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Abstract. In the paper we are concerned with the large time behavior of solutions to the one-
dimensional Navier-Stokes-Poisson system in the case when the potential function of the self-consistent

electric field may take distinct constant states at x = ±∞. Precisely, it is shown that if initial data

are close to a constant state with asymptotic values at far fields chosen such that the Riemann prob-
lem on the corresponding quasineutral Euler system admits a rarefaction wave whose strength is not

necessarily small, then the solution exists for all time and tends to the rarefaction wave as t→ +∞.

The construction of the nontrivial large-time profile of the potential basing on the quasineutral as-
sumption plays a key role in the stability analysis. The proof is based on the energy method by

taking into account the effect of the self-consistent electric field on the viscous compressible fluid.
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1. Introduction

The two-fluid Navier-Stokes-Poisson (denoted as NSP in the sequel) system is often used to describe
the transport of charged particles under the influence of the self-consistent electrostatic potential force
arising from the study of the collisional dusty plasma, cf. [12, 27]. In one-dimensional space, it takes
the form of 

∂tni + ∂x(niui) = 0,

mini(∂tui + ui∂xui) + Ti∂xni − ni∂xφ = µi∂
2
xui,

∂tne + ∂x(neue) = 0,

mene(∂tue + ue∂xue) + Te∂xne + ne∂xφ = µe∂
2
xue,

∂2xφ = ni − ne, t > 0, x ∈ R.

(1.1)

Initial data are given by

[nα, uα](0, x) = [nα0(x), uα0(x)], α = i, e, x ∈ R, (1.2)

with

lim
x→±∞

[nα0, uα0](x) = [n±, u±], α = i, e. (1.3)
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The boundary values of φ at infinity are set by

lim
x→±∞

φ(t, x) = φ±, t ≥ 0. (1.4)

Here, nα = nα(t, x) > 0 and uα = uα(t, x) are the density and velocity of ions (α = i) and electrons
(α = e), respectively, and φ = φ(t, x) is the self-consistent potential. The positive constants mα > 0,
Tα > 0 and µα > 0 denote respectively the mass, the absolute temperature and the viscosity coefficient
of α-fluid. Constant states [n±, u±, φ±] at infinity can be distinct. Particularly, we allow for the
appearance of nonzero difference of potentials at x = ±∞, i.e. φ+ − φ− 6= 0.

It is interesting to study the large-time behavior of solutions to the Cauchy problem on the complex
NSP system (1.1), (1.2), (1.3), (1.4) in the case when [n−, u−, φ−] 6= [n+, u+, φ+]. In the paper we are
concerned with the time-asymptotic stability of the rarefaction wave (cf. [5, 37]) constructed by the
corresponding quasineutral Euler system

∂tn+ ∂x(nu) = 0,

n(∂tu+ u∂xu) +
Ti + Te
mi +me

∂xn = 0,
(1.5)

with the potential function φ in large time determined by

φ =
Time − Temi

mi +me
lnn. (1.6)

System (1.5) can be formally obtained from (1.1) by letting ni = ne = n, ui = ue = u, taking the sum
of two momentum equations and neglecting viscosity terms, and the relationship (1.6) can be deduced
by further taking the difference of two momentum equations, neglecting viscosity terms, and using the
quasineutral momentum equation in (1.5). Therefore, we need to postulate the following compatibility
condition on data [n±, φ±] at infinity

φ± =
Time − Temi

mi +me
lnn±. (1.7)

Notice from (1.7) that if Ti/mi 6= Te/me then the distinct n± can yield the distinct φ±. Precisely, we
expect to show

nα(t, x)→ nR(x/t), uα(t, x)→ uR(x/t), α = i, e,

and

φ(t, x)→ φR(x/t) :=
Time − Temi

mi +me
lnnR(x/t),

uniformly for x ∈ R as t goes to infinity, provided that initial data [nα0(x), uα0(x)] approach [n±, u±]
as x → ±∞ in a suitably close way, where [nR(x/t), uR(x/t)] is the rarefaction-wave solution to the
corresponding Riemann problem on the quasineutral Euler system (1.5).

In fact, there have been a huge number of papers in the literature to study of the stability of wave
patterns, namely, shock wave, rarefaction wave, contact discontinuity and their compositions, in the
context of gas dynamical equations and related kinetic equations. Among them, we only mention
[13, 21, 22, 30, 31, 34, 36, 41] and reference therein. Moreover, we would also point out some previous
works only related to the current work concerning the stability of rarefaction waves. The problem was
firstly studied by Matsumura-Nishihara [34, 35] for the one-dimensional compressible Navier-Stokes
equations in the isentropic case. It was later extent by Liu-Xin [29] to the heat-conductive case. Since
then, there have been extensive studies in connection with considerations of different aspects, such
as appearance of boundaries [26, 33], dependence of viscosity on density [24], other kinds of relative
models [25, 30], and so on.

Another interesting model is the Navier-Stokes system coupled with the Poisson equation through
the self-consistent force arising either from modelings of self-gravitational viscous gaseous stars (cf. [2])
or from the simulation of the motion of charged particles in semiconductor devices (cf. [32]). The
coupling system at the fluid level can be also justified by taking the hydrodynamical limit of the
Vlasov-type Boltzmann equation by the Chapman-Enskog expansion, cf. [3, 14, 15, 17]. In recent
years, the study of the NSP system has attracted a lot of attentions from many people. In what
follows we would also mention some of them related to our interest. In the case when the background
profile is vacuum, the existence of nontrivial stationary solutions with compact support and their
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dynamical stability related to a free-boundary value problem for the three-dimensional NSP system
were discussed in Ducomet [8]. Global existence of weak solutions to the Cauchy problem with large
initial data was proved by Donatelli [6] and the quasineutral limit in such framework was studied in
Donatelli-Marcati [7] by using some dispersive estimates of Strichartz type. We remark that some
nonexistence result of global weak solutions was also very recently obtained in Chae [1]. Large-time
behavior of the spherically symmetric NSP system with degenerate viscosity coefficients and with
vacuum in three dimensions was obtained in Zhang-Fang [40]. The linear and nonlinear dynamical
instability for the Lane-Emden solutions in the framework of the NSP system in three dimensions was
investigated in Jang-Tice [23] under some condition on the adiabatic exponent. Tan-Yang-Zhao-Zou
[38] established the global strong solution to the one-dimensional non-isentropic NSP system with large
data for density-dependent viscosity. In the case when the background profile is strictly positive, the
global existence and convergence rates for the three-dimensional NSP system around a non-vacuum
constant state were studied by Li-Matsumura-Zhang [28] through the construction of Green’s functions.
Interested readers may refer to the survey paper Hsiao-Li [20] and reference therein for the perturbation
theory related to the NSP system; see also [9] for the study of the more complicated Navier-Stokes-
Maxwell system.

However, to the best of our knowledge, even though there are many studies on the NSP system
mentioned above, so far there are few mathematical results to clarify the nonlinear stability of wave
patterns. One of the main mathematical difficulties comes from the effect of the self-consistent force on
the viscous compressible fluid, since the force generally may not be expected to be L2 integrable in space
and time, cf. [28]. Recently, Duan-Yang [10] proved the stability of rarefaction wave and boundary
layer for outflow problem on the two-fluid NSP equations. The convergence rate of corresponding
solutions toward the stationary solution was obtained in Zhou-Li [42]. We point out that due to the
techniques of the proof, it was assumed in [10] that all physical parameters in the model must be unit,
particularly mi = me and Ti = Te, which is obviously unrealistic since ions and electrons generally
have different masses and temperatures. One key point used in [10] is that the large-time behavior
of the electric potential is trivial and hence the two fluids indeed have the same asymptotic profiles
which are constructed from the Navier-Stokes equations without any force instead of the quasineutral
system that we will make use of in the paper.

Motivated by [11, 16] for the study of the inviscid Euler-Poisson equations, we will be firstly con-
cerned with the motion of the one viscous fluid of ions under the Boltzmann relation. It will be seen
from Theorem 2.1 that the rarefaction wave of the quasineutral Euler system is stable under small
perturbation, and particularly, the potential φ(t, x) has the nontrivial large-time behavior. Compared
to the classical Navier-Stokes system without any force, the main difficulty in the proof for the NSP
system is to treat the estimates on those terms related to the potential function φ as mentioned above.
Since the large-time behavior of φ has a slow time-decay rate and the strength of rarefaction waves
is not necessarily small, it is quite nontrivial to estimate the coupling term −n∂xφ. The key point to
overcome the difficulty is to use the good dissipative property from the Poisson equation by expand-
ing e−φ around the asymptotic profile up to the third-order. In the two-fluid case, the situation is
more complicated since the dissipation of the system becomes much weaker than that in the case of
one-fluid ions. We find that the trouble term turns out to be controlled by taking the difference of
two momentum equations with different weights so as to balance the different masses mα (α = i, e) of
fluids. Finally we point out that it could be expected to use the developed techniques in this paper to
pursuit the proof of the stability of smooth traveling waves.

The rest of the paper is organized as follows. In Section 2, we present the nonlinear stability of
rarefaction waves for the NSP system in the relatively simple case when only the ions flow is taken into
account under the Boltzmann relation. Precisely, we first construct a smooth approximation of the
rarefaction wave, reformulate the equations around the smooth asymptotic profile, and then show the
global a priori estimates on the solutions so as to obtain the main result. The stability of rarefaction
waves for the more physical two-fluid model (1.1) is dealt with in a similar way in Section 3. The
symmetric structure in the two-fluid case plays a key in the proof. For convenience of readers, the
linear dissipative structure of the system for the model considered in Section 2 is also analyzed in the
appendix in order to understand the energy estimate around the nontrivial profile.
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Notations. Throughout this paper, C denotes some generic positive (generally large) constant and
λ denotes some generic positive (generally small) constant, where both C and λ may take different
values in different places. D . E means that there is a generic constant C > 0 such that D ≤ CE.
D ∼ E means D . E and E . D. ‖ · ‖Lp (1 ≤ p ≤ +∞) stands for the Lpx−norm. Sometimes, for
convenience, we use ‖ · ‖ to denote L2

x−norm, and use (·, ·) to denote the inner product in L2
x. We also

use Hk (k ≥ 0) to denote the usual Sobolev space with respect to x variable.

2. One-fluid case

In this section we study the stability of rarefaction waves for the NSP system in the case of single
ions flow under the Boltzmann relation. The main motivation for taking into account the ions flow
first is that the structure of the coupling system is relatively simpler than that in the two-fluid case
given in (1.1) so that the analysis for the stability of rarefaction waves in the one-fluid case can shed
light on the one in the more complex two-fluid case. Of course, the model for the single viscous flow
for ions also has its own interest, particularly in the study of smooth traveling waves, cf. [11, 27].

