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Abstract. In this note it is shown that the Vlasov-Poisson-Fokker-Planck sys-

tem in the three-dimensional whole space driven by a time-periodic background
profile near a positive constant state admits a time-periodic small-amplitude

solution with the same period. The proof follows by the Serrin’s method on

the basis of the exponential time-decay property of the linearized system in
the case of the constant background profile.

Dedicated to Professor Tai-Ping Liu on his 70th birthday

1. Introduction

Consider the Vlasov-Poisson-Fokker-Planck (VPFP for short) system

∂tF + ξ · ∇xF +∇xΦ · ∇ξF = ∇ξ · (∇ξF + ξF ),

∆xΦ =

∫
R3

F dξ − ρ(t, x).

Here F (t, x, ξ) ≥ 0 denotes the density distribution function of particles with po-
sition x = (x1, x2, x3) ∈ R3 and velocity ξ = (ξ1, ξ2, ξ3) ∈ R3 at time t ∈ R, and
Φ = Φ(t, x) is the self-consistent potential function satisfying the Poisson equation
with boundary condition

lim
|x|→∞

Φ(t, x) = 0

for all t. The background profile ρ(t, x) is a given function which is periodic in time
with the period T > 0. Recall that the VPFP system is one of kinetic models in
plasma physics for describing the motion of charged particles (e.g., electrons and
ions) under the influence of the self-consistent electrostatic force and when collisions
are governed by the Fokker-Planck operator; see [19] and reference therein.

In the paper we are concerned with the existence of time-periodic solutions with
the same period T for the VPFP system whenever ρ(t, x) is smooth and sufficiently
close to a positive constant state. With loss of generality we assume that ρ(t, x) is
around the unit constant. Define

φ(t, x) = (−∆x)−1
(
ρ(t, x)− 1

)
.
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The above VPFP system can be also written as

∂tF + ξ · ∇xF +∇x(Φ + φ) · ∇ξF = ∇ξ · (∇ξF + ξF ), (1.1)

∆xΦ =

∫
R3

F dξ − 1, (1.2)

where for brevity we still have used the same notion Φ to denote the potential func-
tion. Define M = (2π)−3/2 exp{−|ξ|2/2}, and set the perturbation f = f(t, x, ξ)
by F = M +M1/2f . The system is further reformulated as

∂tf + ξ · ∇xf +∇x(Φ + φ) · ∇ξf

−1

2
ξ · ∇x(Φ + φ)f − ξM1/2 · ∇x(Φ + φ) = Lf, (1.3)

∆xΦ =

∫
R3

M1/2f dξ. (1.4)

Here L is the Fokker-Planck operator in the self-adjoint form given by

Lf =
1

M1/2
∇ξ ·

[
M∇ξ

(
f

M1/2

)]
.

We introduce the function space

X = {f = f(x, ξ) ∈ L2
ξ(H

3
x) : ‖f‖X <∞,M +M1/2f ≥ 0,∫∫

R3×R3

M1/2f(x, ξ) dξdx = 0}

with the norm ‖ · ‖X defined by

‖f‖2X = ‖f‖2L2
ξ(H

3
x)

+ ‖∇xΦf‖2H3
x
.

Here and in the sequel, for given f(t, x, ξ), Φf = Φf (t, x) denotes

Φf (t, x) = − 1

4π

∫∫
R3×R3

M1/2f(t, y, ξ)

|x− y|
dξdy.

The main result of the paper is stated as follows.

Theorem 1.1. Assume that φ(t, x) is time-periodic with period T > 0. There are
ε > 0, C > 0 such that if

sup
0≤t≤T

‖∇xφ(t)‖H3
x
≤ ε (1.5)

then the reformulated VPFP system (1.3), (1.4) admits a unique time-periodic so-
lution f(t, x, ξ) ∈ X with the same period T and

sup
0≤t≤T

‖f(t)‖X ≤ C sup
0≤t≤T

‖∇xφ(t)‖H3
x
. (1.6)

