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Abstract. Although there recently have been extensive studies on the pertur-
bation theory of the angular non-cutoff Boltzmann equation (cf. [4] and [17]),

it remains mathematically unknown when there is a self-consistent Lorentz

force coupled with the Maxwell equations in the nonrelativistic approxima-
tion. In the paper, for perturbative initial data with suitable regularity and

integrability, we establish the large time stability of solutions to the Cauchy

problem on the Vlasov-Maxwell-Boltzmann system with physical angular non-
cutoff intermolecular collisions including the inverse power law potentials, and

also obtain as a byproduct the convergence rates of solutions. The proof is

based on a refined time-velocity weighted energy method with two key tech-
nical parts: one is to introduce the exponentially weighted estimates into the

non-cutoff Boltzmann operator and the other to design a delicate temporal en-
ergy X(t)-norm to obtain its uniform bound. The result also extends the case

of the hard sphere model considered by Guo (Invent. Math. 153(3): 593–630

(2003)) to the general collision potentials.
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1. Introduction

1.1. The Cauchy problem. The motion of ionized nonrelativistic plasmas con-
sisting of two species particles (e.g., electrons and ions) with collisional effects is
governed by the Boltzmann equations

∂tF+ + ξ · ∇xF+ + (E + ξ ×B) · ∇ξF+ = Q(F+, F+) +Q(F+, F−),

∂tF− + ξ · ∇xF− − (E + ξ ×B) · ∇ξF− = Q(F−, F+) +Q(F−, F−).
(1.1) V

The self-consistent electromagnetic field satisfies the Maxwell equations

∂tE −∇x ×B = −
∫
R3

ξ(F+ − F−) dξ,

∂tB +∇x × E = 0,

∇x · E =

∫
R3

(F+ − F−) dξ, ∇x ·B = 0.

(1.2) M

Here F± = F±(t, x, ξ) ≥ 0 stands for the number densities of ions (+) and electrons
(−) which have position x = (x1, x2, x3) ∈ R3 and velocity ξ = (ξ1, ξ2, ξ3) ∈ R3 at
time t ≥ 0, and E(t, x), B(t, x) denote the electro and magnetic fields, respectively.
The initial data of the coupled system above is given by

F±(0, x, ξ) = F0,±(x, ξ), E(0, x) = E0(x), B(0, x) = B0(x) (1.3) VM.id

satisfying the compatibility conditions

∇x · E0 =

∫
R3

(F0,+ − F0,−) dξ, ∇x ·B0 = 0.

The Boltzmann collision operator Q(·, ·) in (1.1) takes the form of

Q(F,G) =

∫
R3×S2

q(ξ − ξ∗, σ) [F (ξ′)G(ξ′∗)− F (ξ)G(ξ∗)] dξ∗dσ,

where in terms of velocity pair (ξ, ξ∗) before collisions and velocity pair (ξ′, ξ′∗) after
collisions is defined by

ξ′ =
ξ + ξ∗

2
+
|ξ − ξ∗|

2
σ, ξ′∗ =

ξ + ξ∗
2
− |ξ − ξ∗|

2
σ.

The Boltzmann collision kernel q(ξ−ξ∗, σ) ≥ 0 depends only on the relative velocity
|ξ − ξ∗| and on the deviation angle θ given by cos θ = 〈σ, (ξ − ξ∗)/|ξ − ξ∗|〉. As in
[4, 17], without loss of generality, one can suppose that q(ξ− ξ∗, σ) is supported on
cos θ ≥ 0. Throughout the paper, the Boltzmann collision kernel is further assumed
to satisfy the following assumption: q(ξ − ξ∗, σ) takes the product form

q(ξ − ξ∗, σ) = Cq|ξ − ξ∗|γb(cos θ)

for a constant Cq > 0, where in the kinetic part |ξ − ξ∗|γ , the exponent γ > −3 is
determined by the intermolecular interactive mechanism, and in the angular part,
there are Cb > 0, 0 < s < 1 such that

1

Cbθ1+2s
≤ sin θb(cos θ) ≤ Cb

θ1+2s

holds for all θ in (0, π2 ]. Here, it is convenient to call soft potentials when −3 <
γ < −2s, and hard potentials when γ + 2s ≥ 0. The current work is restricted to
the case of

−3 < γ < −2s, 1/2 ≤ s < 1. (1.4) ass.main
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Notice that all the physical parameters, such as the particle masses, the light
speed, and all other involving constants, have been chosen to be unit for simplicity
of presentation and also without loss of generality. In addition, for the physical
background of the system mentioned above, interested readers may refer to the
textbook [23, Chapter 6].

Our goal of the paper is to study the large time asymptotic stability for the
classical solutions to the Cauchy problem (1.1), (1.2), (1.3) of the Vlasov-Maxwell-
Boltzmann system under the main assumption (1.4), provided that initial data is
sufficiently close to equilibrium states with F± being the same global Maxwellian
and (E,B) vanishing. See also a recent mathematical work [21].

Remark 1.1. Recall that when the intermolecular interactive potential takes the
inverse power law in the form of U(|x|) = |x|−(`−1) with 2 < ` <∞, the Boltzmann
collision kernel q(ξ − ξ∗, σ) in three space dimensions satisfies the aforementioned
assumptions with γ = `−5

`−1 and s = 1
`−1 , and our restriction of the paper corresponds

to the condition 2 < ` < 3 in terms of the parameter `. Note γ → −3 and s → 1
as ` → 2 in the limiting case, for which the grazing collisions between particles
are dominated and the Boltzmann collision term has to be replaced by the classical
Landau collision term for the Coulomb potential, cf. [5, 24, 36]; refer also to the
recent works [12, 20, 34, 37] for discussions on the corresponding models.

In what follows, we mention some works related to this paper. In the perturba-
tive context, there have been extensive investigations on the Boltzmann and related
equations, see the first result by Ukai [35] and also [2, 3, 4, 6, 17, 19, 26, 27, 28, 32]
and reference therein. For the Vlasov-Maxwell-Boltzmann system, the global ex-
istence of solutions to the periodic initial boundary value problem near the global
Maxwellian equilibrium states was firstly investigated by Guo [21] for the hard
sphere model. Then, the rate of convergence to Maxwellians with any polynomial
speed in large time was shown by Guo-Strain [31, 33] for the Vlasov-Maxwell-
Boltzmann system on the periodic box in both the classical and relativistic situ-
ations. For the Cauchy problem in the whole space, the global in time classical
solutions were constructed by Strain [29]. And recently, the large-time behavior
of classical solutions to the Vlasov-Maxwell-Boltzmann system in the whole space
was studied by Duan-Strain [14]. We would point out that all the works concerning
the Vlasov-Maxwell-Boltzmann system mentioned above are focused on the cutoff
collision kernels and the hard sphere model.

For the Vlasov-Maxwell-Boltzmann system without angular cutoff, it still re-
mains a major open problem to construct global classical solutions near equilibrium.
Very recently, Guo [20] made further progress in proving the global existence of clas-
sical solutions to the Vlasov-Poisson-Landau system in a periodic box for the most
important Coulomb potential. One of the key points in the proof there is to design
a new velocity weight depending on the order of space and velocity derivatives so
as to capture the anisotropic dissipation property of the linearized Landau opera-
tor. Due to the recent study of the non cutoff Boltzmann equation independently
by AMUXY [2, 3, 4] and Gressman-Strain [17, 18], it is now well known that the
linearized Boltzmann operator without angular cutoff has the similar anisotropic
dissipation phenomenon compared to the Landau, see [9, 19]. Therefore, as pointed
in [20], it is also interesting to see whether or not the approach in [20] can be ap-
plied to the non cutoff Vlasov-Maxwell-Boltzmann system for the non hard-sphere
model; see also [9, 34] and [25] for three recent applications.
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On the other hand, basing on the time weighted energy method, another ap-
proach was developed recently in [10, 11, 12] and [8] to deal with the Vlasov-
Poisson-Boltzmann, Vlasov-Poisson-Landau and Vlasov-Maxwell-Landau systems
for general collision potentials. The main difference with [20] is to introduce another
kind of time-velocity dependent weight function which can induce the extra dissi-
pation mechanism to compensate the weaker dissipation of the linearized collision
operator in the case of non hard-sphere models, particularly physically interesting
soft potentials.

1.2. Reformulation, weight and norm. We now turn to the presentation of
our main result. For that, write the normalized global Maxwellian, without loss of
generality, as

µ = µ(ξ) = (2π)−3/2e−|ξ|
2/2,

and set the perturbation in the standard way

F±(t, x, ξ) = µ+ µ1/2f±(t, x, ξ).

Use [·, ·] to denote the column vector in R2. Set F = [F+, F−] and f = [f+, f−].
Then the Cauchy problem (1.1), (1.2), (1.3) can be reformulated as

∂tf + ξ · ∇xf + q0(E + ξ ×B) · ∇ξf − E · ξµ1/2q1 + Lf

=
q0

2
E · ξu+ Γ(f, f),

∂tE −∇x ×B = −
∫
R3

ξµ1/2(f+ − f−) dξ,

∂tB +∇x × E = 0,

∇x · E =

∫
R3

µ1/2(f+ − f−) dξ, ∇x ·B = 0

(1.5) VM

with initial data

f±(0, x, ξ) = f0,±(x, ξ), E(0, x) = E0(x), B(0, x) = B0(x) (1.6) VM0

satisfying the compatibility condition

∇x · E0 =

∫
R3

µ1/2(f0,+ − f0,−) dξ, ∇x ·B0 = 0. (1.7) VM1

Here, q0 = diag(1,−1), q1 = [1,−1], and the linearized collision term Lf and the
nonlinear collision term Γ(f, f) are respectively defined by

Lf = [L+f, L−f ], Γ(f, g) = [Γ+(f, g),Γ−(f, g)],

with

L±f = −2µ−1/2Q
(
µ1/2f±, µ

)
− µ−1/2Q

(
µ, µ1/2{f± + f∓}

)
,

Γ±(f, g) = µ−1/2Q
(
µ1/2f±, µ

1/2g±

)
+ µ−1/2Q

(
µ1/2f±, µ

1/2g∓

)
.

As in [21], the null space of the linearized operator L is given by

N = span
{

[1, 0]µ1/2, [0, 1]µ1/2, [ξi, ξi]µ
1/2 (1 ≤ i ≤ 3), [|ξ|2, |ξ|2]µ1/2

}
.

Let P be the orthogonal projection from L2
ξ × L2

ξ to N . Given f(t, x, ξ), one can

write P as Pf = [P+f,P−f ] with

P±f =
{
a±(t, x) + b(t, x) · ξ + c(t, x)(|ξ|2 − 3)

}
µ1/2,
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where the coefficient functions are determined by f in the way that

a± =
〈
µ1/2, f±

〉
=
〈
µ1/2,P±f

〉
,

bi =
1

2

〈
ξiµ

1/2, f+ + f−

〉
=
〈
ξiµ

1/2,P±f
〉
,

c =
1

12

〈
(|ξ|2 − 3)µ1/2, f+ + f−

〉
=

1

6

〈
(|ξ|2 − 3)µ1/2,P±f

〉
.

In what follows, we introduce the weight functions and norms used throughout
the paper. First of all, define

wτ,λ = wτ,λ(t, ξ) = 〈ξ〉γτ exp

{
λ

(1 + t)ϑ
〈ξ〉
}
, 0 < ϑ ≤ 1

4
, (1.8) wgt

where constants τ ∈ R and λ ≥ 0 are two parameters which may vary in different
places and 〈ξ〉 = (1 + |ξ|2)1/2. Note that the dependence of wτ,λ on parameters γ
and ϑ has been neglected without any confusion. For simplicity, we write wτ = wτ,0
when λ = 0. For any function f(t, x, ξ), define

|f(x)|2τ,λ =

∫
R3

w2
τ,λ(t, ξ)|f |2 dξ, ‖f‖2τ,λ =

∫
R3

|f(x)|2τ,λ dx.

As in [2], introduce

|f |2D =

∫
R6×S2

q(ξ − ξ∗, σ)µ∗(f
′ − f)2dξ∗dξdσ

+

∫
R6×S2

q(ξ − ξ∗, σ)f2
∗

(√
µ′∗ −

√
µ∗

)2

dξ∗dξdσ,

(1.9) def.DB

and define

|f |2D,τ,λ = |wτf |2D, ‖f‖2D,τ,λ =

∫
R3

|f |2D,τ,λ dx.

For simplicity, we also use the notation

|f(ξ)|2L2
`

=
∣∣〈ξ〉`f(ξ)

∣∣2
L2 and ‖f(ξ)‖2L2

`
=

∫
R3

|f(ξ)|2L2
`
dx,

where ` ∈ R. And the weighted fractional Sobolev norm |f(ξ)|2Hs` =
∣∣〈ξ〉`f(ξ)

∣∣2
Hs

is

given by

|f |2Hs` = |f |2L2
`

+

∫
R3

dξ

∫
R3

dξ′
[
〈ξ〉`f(ξ)− 〈ξ′〉`f(ξ′)

]2
|ξ − ξ′|3+2s

χ|ξ−ξ′|≤1,

which turns out to be equivalent with

|f |2Hs` =

∫
R3

dξ
∣∣∣(1−∆ξ)

s
2
(
w`(ξ)f(ξ)

)∣∣∣2 .
Moreover ‖f‖Hs` is given by ‖f‖2Hs` =

∫
R3 |f |2Hs` dx. We also use ‖ · ‖HN to denote

the standard Sobolev norm in R3 with respect to the variables x.
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1.3. Main result. Let I = [I+, I−] with I±f = f±. To study the global existence
by means of the energy method, inspired by [8], the temporal energy functionals
and the corresponding dissipation rate functionals are defined by

EN,`,λ(t) ∼
∑
|α|≤N

‖∂α(a±, b, c)‖+
∑

|α|+|β|≤N

∥∥∂αβ {I−P}f(t)
∥∥2

|α|+|β|−`,λ

+‖(E,B)‖2HN , (1.10) def.e

EN (t) ∼
∑
|α|≤N

‖∂αf(t)‖2 + ‖(E,B)‖2HN , (1.11) def.e0

and

DN,`,λ(t) =
∑

|α|+|β|≤N

∥∥∂αβ {I−P}f(t)
∥∥2

D,|α|+|β|−`,λ

+
∑

|α|≤N−1

‖∇x∂α(a±, b, c)‖2

+‖a+ − a−‖2 + ‖E‖2HN−1 + ‖∇xB‖2HN−2

+
λ

(1 + t)1+ϑ

∑
|α|+|β|≤N

∥∥∥〈ξ〉1/2∂αβ {I−P}f(t)
∥∥∥2

|α|+|β|−`,λ
, (1.12) def.dr

DN (t) =
∑
|α|≤N

‖∂α{I−P}f(t)‖2D +
∑

|α|≤N−1

‖∇x∂α(a±, b, c)‖2

+‖a+ − a−‖2 + ‖E‖2HN−1 + ‖∇xB‖2HN−2 , (1.13) def.dr0

where the integer N ≥ 0 and ` ≥ 0 are parameters which may differ in different
places and also satisfy `−N ≥ 0. Note that EN (t) and DN (t) contain no velocity
differentiation and no extra velocity weight, and also that the last term of DN,`,λ(t)
on the right-hand side of (1.12) disappears when λ = 0.

Let constants N1 ≥ 14, `1 ≥ 1 +N1, λ0 > 0, 0 < ϑ ≤ 1
4 and ε0 > 0 be given; the

exact choice of N1, `1 λ0, ϑ and ε0 can be seen in the later proof. In terms of those
given constants, the temporal energy norm X(t) is defined by

X(t) = sup
0≤s≤t

{
EN1(s) + (1 + s)

3
2 EN1−2(s)

}
+ sup

0≤s≤t

{
(1 + s)−

1+ε0
2 EN1,`1,λ0(s) + EN1−1,`1,λ0(s)

+(1 + s)
3
2 EN1−3,`1− γ+2s

γ ,λ0
(s)
}

+ sup
0≤s≤t

{
(1 + s)2(1+ϑ)‖∇x(E,B)(s)‖2H5

}
. (1.14) def.X

The main result of the paper is stated as follows.

〈thm.gl〉Theorem 1.1. Assume max
{
−3,− 3

2 − 2s
}
< γ < −2s, 1

2 ≤ s < 1 and ϑ = 1
4 .

