Lemma 5.5, Theorem 4.1 and Theorem 4.2. [J
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