In what follows we give some remarks on Theorem 1.1 related to its motivations.
If φ ≡ 0 corresponding to the case when the background profile ρ is identical to a
constant, the global Maxwellian M is a trivial solution to the VPFP system (1.1),
(1.2), and the global existence and the exponential time-decay of classical solu-
tions near global Maxwellians have been established in [21] by the energy method
(cf. [18]); see also [6, 12, 13, 17] for the study of similar problems with the Fokker-
Planck operator. It is natural to ask what happens if the background profile depends
on t and x.
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When ρ is a function of the only variable x far from vacuum, one basic problem
is to consider the existence and stability of the non-vacuum stationary solution.
For the Vlasov-Poisson-Boltzmann system, it was studied in [16] provided that
ρ is smooth and sufficiently close to the positive constant state. Note that the
Boltzmann collision operator is more degenerate than the Fokker-Planck and only
the polynomial time-decay rate can be expected in the case of the whole space,
cf. [14]. When ρ depends on both t and x, it is generally hard to obtain the
global existence of classical solutions to the Vlasov-Poisson-type kinetic systems
with collisions if ρ(t, x) is only assumed to be bounded in all time, for instance,
time-periodic in particular. This is because after linearization the time-dependent
force must induce some inhomogeneous source terms which generally do not decay
in time. However, in the case with small time-periodic driving forces, as long as
the linear dynamics enjoys fast enough time-decay properties, it is still possible to
obtain the existence and stability of time-periodic solutions with small amplitude.
For the Boltzmann equation, it was studied in [26, 27] for the case with time-
periodic sources and in [15] for the case with given time-periodic forces. Note that
it was additionally required in [15] that space dimensions have to be greater than
or equal to five, and the physical case in dimensions three so far has remained open.

Motivated by those works mentioned above, we expect to consider the exis-
tence and stability of time-periodic solutions when collisions are replaced by the
Fokker-Planck operator with stronger dissipation property. Indeed, the exponen-
tial time-decay property of the linearised VPFP system corresponding to constant
background profiles plays a key role. To show Theorem 1.1, different from [15],
we would use the Serrin’s approach [25] (also cf. [22]), as it is more convenient to
study the velocity-diffusive Fokker-Planck operator through pure energy estimates
than using the Ukai’s method in [26] in terms of the contraction mapping princi-
ple. It should be pointed out that the time-exponential stability of the obtained
time-periodic solution under small perturbation can also be established as in [26],
and its proof is omitted for brevity. Besides, it could be interesting to study the
current problem but for the case of possibly large-amplitude background profiles,
that is to remove the smallness assumption (1.5).

On the other hand, we mention that there have been a lot of works for the study
of the VPFP system, for instance, both hypoelliptic [1, 3, 20] and hypocoercive
[4, 9, 10, 11, 20, 28] properties, and the existence and large-time behaviour of
solutions in different settings [2, 5, 7, 8, 23, 24, 29, 30].

Notations. Through the paper C denotes a positive (generally large) constant and λ
a positive (generally small) constant, where both C and λ may take different values
in different places. A ∼ B means λA ≤ B ≤ 1

λA for a generic constant λ > 0.

We use ‖ · ‖ to denote L2 norm over L2
x or L2

x,ξ if no confusion arises, and use 〈·, ·〉
to denote the inner product over L2

x,ξ. For a multiple index α = (α1, α2, α3), we

denote ∂α = ∂αx = ∂α1
x1
∂α2
x2
∂α3
x3

. The length of α is |α| = α1 + α2 + α3.

2. The Cauchy problem

In this section we study the Cauchy problem on the reformulated VPFP system
(1.3), (1.4) on t > 0, supplemented with initial data

f(0, x, ξ) = f0(x, ξ). (2.1)

The main result is stated as follows.



4 R.-J. DUAN AND S.-Q. LIU

Theorem 2.1. Assume that f0 ∈ X, ∇xφ ∈ C(0,∞;H3
x) with

‖f0‖X + sup
t≥0
‖∇xφ(t)‖H3

x

sufficiently small. Then the Cauchy problem on the VPFP system (1.3), (1.4), (2.1)
admits a unique solution f(t, x, ξ) ∈ X with

sup
t≥0
‖f(t)‖X ≤ C

(
‖f0‖X + sup

t≥0
‖∇xφ(t)‖H3

x

)
. (2.2)

The proof of Theorem 2.1 is based on the standard energy method with the help
of the exponential time-decay property of the linearised system in the case when
the background potential function φ is vanishing.

Let σ(ξ) = 1 + |ξ|2. Denote | · |σ by

|f |2σ =

∫
R3

[
|∇ξf |2 + σ(ξ)|f |2

]
dξ, f = f(ξ).