After a suitable normalization, the simplified system in the case of single ions flow reads
∂tn+ ∂x(nu) = 0,

n(∂tu+ u∂xu) +A∂xn− n∂xφ = ∂2xu,

∂2xφ = n− e−φ, t > 0, x ∈ R,

(2.1)

with

lim
x→±∞

φ(t, x) = φ±, t ≥ 0. (2.2)

Initial data are given by  [n, u](0, x) = [n0, u0](x), x ∈ R,

lim
x→±∞

[n0, u0](x) = [n±, u±].
(2.3)

Here n = n(t, x) > 0, and u = u(t, x) are the density and velocity of ions, and φ = φ(t, x) is the
potential of the self-consistent electric field. The positive constant A > 0 is the absolute temperature
of ions. Note from the Poisson equation in (2.1) that the Boltzmann relation ne = e−φ has been
assumed, which is physically due to the fact that lighter electrons get close to the equilibrium state in
much faster rate than heavier ions in plasma, cf. [4, 18]. We remark that ne = e−φ can be formally
derived from the fourth equation of the two-fluid model (1.1) by letting me = 0 = µe and Te = 1.
Throughout this section, we also assume that the quasineutral condition

n± = e−φ± (2.4)

at x = ±∞ holds true. Notice that n± and hence φ± can be distinct.

2.1. Approximate rarefaction waves. In general, whenever φ is a nontrivial potential in large time
and its second-order derivative ∂2xφ decays in time faster than other low-order terms, one may expect
that the NSP system (2.1) tends to the following quasineutral Euler equation:

∂tn+ ∂x(n u) = 0,

n(∂tu+ ∂xu) +A∂xn− n∂xφ = 0,

φ = − lnn.

(2.5)

Specifically, the large time behavior of solutions to the Cauchy problem (2.1), (2.2), (2.3) and (2.4)
of the NSP system is expected to be determined by the Riemann problem for the above quasineutral
Euler equation with initial data

[n, u](0, x) = [n0, u0](x) =

{
[n−, u−], x > 0,

[n+, u+], x < 0,

φ(0, x) = φ0 = − lnn0.
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It is easy to see (cf. [5, 37]) that (2.5) have two characteristics

λ1 = u− c, λ2 = u+ c, with c =
√
A+ 1, (2.6)

which are genuinely nonlinear and can give rise to the rarefaction waves:

R1(n−, u−) ≡
{

[n, u] ∈ R+ × R
∣∣∣ u+ c lnn = u− + c lnn−, n < n−, u > u−

}
,

or

R2(n−, u−) ≡
{

[n, u] ∈ R+ × R
∣∣∣ u− c lnn = u− − c lnn−, n > n−, u > u−

}
. (2.7)

In what follows we construct a smooth approximation of the rarefaction waves corresponding to
the solution to the Riemann problem (2.5) on the quasineutral Euler system. As in [34], consider the
Riemann problem on the Burgers’ equation

wt + wwx = 0,

w(x, 0) = w0 =

{
w−, x < 0,

w+, x > 0,

(2.8)

for w− < w+. It is well-known that (2.8) admits a continuous weak solution wR(x/t) connecting w−
and w+, taking the form of

wR(x/t) =


w− , x ≤ w−t,
x

t
, w−t < x < w+t,

w+ , w+t ≤ x.
Let [nR, uR](x/t) be defined as

wR(x/t) = uR + c, uR − c lnnR = u− − c lnn−, (2.9)

with w− = u−+ c and w+ = u+ + c. Then by a direct calculation, [nR, uR](x/t) satisfies the following
Riemann problem on the Euler equations

∂tn+ ∂x(n u) = 0,

n∂t(u+ ∂xu) + c2∂xn = 0,

[n, u](x, 0) = [n0, u0] =

{
[n−, u−] , x < 0,

[n+, u+] , x > 0.

In fact, the smooth Euler i-th (i = 1, 2) rarefaction waves can be constructed along any given Ri curve
when the i-th characteristic satisfies the inviscid Burgers equation

∂tλi + λi∂xλi = 0,

with increasing data. Here we refer to the construction introduced in [34] for initial data whose spatial
derivative is proportional to the parameter ε > 0, i.e., wR(x/t) is approximated by a smooth function
w(x, t) satisfying 

∂tw + w∂xw = 0,

w(0, x) = w0(x) =
1

2
(w+ + w−) +

1

2
(w+ − w−) tanh(εx).

(2.10)

Then one has

Lemma 2.1. Let δ = w+ −w− > 0 be the wave strength of the 2-rarefaction wave. Then the problem
(2.10) has a unique smooth solution w(t, x) which satisfies the following properties:
(i) w− < w(t, x) < w+, ∂xw > 0 for x ∈ R and t ≥ 0.
(ii) For any 1 ≤ p ≤ +∞, there exists a constant Cp such that for t > 0,

‖∂xw‖Lp ≤ Cp min{δε1−1/p, δ1/pt−1+1/p},
‖∂2xw‖Lp ≤ Cp min{δε2−1/p, ε1−1/pt−1},
‖∂3xw‖Lp ≤ Cp min{δε3−1/p, ε2−1/pt−1}.
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(iii) lim
t→+∞

sup
x∈R

∣∣w(t, x)− wR(x/t)
∣∣ = 0.

We now define the approximate solution of [nR, uR] constructed by (2.9) and (2.10) as [nr, ur] =
[nr, ur](t, x) in terms of {

w(t+ 1, x) = ur(t, x) + c,

ur(t, x)− c lnnr(t, x) = u− − c lnn−,

together with w− = u− + c and w+ = u+ + c. We also point out that [nr, ur] satisfies

∂tn+ ∂x(n u) = 0,

n∂t(u+ ∂xu) +A∂xn− n∂xφ = 0,

φ = − lnn,

[n, u](0,±∞) = [n±, u±].

(2.11)

With Lemma 2.1 in hand, one has the following result concerning [nr, ur].

Lemma 2.2. The approximate smooth solution [nr, ur] given by (2.9) and (2.10) satisfies the following
properties:
(i) ∂xn

r > 0, ∂xu
r > 0 and n− < nr(t, x) < n+, u− < ur(t, x) < u+ for x ∈ R and t ≥ 0.

(ii) For any 1 ≤ p ≤ +∞, there exists a constant Cp such that for all t > 0,

‖∂x[nr, ur]‖Lp ≤ Cp min{δrε1−1/p, δ1/pr t−1+1/p},
‖∂2x[nr, ur]‖Lp ≤ Cp min{δrε2−1/p, ε1−1/pt−1},
‖∂3x[nr, ur]‖Lp ≤ Cp min{δrε3−1/p, ε2−1/pt−1},

where δr = |n+ − n−|+ |u+ − u−|.
(iii) lim

t→+∞
sup
x∈R

∣∣[nr, ur](t, x)− [nR, uR](t, x)
∣∣ = 0.

2.2. Stability of the rarefaction wave. In this subsection, we study the stability of the approximate
rarefaction wave [nr, ur] for the Cauchy problem (2.1), (2.2), (2.3) and (2.4). For this purpose, let us
define the perturbation

[ñ, ũ, φ̃](t, x) = [n− nr, u− ur, φ− φr](t, x),

where φr = − lnnr. Then [ñ, ũ, φ̃] satisfies

∂tñ+ ∂x(nu)− ∂x(nrur) = 0, (2.12)

∂tũ+ u∂xu− ur∂xur +A

(
∂xn

n
− ∂xn

r

nr

)
− ∂xφ̃ =

∂2xu

n
, (2.13)

∂2xφ̃ = ñ+ nr
(

1− e−φ̃
)
− ∂2xφr. (2.14)

Initial data for [ñ, ũ] are given by

[ñ, ũ](0, x) = [ñ0, ũ0](x) = [n0(x)− nr(0, x), u0(x)− ur(0, x)]. (2.15)

Here it has been assumed that for any given t ≥ 0, φ̃(t, x) is determined in terms of the elliptic equation

(2.14) under the boundary condition that φ̃(t, x) tends to zero as x goes to ±∞.

Theorem 2.1. Let [n+, u+] ∈ R2(n−, u−), where R2(n−, u−) is given in (2.7) with n− > 0 and
c =
√
A+ 1. Assume φ± = − lnn±. There are constants ε0 > 0, 0 < σ < 1, and C0 > 0 such that if

‖[ñ0, ũ0]‖2H1 + ε ≤ ε20,
where ε > 0 is the parameter appearing in (2.10), then the Cauchy problem of the NSP system (2.12),

(2.13), (2.14) and (2.15) admits a unique global solution [ñ, ũ, φ̃](t, x) satisfying

sup
t≥0

∥∥∥[ñ, ũ, φ̃] (t)
∥∥∥2
H1

+

∫ +∞

0

∥∥∥√∂xur [ũ, ∂xñ, ∂xũ] (t)
∥∥∥2 dt

+

∫ +∞

0

∥∥∥[∂xñ, ∂xũ, ∂xφ̃, ∂2xφ̃, ∂2xũ] (t)
∥∥∥2 dt ≤ C0ε

2σ
1+σ

0 . (2.16)
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Moreover, the solution to the original Cauchy problem (2.1), (2.2), (2.3) tends time-asymptotically to
the rarefaction in the sense that

lim
t→+∞

sup
x∈R

∣∣∣[n(t, x)− nR
(x
t

)
, u(t, x)− uR

(x
t

)
, φ(t, x) + lnnR

(x
t

)]∣∣∣ = 0. (2.17)

The local existence of the solution [ñ, ũ, φ̃] of the NSP system (2.12), (2.13), (2.14) and (2.15) can
be proved by the standard iteration method and its proof is omitted for brevity. As to the proof of
Theorem 2.1, it suffices to show the following a priori estimate.

Proposition 2.1. Assume that all the conditions in Theorem 2.1 hold. There are constants ε0 > 0,

0 < σ < 1, and C0 > 0 such that if the smooth solution [ñ, ũ, φ̃] to the Cauchy problem (2.12), (2.13),
(2.14) and (2.15) on 0 ≤ t ≤ T for T > 0 satisfies

sup
0≤t≤T

∥∥∥[ñ, ũ, φ̃] (t)
∥∥∥2
H1

+ ε ≤ ε20, (2.18)

then it holds that

sup
0≤t≤T

∥∥∥[ñ, ũ, φ̃] (t)
∥∥∥2
H1

+

∫ T

0

∥∥∥√∂xur [ũ, ∂xñ, ∂xũ] (t)
∥∥∥2 dt

+

∫ T

0

∥∥∥[∂xñ, ∂xũ, ∂xφ̃, ∂2xφ̃, ∂2xũ] (t)
∥∥∥2 dt ≤ C0

(
‖[ñ, ũ](0)‖2H1 + ε

σ
1+σ

)
. (2.19)

We remark that the strength of the rarefaction wave |n+−n−|+ |u+− u−| is not necessarily small,
and the similar result could hold for the non-isothermal case, for instance, for a general pressure
function depending on the density. The proof of Proposition 2.1 is based on the techniques developed
in [35] for the classical Navier-Stokes equations. We here have to additionally take into account the
effect of the self-consistent force on the system. The most technical part in the proof occurs to the

estimate on the inner product (−∂xφ̃, nũ) for which one has to make use of the Poisson equation by

expending e−φ̃ up to the third-order and obtain cancelations by seeking the hidden relation among the
lower order terms.

2.3. A priori estimate.

Proof of Proposition 2.1. We divide it by three steps as follows.