Take N1 ≥ 14, `1 ≥ 1 + N1, `2 > 15(γ+2s)
4γ , λ0 > 0 and take also ε0 > 0 small

enough. Let f0 = [f0,+, f0,−] satisfy F±(0, x, ξ) = µ(ξ) + µ1/2(ξ)f0,±(x, ξ) ≥ 0. If

Y0 =
∑

|α|+|β|≤N1

∥∥∂αβ f0

∥∥
|α|+|β|−`1,λ0

+ ‖(E0, B0)‖HN1∩L1 + ‖w−`2f0‖Z1
(1.15) def.Y0
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is sufficiently small, then there exist properly defined energy functionals EN,`,λ(t)

and EN (t) in the definition (1.14) of X(t)-norm such that the Cauchy problem (1.5),
(1.6), (1.7) of the Vlasov-Maxwell-Boltzmann system admits a unique global solution(
f(t, x, ξ), E(t, x), B(t, x)

)
satisfying F±(t, x, ξ) = µ(ξ) +µ1/2(ξ)f±(t, x, ξ) ≥ 0 and

X(t) . Y 2
0 (1.16) thm.gl.1

for all time t ≥ 0.

Now we give several remarks concerning this theorem.

Remark 1.2. Similar results hold in the case of hard potentials, i.e. γ + 2s ≥ 0,
for which the proof could be much simpler. In addition, in the case of soft potentials
−3 < γ < −2s under consideration, the additional restriction γ > 3

2 − 2s is due
to the technique of proofs used in the paper, see also Remark 2.3. But it is still
possible to get rid of it by using the different approach as in [9].

Remark 1.3. The choice of parameters s ≥ 1/2, l1 ≥ N1 + 1 and ϑ = 1/4 is
critical in our proof of Theorem 1.1. We believe, however, that the regularity index
N1 ≥ 14 imposed in Theorem 1.1 is not optimal. Since our main concern in this
paper is to show the global solvability of the Vlasov-Maxwell-Boltzmann system near
Maxellians through the perturbation method, the problem on determining the critical
value of N1 is beyond the scope of this manuscript.

Remark 1.4. Note that when s → 1, the basis 〈ξ〉γ in the algebraic part of the
velocity weight (1.8) introduced in this paper does not coincide with that of [20]
and [8], where the basis 〈ξ〉γ+2s was essentially used. The choice of 〈ξ〉γ is due to
the fractional diffusive property of the Boltzmann operator. It is known that the
linearized Landau operator has the anisotropic dissipation property which includes
the integer ξ−derivatives, so that one can distribute different weight according to
different derivatives. However, in the case of the non-cutoff Boltzmann operator,
the fractional derivative can not be split in a direct way. Instead, our trick is to
apply the Fourier transform to overcome this difficulty, and as a compensation, the
basis function 〈ξ〉γ naturally comes out, see (3.20) and also cf. [9].

The proof of Theorem 1.1 is based on a refined energy method with the velocity
weight w`,λ(t, ξ) containing the time-velocity-dependent exponential factor. The
main difficulty in the proof is to control two types of nonlinearities: one is induced
by the coupling term (E + ξ × B) · ∇ξF due to interactions between the self-
consistent Lorentz force and gas particles in the nonrelativistic framework, and the
other by the nonlinear Boltzmann collision operator for non-cutoff soft potentials.
To overcome such difficulty, compared with the previous works [10, 11, 12] and [8],
one of our main contributions of the paper is to introduce the exponential weight
estimate into the angular non-cutoff Boltzmann operator, which as far as we know
does not appear in any existing literature, and the other one is that it is much
harder to apply the strategy of [8] through designing the X(t)-norm to obtain its
closed global-in-time bound.

Let’s expose the technical parts of the proof in more details. Unlike the case
of the cutoff hard sphere model studied in [31, 33, 29, 14], the dissipation of the
linearized Boltzmann collision operator for the physically interesting soft potentials
is weaker in the sense that it is degenerate in the large-velocity domain. However,
the introduction of the time-velocity-dependent weight wτ,λ(t, ξ) to the energy norm
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EN,`,λ(t) can generate the extra dissipation corresponding to the last term in the
energy dissipation rate functional DN,`,λ(t) defined by (1.12), so that the weaker
dissipation of the linearized collision operator is possibly compensated. For that, it
is necessary to deduce the exponentially weighted estimates on the first equation of
system (1.5). Therefore, the velocity-growth effect arising from the coupling term
(E + ξ ×B) · ∇ξF can be controlled through the extra dissipation balanced by the
time-decay of the electromagnetic field.

Moreover, since system (1.5) contains the linearized collision operator L and
the nonlinear collision operator Γ for non-cutoff soft potentials, we are also forced
to make the exponentially weighted estimates on L and Γ. Then, new difficulties
could occur due to the velocity differentiation of the exponential weight. In fact,
the algebraic velocity weight enjoys a good property that its derivative decays in
large velocity strictly faster than itself, which was essentially used in the weighted
estimates for the study of the pure angular non-cutoff Boltzmann equation as in
[4] and [17]. This property, however, fails for the exponential weight. On the other
hand, notice that when comparing values of the weight wτ,`(t, ξ) at two different
points ξ′ and ξ, one has to use the Taylor expansion like

w`,λ(ξ′)− w`,λ(ξ) = (ξ′ − ξ) · ∇ξw`,λ(ξ)

+
1

2!
(ξ′ − ξ)⊗ (ξ′ − ξ) : ∇2

ξw`,λ(t, ξ) + · · · .

Then, it could be a problem to control the above derivatives of wτ,`(t, ξ) because of
the slower velocity-decay of the exponential factor compared to the usual algebraic
factor. Fortunantely, depending on the order of velocity differentiation, those slower
velocity-decay terms simultaneously contain the time-decay factor (1+t)−ϑ. There-
fore, it could be still possible to control the high-order expansion terms by using the
extra dissipation in the energy dissipation rate functional DN,`,λ(t). Specifically,
although some terms such as |w`,λ0∂

α1

β1
f |L2

γ/2+1
and |w`,λ0∂

α
βh|L2

γ/2+1
on the right-

hand side of (2.15) in Lemma 2.4 can not be directly controlled by the dissipation
of L, i.e. the first five terms in DN,`,λ(t), they can indeed be well controlled by the
extra dissipation induced by the time-velocity-dependent exponential factor in the
weight w`,λ(t, ξ) due to the main assumption (1.4).

Another trouble comes from the way to close the weighted energy estimates
which is due to the regularity-loss property of the Vlasov-Maxwell-Boltzmann sys-
tem. In fact, the weighted high-order energy functional EN1,`1,λ0(t) can not be
bounded uniformly in time which can actually be seen from the proof of Lemma
3.5 for the linearized analysis, cf. [8]. On the other hand, for the weighted estimate
on derivatives of the highest order N1 for the linear term E · ξµ1/2, we can not
hope again to deduce the time-decay of the derivatives of the electromagnetic field
of the highest order. Moreover, although the velocity-growth in the nonlinear term
containing the electromagnetic field could be treated through the time-dependent
exponential factor in the weight function w`,λ0

(t, ξ), it is impossible when the elec-
tromagnetic field gains the differentiation of higher orders since they again could
not decay in time. To overcome such a difficulty, a temporal energy norm X(t),
cf. (1.14), is carefully designed to refine the nonlinear estimates in order to use the
time-decay property of the lower-order energy functional EN1−3,`1− γ+2s

γ ,λ0
(t) and

time-growth property of the weighted high-order energy functional EN1,`1,λ0
(t) so

that the desired weighted energy estimates can indeed be closed. We would point
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out that the computations here are much harder than those in [8] for the Landau
case.

The rest of the paper is arranged as follows. In Section 2, we carry out the
weighted estimates on L and Γ, which not only is the key technical part of the
paper but also has its own interest. In Section 3, we shall prove series of lemmas
to obtain the closed estimate on X(t)-norm so as to conclude the proof of Theorem
1.1 based on the continuity argument.

Notations. Throughout this paper, C denotes some generic positive (generally
large) constant and κ denotes some generic positive (generally small) constant,
where both C and κ may take different values in different places. A . B means
that there is a generic constant C > 0 such that A 6 CB. A ∼ B means A . B and
B . A. We use L2 to denote the usual Hilbert spaces L2 = L2

x,ξ or L2
x with the norm

‖·‖, and use 〈·, ·〉 to denote the inner product over L2
x,ξ or L2

ξ . For q ≥ 1, the mixed

velocity-space Lebesgue space Zq = L2
ξ(L

q
x) = L2(R3

ξ ;L
q(R3

x)) is used. For multi-

indices α = (α1, α2, α3) and β = (β1, β2, β3), ∂αβ = ∂αx ∂
β
ξ = ∂α1

x1
∂α2
x2
∂α3
x3
∂β1

ξ1
∂β2

ξ2
∂β3

ξ3
.

The length of α is |α| = α1 + α2 + α3 and similar for |β|.

2. Weighted estimates on Γ and L
〈sec2〉

This section is devoted to deducing the key estimates on Γ and L with respect to
the weight w`,λ(t, ξ), which is one of the main techniques used for the proof of the
global stability of the Vlasov-Maxwell-Boltzmann system for the angular non-cutoff
soft potentials. For that, we divide our discussions into two parts. The first part
concerns the weighted estimates on Γ.

2.1. Weighted estimates on Γ. For scalar functions g1, g2 and h, we use the
following notations

T (g1, g2) =

∫
R3×S2

q(ξ − ξ∗, σ)
√
µ∗ [(g1)′(g2)′∗ − g1(g2)∗] dξ∗dσ,

and

L h =− {T (h,
√
µ) + T (

√
µ, h)}

=−
∫
R3×S2

q(ξ − ξ∗, σ)
√
µ∗

[
h′
√
µ′∗ − h

√
µ∗

]
dξ∗dσ

−
∫
R3×S2

q(ξ − ξ∗, σ)
√
µ∗

[√
µ′h′∗ −

√
µh∗

]
dξ∗dσ = L1h+ L2h.

With the above notations, it is straightforward to see

Γ±(f, g) = T (f±, g±) + T (f±, g∓), L±f = 2L1f± + L2(f± + f∓).

Recalling (1.9), let us write

|g|2D = J1 + J2,

J1 =

∫
R6×S2

q(ξ − ξ∗, σ)µ∗(g
′ − g)2dξ∗dξdσ,

J2 =

∫
R6×S2

q(ξ − ξ∗, σ)g2
∗

(√
µ′∗ −

√
µ∗

)2

dξ∗dξdσ.
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With the help of Proposition A.5, we then analyze the triple inner product
〈T (f, g), h〉 as follows. Let µ(ξ, ξ∗) be given in Proposition A.5, and write

〈T (f, g), h〉 = 〈Tµ(f, g), h〉+ 〈Trest(f, g), h〉 , (2.1) ad.decom.Ga

where

〈Tµ(f, g), h〉 = T (f, g) =

∫
R6×S2

q(ξ − ξ∗, σ)µ(ξ, ξ∗) [f ′g′∗ − fg∗]hdξ∗dξdσ, (2.2) mu1op

and 〈Trest(f, g), h〉 is a finite combination of terms in the form of

〈Tmod,i(f, g), h〉 =

∫
R6×S2

q(ξ − ξ∗, σ)µci∗ µ
ciµdi [f ′g′∗ − fg∗]hdξ∗dξdσ

=Q
(
(µcif, µcig) , µdih

) (2.3) mu2op

with ci > 0, di > 0.
In order to make the weighted estimates on (1.5), particularly on L and Γ, in

light of the basic estimates listed in Appendix (cf. Proposition A.4), it suffices
to investigate the estimate on commutators with the weight w`,λ0

. Here, it is
worth pointing out that, for the non-cutoff soft potentials, although there have
been some weighted estimates with respect to the algebraic weight on those terms,
the corresponding estimates with respect to the exponential weight so far does not
appear in any existing literature.

The first result of this subsection is concerned with the commutator estimates
on T in the case when 0 > γ > max{−3,−3/2− 2s}. Notice that the place of h in
(2.4) in the following lemma will be weighted by w`,λ0

(t, ξ) for the later use of the
weighted estimates on Γ.

〈commu nonop〉Lemma 2.1. Assume 0 < s < 1, 0 > γ > max{−3,−3/2− 2s}, λ0 > 0 and ` ≤ 0.
For some λ̄ > 0, one has

|〈w`,λ0
T (f, g)−T (w`,λ0

f, g), h〉|

.

∣∣∣∣e λ0〈ξ〉
(1+t)ϑ g

∣∣∣∣2
L2

|w`,λ0f |
2
L2
γ/2
|h|D

+
∣∣∣µ λ̄

32 g
∣∣∣
L2
|w`,λ0f |L2

γ/2+1/2
|h|L2

γ/2+1/2

+ (1 + t)−ϑ
∣∣∣µ λ̄

32 g
∣∣∣
L2
|w`,λ0f |L2

γ/2+1
|h|L2

γ/2+s

+ (1 + t)−2ϑ
∣∣∣µ λ̄

32 g
∣∣∣
L2
|w`,λ0f |L2

γ/2+1
|h|L2

γ/2+1
.

(2.4) ad.lem.nonop1

Proof. In view of the decomposition (2.1) given for T , we first consider the com-
mutator for Tµ corresponding to (2.2) with

µ(ξ, ξ∗) =
(
µλ̃ − µλ̃∗

)k
µλ̄∗ ,

for k ≥ 4 and some constants λ̃, λ̄ > 0. Namely we shall estimate

|〈w`,λ0
Tµ(f, g)−Tµ(w`,λ0

f, g), h〉|

=

∫
R6×S2

q(ξ − ξ∗, σ)µ(ξ, ξ∗)f
′g′∗h

[
w`,λ0 − w′`,λ0

]
dξ∗dξdσ,
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which can be rewritten as∫
R6×S2

q(ξ − ξ∗, σ)µ(ξ, ξ∗)f
′g′∗h

[
w`,λ0

− w′`,λ0

]
dξ∗dξdσ

=

∫
R6×S2

q(ξ − ξ∗, σ)µ(ξ, ξ∗)f
′g′∗
[
w`,λ0

− w′`,λ0

]
(h− h′)dξ∗dξdσ︸ ︷︷ ︸

I1

+

∫
R6×S2

q(ξ − ξ∗, σ) [µ(ξ′, ξ′∗)− µ(ξ, ξ∗)] fg∗h
[
w′`,λ0

− w`,λ0

]
dξ∗dξdσ︸ ︷︷ ︸

I2

+

∫
R6×S2

q(ξ − ξ∗, σ)µ(ξ, ξ∗)fg∗h
[
w′`,λ0

− w`,λ0

]
dξ∗dξdσ︸ ︷︷ ︸

I3

by the usual change of variables. Those three terms Ij (j = 1, 2, 3) on the right can
be treated as follows.

Estimate on I1. For I1, we use the Cauchy-Schwarz inequality to get

|I1| ≤
∫
R6×S2

q(ξ − ξ∗, σ)µ(ξ, ξ∗)
∣∣f ′g′∗ [w`,λ0

− w′`,λ0

]
(h− h′)

∣∣ dξ∗dξdσ
.

(∫
R6×S2

q(ξ − ξ∗, σ)
(
µλ̃ − µλ̃∗

)2k

µλ̄∗ |f ′|2|g′∗|2
[
w`,λ0

− w′`,λ0

]2
dξ∗dξdσ

) 1
2

|h|D

.I
1
2
1,1|h|D,

where

I1,1 =

∫
R6×S2

〈ξ − ξ∗〉γb(cos θ)(µ′∗)
λ̄|f |2|g∗|2

[
w`,λ0 − w′`,λ0

]2
dξ∗dξdσ. (2.5) U

Furthermore, letting ξ(τ) = ξ+ τ(ξ′− ξ) for 0 < τ < 1, and using Taylor’s formula,
one has

w′`,λ0
− w`,λ0

=

∫ 1

0

(ξ′ − ξ) · ∇ξw`,λ0
(ξ)|ξ=ξ(τ)dτ

=

∫ 1

0

(ξ′ − ξ) ·
[
γ`

ξ(τ)

〈ξ(τ)〉2
〈ξ(τ)〉γ`e

λ0〈ξ(τ)〉
(1+t)ϑ

+
λ0

(1 + t)ϑ
ξ(τ)

〈ξ(τ)〉
〈ξ(τ)〉γ`e

λ0〈ξ(τ)〉
(1+t)ϑ

]
dτ.