Moreover, for f = f(x, ξ), ‖f‖2σ stands for the spatial integration of |f(x, ·)|2σ over
R3. Recall (cf. [12], for instance) that the operator L satisfies that there is λ0 > 0
such that

−
∫
R3

fLf dξ ≥ λ0|{I−P0}f |2σ, (2.3)

where P0f = afM1/2, and af (t, x) =
∫
R3 M

1/2f(t, x, ξ) dξ. We also introduce the

velocity orthogonal projection P : L2
ξ → span{M1/2, ξM1/2} by P = P0⊕P1 with

P1f = bf · ξM1/2 and bf (t, x) =
∫
R3 ξM

1/2f(t, x, ξ) dξ.

Zero-order estimate: From (1.3) and (1.4), it is straightforward to obtain as in
[14, 21]

1

2

d

dt
(‖f‖2 + ‖∇xΦf‖2) + 〈f,−Lf〉 = 〈1

2
ξ · ∇x(Φf + φ), f2〉+ 〈ξM1/2 · ∇xφ, f〉.

It then follows from (2.3) that

1

2

d

dt
(‖f‖2 + ‖∇xΦf‖2) + λ0‖{I−P0}f‖2σ

≤ 〈1
2
ξ · ∇x(Φf + φ), f2〉+ 〈ξM1/2 · ∇xφ, f〉

≤ C sup
x
{|∇xΦ|, |∇xφ|}‖f‖2σ + η‖bf‖2 + Cη‖∇xφ‖2

≤ C{η + sup
x
{|∇xΦ|, |∇xφ|}‖f‖2σ + Cη‖∇xφ‖2, (2.4)

where η > 0 is a constant to be chosen later on.

Higher-order estimate: Similarly as in the zero-order case, from (1.3) and (1.4), one
has

1

2

d

dt

∑
1≤|α|≤3

(‖∂αf‖2 + ‖∂α∇xΦf‖2) +
∑

1≤|α|≤3

〈∂αf,−L∂αf〉

= −
∑

1≤|α|≤3

〈∂α[∇x(Φf + φ) · ∇ξf ], ∂αf〉+
∑

1≤|α|≤3

〈∂α[
1

2
ξ · ∇x(Φf + φ)f ], ∂αf〉

+
∑

1≤|α|≤3

〈ξM1/2 · ∂α∇xφ, ∂αf〉.
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Let us introduce an equivalent energy functional

E(f) ∼ ‖f‖2L2
ξ(H

3
x)

+ ‖∇xΦf‖2H3
x

(2.5)

to be explicitly defined later on. Then the above estimate immediately gives

1

2

d

dt

∑
1≤|α|≤3

(‖∂αf‖2 + ‖∂α∇xΦf‖2) + λ0
∑

1≤|α|≤3

‖{I−P0}∂αf‖2σ

≤ C(η +
√
E(f) + ‖∇xφ‖H3)

∑
|α|≤3

(‖∂αf‖2σ + ‖∂α∇xΦf‖2)

+Cη‖∇xφ‖2H3 . (2.6)

Dissipation of af and ∇xΦf : As in [12], applying P to (1.3), it follows together
with (1.4) that

∂ta
f +∇x · bf = 0, (2.7)

∂tb
f +∇xaf +∇x · Γ({I−P}f) = −bf + (1 + af )∇x(Φf + φ), (2.8)

∆xΦf = af , (2.9)

where Γ = (Γij)1≤i,j≤3 is the moment functional defined by

Γij(f) =

∫
R3

(ξiξj − 1)M1/2f dξ.

Let |α| ≤ 3. Applying ∂α to (2.8), taking the inner product of the resulting equation
with ∂α∇xΦf over R3

x and using (2.9), we obtain

‖∂α∇xΦf‖2 + ‖∂αaf‖2

=

∫
R3

∂t∂
αbf · ∂α∇xΦf dx+

∫
R3

∇x · Γ({I−P}∂αf) · ∂α∇xΦf dx

+

∫
R3

∂αbf · ∂α∇xΦf dx−
∫
R3

∂α[af∇x(Φf + φ)] · ∂α∇xΦf dx. (2.10)

Denote the right-hand terms by Ii (1 ≤ i ≤ 4). For I1, it is given by

I1 =
d

dt

∫
R3

∂αbf · ∂α∇xΦf dx−
∫
R3

∂αbf · ∂α∇x∂tΦf dx,

where one can use (2.7) to further compute

−
∫
R3

∂αbf · ∂α∇x∂tΦf dx =

∫
R3

∂α∇x · bf∂α∆−1x ∂ta
f dx

= −
∫
R3

∂α∇x · bf∆−1x ∂α∇x · bf dx

=

∫
R3

|∇x∆−1x ∂α∇x · bf |2 dx.