Step 1. Zero-order energy estimates.
Set

ψ(n, nr) = A

∫ n

nr

s− nr

s2
ds. (2.20)

Note that ψ(n, nr) is equivalent to |n− nr|2 for |n− nr| ≤ C.
Multiplying the first equation of (2.1) and (2.13) by ψ(n, nr) and nũ respectively, integrating the

resulting equations with respect to x over R and taking the summation, one obtains

1

2

d

dt
(ũ, nũ) +

d

dt
(n, ψ)−1

2
(ũ2, nt) + (u∂xu− ur∂xur, nũ)︸ ︷︷ ︸

I1

−(∂xφ̃, nũ) = (∂2xũ, ũ) + (∂2xu
r, ũ), (2.21)

where we have used the identity

−(n, ∂tψ) + (∂x(nu), ψ) +A

(
∂xn

n
− ∂xn

r

nr
, nũ

)
= 0,

which can be justified by replacing ψ(n, nr) by (2.20) and using equations of ∂tn and ∂tn
r as well as

integration by part.
The left-hand terms of (2.21) are estimated as follows. For I1, from the first equation of (2.1), it

holds that

I1 =
1

2
(ũ2, ∂x(nũ)) +

1

2
(ũ2, ∂x(nur)) + (ũ∂xũ+ ur∂xũ+ ũ∂xu

r, nũ) = (ũ2, n∂xu
r), (2.22)
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which is a good term due to n > 0 and ∂xu
r > 0. We now turn to estimate the fourth term on the left

hand side of (2.21). In light of (2.12) and (2.14) and by integration by parts, we have

−(∂xφ̃, nũ) =
(
φ̃,−∂t∂2xφ̃+ ∂t

[
nr
(

1− e−φ̃
)]
− ∂t∂2xφr − ∂x(ñur)

)
. (2.23)

Next we compute the right hand side of (2.23) term by term. It is obvious to see that

(φ̃,−∂t∂2xφ̃) =
1

2

d

dt
(∂xφ̃, ∂xφ̃). (2.24)

For the second term on the right hand side of (2.23), we first get from the Taylor’s formula with an
integral remainder that

1− e−φ̃ = φ̃− 1

2
φ̃2 +

∫ −φ̃
0

(φ̃+ %)2

2
e−%d%︸ ︷︷ ︸

I2

. (2.25)

Then it follows that(
φ̃, ∂t

[
nr
(

1− e−φ̃
)])

=
(
φ̃, ∂t(n

rφ̃)
)
− 1

2

(
φ̃, ∂t(n

rφ̃2)
)

+
(
φ̃, ∂t(n

rI2)
)
.

Since [nr, ur] satisfies (2.11), one has(
φ̃, ∂t(n

rφ̃)
)

=
1

2

d

dt

(
φ̃2, nr

)
+

1

2

(
φ̃2, ∂tn

r
)

=
1

2

d

dt

(
φ̃2, nr

)
−1

2

(
φ̃2, ∂x(nrur)

)
︸ ︷︷ ︸

I3

, (2.26)

−1

2

(
φ̃, ∂t(n

rφ̃2)
)

= −1

3

d

dt

(
φ̃3, nr

)
− 1

6

(
φ̃3, ∂tn

r
)

= −1

3

d

dt

(
φ̃3, nr

)
+

1

6

(
φ̃3, ∂x(nrur)

)
︸ ︷︷ ︸

I4

,

and (
φ̃, ∂t(n

rI2)
)

= −
(
φ̃, ∂x(nrur)I2

)
+
(
φ̃, nr∂tI2

)
︸ ︷︷ ︸

I5

.

We remark that I3 and I4 can not be directly controlled for the time being and they will be treated

by cancelation with other terms later on. Since ‖φ̃(t, x)‖L∞ ≤ C, it follows that

I2 ∼ φ̃3, ∂tI2 = ∂tφ̃

∫ −φ̃
0

(φ̃+ %)e−%d% ∼ ∂tφ̃ φ̃
2. (2.27)

In addition, we get from (2.12) and (2.14) that

‖∂tφ̃‖2 + ‖∂t∂xφ̃‖2 ≤ C
{
‖∂tñ‖2 + ‖φ̃∂tnr‖2 + ‖∂t∂2xφr‖2

}
≤ C

{
‖∂x(ñũ)‖2 + ‖∂x(ñur)‖2 + ‖∂x(nrũ)‖2

}
+ C

{
‖φ̃∂tnr‖2 + ‖∂t∂2xφr‖2

}
. (2.28)

Substituting (2.27) and (2.28) into I5, applying Lemma 2.2 and Hölder’s inequality as well as the
Cauchy-Schwarz inequality with 0 < η < 1, one has

|I5| .Cη
∥∥∥φ̃3∥∥∥2 +

∥∥∥φ̃∂x[nr, ur]
∥∥∥2 + η‖∂tφ̃‖2

.ε0Cη‖∂xφ̃‖2 + η ‖∂x[ñ, ũ]‖2 + ‖∂x[nr, ur]‖2L∞‖[ñ, ũ, φ̃]‖2 +

∥∥∥∥∂2x(∂x(nrur)

nr

)∥∥∥∥2
.max{ε0Cη, η}

∥∥∥∂x[ñ, ũ, φ̃]
∥∥∥2 + (1 + t)−2‖[ñ, ũ, φ̃]‖2 + ε(1 + t)−2,

(2.29)

where the following Sobolev’s inequality

‖f‖L∞ ≤
√

2‖f‖1/2‖∂xf‖1/2 for any f ∈ H1, (2.30)

has been used to obtain the bound ∥∥∥φ̃3∥∥∥2 ≤ C‖∂xφ̃‖2‖φ̃‖4.
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By integration by parts and employing Lemma 2.2 and the Cauchy-Schwarz inequality with 0 < η < 1,
we see that the third term on the right hand side of (2.23) can be dominated by(

φ̃,−∂t∂2xφr
)
≤ η‖∂xφ̃‖2 + Cη‖∂t∂xφr‖2 ≤ η‖∂xφ̃‖2 + εCη(1 + t)−2. (2.31)

As to the last term on the right hand side of (2.23), we have from (2.14) that(
φ̃,−∂x(ñur)

)
= −

(
φ̃, ∂xñu

r
)
−
(
φ̃, ñ∂xu

r
)

=
(
φ̃,
(
−∂3xφ̃+ ∂x

[
nr
(

1− e−φ̃
)]
− ∂3xφr

)
ur
)

+
(
φ̃,
(
−∂2xφ̃+

[
nr
(

1− e−φ̃
)]
− ∂2xφr

)
∂xu

r
)

= −1

2

(
∂xu

r,
(
∂xφ̃

)2)
+
(
∂xφ̃, ∂

2
xφ

rur
)

︸ ︷︷ ︸
I6

+
(
φ̃, ∂x

[
nr
(

1− e−φ̃
)]
ur
)

︸ ︷︷ ︸
I7

+
(
φ̃,
[
nr
(

1− e−φ̃
)]
∂xu

r
)

︸ ︷︷ ︸
I8

,

(2.32)

where the last identity holds true due to the following identities:(
φ̃,−∂3xφ̃ur

)
+
(
φ̃,−∂2xφ̃∂xur

)
= −1

2

(
∂xu

r,
(
∂xφ̃

)2)
and (

φ̃,−∂3xφrur
)

+
(
φ̃,−∂2xφr∂xur

)
=
(
∂xφ̃, ∂

2
xφ

rur
)
.

It is straightforward to see that |I6| is dominated by

η‖∂xφ̃‖2 + Cη(1 + t)−2‖∂xφ̃‖2 + Cηε(1 + t)−2,

according to the Cauchy-Schwarz inequality with 0 < η < 1 and Lemma 2.2.
We now use (2.25) to expand I7 and I8 respectively as

I7 =
(
φ̃, ∂x(nrφ̃)ur

)
− 1

2

(
φ̃, ∂x(nrφ̃2)ur

)
+
(
φ̃, ∂x(nrI2)ur

)
=
(
φ̃2, ∂xn

rur
)
− 1

2

(
φ̃2, ∂x(nrur)

)
− 1

2

(
φ̃3, ∂xn

rur
)

+
1

3

(
φ̃3, ∂x(nrur)

)
+
(
φ̃, ∂x(nrI2)ur

)
,

and

I8 =
(
φ̃, nrφ̃∂xu

r
)
− 1

2

(
φ̃, nrφ̃2∂xu

r
)

+
(
φ̃, nrI2∂xu

r
)
.

Owing to these, we see

I3 + I4 + I7 + I8 =
(
φ̃, ∂x(nrI2)ur

)
+
(
φ̃, nrI2∂xu

r
)

= −
(
∂xφ̃, n

rI2u
r
)
≤ Cε20‖∂xφ̃‖2. (2.33)

Recalling (2.23), we thereby complete the estimate on the term −(∂xφ̃, nũ) in the way that∣∣∣∣[−(∂xφ̃, nũ)]−
[

1

2

d

dt
(∂xφ̃, ∂xφ̃) +

1

2

d

dt
(φ̃2, nr)− 1

3

d

dt
(φ̃3, nr)

]∣∣∣∣
. (η + ε0Cη + ε20)

∥∥∥∂x[ñ, ũ, φ̃]
∥∥∥2 + Cη(1 + t)−2

∥∥∥[ñ, ũ, φ̃]
∥∥∥2 + εCη(1 + t)−2.

It now remains to estimate the second term on the right hand side of (2.21). Letting 0 < σ < 1,
by applying Hölder’s inequality, Young’s inequality, Lemma 2.2 and the Sobolev inequality (2.30), one
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obtains

|(∂2xur, ũ)| .‖∂2xur‖L1‖ũ‖L∞ . ε
σ

1+σ (1 + t)−1‖ũ‖
1−σ
1+σ

L∞ ‖ũ‖
2σ

1+σ

.ε
σ

1+σ (1 + t)−1‖∂xũ‖
1−σ

2(1+σ) ‖ũ‖
1+3σ

2(1+σ)

.ε
σ

1+σ

{
‖∂xũ‖2 + (1 + t)−1−

1−σ
3+5σ ‖ũ‖

2(1+3σ)
3+5σ

}
.ε

σ
1+σ

{
‖∂xũ‖2 + (1 + t)−

5+3σ
4+4σ + (1 + t)−

3+5σ
2(1+3σ) ‖ũ‖2

}
.

(2.34)

Finally by putting (2.21), (2.22), (2.24), (2.26), (2.29), (2.31), (2.32), (2.33) and (2.34) together and
letting ε > 0, ε0 > 0 and 0 < η < 1 be suitably small, we have

d

dt
(ũ, nũ) + 2

d

dt
(n, ψ) +

d

dt

(
φ̃2, nr

)
+
d

dt
(∂xφ̃, ∂xφ̃)

− 2

3

d

dt

(
φ̃3, nr

)
+ 2(ũ2, n∂xu

r) + λ‖∂xũ‖2

.(ε0Cη + η)
∥∥∥∂x[ñ, φ̃]

∥∥∥2 + Cη(1 + t)−2‖[ñ, ũ, φ̃, ∂xφ̃]‖2

+ ε
σ

1+σ (1 + t)−
3+5σ

2(1+3σ) ‖ũ‖2 + ε
σ

1+σ (1 + t)−
5+3σ
4+4σ + εCη(1 + t)−2.