(2.6) diff weight

Since

(ξ′ − ξ) · (ξ − ξ′∗) = 0, (2.7) vcross

it follows that

(ξ′ − ξ) · ξ(τ) = (ξ′ − ξ) · (ξ + τ(ξ′ − ξ)) = (ξ′ − ξ) · ξ′∗ + τ |ξ′ − ξ|2.
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For 〈ξ(τ)〉, from some elementary analysis, one can see that

1

〈ξ∗〉
.
〈ξ(τ)〉
〈ξ〉

. 〈ξ∗〉,
1

〈ξ′∗〉
.
〈ξ(τ)〉
〈ξ〉

. 〈ξ′∗〉, (2.8) meanxi

and

〈ξ(τ)〉 ≤ (1− τ)〈ξ〉+ τ〈ξ′〉 ≤ (1− τ)〈ξ〉+ τ(〈ξ〉+ 〈ξ∗〉) = 〈ξ〉+ τ〈ξ∗〉. (2.9) exivip

Therefore one has∣∣w′`,λ0
− w`,λ0

∣∣ .∫ 1

0

|ξ′ − ξ|〈ξ〉γ`−1〈ξ′∗〉γ`+1e
λ0〈ξ〉

(1+t)ϑ
+
τλ0〈ξ∗〉
(1+t)ϑ dτ

+

∫ 1

0

|ξ′ − ξ||ξ′∗|〈ξ〉γ`−1〈ξ′∗〉γ`+1(1 + t)−ϑe
λ0〈ξ〉

(1+t)ϑ
+
τλ0〈ξ∗〉
(1+t)ϑ dτ

+

∫ 1

0

|ξ′ − ξ|〈ξ′∗〉〈ξ∗〉〈ξ〉γ`−1〈ξ′∗〉γ`+1(1 + t)−ϑe
λ0〈ξ〉

(1+t)ϑ
+
τλ0〈ξ∗〉
(1+t)ϑ dτ

.|ξ′ − ξ|〈ξ〉γ`−1〈ξ′∗〉γ`+1e
λ0〈ξ〉

(1+t)ϑ
+
λ0〈ξ∗〉
(1+t)ϑ

+ |ξ′ − ξ||ξ′∗|〈ξ〉γ`−1〈ξ′∗〉γ`+1(1 + t)−ϑe
λ0〈ξ〉

(1+t)ϑ
+
λ0〈ξ∗〉
(1+t)ϑ

+ |ξ′ − ξ|〈ξ′∗〉〈ξ〉γ`−1〈ξ′∗〉γ`+1(1 + t)−ϑe
λ0〈ξ〉

(1+t)ϑ
+
λ0〈ξ∗〉
(1+t)ϑ ,

(2.10) diff weight1

where in the last inequality we have used the fact that∫ 1

0

λ0〈ξ∗〉(1 + t)−ϑe
−(1−τ)λ0〈ξ∗〉

(1+t)ϑ dτ =

∫ λ0〈ξ∗〉
(1+t)ϑ

0

e−ηdη ≤ 1.

Remark 2.1. We emphasize that the geometric property that ξ′−ξ is perpendicular
to ξ− ξ′∗ (cf. (2.7)) plays a vital role in the estimates of (2.6), since the growth of ξ
is transferred to the growth of ξ′∗ which can be controlled by the exponential weight
of ξ′∗. The idea that we used here is much similar to that of deducing the estimates
of the Landau operator in [19, 32].

Next plugging (2.10) into (2.5), we obtain

I1,1 .
∫
R6×S2

〈ξ − ξ′∗〉γb(cos θ)(µ′∗)
a
2 |f |2e

2λ0〈ξ∗〉
(1+t)ϑ

× |g∗|2|ξ − ξ′∗|2θ2〈ξ〉2γ`−2e
2λ0〈ξ〉
(1+t)ϑ dξ∗dξdσ

.

∣∣∣∣e λ0〈ξ〉
(1+t)ϑ g

∣∣∣∣2
L2

|w`,λ0
f |2L2

γ/2
,

where we have used the fact that |ξ − ξ′∗| ≤ |ξ − ξ∗| and |ξ′ − ξ| = |ξ − ξ′∗| tan θ/2.
Thus

|I1| .
∣∣∣∣e λ0〈ξ〉

(1+t)ϑ g

∣∣∣∣2
L2

|w`,λ0
f |2L2

γ/2
|h|D.



VLASOV-MAXWELL-BOLTZMANN FOR NON-CUTOFF POTENTIALS 13

Estimate on I2. As to I2, at first, we use the following estimate as given in [4]

|ξ − ξ∗|γ〈ξ − ξ∗〉−γ/2 |µ(ξ′, ξ′∗)− µ(ξ, ξ∗)|

.〈ξ − ξ∗〉γ/2
(
µ
λ̄/2
∗ + (µ′∗)

λ̄/2
)

min {|ξ − ξ′∗|θ, |ξ − ξ∗|θ, 1} .

By means of Cauchy-Schwarz inequality, we get

|I2| .
∫
R6×S2

〈ξ − ξ∗〉γb(cos θ)(µ′∗)
λ̄
2 min {|ξ − ξ′∗|θ, 1}

× |g∗||f |
[
w′`,λ0

− w`,λ0

]
hdξ∗dξdσ

+

∫
R6×S2

〈ξ − ξ∗〉γb(cos θ)µ
λ̄
2
∗ min {|ξ − ξ∗|θ, 1}

× |g∗||f |
[
w′`,λ0

− w`,λ0

]
hdξ∗dξdσ

.

(∫
R6×S2

〈ξ − ξ∗〉γb(cos θ)(µ′∗)
λ̄
2 |g∗|2|f |2

[
w′`,λ0

− w`,λ0

]2
dξ∗dξdσ

)1/2

︸ ︷︷ ︸
I

1/2
2,1

×
(∫

R6×S2

〈ξ − ξ∗〉γb(cos θ)(µ′∗)
λ̄
2 min

{
|ξ − ξ′∗|2θ2, 1

}
h2dξ∗dξdσ

)1/2

︸ ︷︷ ︸
I

1/2
2,2

+

(∫
R6×S2

〈ξ − ξ∗〉γb(cos θ)µ
λ̄
2
∗ |g∗|2|f |2

[
w′`,λ0

− w`,λ0

]2
dξ∗dξdσ

)1/2

︸ ︷︷ ︸
I

1/2
2,3

×
(∫

R6×S2

〈ξ − ξ∗〉γb(cos θ)µ
λ̄
2
∗ min

{
|ξ − ξ∗|2θ2, 1

}
h2dξ∗dξdσ

)1/2

︸ ︷︷ ︸
I

1/2
2,4

.

(2.11) IVCS

Noticing that

∫
S2

b(cos θ) min
{
|ξ − ξ∗|2θ2, 1

}
dσ . 〈ξ − ξ∗〉2s,

we obtain I2,4 . |h|2L2
γ/2+s

and the same estimate for I2,2 holds if one uses the

regular change of variables ξ∗ → ξ′∗, for instance, cf. [1].
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It is easy to see that I2,1 shares the same upper bound as I1. For I2,3, we get
from (2.6), (2.8) and (2.9) that

I2,3 .
∫
R6×S2

〈ξ − ξ∗〉γb(cos θ)µ
λ̄
4
∗ |g∗|2|f |2|ξ − ξ∗|2θ2〈ξ〉2γ`−2e

2λ0〈ξ〉
(1+t)ϑ dξ∗dξdσ

+ (1 + t)−2ϑ

∫
R6×S2

〈ξ − ξ∗〉γb(cos θ)µ
λ̄
4
∗ |g∗|2

× |f |2|ξ − ξ∗|2θ2〈ξ〉2γ`e
2λ0〈ξ〉
(1+t)ϑ dξ∗dξdσ

.
∣∣∣µ λ̄

32 g
∣∣∣2
L2
|w`,λ0

f |2L2
γ/2

+ (1 + t)−2ϑ
∣∣∣µ λ̄

32 g
∣∣∣2
L2
|w`,λ0

f |2L2
γ/2+1

.

Plugging the estimates above into (2.11), we have

|I2| .
∣∣∣∣e λ0〈ξ〉

(1+t)ϑ g

∣∣∣∣2
L2

|w`,λ0f |
2
L2
γ/2
|h|L2

γ/2+s

+
∣∣∣µ λ̄

32 g
∣∣∣
L2
|w`,λ0f |L2

γ/2
|h|L2

γ/2+s

+ (1 + t)−ϑ
∣∣∣µ λ̄

32 g
∣∣∣
L2
|w`,λ0f |L2

γ/2+1
|h|L2

γ/2+s
.

Estimate on I3. For the term I3, we use the Taylor expansion for w′` − w` up to
the second order, in the form of

w`,λ0
(ξ′)− w`,λ0

(ξ) = (ξ′ − ξ) · ∇ξw`,λ0
(ξ) +

1

2
(ξ′ − ξ)⊗ (ξ′ − ξ) : ∇2

ξw`,λ0
|ξ=ξ(τ),

where : is defined as M : N =
n∑

i,j=1

mijnij for two n× n matrices M and N.

As for the first order term in the expansion, notice that

ξ − ξ′ =
|ξ − ξ∗|

2
(σ − (k · σ)k) + ((k · σ)− 1)

ξ − ξ∗
2

, k =
ξ − ξ∗
|ξ − ξ∗|

(2.12) id.diff

and the spherical integral corresponding to the first term on the right-hand side of
(2.12) vanishes because of the symmetry on S2. For the term involving the second
term on the right-hand side of (2.12), one has∣∣∣∣∣
∫
R6×S2

q(ξ − ξ∗, σ)µ(ξ, ξ∗)g∗fh

[
1

2
((k · σ)− 1)(ξ − ξ∗) · ∇ξw`,λ0

(ξ)

]
dξ∗dξdσ

∣∣∣∣∣
.
∫
R6×S2

〈ξ − ξ∗〉γb(cos θ)µ
λ̄/4
∗ |ξ − ξ∗|θ2〈ξ〉γ`e

λ0〈ξ〉
(1+t)ϑ |g∗||f ||h|dξ∗dξdσ

.

(∫
R6×S2

〈ξ − ξ∗〉γb(cos θ)µ
λ̄/4
∗ |ξ − ξ∗|θ2〈ξ〉2γ`e

2λ0〈ξ〉
(1+t)ϑ |g∗|2|f |2dξ∗dξdσ

)1/2

×
(∫

R6×S2

〈ξ − ξ∗〉γb(cos θ)µ
λ̄/4
∗ |ξ − ξ∗|θ2h2dξ∗dξdσ

)1/2

.
∣∣∣µ λ̄

32 g
∣∣∣
L2
|w`,λ0

f |L2
γ/2+1/2

|h|L2
γ/2+1/2

.
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For the second order term in the expansion above, we compute

∇2
ξw`|ξ=ξ(τ) =(γ`)2 ξ(τ)⊗ ξ(τ)

〈ξ(τ)〉4
〈ξ(τ)〉γ`e

λ0〈ξ(τ)〉
(1+t)ϑ

+ γ`
〈ξ(τ)〉2E− 2ξ(τ)⊗ ξ(τ)

〈ξ(τ)〉4
〈ξ(τ)〉γ`e

λ0〈ξ(τ)〉
(1+t)ϑ

+
λ0

(1 + t)ϑ
〈ξ(τ)〉2E + (2γ`− 1)ξ(τ)⊗ ξ(τ)

〈ξ(τ)〉3
〈ξ(τ)〉γ`e

λ0〈ξ(τ)〉
(1+t)ϑ

+

[
λ0

(1 + t)ϑ

]2
ξ(τ)⊗ ξ(τ)

〈ξ(τ)〉2
〈ξ(τ)〉γ`e

λ0〈ξ(τ)〉
(1+t)ϑ ,

where E denotes the 3× 3 unit matrix. Thus we get from (2.8) and (2.9) that

∣∣∣(ξ′ − ξ)⊗ (ξ′ − ξ) : ∇2
ξw`,λ0

|ξ=ξ(τ)

∣∣∣
.|ξ′ − ξ|2〈ξ〉γ`−2〈ξ∗〉γ`+2e

λ0〈ξ〉
(1+t)ϑ

+
τq〈ξ∗〉
(1+t)ϑ

+ |ξ′ − ξ|2〈ξ〉γ`−1〈ξ∗〉γ`+1(1 + t)−ϑe
λ0〈ξ〉

(1+t)ϑ
+
τλ0〈ξ∗〉
(1+t)ϑ

+ |ξ′ − ξ|2〈ξ〉γ`〈ξ∗〉γ`(1 + t)−2ϑe
λ0〈ξ〉

(1+t)ϑ
+
τλ0〈ξ∗〉
(1+t)ϑ .

Therefore one has

∫
R6×S2

∣∣q(ξ − ξ∗, σ)µ(ξ, ξ∗)g∗fh
[
(ξ′ − ξ)⊗ (ξ′ − ξ) : ∇2

ξw`,λ0
|ξ=ξ(τ)

]∣∣ dξ∗dξdσ
.
∫
R6×S2

〈ξ − ξ∗〉γb(cos θ)µ
λ̄
4
∗ |ξ − ξ∗|2θ2〈ξ〉γ`−2e

λ0〈ξ〉
(1+t)ϑ |g∗||f ||h|dξ∗dξdσ︸ ︷︷ ︸

I3,1

+
1

(1 + t)ϑ

∫
R6×S2

〈ξ − ξ∗〉γb(cos θ)µ
λ̄
4
∗ |ξ − ξ∗|2θ2〈ξ〉γ`−1e

λ0〈ξ〉
(1+t)ϑ |g∗||f ||h|dξ∗dξdσ︸ ︷︷ ︸

I3,2

+
1

(1 + t)2ϑ

∫
R6×S2

〈ξ − ξ∗〉γb(cos θ)µ
λ̄
4
∗ |ξ − ξ∗|2θ2〈ξ〉γ`e

λ0〈ξ〉
(1+t)ϑ |g∗||f ||h|dξ∗dξdσ︸ ︷︷ ︸

I3,3

.
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By virtue of Cauchy-Schwarz’s inequality, we further obtain

I3,1 .
(∫

R6×S2

〈ξ − ξ∗〉γb(cos θ)µ
λ̄/4
∗ |ξ − ξ∗|2θ2〈ξ〉2γ`−2e

2λ0〈ξ〉
(1+t)ϑ

× |g∗|2|f |2dξ∗dξdσ
)1/2

×
(∫

R6×S2

〈ξ − ξ∗〉γb(cos θ)µ
λ̄/4
∗ |ξ − ξ∗|2θ2〈ξ〉−2h2dξ∗dξdσ

)1/2

.
∣∣∣µ λ̄

32 g
∣∣∣
L2
|w`,λ0f |L2

γ/2
|h|L2

γ/2
,

I3,2 .(1 + t)−ϑ
(∫

R6×S2

〈ξ − ξ∗〉γb(cos θ)µ
λ̄/4
∗ |ξ − ξ∗|2θ2〈ξ〉−1h2dξ∗dξdσ

)1/2

×
(∫

R6×S2

〈ξ − ξ∗〉γb(cos θ)µ
λ̄/4
∗ |ξ − ξ∗|2θ2〈ξ〉2γ`−1e

2λ0〈ξ〉
(1+t)ϑ

× |g∗|2|f |2dξ∗dξdσ
)1/2

.(1 + t)−ϑ
∣∣∣µ λ̄

32 g
∣∣∣
L2
|w`,λ0

f |L2
γ/2+1/2

|h|L2
γ/2+1/2

,

I3,3 .(1 + t)−2ϑ
(∫

R6×S2

〈ξ − ξ∗〉γb(cos θ)µ
λ̄/4
∗ |ξ − ξ∗|2θ2〈ξ〉2γ`e

2λ0〈ξ〉
(1+t)ϑ

× |g∗|2|f |2dξ∗dξdσ
)1/2

×
(∫

R6×S2

〈ξ − ξ∗〉γb(cos θ)µ
λ̄/4
∗ |ξ − ξ∗|2θ2h2dξ∗dξdσ

)1/2

.(1 + t)−2ϑ
∣∣∣µ λ̄

32 g
∣∣∣
L2
|w`,λ0f |L2

γ/2+1
|h|L2

γ/2+1
.

Note that in all the above estimates on Tµ, the assumption γ > −3/2− 2s was not
used.

It remains to consider the commutator for Tmod,i corresponding to (2.3). Namely,
we need to estimate

〈w`,λ0Tmod,i(f, g)−Tmod,i(w`,λ0f, g), h〉 = 〈w`,λ0Q(fµ, gµ)−Q(w`,λ0fµ, gµ), hµ〉

with fµ = µcif , gµ = µcig, hµ = µdih for some ci, di > 0. Since fµ, gµ, hµ contain
Gaussians, if γ > − 3

2 − 2s, one can show by performing similar calculations as in
the proof of the estimate (3.7) in [4] that

|〈w`,λ0
Q (fµ, gµ)−Q (w`,λ0

fµ, gµ) , hµ〉| . |w`,λ0
fµ|L2 |w`,λ0

gµ|L2 |hµ|Hs .