As the operator ∇x∆−1x ∇x· is bounded from Lp to Lp (1 < p <∞), it then follows
that ∫

R3

|∇x∆−1x ∂α∇x · bf |2 dx ≤ C‖∂αbf‖2,

and hence

I1 ≤
d

dt

∫
R3

∂αbf · ∂α∇xΦf dx+ C‖∂αbf‖2.
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For I2, from taking integration by part, using (2.9) and noticing again the bound-
edness of ∂xi∂xj∆

−1
x on L2, one has

I2 =
∑
ij

∫
R3

∂xjΓij({I−P}∂αf)∂α∂xiΦ
f dx

= −
∑
ij

∫
R3

Γij({I−P}∂αf)∂α∂xi∂xj∆
−1
x af dx

≤ η‖∂α∂xi∂xj∆−1x af‖2 + Cη‖Γ({I−P}∂αf)‖2

≤ Cη‖∂αaf‖2 + Cη‖{I−P}∂αf‖2.

For the rest two terms, it is straightforward to obtain

I3 ≤ η‖∂α∇xΦf‖2 + Cη‖∂αbf‖2,

and

I4 = −
∫
R3

∂α[af∇x(Φf + φ)] · ∂α∇xΦf dx

≤ C‖af‖H3‖∇xΦf‖2 + ‖∇xφ‖H3‖af‖H3‖∇xΦf‖H3

≤ (‖af‖H3 + ‖∇xφ‖H3)(‖af‖2H3 + ‖∇xΦf‖2H3).

Plugging the above estimates into (2.10), using |∂αbf | ≤ C‖{I − P0}∂αf‖L2
ξ

and

then taking the sum over |α| ≤ 3, it holds that

− d

dt

∑
|α|≤3

∫
R3

∂αbf · ∂α∇xΦf dx+ λ(‖∇xΦf‖2H3 + ‖af‖2H3)

≤ C‖{I−P0}f‖2L2
ξ(H

3
x)

+ C(‖af‖H3 + ‖∇xφ‖H3)(‖af‖2H3 + ‖∇xΦf‖2H3). (2.11)

This completes the estimate on the dissipation of af and ∇xΦf .

We now define

E(f) = ‖f‖2L2
ξ(H

3
x)

+ ‖∇xΦf‖2H3
x
− κ

∑
|α|≤3

∫
R3

∂αbf · ∂α∇xΦf dx, (2.12)

with the constant κ > 0 small enough. Note that E(f) satisfies (2.5) as long as
κ > 0 is small enough. By taking κ > 0 to be further small enough, it follows from
(2.4), (2.6) and (2.11) that

d

dt
E(f) + λ

∑
|α|≤3

‖{I−P0}∂αf‖2σ + λ(‖∇xΦf‖2H3 + ‖af‖2H3)

≤ C(η +
√
E(f) + ‖∇xφ‖H3)

∑
|α|≤3

(‖∂αf‖2σ + ‖∂α∇xΦf‖2)

+ Cη‖∇xφ‖2H3 . (2.13)
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Notice that E(f) ∼ ‖f‖2X and

E(f) ≤ C(‖f‖2L2
ξ(H

3
x)

+ ‖∇xΦf‖2H3
x
)

≤ C
∑
|α|≤3

(‖∂αf‖2σ + ‖∂α∇xΦf‖2)

≤ C
∑
|α|≤3

‖{I−P0}∂αf‖2σ + C(‖∇xΦf‖2H3 + ‖af‖2H3).

Fix η > 0 to be a small constant. Therefore, by the standard continuity argument,
whenever ‖f0‖X and supt ‖∇xφ(t)‖H3 are sufficiently small, it follows from (2.13)
that

d

dt
E(f) + λE(f) ≤ C‖∇xφ‖2H3 ,

which by Gronwall’s inequality implies

E(f(t)) ≤ E(f0)e−λt + C

∫ t

0

e−λ(t−s)‖∇φ(s)‖2H3 ds

≤ E(f0)e−λt + C(sup
t≥0
‖∇φ(t)‖H3)2, (2.14)

and hence

‖f(t)‖X ≤ C(‖f0‖X + sup
t≥0
‖∇φ(t)‖H3),

for all t ≥ 0. This closes the a priori estimate as ‖f0‖X and supt ‖∇xφ(t)‖H3 are
chosen to be small enough. The proof for the local existence of solutions in X is
omitted for brevity; see [6], for instance. Therefore, Theorem 2.1 is proved.