(2.35)

Step 2. The dissipation of ∂xñ and ∂xφ̃.
We first differentiate (2.14) and (2.12) in x to obtain

∂3xφ̃ = ∂xñ+ ∂xn
r
(

1− e−φ̃
)

+ nre−φ̃∂xφ̃− ∂3xφr, (2.36)

and

∂t∂xñ+ ∂xu∂xñ+ u∂2xñ+ ∂xn∂xũ+ n∂2xũ+ ñ∂2xu
r + ∂xñ∂xu

r + ũ∂2xn
r + ∂xn

r∂xũ = 0. (2.37)

Then taking the inner products of (2.36), (2.37) and (2.13) with ∂xφ̃, ∂xñ
n2 and ∂xñ with respect to x

over R, respectively, one has

− (∂3xφ̃, ∂xφ̃) + (∂xñ, ∂xφ̃) +
(
∂xn

r
(

1− e−φ̃
)
, ∂xφ̃

)
+ (nre−φ̃∂xφ̃, ∂xφ̃)− (∂3xφ

r, ∂xφ̃) = 0, (2.38)

(
∂t∂xñ,

∂xñ

n2

)
+

(
∂2xũ,

∂xñ

n

)
+

(
∂xu∂xñ+ u∂2xñ+ ∂xn∂xũ+ ñ∂2xu

r + ∂xñ∂xu
r + ũ∂2xn

r + ∂xn
r∂xũ,

∂xñ

n2

)
= 0, (2.39)

and

(∂tũ, ∂xñ) + (u∂xu− ur∂xur, ∂xñ) +A

(
∂xn

n
− ∂xn

r

nr
, ∂xñ

)
− (∂xñ, ∂xφ̃)−

(
∂2xũ,

∂xñ

n

)
−
(
∂2xu

r,
∂xñ

n

)
= 0. (2.40)

The summation of (2.38), (2.39) and (2.40) implies

d

dt
(ũ, ∂xñ) +

1

2

d

dt
((∂xñ)2, n−2) +

(
∂xu

r, (∂xñ)2n−2
)

+A
(
n−1, (∂xñ)2

)
+
(
nre−φ̃∂xφ̃, ∂xφ̃

)
+ (∂2xφ̃, ∂

2
xφ̃)

=−
(
∂xn

r
(

1− e−φ̃
)
, ∂xφ̃

)
+ (∂3xφ

r, ∂xφ̃)−
(
(∂xñ)2, n−3∂tn

)
−
(
∂xu∂xñ+ u∂2xñ+ ∂xn∂xũ+ ñ∂2xu

r + ũ∂2xn
r + ∂xn

r∂xũ,
∂xñ

n2

)
+ (ũ, ∂t∂xñ)− (u∂xu− ur∂xur, ∂xñ) +A

(
(nnr)−1ñ∂xn

r, ∂xñ
)

+

(
∂2xu

r,
∂xñ

n

)
,

(2.41)
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which is further equal to

−
(
∂xn

r
(

1− e−φ̃
)
, ∂xφ̃

)
︸ ︷︷ ︸

I9

+ (∂3xφ
r, ∂xφ̃)︸ ︷︷ ︸
I10

+
1

2

(
∂xu∂xñ,

∂xñ

n2

)
︸ ︷︷ ︸

I11

−
(
∂xn∂xũ+ ñ∂2xu

r + ũ∂2xn
r + ∂xn

r∂xũ,
∂xñ

n2

)
︸ ︷︷ ︸

I12

+ (ũ, ∂t∂xñ)− (u∂xu− ur∂xur, ∂xñ)︸ ︷︷ ︸
I13

+A
(
(nnr)−1ñ∂xn

r, ∂xñ
)︸ ︷︷ ︸

I14

+

(
∂2xu

r,
∂xñ

n

)
︸ ︷︷ ︸

I15

,

where the following fact

−
(
(∂xñ)2, n−3∂tn

)
−
(
∂xu∂xñ+ u∂2xñ,

∂xñ

n2

)
=

1

2

(
∂xu∂xñ,

∂xñ

n2

)
has been used to deduce I11.

We now estimate terms Ij (9 ≤ j ≤ 15) as follows. For I9, I10, I14 and I15, it is direct to obtain

|I9| ≤ η‖∂xφ̃‖2 + Cη‖∂xnr‖2L∞‖φ̃‖2 ≤ η‖∂xφ̃‖2 + Cη(1 + t)−2‖φ̃‖2,

|I10| ≤ η‖∂xφ̃‖2 + Cη‖∂3xφr‖2 ≤ η‖∂xφ̃‖2 + Cηε
3(1 + t)−2,

|I14| ≤ η‖∂xñ‖2 + Cη‖∂xnr‖2L∞‖ñ‖2 ≤ η‖∂xñ‖2 + Cη(1 + t)−2‖ñ‖2,
|I15| ≤ η‖∂xñ‖2 + Cηε(1 + t)−2.

For I11 one has

I11 =
1

2

(
∂xu

r∂xñ,
∂xñ

n2

)
+

1

2

(
∂xũ∂xñ,

∂xñ

n2

)
,

and ∣∣∣∣(∂xũ∂xñ, ∂xñn2
)∣∣∣∣ ≤η‖∂xñ‖2 + Cη‖∂xũ∂xñ‖2 ≤ η‖∂xñ‖2 + Cη‖∂xñ‖2(‖∂xũ‖2 + ‖∂2xũ‖2)

≤(η + Cηε
2
0)‖∂xñ‖2 + Cηε

2
0‖∂2xũ‖2.

As to I12, it follows that

|I12| ≤η‖∂xñ‖2 + Cη‖∂xñ‖2(‖∂xũ‖2 + ‖∂2xũ‖2) + Cη‖∂xnr‖2L∞‖∂xũ‖2

+ Cη(‖ñ‖2L∞ + ‖ũ‖2L∞)(‖∂2xur‖2 + ‖∂2xnr‖2)

≤(η + Cηε
2
0)‖[∂xñ, ∂xũ]‖2 + Cηε

2
0‖∂2xũ‖2 + Cηε

2
0ε(1 + t)−2.

To estimate I13, we first notice that

I13 = (∂xũ,−∂tñ)−
(
(ũ+ ur)∂x(ũ+ ur)− ur∂xur, ∂xñ

)
=
(
∂xũ, ∂x(nu)− ∂x(nrur)

)
− (ũ∂xũ+ ũ∂xu

r + ur∂xũ, ∂xñ)

= ((∂xũ)2, ñ) + (∂xũ, ñ∂xu
r) + (∂xũ, ∂xn

rũ) + (∂xũ, n
r∂xũ)− (ũ∂xu

r, ∂xñ),

where the right-hand terms can be estimated as

|((∂xũ)2, ñ)|+ |(∂xũ, ∂xnrũ)|+ |(∂xũ, nr∂xũ)|
≤ Cε0‖∂xũ‖2 +

[
η‖∂xũ‖2 + Cη(1 + t)−2‖ũ‖2

]
+ n+‖∂xũ‖2,

and

|(∂xũ, ñ∂xur)|+ |(ũ∂xur, ∂xñ)| ≤ η‖∂x[ñ, ũ]‖2 + Cη‖[ñ, ũ]∂xu
r‖2

≤ η‖∂x[ñ, ũ]‖2 + Cη(1 + t)−2‖[ñ, ũ]‖2.
Therefore it follows that

|I13| . (η + ε0)‖∂x[ñ, ũ]‖2 + n+‖∂xũ‖2 + Cη(1 + t)−2‖[ñ, ũ]‖2.
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By plugging the above estimates back to (2.41) and letting 0 < η < 1 and ε0 > 0 be suitably small,
we obtain

d

dt
(ũ, ∂xñ) +

1

2

d

dt
((∂xñ)2, n−2) +

1

2

(
∂xu

r, (∂xñ)2n−2
)

+λ
[(
n−1, (∂xñ)2

)
+
(
nre−φ̃∂xφ̃, ∂xφ̃

)]
+ (∂2xφ̃, ∂

2
xφ̃)

≤ max{1, n+}‖∂xũ‖2 + Cε20‖∂2xũ‖2 + C(1 + t)−2
∥∥∥[ñ, ũ, φ̃]

∥∥∥2 + Cε(1 + t)−2. (2.42)

Further taking the summation of 2×(2.42) and C1×(2.35) for a suitably large constant C1 > 1 and
also letting ε0 > 0 and 0 < η < 1 in (2.41) be suitably small gives

d

dt
2(ũ, ∂xñ) +

d

dt
((∂xñ)2, n−2) + C1

{
d

dt
(ũ, nũ) + 2

d

dt
(n, ψ)

}
+ C1

{
d

dt

(
φ̃2, nr

)
+
d

dt
(∂xφ̃, ∂xφ̃)− 2

3

d

dt

(
φ̃3, nr

)}
+ 2C1(∂xu

r, nũ2) +
(
∂xu

r, (∂xñ)2n−2
)

+ (∂2xφ̃, ∂
2
xφ̃)

+ λ
{

(∂xũ, ∂xũ) +
(
n−1, (∂xñ)2

)
+
(
nre−φ̃∂xφ̃, ∂xφ̃

)}
.ε0‖∂2xũ‖2 + (1 + t)−2

∥∥∥[ñ, ũ, φ̃, ∂xφ̃]
∥∥∥2 + (1 + t)−

3+5σ
2(1+3σ) ‖ũ‖2 + ε

σ
1+σ (1 + t)−

5+3σ
4+4σ + ε(1 + t)−2,

(2.43)

where the large constant C1 > 1 is chosen so as to also guarantee

2(ũ, ∂xñ) + ((∂xñ)2, n−2) + C1(ũ, nũ) ∼ ‖∂xñ‖2 + ‖ũ‖2.
From Gronwall’s inequality, it follows further from (2.43) that

sup
0≤t≤T

{
2(ũ, ∂xñ) + ((∂xñ)2, n−2) + C1(ũ, nũ) + 2C1(n, ψ) + C1

(
φ̃2, nr

)
+ C1(∂xφ̃, ∂xφ̃)− 2

3
C1

(
φ̃3, nr

)}
+

∫ T

0

{
(∂xu

r, nũ2) +
(
∂xu

r, (∂xñ)2n−2
)

+ (∂2xφ̃, ∂
2
xφ̃)
}
dt

+

∫ T

0

{
(∂xũ, ∂xũ) +

(
n−1, (∂xñ)2

)
+
(
nre−φ̃∂xφ̃, ∂xφ̃

)}
dt

.‖[ñ, ũ, φ̃](0)‖2 + ‖∂x[ñ, φ̃](0)‖2 + ε0

∫ T

0

‖∂2xũ‖2dt+ ε
σ

1+σ .

(2.44)

Step 3. Dissipation of ∂2xũ.
By differentiating (2.13) in x and taking the inner products of the resulting identity with ∂xũ with

respect to x over R, we have

(∂t∂xũ, ∂xũ) + (∂x(ũ∂xũ+ ũ∂xu
r + ∂xũu

r), ∂xũ) +A

(
∂x

(
∂xn

n
− ∂xn

r

nr

)
, ∂xũ

)
+ (−∂2xφ̃, ∂xũ) +

(
−∂x

(
∂2xũ

n

)
, ∂xũ

)
+

(
−∂x

(
∂2xu

r

n

)
, ∂xũ

)
= 0. (2.45)

We estimate each inner product term on the left as follows. First, the first term is equal to 1
2
d
dt (∂xũ, ∂xũ).