This completes the proof of Lemma 2.1. �

In the proof of Lemma 2.1, it is in dealing with the term 〈w`,λ0Q (fµ, gµ)−
Q (w`,λ0

fµ, gµ) , hµ〉 that the assumption γ > −3/2− 2s was used. We note, how-
ever, that even for the case γ > −3, we can deduce the following estimate on such
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a term by repeating the calculations used in the proof of Corollary 3.15 of [4]

|〈w`,λ0Q (fµ, gµ)−Q (w`,λ0fµ, gµ) , hµ〉|

.min
{∣∣∣µ 1

40 g
∣∣∣
L∞

∣∣∣µ 1
40 f
∣∣∣
Hs

,
∣∣∣µ 1

40 g
∣∣∣
L2

∣∣∣µ 1
60 f
∣∣∣
H1

}
|h|D

+ |w`,λ0fµ|L2 |w`,λ0gµ|L2 |hµ|L2 .

The above estimate together with the proof of Lemma 2.1 yield the following result
on the commutator estimate for the case −3 < γ < −2s, 0 < s < 1.

〈commu nonopimp〉Lemma 2.2. Assume that 0 < s < 1, −2s > γ > −3 and ` ≤ 0. Then one has

|〈w`,λ0
T (f, g)−T (w`,λ0

f, g), h〉|

.

∣∣∣∣e λ0〈ξ〉
(1+t)ϑ g

∣∣∣∣2
L2

|w`,λ0
f |2L2

γ/2
|h|D

+
∣∣∣µ λ̄

32 g
∣∣∣
L2
|w`,λ0

f |L2
γ/2+1/2

|h|L2
γ/2+1/2

+ (1 + t)−ϑ
∣∣∣µ λ̄

32 g
∣∣∣
L2
|w`,λ0

f |L2
γ/2+1

|h|L2
γ/2+s

+ (1 + t)−2ϑ
∣∣∣µ λ̄

32 g
∣∣∣
L2
|w`,λ0

f |L2
γ/2+1

|h|L2
γ/2+1

+ min
{∣∣∣µ 1

40 g
∣∣∣
L∞

∣∣∣µ 1
40 f
∣∣∣
Hs

,
∣∣∣µ 1

40 g
∣∣∣
L2

∣∣∣µ 1
60 f
∣∣∣
H1

}
|h|D.

(2.13) ad.lem1

〈lem.ad〉Lemma 2.3. Lemma 2.2 will be used in the only proof of Lemma 2.6 concerning
the weighted estimate on the linearized operator L. Notice that (2.13) does not
apply to the estimate on the nonlinear term Γ since the last term on the right-hand
side of (2.13) must contain the increased velocity differentiation on either g or f .

For some suitable functions f, g, v, define T0(f, g, v) as

T0(f, g, v) =

∫
R3×S2

q(ξ − ξ∗, σ)v∗ [g′∗f
′ − g∗f ] dξ∗dσ. (2.14) nonop0

Then T (f, g) = T0(f, g,
√
µ) and〈

∂αβ T (f, g), w`,λ0
h〉

=
∑

α1+α2=α
β1+β2+β3=β

Cα1,α2
α Cβ1,β2,β3

β

〈
T0(∂α1

β1
f, ∂α2

β2
g, ∂β3

√
µ), w`,λ0

h
〉

=
∑

α1+α2=α
β1+β2+β3=β

Cα1,α2
α Cβ1,β2,β3

β

〈
T0(w`,λ0∂

α1

β1
f, ∂α2

β2
g, ∂β3

√
µ), h

〉

+
∑

α1+α2=α
β1+β2+β3=β

Cα1,α2
α Cβ1,β2,β3

β

{〈
T0(∂α1

β1
f, ∂α2

β2
g, ∂β3

√
µ), w`,λ0h

〉

−
〈
T0(w`,λ0

∂α1

β1
f, ∂α2

β2
g, ∂β3

√
µ), h

〉}
.
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Note that all the upper estimates on T established in the paper apply also to T0 as
long as v is a product of a polynomial in ξ and a positive power of the Maxwellian
µ(ξ).

Combing Lemma 2.1 with Proposition A.4, we can deduce the following weighted
estimates on the nonlinear collision term with respect to the time-velocity weight
w`,λ0

(t, ξ) which will play an important role in performing the nonlinear energy
estimates in the next section.

〈nonopxvder〉
Lemma 2.4. For all 0 < s < 1, −2s > γ > max{−3,−3/2 − 2s}, λ0 > 0 and
` ≤ 0. Then one has∣∣〈∂αβT (f, g), w2

`,λ0
∂αβh

〉∣∣
.
∑{∣∣∣w`,λ0∂

α1

β1
f
∣∣∣
L2
s+γ/2

∣∣∣∂α2

β2
g
∣∣∣
D

+
∣∣∣∂α2

β2
g
∣∣∣
L2
s+γ/2

∣∣∣w`,λ0∂
α1

β1
f
∣∣∣
D

}∣∣w`,λ0∂
α
βh
∣∣
D

+ min

{∣∣∣w`,λ0
∂α1

β1
f
∣∣∣
L2

∣∣∣∂α2

β2
g
∣∣∣
L2
s+γ/2

,
∣∣∣∂α2

β2
g
∣∣∣
L2

∣∣∣w`,λ0
∂α1

β1
f
∣∣∣
L2
s+γ/2

}∣∣w`,λ0
∂αβh

∣∣
D

+
∑∣∣∣∣e λ0〈ξ〉

(1+t)ϑ ∂α2

β2
g

∣∣∣∣
L2

∣∣∣w`,λ0∂
α1

β1
f
∣∣∣
L2
γ/2

∣∣w`,λ0∂
α
βh
∣∣
D

+
∑∣∣∣µ λ̄

128 ∂α2

β2
g
∣∣∣
L2

∣∣∣w`,λ0
∂α1

β1
f
∣∣∣
L2
γ/2+1/2

∣∣w`,λ0
∂αβh

∣∣
L2
γ/2+1/2

+
∑

(1 + t)−ϑ
∣∣∣µ λ̄

128 ∂α2

β2
g
∣∣∣
L2

∣∣∣w`,λ0∂
α1

β1
f
∣∣∣
L2
γ/2+1

|w`,λ0∂
α
βh|L2

γ/2+s

+
∑

(1 + t)−2ϑ
∣∣∣µ λ̄

128 ∂α2

β2
g
∣∣∣
L2

∣∣∣w`,λ0
∂α1

β1
f
∣∣∣
L2
γ/2+1

∣∣w`,λ0
∂αβh

∣∣
L2
γ/2+1

=

6∑
i=1

Hn,

(2.15) nonopxvder1

where the summation is taken over α1 + β1 +α2 + β2 ≤ α+ β and Hn (1 ≤ n ≤ 6)
denote those six terms on the right-hand side of (2.15) respectively.

Remark 2.2. As mentioned in the introduction, although some terms such as
|w`,λ0∂

α1

β1
f |L2

γ/2+1
and |w`,λ0∂

α
βh|L2

γ/2+1
on the right-hand side of (2.15) can not be

directly controlled by the dissipation of L, i.e. the first five terms in DN,`,λ(t), they
can be controlled by the extra dissipation corresponding to the last term of DN,`,λ(t)
given by (1.12). See the proof of Lemma 2.5 for details, especially the estimate on
the term I9,3.

Next, we turn to control the weighted estimates on the nonlinear collision term Γ
with respect to the time-velocity exponential weight w`,λ0(t, ξ) in terms of the tem-

poral energy functionals EN,`,λ(t), EN (t) defined by (1.10) and (1.11) and the cor-

responding entropy dissipation rate DN,`,λ(t), DN (t) defined by (1.12) and (1.13).
For this issue, we prove the following

〈nonopxvint〉Lemma 2.5. For all 1/2 ≤ s < 1, max{−3,−3/2 − 2s} < γ < −2s, and assume
l − 1 ≥ N ≥ 10, λ0 > 0, 0 < ϑ ≤ 1/4, |α|+ |β| ≤ N . Then one has

|〈∂αΓ±(f, f), ∂α{I± −P±}f〉| . E1/2

N−3,l− γ+2s
γ ,λ0

(t)DN (t), (2.16) nonopwep
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|α|+|β|−l,λ0

∂αβΓ±(f, f), ∂αβ {I± −P±}f
〉∣∣∣

.(1 + t)1−ϑE1/2

N−3,l− γ+2s
γ ,λ0

(t)DN,l,λ0(t).

(2.17) nonopall

Moreover, if |α| > 0, it follows that∣∣∣〈w2
|α|−l,λ0

∂αΓ±(f, f), ∂αf±

〉∣∣∣
.(1 + t)1−ϑE1/2

N−3,l− γ+2s
γ ,λ0

(t)DN,l,λ0
(t).

(2.18) nonopxep

Here and in the sequel, in the case when an undetermined energy functional EN,`,λ(t)
appears on the right-hand side of inequalities, it is always understood to take exactly
the right-hand expression of (1.10).

Proof. Noticing l − 1 ≥ N ≥ 10, by virtue of Proposition A.4 and Sobolev’s in-
equality, one can prove (2.16) without any difficulty. Thus, to complete the proof
of Lemma 2.5, we only prove (2.17) detailedly in the following part, since the proof
of (2.18) is similar and easier. Recalling Lemma 2.4, it suffices to estimate

In+3 =

∫
R3

Hndx, 1 ≤ n ≤ 6,

where Hn (1 ≤ n ≤ 6) are defined in (2.15). In what follows, for brevity of
presentation, we compute only I9 corresponding to the spatial integral of H6, since
the estimates for other terms are quite similar. By splitting f± = P±f+{I±−P±}f ,
we have

I9 .I9,1 + I9,2 + I9,3 + I9,4,

with

I9,1 =(1 + t)−2ϑ

∫
R3

|∂α1(a±, b, c)||∂α2(a±, b, c)|

×
∣∣w|α|+|β|−l,λ0

∂αβ {I± −P±}f
∣∣
L2
γ/2+1

dx,

I9,2 =(1 + t)−2ϑ

∫
R3

|∂α1(a±, b, c)|
∣∣∣µ λ̄

128 ∂α2

β2
{I± −P±}f

∣∣∣
L2

× |w|α|+|β|−l,λ0
∂αβ {I± −P±}f |L2

γ/2+1
dx,

I9,3 =(1 + t)−2ϑ

∫
R3

∣∣∣w|α|+|β|−l,λ0
∂α1

β1
{I± −P±}f

∣∣∣
L2
γ/2+1

(R3)
|∂α2(a±, b, c)|

×
∣∣w|α|+|β|−l,λ0

∂αβ {I± −P±}f
∣∣
L2
γ/2+1

dx,

I9,4 =(1 + t)−2ϑ

∫
R3

∣∣∣µ λ̄
128 ∂α2

β2
{I± −P±}f

∣∣∣
L2

∣∣∣w|α|+|β|−l,λ0
∂α1

β1
{I± −P±}f

∣∣∣
L2
γ/2+1

×
∣∣w|α|+|β|−l,λ0

∂αβ {I± −P±}f
∣∣
L2
γ/2+1

dx.

Next, we only present the estimates for I9,1 and I9,3, the others being similar. Our
purpose is to prove

I9,1, I9,3 . (1 + t)1−ϑE1/2

N−3,l− γ+2s
γ ,λ0

(t)DN,l,λ0(t). (2.19) I91.I93
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For this, the following fact will be repeatedly used. Since

γ < −2s, 1/2 ≤ s < 1, γ + 2 ≤ 1,

one can see that

(1 + t)−
1+ϑ

2

∥∥∥〈ξ〉γ/2+1w|α|+|β|−l,λ0
∂αβ {I± −P±}f

∥∥∥ . D1/2
N,l,λ0

(t). (2.20) expodis

Next we divide our computations into the following three cases.

Case 1. |α| + |β| ≤ N/2. Noticing that α1 + β1 + α2 + β2 ≤ α + β, in this case,
L∞x −norm can be used to control both functions involving differentiations ∂α1

β1
and

∂α2

β2
. Thus, by applying Sobolev’s inequality and (2.20), we obtain

I9,1 .
∑

|α1|≤N/2

‖∇x∂α1(a±, b, c)‖H1‖∂α2(a±, b, c)‖(1 + t)
1−3ϑ

2 (1 + t)−
1+ϑ

2

×
∥∥∥〈ξ〉γ/2+1w|α|+|β|−l,λ0

∂αβ {I± −P±}f
∥∥∥

.(1 + t)
1−3ϑ

2 E1/2

N−3,l− γ+2s
γ ,λ0

(t)DN,l,λ0
(t),

where the fact that N ≥ 10 and N/2 + 2 ≤ N − 3 has been used.
Similarly, one has

I9,3 .
∑

|α2|≤N/2

∥∥∥〈ξ〉γ/2+1w|α|+|β|−l,λ0
∂α1

β1
{I± −P±}f

∥∥∥ ‖∂α2∇x(a±, b, c)‖H1

× (1 + t)1−ϑ(1 + t)−1−ϑ
∥∥∥〈ξ〉γ/2+1w|α|+|β|−l,λ0

∂αβ {I± −P±}f
∥∥∥

.(1 + t)1−ϑE1/2

N−3,l− γ+2s
γ ,λ0

(t)DN,l,λ0(t).

Case 2. |α|+ |β| ≥ N/2 and |α1|+ |β1| ≥ |α2|+ |β2|. In this case, |α2|+ |β2| ≤ N/2
and |α1|+ |β1| ≥ N/4.

For I9,1, if |α1| > 0, since N/2 + 2 6 N − 3, we see that

‖∂α1(a±, b, c)‖ . D1/2
N,l,λ0

(t),

‖∂α2(a±, b, c)‖L∞ . ‖∂α2(a±, b, c)‖H2 . E1/2

N−3,l− γ+2s
γ ,λ0

(t),

which imply that

I9,1 .
∑

0<|α1|≤N

‖∂α1(a±, b, c)‖
∑

|α2|≤N/2

‖∂α2(a±, b, c)‖L∞

× (1 + t)
1−3ϑ

2 (1 + t)−
1+ϑ

2

∥∥∥〈ξ〉γ/2+1w|α|+|β|−l,λ0
∂αβ {I± −P±}f

∥∥∥
.(1 + t)

1−3ϑ
2 E1/2

N−3,l− γ+2s
γ ,λ0

(t)DN,l,λ0(t).

If |α1| = 0, then α2 = α. We find that

‖(a±, b, c)‖L∞ . ‖∇x(a±, b, c)‖H1 . D1/2
N,l,λ0

(t), ‖∂α2(a±, b, c)‖ . E1/2

N−3,l− γ+2s
γ ,λ0

(t).
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Therefore

I9,1 . ‖(a±, b, c)‖L∞
∑

|α|=|α2|≤N/2

‖∂α2(a±, b, c)‖

× (1 + t)
1−3ϑ

2 (1 + t)−
1+ϑ

2

∥∥∥〈ξ〉γ/2+1w|α|+|β|−l,λ0
∂αβ {I± −P±}f

∥∥∥
.(1 + t)

1−3ϑ
2 E1/2

N−3,l− γ+2s
γ ,λ0

(t)DN,l,λ0(t).

As to I9,3, it follows form Sobolev’s inequality and (2.20) that

I9,3 .
∑

|α2|≤N/2

∥∥∥〈ξ〉γ/2+1w|α|+|β|−l,λ0
∂α1

β1
{I± −P±}f

∥∥∥ ‖∂α2(a±, b, c)‖H2

× (1 + t)1−ϑ(1 + t)−1−ϑ
∥∥∥〈ξ〉γ/2+1w|α|+|β|−l,λ0

∂αβ {I± −P±}f
∥∥∥

.(1 + t)1−ϑE1/2

N−3,l− γ+2s
γ ,λ0

(t)DN,l,λ0
(t).

Case 3. |α|+ |β| ≥ N/2 and |α1|+ |β1| ≤ |α2|+ |β2|. In this case, |α1|+ |β1| ≤ N/2
and |α2| + |β2| ≥ N/4. It is easy to see that the estimates on I9,1 in this case are
the same as that of Case 2, and we thus omit the details of its proof for brevity.

Now we shall estimate I9,3 carefully. Firstly, since |α| + |β| ≥ N/2 ≥ 5 and
|α1|+ |β1| ≤ |α2|+ |β2|, we see that |α|+ |β| − |α1| − |β1| − 2 ≥ 1, and hence

〈ξ〉γ/2+1w|α|+|β|−l,λ0
(ξ) . w|α1|+|β1|+2−l+ γ+2s

γ ,λ0
(ξ).