3. Time-periodic solutions

In this section we shall use the Serrin’s approach (cf. [22, 25]) to prove Theorem
1.1. To the end, we assume that φ(t, x) is periodic in time with period T > 0, and

δφ := sup
0≤t≤T

‖∇xφ(t)‖H3

is sufficiently small.

Step 1: Find the special initial data. Let f(t, ·, ·) ∈ X (t ≥ 0) be the solution ob-
tained in Theorem 2.1 by solving the Cauchy problem (1.3) and (1.4) corresponding
to initial data f0(x, ξ) with ‖f0‖X ≤ δ0 with δ0 > 0 small enough. Take integers
m ≥ k ≥ 1, and define

g(t, x, ξ) = f(t+ (m− k)T, x, ξ). (3.1)

As φ(t, x) is time-periodic with period T , it is direct to see that g(t, x, ξ) solves the
Cauchy problem on the same VPFP system

∂tg + ξ · ∇xg +∇x(Φg + φ) · ∇ξg

−1

2
ξ · ∇x(Φg + φ)g − ξM1/2 · ∇x(Φg + φ) = Lg,

∆xΦg =

∫
R3

M1/2g dξ,

with initial data g(0, x, ξ) = f((m− k)T, x, ξ). We define

h(t, x, ξ) = g(t, x, ξ)− f(t, x, ξ), Φh(t, x) = Φg(t, x)− Φf (t, x). (3.2)
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After taking the difference of two systems of g and f , h(t, x, ξ) satisfies

∂th+ ξ · ∇xh+∇x(Φh + φ) · ∇ξh

−1

2
ξ · ∇x(Φh + φ)h− ξM1/2 · ∇xΦh = Lh+R, (3.3)

∆xΦh =

∫
R3

M1/2h dξ, (3.4)

where R is denoted by

R =
1

2
ξ · ∇xΦfh−∇xΦf · ∇ξh+

1

2
ξ · ∇xΦhf −∇xΦh · ∇ξf.

Notice that h satisfies the same system as f except that the remaining term R linear
in h appears and the time-periodic driving inhomogeneous source term ξM1/2 ·∇xφ
is vanishing. Based on this observation, one can repeat the similar energy estimates
as done for the Cauchy problem on f in the past section. First of all, we claim that∑

|α|≤3

〈∂αR, ∂αh〉 ≤ C(δ0 + δφ)(
∑
|α|≤3

‖∂αh‖2σ + ‖∇xΦh‖2H3). (3.5)

Indeed, for each α with |α| ≤ 3,

〈∂αR, ∂αh〉

= 〈∂α(
1

2
ξ · ∇xΦfh−∇xΦf · ∇ξh), ∂αh〉+ 〈∂α(

1

2
ξ · ∇xΦhf), ∂αh〉

+〈∂α(∇xΦhf), ∂α∇ξh〉

≤ C‖∇xΦf‖H3

∑
|α|≤3

‖∂αh‖2σ + C‖f‖L2
ξ(H

3
x)

(
∑
|α|≤3

‖∂αh‖2σ + ‖∇xΦh‖2H3),

where we have taken the integration by part in ξ variable in the last term of R.
Recall that from Theorem 2.1,

‖f‖L2
ξ(H

3
x)

+ ‖∇xΦf‖H3 = ‖f‖X ≤ C(‖f0‖X + sup
t≥0
‖∇xφ(t)‖H3

x
) ≤ C(δ0 + δφ).

Therefore (3.5) holds true. Then, by modifying the proof of (2.4) and (2.6), one
can obtain

1

2

d

dt
(‖h‖2 + ‖∇xΦh‖2) + λ0‖{I−P0}h‖2σ

≤ C sup
x
{|∇xΦh|, |∇xφ|}‖h‖2σ + 〈R, h〉

≤ C(δ0 + δφ)(
∑
|α|≤3

‖∂αh‖2σ + ‖∇xΦh‖2H3), (3.6)

and

1

2

d

dt

∑
1≤|α|≤3

(‖∂αh‖2 + ‖∂α∇xΦh‖2) + λ0
∑

1≤|α|≤3

‖{I−P0}∂αh‖2σ

≤ C(
√
E(h) + ‖∇xφ‖H3)

∑
|α|≤3

(‖∂αh‖2σ + ‖∂α∇xΦh‖2) +
∑

1≤|α|≤3

〈∂αR, ∂αh〉

≤ C(δ0 + δφ)(
∑
|α|≤3

‖∂αh‖2σ + ‖∇xΦh‖2H3). (3.7)
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As before, to obtain the dissipation of ah and ∇xΦh, we deduce from the system
of h (3.3) and (3.4) that

∂ta
h +∇x · bh = 0,

∂tb
h +∇xah +∇x · Γ({I−P}h)

= −bh +∇xΦh + ah∇xφ+ ah∇xΦg + af∇xΦh,

∆xΦh = ah.