The second term is computed as

(∂x(ũ∂xũ+ ũ∂xu
r + ∂xũu

r), ∂xũ) =
3

2
(∂xu

r, (∂xũ)2)− (ũ∂2xũ, ∂xũ) + (ũ∂2xu
r, ∂xũ),

where the first term on the right are good and the rest two terms are bounded as

|(ũ∂2xũ, ∂xũ)|+ |(ũ∂2xur, ∂xũ)| ≤ η(‖∂xũ‖2 + ‖∂2xũ‖2) + Cη‖ũ‖2L∞(‖∂xũ‖2 + ‖∂2xur‖2)

≤ η(‖∂xũ‖2 + ‖∂2xũ‖2) + Cηε
2
0‖∂xũ‖2 + Cηε

2
0ε(1 + t)−2,
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with an arbitrary constant 0 < η < 1. The third term can be rewritten as

A

(
∂x

(
∂xn

n
− ∂xn

r

nr

)
, ∂xũ

)
= A

(
∂xñ

n
− ñ∂xn

r

nnr
,−∂2xũ

)
= A

(
∂xñ

n
,−∂2xũ

)
+A

(
−∂xñ∂xn

r + ñ∂2xn
r

nnr
, ∂xũ

)
+A

(
ñ∂xn

r(∂xnn
r + n∂xn

r)

(nnr)2
, ∂xũ

)
,

where the first inner product on the right is bounded by η‖∂2xũ‖2 + Cη‖∂xñ‖2, the second one is
bounded by

η‖∂xũ‖2 + Cη(‖∂xnr‖2L∞‖∂xñ‖2 + ‖ñ‖2L∞‖∂2xnr‖2) ≤ η‖∂xũ‖2 + Cε‖∂xñ‖2 + Cε20ε(1 + t)−2,

and the final one is bounded by

η‖∂xũ‖2 + Cη‖ñ‖2L∞‖∂xnr‖2L∞‖∂xñ‖2‖nr‖2L∞ + Cη‖ñ‖2L∞‖∂xnr‖2L∞‖∂xnr‖2

≤ η‖∂xũ‖2 + Cηε
2
0‖∂xñ‖2 + Cη‖ñ‖ · ‖∂xñ‖ · ‖∂xnr‖ · ‖∂2xnr‖ · ‖∂xnr‖2

≤ η‖∂xũ‖2 + Cηε
2
0‖∂xñ‖2 + Cη‖∂xñ‖2 + Cη‖ñ‖2‖∂xnr‖6‖∂2xnr‖2

≤ η‖∂xũ‖2 + Cηε
2
0‖∂xñ‖2 + Cη‖∂xñ‖2 + Cηε

2
0ε(1 + t)−5.

For the fourth term on the left hand side of (2.45), it is direct to see

|(∂2xφ̃, ∂xũ)| ≤ η‖∂xũ‖2 + Cη‖∂2xφ̃‖2

The fifth term is a good term given by (n−1, (∂2xũ)2). The final term is bounded as∣∣∣∣(−∂x(∂2xurn
)
, ∂xũ

)∣∣∣∣ ≤ η‖∂2xũ‖2 + Cη

∥∥∥∥∂2xurn
∥∥∥∥2 ≤ η‖∂2xũ‖2 + Cηε(1 + t)−2.

Plugging these estimates back to (2.45) gives

1

2

d

dt
(∂xũ, ∂xũ) +

3

2
(∂xu

r, (∂xũ)2) +

(
∂2xũ

n
, ∂2xũ

)
≤ η

{
‖∂xũ‖2 + ‖∂2xũ‖2

}
+ Cηε

2
0‖∂xũ‖2 + Cηε(1 + t)−2 + Cη(‖∂xñ‖2 + ‖∂2xφ̃‖2). (2.46)

Integrating (2.46) with respect to t over [0, T ] and letting 0 < η < 1 be suitably small, one further has

sup
0≤t≤T

(∂xũ, ∂xũ) +

∫ T

0

(∂xu
r, (∂xũ)2)dt+

∫ T

0

(
∂2xũ

n
, ∂2xũ

)
dt

. ‖∂xũ(0)‖2 + (η + Cηε
2
0)

∫ T

0

‖∂xũ‖2dt+ Cη

∫ T

0

(‖∂xñ‖2 + ‖∂2xφ̃‖2)dt+ Cηε. (2.47)

Thus combining (2.44) and (2.47) yields

sup
0≤t≤T

{
2(ũ, ∂xñ) + ((∂xñ)2, n−2) + C1(ũ, nũ) + 2C1(n, ψ)

+ C1(φ̃2, nr) + C1(∂xφ̃, ∂xφ̃)− 2

3
C1(φ̃3, nr)

}
+ sup

0≤t≤T
(∂xũ, ∂xũ)

+

∫ T

0

{
(∂xu

r, nũ2) +
(
∂xu

r, (∂xñ)2n−2
)

+ (∂xu
r, (∂xũ)2)

}
dt

+

∫ T

0

{
(∂xũ, ∂xũ) +

(
n−1, (∂xñ)2

)
+ (∂2xφ̃, ∂

2
xφ̃)
}
dt

+

∫ T

0

{(
nre−φ̃∂xφ̃, ∂xφ̃

)
+

(
∂2xũ

n
, ∂2xũ

)}
dt

≤ C
∥∥∥[ñ, ũ, φ̃](0, x)

∥∥∥2
H1

+ Cε
σ

1+σ .

(2.48)
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Notice that

2(ũ, ∂xñ) + ((∂xñ)2, n−2) + C1(ũ, nũ) + 2C1(n, ψ) + C1

(
φ̃2, nr

)
+ C1(∂xφ̃, ∂xφ̃)− 2

3
C1

(
φ̃3, nr

)
∼
∥∥∥[ñ, φ̃]∥∥∥2

H1
+ ‖ũ‖2,

and

(∂xũ, ∂xũ) +
(
n−1, (∂xñ)2

)
+ (∂2xφ̃, ∂

2
xφ̃) +

(
nre−φ̃∂xφ̃, ∂xφ̃

)
+

(
∂2xũ

n
, ∂2xũ

)
∼
∥∥∥[∂xñ, ∂xũ, ∂xφ̃, ∂

2
xφ̃, ∂

2
xũ]
∥∥∥2 ,

according to the a priori assumption (2.18) and the fact that n+ > n− > 0, and furthermore the
Poisson equation (2.14) implies that for any t ≥ 0,

‖φ̃(t)‖2H1 ≤ C‖ñ(t)‖2 + C‖∂2xφr(t)‖2

≤ C‖ñ(t)‖2 + C‖∂2xnr(t)‖2 + C‖∂xnr(t)‖4L4

≤ C‖ñ(t)‖2 + C‖∂2xnr(t)‖2 + C‖∂xnr(t)‖3‖∂2xnr(t)‖
≤ C‖ñ(t)‖2 + Cε(1 + t)−2 + Cε2(1 + t)−1,

and hence in particular,

‖φ̃(0)‖2H1 ≤ C
[
‖ñ(0)‖2 + ε

]
.

The above observations together with (2.48) give (2.19). This then completes the proof of Proposition
2.1. �

We are now in a position to complete the

Proof of Theorem 2.1. The existence of the solution follows from the standard continuity argument
based on the local existence and the a priori estimate in Proposition 2.1. Therefore, it suffices to show
the large time behavior of the solution as t→ +∞. For this, we begin with the following estimates

lim
t→+∞

‖∂x[ñ, ũ](t)‖2 → 0, (2.49)

and

lim
t→+∞

{∥∥∥√nre−φ̃∂xφ̃(t)
∥∥∥2 +

∥∥∥∂2xφ̃(t)
∥∥∥2}→ 0. (2.50)

Indeed, from (2.37), (2.45), (2.16) and Lemma 2.2, one can show that∫ +∞

0

∣∣∣∣ ddt ‖∂xñ‖2
∣∣∣∣ dt = 2

∫ +∞

0

|(∂t∂xñ, ∂xñ)| dt < +∞,

and ∫ +∞

0

∣∣∣∣ ddt ‖∂xũ‖2
∣∣∣∣ dt =

1

2

∫ +∞

0

|(∂t∂xũ, ∂xũ)| dt < +∞.

Then (2.49) follows from the above two inequalities and (2.16).
The estimates for (2.50) will be a little different from the usual one as in [34]. By (2.36) and applying

Lemma 2.2 and (2.16), we see that∫ +∞

0

∣∣∣∣ ddt [(nre−φ̃∂xφ̃, ∂xφ̃)+
(
∂2xφ̃, ∂

2
xφ̃
)]∣∣∣∣ dt . C +

∫ +∞

0

‖∂tφ̃‖2dt. (2.51)

On the other hand, from (2.28), one has∫ +∞

0

∥∥∥∂t∂xφ̃∥∥∥2 dt+

∫ +∞

0

∥∥∥∂tφ̃∥∥∥2 dt < +∞. (2.52)

Thus (2.51), (2.52) and (2.16) give (2.50).
We consequently get from (2.49), (2.50) and the Sobolev inequality (2.30) that

lim
t→+∞

sup
x∈R
|[n(t, x)− nr(x, t), u(t, x)− ur(x, t), φ(t, x) + lnnr(t, x)]| = 0.
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Furthermore, by the construction of the smooth approximation function of the rarefaction wave, in
terms of (iii) in Lemma 2.2, we obtain the desired asymptotic behavior of the solution

lim
t→+∞

sup
x∈R

∣∣∣[n(t, x)− nR
(x
t

)
, u(t, x)− uR

(x
t

)
, φ(t, x) + lnnR

(x
t

)]∣∣∣ = 0.

Hence (2.17) holds true. This ends the proof of Theorem 2.1. �

3. Two-fluid case

In this section, we will apply the similar technique developed in the previous section to study the
stability of rarefaction waves for the Cauchy problem on the two-fluid NSP system (1.1), (1.2), (1.3),
(1.4). The new difficulty appears due to the fact that the electric field ∂xφ is no longer L2 integrable
in space and time due to the structure of the Poisson equation in (1.1). It will be seen from the later
proof that the new trouble term

1

2

∫
R

(∂xφ̃)2∂xu
r dx

can be controlled by taking the difference of two momentum equations with different weights so as to
balance the different masses mα (α = i, e) of two fluids. Therefore, the structure of two-fluid model
indeed plays a key role in the stability analysis of nontrivial rarefaction waves.

3.1. Approximate rarefaction waves. The large time solution of (1.1) is assumed to be the rar-
efaction wave [nr, ur] under the quasineutral assumption. Thus, we may set

ni = ne = nr, ui = ue = ur.

By neglecting the second-order derivatives ∂2xu
r and ∂2xφ

r which decay in time faster than other low-
order terms, [nr, ur] is expected to satisfy the following equations:

∂tn
r + ∂x(nrur) = 0, (3.1)

min
r(∂tu

r + ur∂xu
r) + Ti∂xn

r − nr∂xφr = 0, (3.2)

men
r(∂tu

r + ur∂xu
r) + Te∂xn

r + nr∂xφ
r = 0. (3.3)

It is straightforward to verify that system (3.1), (3.2), (3.3) holds true if [nr, ur] satisfies

∂tn
r + ∂x(nrur) = 0,

nr(∂tu
r + ur∂xu

r) +
Ti + Te
mi +me

∂xn
r = 0,

φr =
Time − Temi

mi +me
lnnr.