Then it follows that∑
|α1|+|β1|≤N/2

2|α1|+2|β1|≤|α|+|β|

∥∥∥∥∣∣∣〈ξ〉γ/2+1w|α|+|β|−l,λ0
∂α1

β1
{I± −P±}f

∣∣∣
L2
ξ

∥∥∥∥
L∞

.
∑

|α1|+|β1|≤N/2
2|α1|+2|β1|≤|α|+|β|

∥∥∥∥∣∣∣〈ξ〉γ/2+1w|α|+|β|−l,λ0
∂α1

β1
{I± −P±}f

∣∣∣
L2
ξ

∥∥∥∥
H2

.min

{
(1 + t)

1+ϑ
2 D1/2

N,l,λ0
(t), E1/2

N−3,l− γ+2s
γ ,λ0

(t)

}
,

which yields that for α2 > 0

I9,3 .
∑

|α1|+|β1|≤N/2
2|α1|+2|β1|≤|α|+|β|

∥∥∥∥∣∣∣〈ξ〉γ/2+1w|α|+|β|−l,λ0
∂α1

β1
{I± −P±}f

∣∣∣
L2
ξ

∥∥∥∥
H2

‖∂α2(a±, b, c)‖

× (1 + t)
1−3ϑ

2 (1 + t)−
1+ϑ

2

∥∥∥〈ξ〉γ/2+1w|α|+|β|−l,λ0
∂αβ {I± −P±}f

∥∥∥
.(1 + t)

1−3ϑ
2 E1/2

N−3,l− γ+2s
γ ,λ0

(t)DN,l,λ0(t),
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and for α2 = 0

I9,3 .
∑

|α1|+|β1|≤N/2

∥∥∥〈ξ〉γ/2+1w|α|+|β|−l,λ0
∂α1

β1
{I± −P±}f

∥∥∥ ‖(a±, b, c)‖H2

× (1 + t)1−ϑ(1 + t)−1−ϑ
∥∥∥〈ξ〉γ/2+1w|α|+|β|−l,λ0

∂αβ {I± −P±}f
∥∥∥

.(1 + t)1−ϑE1/2

N−3,l− γ+2s
γ ,λ0

(t)DN,l,λ0
(t),

Thus (2.19) holds true. This completes the proof of Lemma 2.5. �

We conclude this subsection with the following

Remark 2.3. For the proof of Lemma 2.5, to control those terms |w`,λ0∂
α1

β1
f |L2

γ/2+1

and |w`,λ0∂
α
βh|L2

γ/2+1
, the extra dissipation corresponding to the last term in DN,`,λ(t)

defined by (1.12) has to be used, This in turn leads to the appearance of the time-

growth factor (1+t)1−ϑ. However, the low-order energy functional E1/2

N−3,l− γ+2s
γ ,λ0

(t)

can be employed to kill this time-growth factor since one can obtain the proper time-

decay of E1/2

N−3,l− γ+2s
γ ,λ0

(t). In fact, as long as one chooses ϑ = 1/4, i.e. 1−ϑ = 3/4,

then

(1 + t)1−ϑE1/2

N−3,l− γ+2s
γ ,λ0

(t)

can be expected to be bounded uniformly in time.

2.2. Weighted estimates on L. In this subsection, we deduce some weighted
estimates on the linearized collision operator L with respect to the time-velocity
exponential weight w`,λ(t, ξ).

〈L1key〉Lemma 2.6. Assume 0 < s < 1, −3 < γ < −2s, |β| ≥ 1, ` ∈ R and λ ≥ 0. One
has〈

w2
`,λ∂βL1g, ∂βg

〉
& |w`,λ∂βg|2D − C

∑
β1<β

|w`,λ∂β1g|2D − C|w`,λ∂βg|2L2
γ/2
. (2.21) L1wlqlcoer2

For β = 0, one also has〈
w2
`,λL1g, g

〉
& |w`,λg|2D − C|w`,λg|2L2

γ/2
. (2.22) L1wlqlcoer1

Proof. To prove (2.22), we write〈
w2
`,λL1g, g

〉
= 〈L1w`,λg, w`,λg〉+

{〈
w2
`,λL1g, g

〉
− 〈L1w`,λg, w`,λg〉

}
. (2.23) L1wlq

By Proposition A.2, the first part on the right-hand side of (2.23) has the lower-
bound as

〈L1w`,λg, w`,λg〉 ≥ δ|w`,λg|2D − C|w`,λg|2L2
γ/2
, (2.24) L1wlqlower
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for some constants δ > 0, C > 0. Moreover, from simple calculations, by denoting
the right-hand second part of (2.23) as I10, we have

I10 =
〈
w2
`,λL1g, g

〉
− 〈L1w`,λg, w`,λg〉

=−
∫
R6×S2

q(ξ − ξ∗, σ)
√
µ∗
√
µ′∗gg

′w`,λ
[
w`,λ − w′`,λ

]
dξ∗dξdσ

=− 1

2

∫
R6×S2

q(ξ − ξ∗, σ)
√
µ∗
√
µ′∗gg

′ [w`,λ − w′`,λ]2 dξ∗dξdσ.
Therefore, the commutator part I10 can be bounded by

|I10| .
∫
R6×S2

q(ξ − ξ∗, σ)
√
µ∗
√
µ′∗g

2
[
w`,λ − w′`,λ

]2
dξ∗dξdσ. (2.25) X

Next plugging (2.10) into (2.25), we obtain

|I10| .
∫
R6×S2

q(ξ − ξ∗, σ)µ
1/4
∗ g2|ξ − ξ∗|2θ2〈ξ〉2γ`−2e

2λ〈ξ〉
(1+t)ϑ dξ∗dξdσ

.
∫
R6

|ξ − ξ∗|γ+2µ
1/4
∗ g2〈ξ〉2γ`−2e

2λ〈ξ〉
(1+t)ϑ dξ∗dξ . |w`,λg|2L2

γ/2
.

(2.26) Idone

Substituting (2.26) and (2.24) into (2.23), one has〈
w2
`,λL1g, g

〉
& |w`,λg|2D − C|w`,λg|2L2

γ/2
.

This completes the proof of (2.22).
Now we turn to prove (2.21). For this, we write〈
w2
`,λ∂βL1g, ∂βg

〉
=
〈
w2
`,λL1∂βg, ∂βg

〉
−
∑
β1<β

Cβ1,β2,β3

β

〈
w2
`,λT0(∂β1g, ∂β2

√
µ, ∂β3

√
µ), ∂βg

〉
,

(2.27) L1dvsplit

where T0 is defined by (2.14). Recalling (2.22), we have〈
w2
`,λL1∂βg, ∂βg

〉
& |w`,λ∂βg|2D − C|w`,λ∂βg|

2
L2
γ/2
. (2.28) L1 dvcoer3

We use I11 to denote the second term on the right-hand side of (2.27), and write

I11 =
∑
β1<β

Cβ1,β2,β3

β 〈T0(w`,λ∂β1g, ∂β2

√
µ, ∂β3

√
µ), w`,λ∂βg〉

+
∑
β1<β

Cβ1,β2,β3

β

{ 〈
w2
`,λT0(∂β1

g, ∂β2

√
µ, ∂β3

√
µ), ∂βg

〉
− 〈T0(w`,λ∂β1g, ∂β2

√
µ, ∂β3

√
µ), w`,λ∂βg〉

}
:= I11,1 + I11,2.

For I11,1, we get from Proposition 3.1 in [4] that

|I11,1| .
∑
β1<β

|w`,λ∂β1
g|D · |w`,λ∂βg|D.
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As to I11,2, we have

I11,2 =−
∫
R6×S2

B(ξ − ξ∗, σ) [∂β3

√
µ∗]
[
∂β2

√
µ′∗

]
[∂β1g

′]w`,λ∂βg

×
[
w`,λ − w′`,λ

]
dξ∗dξdσ.

(2.29) XIsplit2

The estimates for (2.29) shares the same commutator properties as Γ. Thus follow-
ing the same trick as in Lemma 2.1 and 2.2, one gets

|I11,2| .
∑
β1<β

|w`,λ∂β1
g|D · |w`,λ∂βg|D. (2.30) XI2

Plugging (2.28), (2.29) and (2.30) into (2.27), one can see that (2.21) holds true.
Therefore, Lemma 2.6 is proved. �

As a direct application of Propositions A.2, A.3 and Lemma 2.6, we have the
following weighted coercivity estimates on the linearized collision operator L with
respect to the time-velocity exponential weight w`,λ(t, ξ).

Lemma 2.7. Assume 0 < s < 1, −3 < γ < −2s, ` ∈ R and λ ≥ 0. One has〈
w2
`,λL g, g

〉
& |w`,λg|2D − C|w`,λg|2L2

γ/2
.

For |β| ≥ 1, one also has〈
w2
`,λ∂βL g, ∂βg

〉
& |w`,λ∂βg|2D − C

∑
β1<β

|w`,λ∂β1
g|2D − C|w`,λ∂βg|2L2

γ/2
.

By applying Sobolev’s embedding theorem, and recalling the definitions of L and
L , one can further obtain

Lemma 2.8. For 0 < s < 1, −3 < γ < −2s, ` ∈ R and λ ≥ 0. It holds that∑
|β|≤N

〈
w2
`,λ∂βLg, ∂βg

〉
&
∑
|β|≤N

|w`,λ∂βg|2D − C|g|2L2
BC

,

where g is a vector function in R2, and BC denotes the closed ball in R3
ξ with center

zero and radius a constant C.

3. Global a priori estimates
〈sec3〉

In this section we are going to prove the main result of the paper Theorem 1.1.
The key point is to deduce the uniform-in-time a priori estimates of solutions to
the Vlasov-Maxwell-Boltzmann system

∂tf + ξ · ∇xf − E · ξµ1/2q1 + Lf = S,

∂tE −∇x ×B = −
〈
ξµ1/2, f+ − f−

〉
,

∂tB +∇x × E = 0,

∇x · E =
〈
µ1/2, f+ − f−

〉
, ∇x ·B = 0,

(3.1) ns

where the nonlinear term S = [S+, S−] is given by

S = Γ(f, f) +
1

2
q0E · ξf − q0(E + ξ ×B) · ∇ξf. (3.2) def.S
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For that, let (f,E,B) be a smooth solution to (3.1) over the time interval 0 ≤ t ≤ T
with initial data (f0, E0, B0) for 0 < T ≤ ∞, and further suppose that (f,E,B)
satisfies

X(t) ≤ δ2, (3.3) apX

where X(t) is given in (1.14) and the constant δ > 0 is sufficiently small. Here
recall that X(t) also depends on parameters N1, `1, λ0, ϑ and ε0 which will be
fixed in the proof.

3.1. Macro structure and macro dissipation. In the first subsection, we con-
sider the macroscopic structure of system (3.1) in terms of the Grad’s moment
method [15, 16] in order to find out the macroscopic dissipation. As in [21], by tak-
ing velocity integrations of the first equation of (3.1) with respect to the velocity
moments

µ1/2, ξiµ
1/2 (i = 1, 2, 3),

1

6
(|ξ|2 − 3)µ1/2,

one has

∂ta± +∇x · b+∇x ·
〈
ξµ1/2, {I± −P±}f

〉
=
〈
µ1/2, S±

〉
, (3.4) m0

∂t

[
bi +

〈
ξiµ

1/2, {I± −P±}f
〉]

+ ∂i(a± + 2c)∓ Ei

+∇x ·
〈
ξξiµ

1/2, {I± −P±}f
〉

=
〈
ξiµ

1/2, S±−L±f
〉
,

∂t

[
c+

1

6

〈
(|ξ|2 − 3)µ1/2, {I± −P±}f

〉]
+

1

3
∇x · b

+
1

6
∇x ·

〈(
|ξ|2 − 3

)
ξµ1/2, {I± −P±}f

〉
=

1

6

〈
(|ξ|2 − 3)µ1/2, S±−L±f

〉
.

As in [13], define the high-order moment functions Θ(f±) = (Θij(f±))3×3 and
Λ(f±) = (Λ1(f±),Λ2(f±),Λ3(f±)) by

Θij(f±) =
〈

(ξiξj − 1)µ1/2, f±

〉
, Λi(f±) =

1

10

〈
(|ξ|2 − 5)ξiµ

1/2, f±

〉
.

Further taking velocity integrations of the first equation of (3.1) with respect to
the above high-order moments one has

∂t [Θii({I± −P±}f) + 2c] + 2∂ibi = Θii(r± + S±),

∂tΘij({I± −P±}f) + ∂jbi + ∂ibj +∇x ·
〈
ξµ1/2, {I± −P±}f

〉
= Θij(r± + S±) +

〈
µ1/2, S±

〉
, i 6= j, (3.5) m2ij

∂tΛi({I± −P±}f) + ∂ic = Λi(r± + S±),
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where r± = −ξ · ∇x{I± − P±}f − L±f . Notice that we have used (3.4) to derive
(3.5). Moreover, it is straightforward to compute from integration by parts that〈

µ1/2, S±

〉
= 0,〈

ξµ1/2, S±

〉
= ±Ea± ± b×B±

〈
ξµ1/2, {I± −P±}f

〉
×B

+
〈
ξµ1/2,Γ±(f, f)

〉
,

1

6

〈(
|ξ|2 − 3

)
µ1/2, S±

〉
= ±1

3
b · E ± 1

3

〈
ξµ1/2, {I± −P±}f

〉
· E

+
1

6

〈(
|ξ|2 − 3

)
µ1/2,Γ±(f, f)

〉
.

Now we define the macro dissipation DN,mac(t) by

DN,mac(t) =
∑

|α|≤N−1

‖∇x∂α(a±, b, c)‖2 + ‖a+ − a−‖2

+ ‖E‖2HN−1 + ‖∇xB‖2HN−2 .

With the above macro structure of the system (3.1) in hand, we have

〈lem.mad〉Lemma 3.1. For any integer N with 8 ≤ N ≤ N1, there is an interactive energy
functional E intN (t) such that

|E intN (t)| .
∑
|α|≤N

(
‖∂αf‖2 + ‖∂α(E,B)‖2

)
(3.6) lem.mad.ad1

and
d

dt
E intN (t) + κDN,mac(t) .

∑
|α|≤N

‖∂α{I−P}f‖2D + EN (t)DN (t) (3.7) ma-mi

for 0 ≤ t ≤ T .

Proof. Basing on the previous work [13] and [14] and combing Lemma A.1, it is a
quite standard process to obtain (3.7) with (3.6) being satisfied. We hence omit
the details for brevity. �

3.2. Uniform spatial energy estimate. In this section we derive the basic energy
estimates on EN1

(t) which contains only the spatial derivatives.

〈lem.n1〉Lemma 3.2. Let l1−1 ≥ N1 ≥ 14. There is an energy functional EN1
(t) such that

d

dt
EN1(t) + κDN1(t) .

δ

(1 + t)1+ϑ
DN1,`1,λ0(t) + EN1(t)EN1−3,`1− γ+2s

γ ,λ0
(t) (3.8) lem.n1.1

for 0 ≤ t ≤ T .

Proof. It is straightforward to establish the energy identities

1

2

d

dt

∑
|α|≤N1

(
‖∂αf‖2 + ‖∂α(E,B)‖2

)
+

∑
|α|≤N1

〈L∂αf, ∂αf〉

=
∑
|α|≤N1

〈∂αS, ∂αf〉. (3.9) lem.n1.p1
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Moreover, from Lemma 3.1 as well as (3.3),

d

dt
E intN1

(t) + κDN1,mac(t) .
∑
|α|≤N1

‖∂α{I−P}f‖2D + δ2DN1
(t). (3.10) lem.n1.p2

Then, since δ > 0 can be small enough, the proper linear combination of (3.9) and
(3.10) implies that there is an energy functional EN1

(t) satisfying (1.10) such that

d

dt
EN1

(t) + κDN1
(t) . I(1)

N1
(t), (3.11) lem.n1.p3

where

I(1)
N1

(t) = 〈S, f〉+
∑

1≤|α|≤N1

〈∂αS, ∂αf〉.

Finally, we claim that

I(1)
N1

(t) . E1/2

N1−3,l1− γ+2s
γ ,λ0

(t)DN1
(t) +

δ

(1 + t)1+ϑ
DN1,`1,λ0

(t)

+ E1/2

N1
(t)E1/2

N1−3,`1− γ+2s
γ ,λ0

(t)D1/2

N1
(t). (3.12) lem.n1.p4

Therefore, the desired estimate (3.8) follows from plugging (3.12) into (3.11) and
applying (3.3) and the Cauchy-Schwarz inequality to the first and third terms on
the right-hand side of (3.12), respectively. This then completes the proof of Lemma
3.2. �

Proof of (3.12). We first consider the estimate of I(1)
N1

(t) corresponding to Γ(f, f)
in the nonlinear term S. Using Lemma 2.5, it directly follows that it is bounded

up to a generic constant by E1/2

N1−3,l1− γ+2s
γ ,λ0

(t)DN1(t). Recall from the definition

of X(t), and hence,

‖∇x(E,B)‖H5 ≤ X1/2(t)

(1 + t)1+ϑ
≤ δ

(1 + t)1+ϑ
.