By repeating the similar computations as for obtaining (2.11), one has

− d

dt

∑
|α|≤3

∫
R3

∂αbh · ∂α∇xΦh dx+ λ(‖∇xΦh‖2H3 + ‖ah‖2H3)

≤ C‖{I−P0}h‖2L2
ξ(H

3
x)

+ C(δ0 + δφ)(‖ah‖2H3 + ‖∇xΦh‖2H3). (3.8)

Then, recall (2.12), and by combing (3.6), (3.7) and (3.8) and using smallness of δ0
and δφ, it holds that

d

dt
E(h) + λE(h) ≤ 0,

which implies

‖h(t)‖X ≤ CE(h(t)) ≤ CE(h(0))e−λt ≤ C‖h(0)‖Xe−λt, (3.9)

for all t ≥ 0. Recall (3.1) and (3.2). Using (2.2), the above inequality yields

‖f(t+ (m− k)T )− f(t)‖X ≤ C‖f((m− k)T )− f(0)‖Xe−λt

≤ C(‖f((m− k)T )‖X + ‖f(0)‖X)e−λt

≤ C(‖f(0)‖X + sup
t≥0
‖∇xφ(t)‖H3

x
)e−λt

≤ C(δ0 + δφ)e−λt.

Taking t = kT , one has

‖f(mT )− f(kT )‖X ≤ C(δ0 + δφ)e−λkT ,

for all integersm ≥ k ≥ 1. As e−λkT → 0 as k →∞, it shows that {f(kT, ·, ·)}k≥1 ⊂
X is a Cauchy sequence with respect to the norm ‖ · ‖X , and its limit function is
denoted by f∗0 = f∗0 (x, ξ) ∈ X which satisfies

‖f∗0 ‖X ≤ C(δ0 + δφ). (3.10)

Step 2: Solve the Cauchy problem with initial data f∗0 . As both δ0 and δφ are
small enough, so is ‖f∗0 ‖X due to (3.10). Thus, applying Theorem 2.1, one can find
f∗(t, x, ξ) which is the solution to the Cauchy problem (1.3), (1.4) with initial data
given by f∗0 (x, ξ) ∈ X. For an integer n ≥ 1, we define

h̃(t, x, ξ) = f(t+ nT, x, ξ)− f∗(t, x, ξ),

where f(t, x, ξ) is the solution used for obtaining f∗0 (x, ξ) in the previous step. By

applying the same estimate as h in (3.9) to h̃(t, x, ξ), it holds that

‖f(t+ nT )− f∗(t)‖X ≤ C‖f(nT )− f∗(0)‖Xe−λt,

for all t ≥ 0. Letting t = T in the above inequality, one has

‖f((n+ 1)T )− f∗(T )‖X ≤ C‖f(nT )− f∗0 ‖X ,
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which by further taking n→∞, implies ‖f∗0 − f∗(T )‖X = 0, namely

‖f∗(0)− f∗(T )‖X = 0.

Therefore it shows that f∗(t, x, ξ) ∈ X is periodic in time with the period T .
Notice that f∗(t, x, ξ) satisfies the system (1.3), (1.4) on all t ≥ 0, particularly on
0 ≤ t ≤ T . It remains to prove (1.6). In fact, as for obtaining (2.14), it holds that

E(f∗(t)) ≤ CE(f∗0 )e−λt + C(sup
0≥0
‖∇φ(t)‖H3)2,

that is,

‖f∗(t)‖X ≤ C‖f∗0 ‖Xe−λt + C sup
0≤t≤T

‖∇φ(t)‖H3 ,

for all t ≥ 0. Then, for 0 ≤ t ≤ T ,

‖f∗(t)‖X = ‖f∗(t+ nT )‖X ≤ C‖f∗0 ‖Xe−λnT + C sup
0≤t≤T

‖∇φ(t)‖H3 .

Hence (1.6) follows by taking n→∞. The proof of Theorem 1.1 is complete.
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