(3.4)

Therefore, the large-time asymptotic equations of (1.1) of the two-fluid NSP system are expected to
take the form of the following quasineutral Euler equations

∂tn+ ∂x(n u) = 0,

n(∂tu+ u∂xu) +
Ti + Te
mi +me

∂xn = 0,
(3.5)

with the potential function φ in large time determined by

φ =
Time − Temi

mi +me
lnn.

Initial data for (3.5) are given by

[n, u](0, x) = [n0, u0](x) =

{
[n−, u−], x > 0,

[n+, u+], x < 0,

φ(0, x) = φ0 =
Time − Temi

mi +me
lnn0.

(3.6)
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Similarly as before, (3.5) have two characteristics

λ1 = u− c, λ2 = u+ c, with c =

√
Ti + Te
mi +me

,

where we have used the same notation for c as in (2.6). In the completely same way as in the previous
section, concerning the Riemann problem (3.5) and (3.6) on the quasineutral Euler system, one can
construct the 2-rarefaction wave [nR, uR](x/t) from the Burgers’ equation and further construct its
smooth approximation [nr, ur] satisfying the properties given in Lemma 2.2.

3.2. Stability of the rarefaction wave. In this subsection, we study the stability of the approximate
rarefaction wave [nr, ur] for the Cauchy problem (1.1), (1.2), (1.3), (1.4). For this purpose, let us define
the perturbation

[ñα, ũα, φ̃] = [ñi,e, ũi,e, φ̃] = [nα − nr, uα − ur, φ− φr](t, x), α = i, e,

where φr is defined by nr in terms of the third equation of (3.4). Then [ñα, ũα, φ̃] satisfies

∂tñi + ∂x(niui)− ∂x(nrur) = 0, (3.7)

mi (∂tũi + ui∂xui − ur∂xur) + Ti(∂x lnni − ∂x lnnr)− ∂xφ̃ =
∂2xui
ni

, (3.8)

∂tñe + ∂x(neue)− ∂x(nrur) = 0, (3.9)

me (∂tũe + ue∂xue − ur∂xur) + Te(∂x lnne − ∂x lnnr) + ∂xφ̃ =
∂2xue
ne

, (3.10)

∂2xφ̃ = ñi − ñe − ∂2xφr. (3.11)

Here we have set µi = µe = 1 without loss of generality. Initial data for [ñα, ũα] are given by

[ñα, ũα](0, x) = [nα0(x)− nr(0, x), uα0 − ur(0, x)], α = i, e. (3.12)

From now on it is always assumed that for any given t ≥ 0, φ̃(t, x) is determined in terms of the elliptic

equation (3.11) under the boundary condition that φ̃(t, x) tends to zero as x goes to ±∞.

Theorem 3.1. Let [n+, u+] ∈ R2(n−, u−), where R2(n−, u−) is given in (2.7) with n− > 0 and

c =
√

Ti+Te
mi+me

. Assume

φ± =
Time − Temi

mi +me
lnn±.

There are constants ε0 > 0, 0 < σ < 1, and C0 > 0 such that if∑
α=i,e

‖[ñα0, ũα0]‖2H1 + ‖∂xφ̃0‖2 + ε ≤ ε20,

where ε > 0 is the parameter appearing in (2.10), then the Cauchy problem of the NSP system (3.7),

(3.8), (3.9), (3.10), (3.11) and (3.12) admits a unique global solution [ñi,e, ũi,e, φ̃](t, x) satisfying

sup
t≥0

∑
α=i,e

‖[ñα, ũα] (t)‖2H1 +
∥∥∥∂xφ̃(t)

∥∥∥2
H1

+
∑
α=i,e

∫ +∞

0

∥∥∥√∂xur [ũα, ∂xñα, ∂xũα] (t)
∥∥∥2 dt

+
∑
α=i,e

∫ +∞

0

∥∥[∂xñα, ∂xũα, ∂2xũα] (t)
∥∥2 dt+

∫ +∞

0

∥∥∥∂2xφ̃(t)
∥∥∥2 dt ≤ C0ε

2σ
1+σ

0 . (3.13)

Moreover, the solution to the original Cauchy problem (1.1), (1.2), (1.3), (1.4) tends time-asymptotically
to the rarefaction in the sense that

lim
t→+∞

sup
x∈R

∣∣∣[nα(t, x)− nR
(x
t

)
, uα(t, x)− uR

(x
t

)]∣∣∣ = 0, α = i, e, (3.14)

and

lim
t→+∞

sup
x∈R

∣∣∣∣∂x [φ(t, x)− Time − Temi

mi +me
lnnr(t, x)

]∣∣∣∣ = 0. (3.15)
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We remark that smallness on ‖∂xφ̃0‖ is required in Theorem 3.1. In addition, due to the weaker dis-
sipation of the potential function in the two-fluid case, it is not clear to verify the uniform convergence
of φ(t, x) to

φR(x/t) =
Time − Temi

mi +me
lnnR(x/t),

as time goes to infinity. However, (3.15) still implies the large-time convergence of the electric field
∂xφ to the smooth approximate profile ∂xφ

r.

As in the previous section, the local existence of the solution [ñ, ũ, φ̃] of the NSP system (3.7), (3.8),
(3.9), (3.10), (3.11) and (3.12) can be proved by the standard iteration method and its proof is omitted
for brevity. As to the proof of Theorem 3.1, it suffices to show the following a priori estimate.

Proposition 3.1. Assume that all the conditions in Theorem 3.1 hold. There are constants ε0 > 0,

0 < σ < 1, and C0 > 0 such that if the smooth solution [ñ, ũ, φ̃] to the Cauchy problem (3.7), (3.8),
(3.9), (3.10), (3.11) and (3.12) on 0 ≤ t ≤ T for T > 0 satisfies

sup
0≤t≤T

∑
α=i,e

‖[ñα, ũα] (t)‖2H1 + ‖∂xφ̃(t)‖2
+ ε ≤ ε20, (3.16)

then it holds that

sup
0≤t≤T

∑
α=i,e

‖[ñα, ũα] (t)‖2H1 +
∥∥∥∂xφ̃(t)

∥∥∥2
H1

+
∑
α=i,e

∫ T

0

∥∥∥√∂xur [ũα, ∂xñα, ∂xũα] (t)
∥∥∥2 dt

+
∑
α=i,e

∫ T

0

∥∥[∂xñα, ∂xũα, ∂2xũα] (t)
∥∥2 dt+

∫ T

0

∥∥∥∂2xφ̃(t)
∥∥∥2 dt

≤ C0

∑
α=i,e

‖[ñα0, ũα0]‖2H1 + ‖∂xφ̃0‖2 + ε
σ

1+σ

 . (3.17)

3.3. A priori estimate.

Proof of Proposition 3.1. As for obtaining Proposition 2.1, we divide it by three steps as follows.

Step 1. Zero-order energy estimates.
As in (2.20), set

ψα = ψ(nα, n
r) = Tα

∫ nα

nr

s− nr

s2
ds, α = i, e.

Note that ψ(nα, n
r) is equivalent with |nα − nr|2 for |nα − nr| ≤ C. Multiplying the first equation

of (1.1) and (3.8) by ψi = ψ(ni, n
r) and niũi respectively, integrating the resulting equations with

respect to x over R and taking the summation, one obtains

mi

2

d

dt
(ũi, niũi) +

d

dt
(ni, ψi) +mi(ũ

2
i , ni∂xu

r)− (∂xφ̃, niũi) = (∂2xũi, ũi) + (∂2xu
r, ũi), (3.18)

where we have used the following identities

−(ni, ∂tψi) + (∂x(niui), ψi) + Ti (∂x (lnni − lnnr) , niũi) = 0,

and

− 1

2
(ũ2i , ∂tni) + (ui∂xui − ur∂xur, niũi)

=
1

2
(ũ2i , ∂x(niũi)) +

1

2
(ũ2i , ∂x(niu

r)) + (ũi∂xũi + ur∂xũi + ũi∂xu
r, niũi) = (ũ2i , ni∂xu

r).

In a similar way, from the third equation of (1.1) and (3.10), we have

me

2

d

dt
(ũe, neũe) +

d

dt
(ne, ψe) +me(ũ

2
e, ne∂xu

r) + (∂xφ̃, neũe) = (∂2xũe, ũe) + (∂2xu
r, ũe). (3.19)
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We note that since ∂xu
r > 0 and nα > 0, (ũ2α, nα∂xu

r) are good terms for α = i and e, which plays a
crucial role in the zero-order energy estimates. Furthermore, we get from (3.7), (3.9) and (3.11) that

−(∂xφ̃, niũi) + (∂xφ̃, neũe)

= (φ̃, ∂x(niũi))− (φ̃, ∂x(neũe))

= −(φ̃, ∂t(ñi − ñe))− (φ̃, ∂x((ñi − ñe)ur))
= −(φ̃, ∂t∂

2
xφ̃)− (φ̃, ∂t∂

2
xφ

r)− (φ̃, ∂x(∂2xφ̃u
r))− (φ̃, ∂x(∂2xφ

rur))

=
1

2

d

dt
(∂xφ̃, ∂xφ̃) + (∂xφ̃, ∂t∂xφ

r)− 1

2
((∂xφ̃)2, ∂xu

r) + (∂xφ̃, ∂
2
xφ

rur).

Therefore, with the above identity, the summation of (3.18) and (3.19) implies

d

dt

{mi

2
(ũi, niũi) +

me

2
(ũe, neũe)

}
+
d

dt
{(ni, ψi) + (ne, ψe)}+

1

2

d

dt
(∂xφ̃, ∂xφ̃)

+mi(ũ
2
i , ni∂xu

r) +me(ũ
2
e, ne∂xu

r)︸ ︷︷ ︸
I0

+‖∂x[ũi, ũe]‖2

=
1

2
((∂xφ̃)2, ∂xu

r)︸ ︷︷ ︸
I1

+ (∂2xu
r, ũi)︸ ︷︷ ︸
I2

+ (∂2xu
r, ũe)︸ ︷︷ ︸
I3

−(∂xφ̃, ∂t∂xφ
r)︸ ︷︷ ︸

I4

−(∂xφ̃, ∂
2
xφ

rur)︸ ︷︷ ︸
I5

.

(3.20)

We have to develop a little more delicate estimates on I1, which are different from the case of the
one-fluid ions considered in the previous section. The basic idea is to make use of the good term I0 to
absorb I1, since the latter one can not be directly controlled. For this, we choose two positive constants
β and γ such that miβ = meγ. Notice that physically the ratio γ/β = mi/me is large. Taking the
inner product of (3.8) and (3.10) with

β

2(β + γ)
∂xφ̃∂xu

r and − γ

2(β + γ)
∂xφ̃∂xu

r,

respectively, and taking the summation of the resulting equations, one has

−1

2
((∂xφ̃)2, ∂xu

r)

=− βmi

2(β + γ)

d

dt
(ũi, ∂xφ̃∂xu

r) +
γme

2(β + γ)

d

dt
(ũe, ∂xφ̃∂xu

r)

+
1

2(β + γ)
(βmiũi − γmeũe, ∂t∂xφ̃∂xu

r)︸ ︷︷ ︸
I6

+
1

2(β + γ)
(βmiũi − γmeũe, ∂xφ̃∂t∂xu

r)︸ ︷︷ ︸
I7

− 1

2(β + γ)

(
βmi[ui∂xui − ur∂xur]− γme[ue∂xue − ur∂xur], ∂xφ̃∂xur

)
︸ ︷︷ ︸

I8

− 1

2(β + γ)

(
βTi∂x ln

ni
nr
− γTe∂x ln

ne
nr
, ∂xφ̃∂xu

r
)

︸ ︷︷ ︸
I9

+
1

2(β + γ)

(
β
∂2xui
ni
− γ ∂

2
xue
ne

, ∂xφ̃∂xu
r

)
︸ ︷︷ ︸

I10

.