For the zero-order term related to the electromagnetic field, it holds that

1

2
〈q0E · ξf − q0(E + ξ ×B) · ∇ξf, f〉 =

1

2
〈q0E · ξf, f〉

.
∫∫

R3×R3

|E| · |ξ|(|Pf |2 + |{I−P}f |2) dxdξ

. ‖E‖ · ‖(a±, b, c)‖L∞‖(a±, b, c)‖+ ‖E‖L∞
∫∫

R3×R3

|ξ| · |{I−P}f |2 dxdξ

. E1/2

N1
(t)DN1(t) +

δ

(1 + t)1+ϑ
DN1,`1,λ0(t).

For the ∂α derivative term related to (E,B) with 1 ≤ |α| ≤ N1, we write

〈∂α(E · ξf), ∂αf〉 =
∑
α1≤α

Cαα1
〈∂α1E · ξ∂α−α1f, ∂αf〉

=
∑
α1≤α

Cαα1
〈∂α1E · ξ∂α−α1Pf, ∂αf〉+

∑
α1≤α

Cαα1
〈∂α1E · ξ∂α−α1{I−P}f, ∂αf〉.

(3.13) Epurex
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By Sobolev’s inequality, one can easily prove that the first term on the right-hand
side of (3.13) is bounded by

C E1/2

N1
(t)DN1

(t).

Now we turn to estimate the second term on the right hand side of (3.13). Notice
that

l1 − 1 ≥ N1, 1 > s ≥ 1/2,

which implies

〈ξ〉1−(γ+2s) ≤ wN1−l1(ξ).

Therefore if |α1| ≤ 4, it follows that∑
|α1|≤4, α1≤α

〈∂α1E · ξ∂α−α1{I−P}f, ∂αf〉

.
∑
|α1|≤4

‖∂α1E‖L∞
∥∥∥|ξ|〈ξ〉− γ+2s

2 ∂α−α1{I−P}f
∥∥∥ · ∥∥∥〈ξ〉 γ+2s

2 ∂αf
∥∥∥

.
δ

(1 + t)1+ϑ
DN1,`1,λ0

(t).

On the other hand, for |α1| ≥ 5 and N1 ≥ 14, we also see that

|α− α1|+ 2 ≤ N1 − 3, |ξ|〈ξ〉−(γ+2s) ≤ w|α−α1|+2−l1+ γ+2s
γ

(ξ).

With the above observation, we obtain∑
|α1|≥5, α1≤α

〈∂α1E · ξ∂α−α1{I−P}f, ∂αf〉

.
∑

|α1|≥5, α1≤α

‖∂α1E‖ · sup
x

∣∣∣|ξ|〈ξ〉− γ+2s
2 ∂α−α1{I−P}f

∣∣∣
L2
ξ

∥∥∥〈ξ〉 γ+2s
2 ∂αf

∥∥∥
. E1/2

N1
(t)E1/2

N1−3,`1− γ+2s
γ ,λ0

(t)D1/2

N1
(t),

where the Sobolev inequality ‖g‖L∞ ≤ C‖∇xg‖H1 for any function g = g(x) ∈ H2

has been used. Combing both cases, one can see that∑
|α|≤N1

〈∂α(E · ξf), ∂αf〉 . δ

(1 + t)1+ϑ
DN1,`1,λ0(t)

+ E1/2

N1
(t)E1/2

N1−3,`1− γ+2s
γ ,λ0

(t)D1/2

N1
(t).

Remark 3.1. We would here point out that l1 − 1 ≥ N1 is needed in order to
control the worst term ∑

|α|=N1

〈E · ξ∂αf, ∂αf〉.

And |α1| ≥ 5 can not be improved if one intends to control the term

sup
x

∣∣∣|ξ|〈ξ〉− γ+2s
2 ∂α−α1f

∣∣∣
L2
ξ

by E1/2

N1−3,`1− γ+2s
γ ,λ0

(t). This implies that derivatives of the electromagnetic field

(E,B) which enjoys the explicit time-decay rate can be up to order six.
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Finally, in a similar way as before, it holds that

〈∂α{(ξ ×B) · ∇ξf}, ∂αf〉 =
∑

0<α1≤α

Cαα1
〈(ξ × ∂α1B) · ∇ξ∂α−α1f, ∂αf〉

.
δ

(1 + t)1+ϑ
DN1,`1,λ0

(t) + E1/2

N1
(t)E1/2

N1−3,`1− γ+2s
γ ,λ0

(t)D1/2

N1
(t).

Therefore, the claimed inequality (3.12) follows by collecting all the estimates. �

3.3. The highest-order energy estimate with weight. In this section we turn
to the weighted energy estimates on EN1,`1,λ0

(t). As pointed out in [8], due to
the regularity-loss property of the whole system, two difficulties naturally come
out, that is, the weighted highest-order energy functional EN1,`1,λ0(t) can only be
expected to increase in time and it is also a problem to obtain the weighted estimate
on derivatives of the highest order N1 for the linear term E · ξµ1/2. To overcome
the first difficulty, we shall refine in the following lemma the nonlinear estimates in
order to make use of the time-decay property of the lower-order energy functional
EN1−3,`1− γ+2s

γ ,λ0
(t), and postpone the estimate on E · ξµ1/2 to Lemma 3.4 in terms

of the trick firstly introduced in [22].

〈lem.n1w〉Lemma 3.3. There is an energy functional EN1,`1,λ0(t) with λ0 > 0, ϑ = 1
4 and

l1 − 1 ≥ N1 ≥ 14 such that

d

dt
EN1,`1,λ0

(t) + κDN1,`1,λ0
(t) .

∑
|α|=N1

〈
∂αE · ξµ1/2, w2

|α|−`1,λ0
∂αf

〉
(3.14) lem.n1w.1

for 0 ≤ t ≤ T .

Proof. Starting from the first equation of (3.1), the energy estimate on ∂αf with
1 ≤ |α| ≤ N1 weighted by the time-velocity dependent function w|α|−`1,λ0

=
w|α|−`1,λ0

(t, ξ) gives

1

2

d

dt

∑
1≤|α|≤N1

‖∂αf‖2|α|−`1,λ0
+

∑
1≤|α|≤N1

〈
L∂αf, w2

|α|−`1,λ0
∂αf

〉
+

ϑλ0

(1 + t)1+ϑ

∥∥∥〈ξ〉1/2∂αf∥∥∥2

|α|−`1,λ0

=
∑

1≤|α|≤N1

〈
∂αS,w2

|α|−`1,λ0
∂αf

〉
+

∑
1≤|α|≤N1

〈
∂αE · ξµ1/2, w2

|α|−`1,λ0
∂αf

〉
. (3.15) lem.n1w.p1

Similarly, from the first equation of (3.1), one has the weighted energy estimate on
{I−P}f

1

2

d

dt
‖{I−P}f‖2−`1,λ0

+ κ ‖I−Pf‖2D,−`1,λ0

+
ϑλ0

(1 + t)1+ϑ

∥∥∥〈ξ〉1/2{I−P}f
∥∥∥2

−`1,λ0

.
〈
S,w2

−`1,λ0
{I−P}f

〉
+DN1

(t)EN1
(t) +DN1

(t). (3.16) lem.n1w.p2
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and the weighted energy estimate on {I−P}∂αβ f with |α|+ |β| ≤ N1 and |β| ≥ 1

1

2

d

dt

∑
|β|≥1

|α|+|β|≤N1

∥∥∂αβ {I−P}f
∥∥2

|α|+|β|−`1,λ0

+κ
∑
|β|≥1

|α|+|β|≤N1

(∥∥∂αβ {I−P}f
∥∥2

D,|α|+|β|−`1,λ0
+

λ0

(1 + t)1+ϑ

∥∥∥〈ξ〉1/2∂αβ {I−P}f
∥∥∥2

|α|+|β|−`1,λ0

)

.
∑
|α|≤N1

‖∂α{I−P}f‖2D,|α|−`1,λ0
+

∑
|α|≤N1−1

(
‖∇x∂α(a±, b, c)‖2 + ‖∂αE‖2

)
+EN1(t)DN1(t) +

∑
|β|≥1

|α|+|β|≤N1

〈
∂α+ei
β−ei {I−P}f, w2

|α|+|β|−`1,λ0
∂αβ {I−P}f

〉

+
∑
|β|≥1

|α|+|β|≤N1

〈
∂αβS,w

2
|α|+|β|−`1,λ0

∂αβ {I−P}f
〉
, (3.17) lem.n1w.p3

where ei denotes the multi-index with the ith element unit and the rest ones zeros.
To be continued, we need to deal with the term∑

|β|≥1
|α|+|β|≤N1

〈
∂α+ei
β−ei {I−P}f, w2

|α|+|β|−`1,λ0
∂αβ {I−P}f

〉

carefully. For doing this, we write∑
|β|≥1

|α|+|β|≤N1

〈
∂α+ei
β−ei {I−P}f, w2

|α|+|β|−`1,λ0
∂αβ {I−P}f

〉

=
∑
|β|≥1

|α|+|β|≤N1

〈
w|α|+|β|+ 1

2−`1,λ0
∂α+ei
β−ei {I−P}f,

∂ei

[
w|α|+|β−ei|+ 1

2−`1,λ0
∂αβ−ei{I−P}f

] 〉
−

∑
|β|≥1

|α|+|β|≤N1

〈
w|α|+|β|+ 1

2−`1,λ0
∂α+ei
β−ei {I−P}f,

∂ei

[
w|α|+|β−ei|+ 1

2−`1,λ0

]
∂αβ−ei{I−P}f

〉
.

(3.18) transterm1

It is easy to see that the second inner product on the right-hand side of (3.18) is
bounded by

C
∥∥∥w|α|+|β|−`1,λ0

∂α+ei
β−ei {I−P}f

∥∥∥
L2
γ/2

∥∥w|α|+|β−ei|−`1,λ0
∂αβ−ei{I−P}f

∥∥
L2
γ/2

.
∑

|β̄|=|β|−1, |β|≥1
|α|+|β̄|≤N1

‖∂αβ̄ {I−P}f‖2D,|α|+|β̄|−`1,λ0
. (3.19) transterm11
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Next noticing 1/2 ≤ s < 1, applying the Parseval identity, one can find that the
first inner product on the right-hand side of (3.18) can be dominated by

∫
R3

∣∣∣ ∫
R3

ikiFξ
[
w|α|+|β|+ 1

2−`1,λ0
∂α+ei
β−ei {I−P}f

]
×Fξ

[
w|α|+|β−ei|+ 1

2−`1,λ0
∂αβ−ei{I−P}f

]
dk
∣∣∣dx

.
∫
R3

∣∣∣〈k〉 1
2Fξ

[
w|α|+|β|+ 1

2−`1,λ0
∂α+ei
β−ei {I−P}f

]∣∣∣
L2
k

×
∣∣∣〈k〉 1

2Fξ
[
w|α|+|β−ei|+ 1

2−`1,λ0
∂αβ−ei{I−P}f

]∣∣∣
L2
k

dx

.
∫
R3

∣∣∣w|α|+|β|+ 1
2−`1,λ0

∂α+ei
β−ei {I−P}f

∣∣∣
Hsξ

∣∣∣[w|α|+|β−ei|+ 1
2−`1,λ0

∂αβ−ei{I−P}f
∣∣∣
Hsξ

dx

.
∥∥∥w|α|+|β|−`1,λ0

∂α+ei
β−ei {I−P}f

∥∥∥
Hsγ

∥∥[w|α|+|β−ei|−`1,λ0
∂αβ−ei{I−P}f

∥∥
Hsγ

.
∑

|β̄|=|β|−1, |β|≥1
|α|+|β̄|≤N1

‖∂αβ̄ {I−P}f‖2D,|α|+|β̄|−`1,λ0
,

(3.20) transterm12

where Fξ means the Fourier transform with respect to ξ-variable with k the corre-

sponding frequency variable, ·̄ denotes the complex conjugate, and i =
√
−1 ∈ C is

the pure imaginary unit.
Then, the proper linear combination of (3.9), (3.10), (3.15), (3.16), (3.17), (3.18),

(3.19) and (3.20) implies that there is an energy functional EN1,`1,λ0(t) satisfying
(1.10) such that

d

dt
EN1,`1,λ0

(t) + κDN1,`1,λ0
(t) . I(2)

N1,`1,λ0
(t)

+
∑
|α|=N1

〈
∂αE · ξµ1/2, w2

|α|−`1,λ0
∂αf

〉
, (3.21) lem.n1w.p4

where

I(2)
N1,`1,λ0

(t) = 〈S, f〉+
∑

1≤|α|≤N1

〈∂αS, ∂αf〉

+
〈
S,w2

−`1,λ0
{I−P}f

〉
+

∑
1≤|α|≤N1

〈
∂αS,w2

|α|−`1,λ0
∂αf

〉
︸ ︷︷ ︸

A

+

N1∑
m=1

Cm
∑
|β|=m

|α|+|β|≤N1

〈
∂αβS,w

2
|α|+|β|−`1,λ0

∂αβ {I−P}f
〉

︸ ︷︷ ︸
B

. (3.22) def.i2
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We now claim that

I(2)
N1,`1,λ0

(t) .(1 + t)1−ϑE1/2

N1−3,`1− γ+2s
γ ,λ0

(t)DN1,`1,λ0(t)

+ E1/2

N1
(t)DN1,`1,λ0(t) +

1

λ0
(1 + t)1+ϑ‖∇x(E,B)‖H4DN1,`1,λ0(t).

(3.23) lem.n1w.p5

By the assumption X(t) ≤ δ2, one gets that

I(2)
N1,`1,λ0

(t) . δDN1,`1,λ0
(t). (3.24) lem.n1w.p6

Then putting (3.24) into (3.21), we see that the desired estimate (3.14) follows.
This completes the proof of Lemma 3.3. �

Proof of (3.23). For brevity, we only present the estimate of A and B on the right-
hand side of (3.22) since the estimate on other terms is simpler or follows in the
completely same way. Take α with 1 ≤ |α| ≤ N1. For the inner product term
related to ∂αΓ(f, f), by using (2.18) in Lemma 2.5, it follows that〈

∂αΓ(f, f), w2
|α|−`1,λ0

∂αf
〉
. (1 + t)1−ϑE1/2

N1−3,`1− γ+2s
γ ,λ0

(t)DN1,`1,λ0
(t).

Next, for the term E · ξf in S, one has〈
∂α(E · ξf), w2

|α|−`1,λ0
∂αf

〉
=
∑
α1≤α

Cαα1

〈
∂α1E · ξ∂α−α1f, w2

|α|−`1,λ0
∂αf

〉
.
∑
|α1|≤2

‖∂α1E‖L∞
∫∫

R3×R3

|ξ|w2
|α|−`1,λ0

(
|∂α−α1f |2 + |∂αf |2

)
dxdξ

+
∑
|α1|≥3
orα1=α

‖∂α1E‖ · sup
x

∣∣∣|ξ|〈ξ〉− γ+2s
2 w|α|−`1,λ0

∂α−α1f
∣∣∣
L2
ξ

∥∥∥〈ξ〉 γ+2s
2 w|α|−`1,λ0

∂αf
∥∥∥

.
1

λ0
(1 + t)1+ϑ‖∇x(E,B)‖H3DN1,`1,λ0

(t) + E1/2

N1
(t)DN1,`1,λ0

(t),

where we have used the Sobolev inequality ‖g‖L∞ . ‖∇g‖H1 and the fact that
1− 2s ≤ 0.