(3.21)

On the other hand, it follows from (3.11) that

∂t∂xφ̃ = neue − niui − ∂t∂xφr = neũe − niũi + (ñe − ñi)ur−∂t∂xφr,
which implies

I6 =− βmi

2(β + γ)
((ũi)

2, ni∂xu
r)− γme

2(β + γ)
((ũe)

2, ne∂xu
r)

+
βmi

2(β + γ)
(ũiũe, ne∂xu

r) +
γme

2(β + γ)
(ũiũe, ni∂xu

r)

− 1

2(β + γ)
(βmiũi − γmeũe, ∂t∂xφ

r∂xu
r).
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Consequently, it holds that

I0
2

+ I6 =
1

2(β + γ)

∫
R

{
γmini(ũi)

2 + (βmine + γmeni)ũiũe + βmene(ũe)
2

}
∂xu

rdx

=
1

2(β + γ)

∫
R

{
γmiñi(ũi)

2 + (βmiñe + γmeñi)ũiũe + βmeñe(ũe)
2

}
∂xu

rdx︸ ︷︷ ︸
I11

+
nr

2(β + γ)

∫
R

{
γmi(ũi)

2 + (βmi + γme)ũiũe + βme(ũe)
2

}
∂xu

rdx︸ ︷︷ ︸
I12

− 1

2(β + γ)

∫
R

(βmiũi − γmeũe)∂t∂xφ
r∂xu

rdx︸ ︷︷ ︸
I13

.

(3.22)

One can claim that I12 ≥ 0 due to the choice of constants β and γ. Indeed, by using βmi = γme, the
integrand of I12 can be rewritten as

(
√
γmiũi +

√
βmeũe)

2∂xu
r,

which is always non-negative for β > 0 and γ > 0. With (3.22) in hand, substituting (3.21) into (3.20),
we arrive at

d

dt

{mi

2
(ũi, niũi) +

me

2
(ũe, neũe)

}
+
d

dt
{(ni, ψi) + (ne, ψe)}+

1

2

d

dt
(∂xφ̃, ∂xφ̃)

− βmi

2(β + γ)

d

dt
(ũi, ∂xφ̃∂xu

r) +
γme

2(β + γ)

d

dt
(ũe, ∂xφ̃∂xu

r)

+
1

2

{
mi(ũ

2
i , ni∂xu

r) +me(ũ
2
e, ne∂xu

r)
}

+ ‖∂x[ũi, ũe]‖2 + I12

=I2 + I3 + I4 + I5 − I7 − I8 − I9 − I10 − I11−I13.

(3.23)

We now turn to estimate the right hand side of (3.23) term by term. Letting 0 < σ < 1, by applying
Hölder’s inequality, Young’s inequality and Lemma 2.2, as for obtaining (2.34), one obtains

|I2|+ |I3| .ε
σ

1+σ

{
‖∂x[ũi, ũe]‖2 + (1 + t)−

5+3σ
4+4σ + (1 + t)−

3+5σ
2(1+3σ) ‖[ũi, ũe]‖2

}
.

In the completely same way, it follows that

|I4|+ |I5| . ε
σ

1+σ

{
‖∂2xφ̃‖2 + (1 + t)−

5+3σ
4+4σ + (1 + t)−

3+5σ
2(1+3σ) ‖∂xφ̃‖2

}
.

By integration by parts and employing Lemma 2.2 and Cauchy-Schwarz’s inequality with 0 < η < 1,
we have

|I7| . η‖∂x[ũi, ũe, ∂xφ̃]‖2 + Cη(1 + t)−2‖[ũi, ũe, ∂xφ̃]‖2.

From Lemma 2.2 and Sobolev’s inequality (2.30) as well as Cauchy-Schwarz’s inequality with 0 < η < 1,
it holds that

|I8|+ |I9| . η‖∂x[ñi, ñe, ũi, ũe]‖2 + ε0‖∂x[ũi, ũe]‖2 + Cη(1 + t)−2‖[ñi, ñe, ũi, ũe, ∂xφ̃]‖2,

and

|I10| . (η + ε)‖∂x[ũi, ũe]‖2 + ε‖∂2xφ̃‖2 + Cη(1 + t)−2‖∂xφ̃‖2 + εCη(1 + t)−2.

For the term I11, it follows from the Sobolev’s inequality (2.30) that

|I11| . ε0
{
mi(ũ

2
i , ni∂xu

r) +me(ũ
2
e, ne∂xu

r)
}
.

As to the last term I13, we get from Lemma 2.2 and Hölder’s inequality that

|I13| . (1 + t)−2‖[ũi, ũe]‖2 + ε(1 + t)−2.
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Therefore, by plugging the above estimates into (3.23) and letting ε > 0, ε0 > 0 and 0 < η < 1 be
suitably small, we have

d

dt

{mi

2
(ũi, niũi) +

me

2
(ũe, neũe)

}
+
d

dt
{(ni, ψi) + (ne, ψe)}+

1

2

d

dt
(∂xφ̃, ∂xφ̃)

− βmi

2(β + γ)

d

dt
(ũi, ∂xφ̃∂xu

r) +
γme

2(β + γ)

d

dt
(ũe, ∂xφ̃∂xu

r)

+ λ
{
mi(ũ

2
i , ni∂xu

r) +me(ũ
2
e, ne∂xu

r)
}

+ λ‖∂x[ũi, ũe]‖2

.η‖∂x[ñi, ñe]‖2 + ε
σ

1+σ ‖∂2xφ̃‖2 + Cη(1 + t)−2‖[ñi, ñe, ũi, ũe, ∂xφ̃]‖2

+ ε
σ

1+σ (1 + t)−
3+5σ

2(1+3σ) ‖[ũi, ũe]‖2 + ε
σ

1+σ (1 + t)−
5+3σ
4+4σ + εCη(1 + t)−2.

(3.24)

Step 2. Dissipation of ∂x[ñi, ñe] and ∂2xφ̃.
We first differentiate (3.11), (3.7) and (3.9) with respect to x to obtain

∂3xφ̃ = ∂x(ñi − ñe)− ∂3xφr, (3.25)

∂t∂xñi+∂xui∂xñi+ui∂
2
xñi+∂xni∂xũi+ni∂

2
xũi+ ñi∂

2
xu

r +∂xñi∂xu
r + ũi∂

2
xn

r +∂xn
r∂xũi = 0, (3.26)

and

∂t∂xñe+∂xue∂xñe+ue∂
2
xñe+∂xne∂xũe+ne∂

2
xũe+ñe∂

2
xu

r+∂xñe∂xu
r+ũe∂

2
xn

r+∂xn
r∂xũe = 0. (3.27)

By taking the inner products of (3.25), (3.26), (3.27), (3.8) and (3.10) with −∂xφ̃, ∂xñi
n2
i

, ∂xñe
n2
e

, ∂xñi

and ∂xñe with respect to x over R, respectively, taking the summation of resulting five identities, and
noticing the cancelation

(∂x(ñi − ñe),−∂xφ̃) + (∂xφ̃, ∂xñi) + (−∂xφ̃, ∂xñe) = 0,

one has

d

dt

∑
α=i,e

mα(ũα, ∂xñα) +
1

2

d

dt

∑
α=i,e

((∂xñα)2, n−2α ) +
∑
α=i,e

(
∂xu

r, (∂xñα)2n−2α
)

+
∑
α=i,e

Tα
(
n−1α , (∂xñα)2

)
+ (∂2xφ̃, ∂

2
xφ̃)

=(∂3xφ
r, ∂xφ̃)−

∑
α=i,e

(
(∂xñα)2, n−3α ∂tnα

)
−
∑
α=i,e

(∂xuα∂xñα + uα∂
2
xñα + ∂xnα∂xũα + ñα∂

2
xu

r + ũα∂
2
xn

r + ∂xn
r∂xũα,

∂xñα
n2α

)

+
∑
α=i,e

mα {(ũα, ∂t∂xñα)− (uα∂xuα − ur∂xur, ∂xñα)}

+
∑
α=i,e

Tα
(
(nαn

r)−1ñα∂xn
r, ∂xñα

)
+
∑
α=i,e

(
∂2xu

r,
∂xñα
nα

)
,

(3.28)
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which is further equal to

(∂3xφ
r, ∂xφ̃)︸ ︷︷ ︸
J1

+
1

2

∑
α=i,e

(
∂xuα∂xñα,

∂xñα
n2α

)
︸ ︷︷ ︸

J2

−
∑
α=i,e

(
∂xnα∂xũα + ñα∂

2
xu

r + ũα∂
2
xn

r + ∂xn
r∂xũα,

∂xñα
n2α

)
︸ ︷︷ ︸

J3

+
∑
α=i,e

mα {(ũα, ∂t∂xñα)− (uα∂xuα − ur∂xur, ∂xñα)}︸ ︷︷ ︸
J4

+
∑
α=i,e

Tα
(
(nαn

r)−1ñα∂xn
r, ∂xñα

)
︸ ︷︷ ︸

J5

+
∑
α=i,e

(
∂2xu

r,
∂xñα
nα

)
︸ ︷︷ ︸

J6

,

where the following fact

−
(
(∂xñα)2, n−3α ∂tnα

)
−
(
∂xuα∂xñα + uα∂

2
xñα,

∂xñα
n2α

)
=

1

2

(
∂xuα∂xñα,

∂xñα
n2α

)
has been used to deduce J2. It is straightforward to see that all terms Jl for 1 ≤ l ≤ 6 can be estimated
as for Il for 10 ≤ l ≤ 15 on the right hand side of (2.41). Then, by applying those estimates to (3.28)
and letting 0 < η < 1 and ε0 > 0 be suitably small, we obtain

d

dt

∑
α=i,e

mα(ũα, ∂xñα) +
1

2

d

dt

∑
α=i,e

((∂xñα)2, n−2α ) +
∑
α=i,e

(
∂xu

r, (∂xñα)2n−2α
)

+λ
∑
α=i,e

(
n−1α , (∂xñα)2

)
+ λ(∂2xφ̃, ∂

2
xφ̃)

≤ max{1, n+}
∑
α=i,e

mα‖∂xũα‖2 + Cε20
∑
α=i,e

‖∂2xũα‖2

+C(1 + t)−2
∑
α=i,e

‖[ñα, ũα]‖2 + Cε(1 + t)−2. (3.29)

Further taking the summation of 2×(3.29) and 2C2×(3.24) for a suitably large constant C2 > 1 and
also letting ε0 > 0 and 0 < η < 1 in (3.28) be suitably small gives

d

dt

∑
α=i,e

{
2mα(ũα, ∂xñα) + ((∂xñα)2, n−2α )

}
+
d

dt
C2

∑
α=i,e

{mα(ũα, nαũα) + 2(nα, ψα)}

+ C2
d

dt
(∂xφ̃, ∂xφ̃)− C2βmi

β + γ

d

dt
(ũi, ∂xφ̃∂xu

r) +
C2γme

β + γ

d

dt
(ũe, ∂xφ̃∂xu

r)

+ λ(∂2xφ̃, ∂
2
xφ̃) + λ

∑
α=i,e

{
mα(ũ2α, nα∂xu

r) +
(
∂xu

r, (∂xñα)2n−2α
)}

+ λ
∑
α=i,e

{
(∂xũα, ∂xũα) +

(
n−1α , (∂xñα)2

)}
.ε0

∑
α=i,e

‖∂2xũα‖2 + (1 + t)−2
∑
α=i,e

‖[ñα, ũα, ∂xφ̃]‖2 + (1 + t)−
3+5σ

2(1+3σ)

∑
α=i,e

‖ũα‖2

+ ε
σ

1+σ (1 + t)−
5+3σ
4+4σ + ε(1 + t)−2.

(3.30)
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Here, as ‖∂xur‖L∞ ≤ Cδrε, in terms of Cauchy-Schwarz’s inequality, one can take C2 > 0 large enough
and ε > 0 small enough such that

2mα(ũα, ∂xñα) + ((∂xñα)2, n−2α ) + C2mα(ũα, nαũα) + C2(∂xφ̃, ∂xφ̃)

− C2βmi

β + γ
(ũi, ∂xφ̃∂xu

r) +
C2γme

β + γ
(ũe, ∂xφ̃∂xu

r) ∼ ‖∂xñα‖2 + ‖ũα‖2 + ‖∂xφ̃‖2. (3.31)

By applying (3.30) and Gronwall’s inequality, we conclude

sup
0≤t≤T

{ ∑
α=i,e

{
(2mα(ũα, ∂xñα) + ((∂xñα)2, n−2α ) + C2mα(ũα, nαũα) + 2C2(nα, ψα)

}
+ C2(∂xφ̃, ∂xφ̃)− C2βmi

β + γ
(ũi, ∂xφ̃∂xu

r) +
C2γme

β + γ
(ũe, ∂xφ̃∂xu

r)
}

+ λ

∫ T

0

∑
α=i,e

{
mα(ũ2α, nα∂xu

r) +
(
∂xu

r, (∂xñα)2n−2α
)} dt

+ λ

∫ T

0

∑
α=i,e

{
(∂xũα, ∂xũα) +

(
n−1α , (∂xñα)2

)}
+ (∂2xφ̃, ∂

2
xφ̃)

 dt

.
∑
α=i,e

{
‖[ñα, ũα](0)‖2 + ‖∂xñα(0)‖2

}
+ ‖∂xφ̃(0)‖2 + ε0

∑
α=i,e

∫ T

0

‖∂2xũα‖2dt+ ε
σ

1+σ .

(3.32)

Step 3. Dissipation of ∂2xũα.
By differentiating (3.8) and (3.10) in x, taking the inner products of the resulting identities with

∂xũi and ∂xũe with respect to x over R, respectively, and taking the summation for α = i and e, we
have ∑

α=i,e

mα(∂t∂xũα, ∂xũα) +
∑
α=i,e

mα(∂x(ũα∂xũα + ũα∂xu
r + ∂xũαu

r), ∂xũα)

+
∑
α=i,e

Tα

(
∂x

(
∂xnα
nα

− ∂xn
r

nr

)
, ∂xũα

)
+ (∂2xφ̃,−∂xũi + ∂xũe)

+
∑
α=i,e

(
−∂x

(
∂2xũα
nα

)
, ∂xũα

)
+
∑
α=i,e

(
−∂x

(
∂2xu

r

nα

)
, ∂xũα

)
= 0.

(3.33)

It is straightforward to see that all terms in (3.33) can be estimated in the completely same way as in
(2.45), so that we directly arrive at

1

2

d

dt

∑
α=i,e

mα(∂xũα, ∂xũα) +
3

2

∑
α=i,e

mα(∂xu
r, (∂xũα)2) + λ

∑
α=i,e

(
∂2xũα
nα

, ∂2xũα

)

≤ Cε(1 + t)−2 + C

∑
α=i,e

‖∂x[ñα, ∂xũα]‖2 + ‖∂2xφ̃‖2
 . (3.34)

Integrating (3.34) with respect to t over [0, T ] and letting 0 < η < 1 be suitably small, one further has

sup
0≤t≤T

∑
α=i,e

mα(∂xũα, ∂xũα) +
∑
α=i,e

mα

∫ T

0

(∂xu
r, (∂xũα)2)dt

+ λ
∑
α=i,e

∫ T

0

(
∂2xũα
nα

, ∂2xũα

)
dt

.
∑
α=i,e

mα‖∂xũα(0)‖2 + C
∑
α=i,e

∫ T

0

(‖∂x[ñα, ∂xũα]‖2 + ‖∂2xφ̃‖2)dt+ Cε.

(3.35)
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Thus we get from (3.32) and (3.35) that

sup
0≤t≤T

{ ∑
α=i,e

{
2mα(ũα, ∂xñα) + ((∂xñα)2, n−2α ) + C2mα(ũα, nαũα) + 2C2(nα, ψα)

}
+
∑
α=i,e

mα(∂xũα, ∂xũα) + C2(∂xφ̃, ∂xφ̃)− C2βmi

β + γ
(ũi, ∂xφ̃∂xu

r) +
C2γme

β + γ
(ũe, ∂xφ̃∂xu

r)
}

+ λ

∫ T

0

∑
α=i,e

{
mα(ũ2α, nα∂xu

r) +
(
∂xu

r, (∂xñα)2n−2α
)} dt

+ λ

∫ T

0

∑
α=i,e

{
(∂xũα, ∂xũα) +

(
n−1α , (∂xñα)2

)}
+ (∂2xφ̃, ∂

2
xφ̃)

 dt

+ λ

∫ T

0

∑
α=i,e

{
mα((∂xũα)2, nα∂xu

r) +

(
∂2xũα
nα

, ∂2xũα

)} dt

.
∑
α=i,e

{
‖[ñα, ũα](0)‖2H1

}
+ ‖∂xφ̃(0)‖2 + ε

σ
1+σ .

(3.36)

Recalling (3.31), notice that∑
α=i,e

{
(2mαũα, ∂xñα) + ((∂xñα)2, n−2α ) + C2mα(ũα, nαũα) + 2C2(nα, ψα)

}
+
∑
α=i,e

mα(∂xũα, ∂xũα) + C2(∂xφ̃, ∂xφ̃)− C2βmi

β + γ
(ũi, ∂xφ̃∂xu

r) +
C2γme

β + γ
(ũe, ∂xφ̃∂xu

r)

∼
∑
α=i,e

(
‖ñα‖2H1 + ‖ũα‖2H1

)
+ ‖∂xφ̃‖2,

and

(∂xũα, ∂xũα) +
(
n−1α , (∂xñα)2

)
+

(
∂2xũα
nα

, ∂2xũα

)
∼
∥∥[∂xñα, ∂xũα, ∂

2
xũα]

∥∥2 ,
according to the a priori assumption (3.16) and the fact that n+ > n− > 0. (3.17) then follows from

the above observation and (3.36). Notice that the boundedness of ‖∂2xφ̃(t)‖2 for all t directly follows
from the Poisson equation (3.11). This then completes the proof of Proposition 3.1. �

We are now in a position to complete the

Proof of Theorem 3.1. The existence of the solution follows from the standard continuity argument
based on the local existence and the a priori estimate in Proposition 3.1. Then (3.13) holds true. The
large-time behavior given in (3.14) and (3.15) can be verified in terms of (3.13). This ends the proof
of Theorem 3.1. �

4. Appendix

In this appendix, we present the dissipative structure (cf. [39] and references therein) of the linearized
system corresponding to the one-fluid model (2.1) around a constant equilibrium state [n, u] = [1, 0]
with φ = 0, namely

∂tn+ ∂xu = 0,

∂tu+A∂xn− ∂xφ = ∂2xu,

ε∂2xφ = n+ φ,

where we put a constant ε > 0 in front of ∂2xφ in order to see what happens as ε tends to zero. The
case of two-fluid model (1.1) can be considered in a similar way; see [20] for details. In fact, taking the
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Fourier transform in x ∈ R gives

∂tn̂+ iξû = 0,

∂tû+Aiξn̂− iξφ̂ = −ξ2û,
−a(ξ)φ̂ = n̂,

where a(ξ) = εξ2 + 1. The direct energy estimate implies

∂t

[(
A+

1

a(ξ)

)
|n̂|2 + |û|2

]
+ 2ξ2|û|2 = 0. (4.1)

Moreover, it is also straightforward to compute

∂t〈iξn̂, û〉+ (A+
1

a(ξ)
)ξ2|n̂|2 = ξ2|û|2 + 〈iξn̂,−ξ2û〉,

which after taking the real part of the equation, applying the Cauchy-Schwarz inequality to the last
term and dividing it by 1 + ξ2, leads to

∂t
<〈iξn̂, û〉

1 + ξ2
+

ξ2

2(1 + ξ2)
(A+

1

a(ξ)
)|n̂|2 ≤ Cξ2|û|2. (4.2)

Here 〈 , 〉 stands for the complex inner product. Then, it follows from (4.1) and (4.2) that

∂tE + λD ≤ 0, (4.3)

with

E =

(
A+

1

a(ξ)

)
|n̂|2 + |û|2 + κ

<〈iξn̂, û〉
1 + ξ2

,

D = ξ2|û|2 +
ξ2

1 + ξ2
(A+

1

a(ξ)
)|n̂|2,

where κ > 0 is suitably small. Noticing

E ∼
(
A+

1

a(ξ)

)
|n̂|2 + |û|2,

it further follows from (4.3) that

∂tE +
λξ2

1 + ξ2
E ≤ 0.

Therefore, E(t, ξ) ≤ e−
λξ2

1+ξ2
t
E(0, ξ) holds true, and this directly implies the time-decay property of the

linearized solution operator as in [39]. Notice that similar to obtain (4.3) in the Fourier space, it also
holds in the original space that

d

dt

(
‖(
√
An, u)‖2H1 + ‖φ‖2H2 + κ(u, ∂xn)

)
+ λ(‖∂xn‖2 + ‖∂xu‖2H1 + ‖∂xφ‖2H2) ≤ 0.

Finally, we also write down the Green’s matrix G(t, ξ) corresponding to the linearized system:

G(t, ξ) = eλ+tP+ + eλ−tP−,

where

λ± =
−ξ2 ±

√
ξ4 − 4ξ2a(ξ)

2
are the eigenvalues of the coefficient matrix

M =

(
0 −iξ

−iξa(ξ) −ξ2

)
,

and

P± =
M − λ∓I
λ± − λ∓
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are the corresponding eigenprojection, with I being a 2× 2 identity matrix. Therefore, it is direct to
obtain

G(t, ξ) =


λ+e

λ−t − λ−eλ+t

λ+ − λ−
−iξ e

λ+t − eλ−t

λ+ − λ−

−iξa(ξ)
eλ+t − eλ−t

λ+ − λ−
λ+e

λ+t − λ−eλ−t

λ+ − λ−

 .

Observe that G(t, ξ) must reduce to the Green’s matrix in the Fourier space for the one-dimensional
Navier-Stokes equations as ε→ 0, cf. [19], for instance.
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