For the term (E + ξ ×B) · ∇ξf in S, the difference point is that it contains the
velocity derivative of order one. Our goal is to prove〈

∂α[(E + ξ ×B) · ∇ξf ], w2
|α|−`1,λ0

∂αf
〉

. E1/2

N1
(t)DN1,`1,λ0(t) +

1

λ0
(1 + t)1+ϑ‖∇x(E,B)‖H4DN1,`1,λ0(t). (3.25) EBxw

In fact, one can deduce that〈
∂α[(E + ξ ×B) · ∇ξf ], w2

|α|−`1,λ0
∂αf

〉
=

〈
(E + ξ ×B) · ∇ξw2

|α|−`1,λ0
,−1

2
|∂αf |2

〉
+

∑
0<α1≤α

Cαα1

〈
(∂α1E + ξ × ∂α1B) · ∇ξ∂α−α1f, w2

|α|−`1,λ0
∂αf

〉
. (3.26) i2.p1
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Here, it is straightforward to see that the first term on the right is bounded in a
rough way by

C‖E‖L∞
∫∫

R3×R3

(
〈ξ〉−1 + (1 + t)−ϑ

)
w2
|α|−`1,λ0

|∂αf |2 dxdξ

.
1

λ0
(1 + t)1+ϑ‖∇xE‖H1

∫∫
R3×R3

λ0

(1 + t)1+ϑ
w2
|α|−`1,λ0

|∂αf |2 dxdξ

.
1

λ0
(1 + t)1+ϑ‖∇xE‖H1DN1,`1,λ0

(t).

We split the second term on the right-hand side of (3.26) into∑
0<α1≤α

Cαα1

〈
(∂α1E + ξ × ∂α1B) · ∇ξ∂α−α1f, w2

|α|−`1,λ0
∂αf

〉
=

∑
0<α1≤α

Cαα1

〈
(∂α1E + ξ × ∂α1B) · ∇ξ∂α−α1Pf, w2

|α|−`1,λ0
∂αf

〉
+

∑
0<α1≤α

Cαα1

〈
(∂α1E + ξ × ∂α1B) · ∇ξ∂α−α1{I−P}f, w2

|α|−`1,λ0
∂αf

〉
. (3.27) Epurexw

In a similar same way to estimate (3.13), we only compute the second term on the
right-hand side of (3.27). For doing this, when |α1| ≤ 3, it is bounded by

C ‖∂α1(E,B)‖L∞
∫∫

R3×R3

〈ξ〉
(
w2
|α|−`1,λ0

|∇ξ∂α−α1{I−P}f |2 + w2
|α|−`1,λ0

|∂αf |2
)
dxdξ

. ‖∇x∂α1(E,B)‖H1

∫∫
R3×R3

〈ξ〉
(
|w1+|α−α1|−`1,λ0

∇ξ∂α−α1{I−P}f |2 + |w|α|−`1,λ0
∂αf |2

)
dxdξ

.
1

λ0
(1 + t)1+ϑ‖∇x(E,B)‖H4DN1,`1,λ0(t),

where we have used the fact that |α− α1|+ 1 ≤ |α|.
When |α1| ≥ 4, one can see that

〈ξ〉1−
γ+2s

2 w|α|−`1,λ0
(t, ξ) . 〈ξ〉

γ+2s
2 w3+|α−α1|−`1,λ0

(t, ξ),

which implies that the second term on the right-hand side of (3.27) can be domi-
nated by

C‖∂α1(E,B)‖ · sup
x

∣∣∣〈ξ〉1− γ+2s
2 w|α|−`1,λ0

∇ξ∂α−α1{I−P}f
∣∣∣
L2
ξ

‖〈ξ〉
γ+2s

2 w|α|−`1,λ0
∂αf‖

.E1/2

N1
(t)

∑
|α′|≤2

∥∥∥〈ξ〉 γ+2s
2 w1+|α−α1+α′|−`1,λ0

∇ξ∂α−α1+α′{I−P}f
∥∥∥D1/2

N1,`1,λ0
(t)

.E1/2

N1
(t)DN1,`1,λ0

(t).

Therefore (3.25) is true. Collecting all the above estimates, we see that

A .(1 + t)1−ϑE1/2

N1−3,`1− γ+2s
γ ,λ0

(t)DN1,`1,λ0(t)

+ E1/2

N1
(t)DN1,`1,λ0(t) +

1

λ0
(1 + t)1+ϑ‖∇x(E,B)‖H4DN1,`1,λ0(t).
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As to B, letting |α|+ |β| ≤ N1 with |β| ≥ 1, applying (2.17) in Lemma 2.5, we
obtain

〈
∂αβΓ(f, f), w2

|α|+|β|−`1,λ0
∂αβ {I−P}f

〉
. (1 + t)1−ϑE1/2

N1−3,`1− γ+2s
γ ,λ0

(t)DN1,`1,λ0
(t).

Next, for the term E · ξf in S, we only consider the estimates by

〈
∂αβ (E · ξ{I−P}f), w2

|α|+|β|−`1,λ0
∂αβ {I−P}f

〉
=

∑
α1≤α,|β1|≤1

Cα,βα1,β1

〈
∂α1E · ∂β1ξ∂

α−α1

β−β1
{I−P}f, w2

|α|+|β|−`1,λ0
∂αβ {I−P}f

〉
.
∑
|α1|≤2

‖∂α1E‖L∞
∫∫

R3×R3

|ξ|w2
|α|+|β|−`1,λ0

(
|∂α−α1

β−β1
{I−P}f |2 + ∂αβ {I−P}f |2

)
dxdξ

+
∑
|α1|≥3
orα1=α

‖∂α1E‖ · sup
x

∣∣∣|ξ|〈ξ〉− γ+2s
2 w|α|+|β|−`1,λ0

∂α−α1

β−β1
{I−P}f

∣∣∣
L2
ξ

×
∥∥∥〈ξ〉 γ+2s

2 w2
|α|+|β|−`1,λ0

∂αβ {I−P}
∥∥∥

.
1

λ0
(1 + t)1+ϑ‖∇x(E,B)‖H3DN1,`1,λ0(t) + E1/2

N1
(t)DN1,`1,λ0(t).

For the term (E + ξ × B) · ∇ξf in S, the difference point is that it contains the
velocity derivative of order one and the growth of ξ. For brevity, we only estimate
the following term

〈
∂αβ [ξ ×B · ∇ξ{I−P}f ], w2

|α|+|β|−`1,λ0
∂αβ {I−P}f

〉
=

∑
0<α1+β1

Cα,βα1,β1

〈
(∂β1

ξ × ∂α1B) · ∇ξ∂α−α1

β−β1
{I−P}f,

w2
|α|+|β|−`1,λ0

∂αβ {I−P}f
〉
. (3.28) i2.p2

When |α1| ≤ 3, (3.28) is bounded by

C ‖∂α1B‖L∞
∫∫

R3×R3

〈ξ〉
(
w2
|α|+|β|−`1,λ0

|∇ξ∂α−α1

β−β1
{I−P}f |2

+w2
|α|+|β|−`1,λ0

|∂αβ {I−P}f |2
)
dxdξ

. ‖∇x∂α1B‖H1

∫∫
R3×R3

〈ξ〉
(
|w|α−α1|+|β−β1|+1−`1,λ0

∇ξ∂α−α1

β−β1
{I−P}f |2

+|w|α|+|β|−`1,λ0
∂αβ {I−P}f |2

)
dxdξ

.
1

λ0
(1 + t)1+ϑ‖∇x(E,B)‖H4DN1,`1,λ0(t).
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When |α1| ≥ 4, (3.28) is dominated by

C ‖∂α1B‖ · sup
x

∣∣∣〈ξ〉1− γ+2s
2 w|α|+|β|−`1,λ0

|∇ξ∂α−α1

β−β1
{I−P}f |

∣∣∣
L2
ξ

×
∥∥∥〈ξ〉 γ+2s

2 w|α|+|β|−`1,λ0
∂αβ {I−P}f

∥∥∥
.E1/2

N1
(t)

∑
|α′|≤2

∥∥∥〈ξ〉 γ+2s
2 w1+|α−α1+α′|+|β−β1|−`1,λ0

∇ξ∂α−α1+α′

β−β1
{I−P}f

∥∥∥
×D1/2

N1,`1,λ0
(t)

.E1/2

N1
(t)DN1,`1,λ0

(t).

Thus (3.23) holds true for B. This proves the desired inequality (3.23). �

Now we give a remark to explain the choice of our new weight w|α|+|β|−`1,λ0
.

Remark 3.2. In fact, the weight w|α|+|β|−`1,λ0
is designed to treat the delicate

term ∑
|α1|=1

(ξ × ∂α1B) · ∇ξ∂α−α1

β {I−P}f.

More precisely, the exponential part of the weight w|α|+|β|−`1,λ0
is needed to absorb

the growth of ξ, and the algebraic weight 〈ξ〉γ(|α|+|β|−`1) is required to deal with the
growth of ξ−derivatives.

At this point, we are ready to obtain the closed estimate on the first portion of
the time-weighted energy norm X(t) in the following

〈lem.ce1〉Lemma 3.4. Assume l1 − 1 ≥ N1 ≥ 14. It holds that

sup
0≤s≤t

{
EN1

(s) + (1 + s)−
1+ε0

2 EN1,`1,λ0
(s)
}

+

∫ t

0

DN1
(s) ds+

∫ t

0

(1 + s)−
1+ε0

2 DN1,`1,λ0
(s) ds . Y 2

0 +X2(t) (3.29) ce1

for 0 ≤ t ≤ T .

Proof. In fact, the time integration of (3.8) gives

EN1(t) +

∫ t

0

DN1(s) ds . Y 2
0 + δ

∫ t

0

(1 + s)−1−ϑDN1,`1,λ0(s) ds

+

∫ t

0

EN1(s)EN1−3,`1− γ+2s
γ ,λ0

(s) ds. (3.30) ce1.p1

Furthermore, from multiplying (3.8) by (1 + t)−ε0 and then taking the time inte-
gration, it follows that

(1 + t)−ε0EN1(t) +

∫ t

0

(1 + s)−ε0DN1(s) ds+

∫ t

0

(1 + s)−1−ε0EN1(s) ds

. Y 2
0 + δ

∫ t

0

(1 + s)−1−ϑ−ε0DN1,`1,λ0(s) ds

+

∫ t

0

(1 + s)−ε0EN1(s)EN1,`1− γ+2s
γ ,λ0

(s) ds. (3.31) ce1.p2
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Combining (3.30) and (3.31) gives

EN1(t) +

∫ t

0

DN1(s) ds+

∫ t

0

(1 + s)−1−ε0EN1(s) ds

. Y 2
0 + δ

∫ t

0

(1 + s)−1−ϑDN1,`1,λ0(s) ds+

∫ t

0

EN1(s)EN1,`1− γ+2s
γ ,λ0

(s) ds

. Y 2
0 +X2(t) + δ

∫ t

0

(1 + s)−1−ϑDN1,`1,λ0
(s) ds, (3.32) ce1.p3

where to obtain the second inequality, we have used

sup
0≤s≤t

{
EN1

(s) + (1 + s)
3
2 EN1−3,`1− γ+2s

γ ,λ0
(s)
}
≤ X(t).

From (3.14), multiplying it by (1+t)−(1+ε0)/2 and taking the time integration yields

(1 + t)−
1+ε0

2 EN1,`1,λ0
(t) +

∫ t

0

(1 + s)−
1+ε0

2 DN1,`1,λ0
(s) ds

+

∫ t

0

(1 + s)−
3+ε0

2 EN1,`1,λ0(s) ds

. Y 2
0 +

∑
|α|=N1

∫ t

0

(1 + s)−
1+ε0

2

〈
∂αE · ξµ1/2, w2

|α|−`1,λ0
∂αf

〉
. (3.33) ce1.p4

By the Cauchy-Schwarz inequality, the right-hand second term of (3.33) is bounded
up to a generic constant by

∑
|α|=N1

∫ t

0

(
(1 + s)−1−ε0 ‖∂αE‖2 +

∥∥∥〈ξ〉 γ+2s
2 ∂αf

∥∥∥2
)
ds

.
∫ t

0

(1 + s)−1−ε0EN1
(s) ds+

∫ t

0

DN1
(s) ds.

Then, in terms of the above estimates, taking the sum of (3.32) and (3.33) and
using the fact that δ > 0 is small enough, we arrive at

EN1(t) + (1 + t)−
1+ε0

2 EN1,`1,λ0(t) +

∫ t

0

DN1(s) ds

+

∫ t

0

(1 + s)−
1+ε0

2 DN1,`1,λ0
(s) ds+

∫ t

0

(1 + s)−1−ε0EN1
(s) ds

+

∫ t

0

(1 + s)−
3+ε0

2 EN1,`1,λ0
(s) ds . Y 2

0 +X2(t). (3.34) ce1.p5

Therefore, (3.29) follows, and then this completes the proof of Lemma 3.4. �

3.4. Decay of electromagnetic fields and macro components. In this step,
we will use directly the Duhamel’s principle to obtain the time-decay of the electro-
magnetic field (E,B) and the macro components (a±, b, c) up to order six in terms
of the time-decay of the weighted high-order energy function EN1−3,`1− γ+2s

γ ,λ0
(t)

which follows from the boundedness of X(t).
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To consider the solution to the Cauchy problem

∂tf + ξ · ∇xf − E · ξµ1/2q1 + Lf = S,

∂tE −∇x ×B = −
〈
ξµ1/2, f+ − f−

〉
,

∂tB +∇x × E = 0,

∇x · E =
〈
µ1/2, f+ − f−

〉
, ∇x ·B = 0,

[f,E,B]|t=0 = [f0, E0, B0],

(3.35) ls

where initial data [f0, E0, B0] satisfies the compatibility condition

∇x · E0 =

∫
R3

µ1/2(f0,+ − f0,−) dξ, ∇x ·B0 = 0, (3.36) comp.con

we denote for simplicity U = [f,E,B], U0 = [f0, E0, B0] so that one can formally
write

U(t) = A(t)U0 +

∫ t

0

A(t− s)[S(s), 0, 0] ds,

where A(t) is the linear solution operator for the Cauchy problem on the linearized
homogeneous system corresponding to (3.35) in the case when S = 0.

Following the completely same proof as in [8], one can prove

〈thm.lb〉Lemma 3.5. Let S = 0, and let [f,E,B] be the solution to the Cauchy problem
(3.35), (3.36) of the linearized homogeneous system. Define the velocity weight
function W = W (ξ) by

W (ξ) = 〈ξ〉−
γ+2s

2 with − 3 < γ < −2s, 0 < s < 1. (3.37) def.wl

Then, for ` ≥ 0 and α ≥ 0 with m = |α|,∥∥W `∂αf
∥∥+ ‖∂α(E,B)‖

. (1 + t)−σm
(∥∥∥W `+`low∗ f0

∥∥∥
Z1

+ ‖(E0, B0)‖L1
x

)
+(1 + t)−j

(∥∥∥W `+`high∗ ∇j+1
x ∂αf0

∥∥∥+
∥∥∇j+1

x ∂α(E0, B0)
∥∥) ,

where

σm =
3

4
+
m

2
, `low∗ > 2σm, `

high
∗ > 0, 0 ≤ j < `high∗ .

The following remarks are concerned with Lemma 3.5.

Remark 3.3. The weight W (ξ) is chosen as (3.37) so that W−1(ξ) is consistent
with the weak weight in the dissipation norm (1.12) induced by the linear operator
L. In fact, the similar result can be obtained even if the weight is replaced by the
other algebraic weights such as 〈ξ〉−γ .

Remark 3.4. The extra (j + 1)− th order derivative of the initial data is required
in order to deduce the time decay rate of [f,E,B]. This results essentially from
the coupling of the hyperbolic Maxwell equations but not due to the technique of
the approach, see [7] for the analysis of the Green’s function of the damping Euler-
Maxwell system.
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〈lem.emd〉Lemma 3.6. Suppose l1 − 1 ≥ N1 ≥ 14. It holds that

sup
0≤s≤t

{
(1 + s)

5
2 ‖∇x(E,B)‖2H5 + (1 + s)

3
2 ‖(a±, b, c, E,B)‖2

}
. Y 2

0 +X2(t) (3.38) lem.emd.1

for 0 ≤ t ≤ T .

Proof. Recall the mild form

U(t) = A(t)U0 +

∫ t

0

A(t− s)[S(s), 0, 0] ds, (3.39) lem.emd.p1

which denotes the solutions to the Cauchy problem on system (3.1) with initial
data U0 = (f0, E0, B0), where the nonlinear term S is given by (3.2). The linearized
analysis for the homogeneous system in Lemma 3.5 implies

‖∇xPE,B{A(t)U0}‖H5 . (1 + t)−
5
4

(∥∥∥W `low3 f0

∥∥∥
Z1

+ ‖(E0, B0)‖L1
x

)
+ (1 + t)−

5
4

∑
1≤|α|≤6

(∥∥∥W `high3 ∇
9
4
x ∂

αf0

∥∥∥+
∥∥∥∇ 9

4
x ∂

α(E0, B0)
∥∥∥) ,

where PE,B means the projection along the electro and magnetic components in

the solution (f,E,B), W = W (ξ) is defined by (3.37), and constants `low3 , `high3 are
chosen to satisfy

`low3 >
15

2
, `high3 >

5

4
,

and also `low3 , `high3 are sufficiently close to 15/2 and 5/4, respectively. By interpo-
lation of derivatives,

‖∇xPE,B{A(t)U0}‖H5 . (1 + t)−
5
4

(∥∥∥W `low3 f0

∥∥∥
Z1

+ ‖(E0, B0)‖L1
x

)
+ (1 + t)−

5
4

∑
3≤|α|≤9

(∥∥∥W `high3 ∂αf0

∥∥∥+ ‖∂α(E0, B0)‖
)
.

Applying this time-decay property to the mild form (3.39) gives

‖∇x(E,B)‖H5 . (1 + t)−
5
4Y0 +

∫ t

0

(1 + t− s)− 5
4

∥∥∥W `low3 S(s)
∥∥∥
Z1

ds

+

∫ t

0

(1 + t− s)− 5
4

∑
3≤|α|≤9

∥∥∥W `high3 ∂αS(s)
∥∥∥ ds, (3.40) lem.emd.p2

where we have used W (ξ) = w− γ+2s
2γ

(ξ) ≤ w−1/2(ξ) and the definition (1.15) for Y0.

By applying Lemma A.2, it is straightforward to obtain∥∥∥W `low3 S(t)
∥∥∥
Z1

+
∑

3≤|α|≤9

∥∥∥W `high3 ∂αS(t)
∥∥∥ . EN1−3,`1− γ+2s

γ ,λ0
(t). (3.41) Z1.L2.

Here, we have used the choice of N1 − 3 ≥ 11, `1 − 1 ≥ N1.
Recall X(t) norm, and hence

EN1−3,`1− γ+2s
γ ,λ0

(s) ≤ (1 + s)−
3
2X(t), 0 ≤ s ≤ t.
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Plugging these estimates into (3.40), the further computations yield

sup
0≤s≤t

{
(1 + s)

5
2 ‖∇x(E,B)‖2H5

}
. Y 2

0 +X2(t). (3.42) lem.emd.p3

Moreover, to obtain the time-decay of ‖(a±, b, c, E,B)‖, we use the linearized time-
decay property

‖Pf{A(t)U0}‖+ ‖PE,B{A(t)U0}‖ . (1 + t)−
3
4

(∥∥∥W `low4 f0

∥∥∥
Z1

+ ‖(E0, B0)‖L1
x

)
+ (1 + t)−

3
4

(∥∥∥W `high4 ∇
7
4
x f0

∥∥∥+
∥∥∥∇ 7

4
x (E0, B0)

∥∥∥) ,
where Pf means the projection along the f -component in the solution (f,E,B),

and constants `low4 , `high4 are chosen to satisfy `low4 > 3/2, `high4 > 3/4 and also `low4 ,

`high4 are sufficiently close to 3/2 and 3/4, respectively. Therefore, in the completely
same way for estimating ‖∇x(E,B)‖H5 in (3.42), one has

sup
0≤s≤t

{
(1 + s)

3
2 ‖(a±, b, c, E,B)‖2

}
. Y 2

0 +X2(t). (3.43) lem.emd.p4

Thus, combining (3.42) and (3.43) gives the desired estimate (3.38). This then
completes the proof of Lemma 3.6. �

Remark 3.5. Notice that in the proof of (3.41), the inequality N1 − 3 ≥ 11 was
used, which then yields to require N1 ≥ 14 in Theorem 1.1.

3.5. The compensating energy estimate with weight. In this section we ob-
tain the uniform-in-time boundedness of the energy functional EN1−1,`1,λ0

(t). No-
tice that this is consistent with the estimation on the linearized system. The main
observation in the nonlinear analysis is that those remaining terms in the energy
inequalities are time-space integrable.

〈lem.n1bd〉Lemma 3.7. Assume l1 − 1 ≥ N1 ≥ 14. It holds that

sup
0≤s≤t

EN1−1,`1,λ0
(s) +

∫ t

0

DN1−1,`1,λ0
(s) ds . Y 2

0 +X2(t), (3.44) lem.n1bd.1

for 0 ≤ t ≤ T .

Proof. Similarly for obtaining (3.21), one has

d

dt
EN1−1,`1,λ0(t) + κDN1−1,`1,λ0(t) . I(2)

N1−1,`1,λ0
(t)

+
∑

|α|=N1−1

〈
∂αE · ξµ1/2, w2

|α|−`1,λ0
∂αf

〉
, (3.45) lem.n1bd.p1

where I(2)
N1−1,`1,λ0

(t) is defined by (3.22) with N1 replaced by N1−1. Following the

same way as in the proof of (3.23) one can obtain that

I(2)
N1−1,`1,λ0

(t) . (1 + t)1−ϑE1/2

N1−3,`1− γ+2s
γ ,λ0

(t)DN1−1,`1,λ0(t)

+
1

λ0
(1 + t)1+ϑ‖∇x(E,B)‖H4DN1−1,`1,λ0

(t)

+ E1/2

N1−1(t)DN1−1,`1,λ0
(t). (3.46) lem.n1bd.p1-0
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Further using

sup
0≤s≤t

{
EN1−1(s) + EN1−1,`1,λ0

(s) + (1 + s)2(1+ϑ)‖∇x(E,B)‖2H4

+(1 + s)
3
2 EN1−3,`1− γ+2s

γ ,λ0
(s)
}
≤ X(t) ≤ δ2,

it follows that

I(2)
N1−1,`1,λ0

(t) . δDN1−1,`1,λ0(t) + (1 + t)−
3
4X(t)D1/2

N1−1,`1,λ0
(t). (3.47) lem.n1bd.p2

From the Cauchy-Schwarz inequality, the right-hand second term of (3.45) is esti-
mated by∑
|α|=N1−1

〈
∂αE · ξµ1/2, w2

|α|−`1,λ0
∂αf

〉
.

∑
|α|=N1−1

(
η
∥∥∥〈ξ〉 γ+2s

2 ∂αf
∥∥∥2

+
1

η
‖∂αE‖2

)
. ηDN1−1,`1,λ0

(t) +
1

η
DN1

(t), (3.48) lem.n1bd.p3

for any η > 0. Then, by applying again the Cauchy-Schwarz inequality with η to
the right-hand second term of (3.47), plugging the resultant estimate together with
(3.48) into (3.45), and choosing η > 0 small enough, one has

d

dt
EN1−1,`1,λ0

(t) + κDN1−1,`1,λ0
(t) . DN1

(t) + (1 + t)−
3
2X2(t). (3.49) lem.n1bd.p4

Recall that from (3.34), ∫ t

0

DN1
(s) ds . Y 2

0 +X2(t).

Therefore, (3.44) follows by the time integration of (3.49). This completes the proof
of Lemma 3.7. �

3.6. Decay of the lower order energy. To obtain the closed estimate on the
energy norm X(t), it remains to obtain the time-decay of the lower-order energy
functional EN1−3,`1− γ+2s

γ ,λ0
(t) and EN1−2(t) through the time-weighted estimate as

well as the iterative trick as in [8]. Notice that smoothness-loss and velocity-weight-
loss in EN1−3,`1− γ+2s

γ ,λ0
(t) result from the regularity-loss of the electromagnetic field

and the degeneration of collisional kernels for soft potentials. Here we emphasize
that although the proof of the following lemma looks similar to that in [8], the full
details will be provided since most of subscripts in the energy functional EN,`,λ(t)
take the completely different form, and one has to carefully check the validity of all
the estimates.

〈lem.n1wd〉
Lemma 3.8. It holds that

sup
0≤s≤t

{
(1 + s)

3
2 [EN1−3,`1− γ+2s

γ ,λ0
(s) + EN1−2(s)]

}
. Y 2

0 +X2(t) (3.50) lem.n1wd.1

for 0 ≤ t ≤ T .

Proof. First recall from Lemma 3.4 and Lemma 3.7

EN1
(t) + EN1−1,`1,λ0

(t) +

∫ t

0

DN1
(s) +DN1−1,`1,λ0

(s) ds . Y 2
0 +X2(t). (3.51) lem.n1wd.p1
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To obtain the time-decay of EN1−3,`1− γ+2s
γ ,λ0

(t) and EN1−2(t), we will make the

time-weighted estimate. For brevity of presentation we write

J (2)
N,`,λ0

(t) =
∑
|α|=N

〈
∂αE · ξµ1/2, w2

|α|−`,λ0
∂αf

〉
.

From the proof of Lemma 3.2 and Lemma 3.3, cf. (3.8) and (3.21), one has the
Lyapunov inequalities

d

dt
EN1−1(t) + κDN1−1(t) . I(1)

N1−1(t),

d

dt
EN1−2,`1− γ+2s

2γ ,λ0
(t) + κDN1−2,`1− γ+2s

2γ ,λ0
(t)

. I(2)

N1−2,`1− γ+2s
2γ ,λ0

(t) + J (2)

N1−2,`1− γ+2s
2γ ,λ0

(t).

(3.52) lem.n1wd.p2

Those terms on the right can be estimated as follows. Similar to (3.12), it holds
that

I(1)
N1−1(t) . E1/2

N1−3,`1− γ+2s
γ ,λ0

(t)DN1−1(t) +
δ

(1 + t)1+ϑ
DN1−1,`1,λ0(t)

+ E1/2

N1−1(t)E1/2

N1−3,`1− γ+2s
γ ,λ0

(t)D1/2

N1−1(t).

Here, noticing that E1/2

N1−3,`1− γ+2s
γ ,λ0

(t) ≤ X1/2(t) ≤ δ is small enough for the first

term on the right and applying the Cauchy-Schwarz inequality to the third term
on the right, it then follows from the first equation of (3.52) that

d

dt
EN1−1(t) + κDN1−1(t)

.
δ

(1 + t)1+ϑ
DN1−1,`1,λ0

(t) + EN1−1(t)EN1−3,`1− γ+2s
γ ,λ0

(t). (3.53) lem.n1wd.p3

Moreover, similar to (3.46), it holds that

I(2)

N1−2,`1− γ+2s
2γ ,λ0

(t) . (1 + t)1−ϑE1/2

N1−3,`1− γ+2s
γ ,λ0

(t)DN1−2,`1− γ+2s
2γ ,λ0

(t)

+
1

λ0
(1 + t)1+ϑ‖∇x(E,B)‖H4DN1−2,`1− γ+2s

2γ ,λ0
(t)

+ E1/2

N1−2(t)DN1−2,`1− γ+2s
2γ ,λ0

(t),

which by using X(t) ≤ δ2 for the first two terms on the right and the Cauchy-
Schwarz inequality for the last term, further implies

I(2)

N1−2,`1− γ+2s
2γ ,λ0

(t) . δDN1−2,`1− γ+2s
2γ ,λ0

(t). (3.54) lem.n1wd.p4

Again from the Cauchy-Schwarz inequality with η > 0,

J (2)

N1−2,`1− γ+2s
2γ ,λ0

(t) .
∑

|α|=N1−2

(
η
∥∥∥〈ξ〉 γ+2s

2 ∂αf
∥∥∥2

+
1

η
‖∂αE‖2

)
. (3.55) lem.n1wd.p5

Then, by plugging (3.54) and (3.55) into the second equation of (3.52), taking the
sum of the resultant inequality multiplied by a proper small constant κ1 > 0 and
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another inequality (3.53), and using smallness of δ > 0 and η > 0, one has

d

dt

{
EN1−1(t) + κ1EN1−2,`1− γ+2s

2γ ,λ0
(t)
}

+κ
{
DN1−1(t) + κ1DN1−2,`1− γ+2s

2γ ,λ0
(t)
}

.
δ

(1 + t)1+ϑ
DN1−1,`1,λ0(t) + EN1−1(t)EN1−3,`1− γ+2s

γ ,λ0
(t). (3.56) lem.n1wd.p6

Further from multiplying it by (1 + t)
1
2 +ε with ε > 0 fixed small enough and taking

the time integration, it follows

(1 + t)
1
2 +ε

{
EN1−1(t) + EN1−2,`1− γ+2s

2γ ,λ0
(t)
}

+

∫ t

0

(1 + s)
1
2 +ε

{
DN1−1(s) +DN1−2,`1− γ+2s

2γ ,λ0
(s)
}
ds

. Y 2
0 +

∫ t

0

δ(1 + s)−
1
2−ϑ+εDN1−1,`1,λ0

(s) ds

+

∫ t

0

(1 + s)
1
2 +εEN1−1(s)EN1−3,`1− γ+2s

γ ,λ0
(s) ds

+

∫ t

0

(1 + s)−
1
2 +ε

{
EN1−1(s) + EN1−2,`1− γ+2s

2γ ,λ0
(s)
}
ds. (3.57) lem.n1wd.p7

Here, since ε > 0 is small enough, the second term on the right is bounded by
Y 2

0 +X2(t) directly by (3.51), the third term on the right is bounded by

δ2 sup
0≤s≤t

{
(1 + s)

1
2 +εEN1−1(s)

}
,

due to the fact that

sup
0≤s≤t

{
(1 + s)

3
2 EN1−3,`1− γ+2s

γ ,λ0
(s)
}
≤ X(t) ≤ δ2,

and the fourth term on the right is bounded by Y 2
0 +X2(t) by noticing

EN1−1(t) + EN1−2,`1− γ+2s
2γ ,λ0

(t) . DN1
(t) +DN1−1,`1,λ0

(t) + ‖(a±, b, c, B)‖2,

and further using (3.51) as well as Lemma 3.6. Hence, we arrive from (3.57) at

sup
0≤s≤t

{
(1 + s)

1
2 +ε

(
EN1−1(s) + EN1−2,`1− γ+2s

2γ ,λ0
(s)
)}

+

∫ t

0

(1 + s)
1
2 +ε

{
DN1−1(s) +DN1−2,`1− γ+2s

2γ ,λ0
(s)
}
ds . Y 2

0 +X2(t). (3.58) lem.n1wd.p8

In a similar way to obtain (3.56), starting with the Lyapunov inequalities

d

dt
EN1−2(t) + κDN1−2(t) . I(1)

N1−2(t),

d

dt
EN1−3,`1− γ+2s

γ ,λ0
(t) + κDN1−3,`1− γ+2s

γ ,λ0
(t)

. I(2)

N1−3,`1− γ+2s
γ ,λ0

(t) + J (2)

N1−3,`1− γ+2s
γ ,λ0

(t),
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one can prove

d

dt

{
EN1−2(t) + κ2EN1−3,`1− γ+2s

γ ,λ0
(t)
}

+κ
{
DN1−2(t) + κ2DN1−3,`1− γ+2s

γ ,λ0
(t)
}

.
δ

(1 + t)1+ϑ
DN1−2,`1− γ+2s

2γ ,λ0
(t) + EN1−2(t)EN1−3,`1− γ+2s

γ ,λ0
(t)

for a properly chosen constant κ2 > 0.
Further multiplying it by (1 + t)

3
2 +ε and taking the time integration gives

(1 + t)
3
2 +ε

{
EN1−2(t) + EN1−3,`1− γ+2s

γ ,λ0
(t)
}

+

∫ t

0

(1 + s)
3
2 +ε

{
DN1−2(s) +DN1−3,`1− γ+2s

γ ,λ0
(s)
}
ds

. Y 2
0 +

∫ t

0

δ(1 + s)
1
2 +ε−ϑDN1−2,`1− γ+2s

2γ ,λ0
(s) ds

+

∫ t

0

(1 + s)
3
2 +εEN1−2(s)EN1−3,`1− γ+2s

γ ,λ0
(s) ds

+

∫ t

0

(1 + s)
1
2 +ε

{
EN1−2(s) + EN1−3,`1− γ+2s

γ ,λ0
(s)
}
ds. (3.59) lem.n1wd.p9

Here, notice again that ε > 0 is a fixed constant small enough. Then, the second
term on the right is bounded by Y 2

0 +X2(t) by (3.58), the third term on the right
is bounded by X2(t) due to

sup
0≤s≤t

{
(1 + s)

3
2

(
EN1−2(s) + EN1−3,`1− γ+2s

γ ,λ0
(s)
)}
≤ X(t),

and as before, the fourth term on the right is bounded by

C(1 + t)ε
(
Y 2

0 +X2(t)
)

by noticing

EN1−2(t) + EN1−3,`1− γ+2s
γ ,λ0

(t)

. DN1−1(t) +DN1−2,`1− γ+2s
2γ ,λ0

(t) + ‖(a±, b, c, B)‖2,

and further using (3.58) as well as Lemma 3.6. Therefore, the desired inequality
(3.50) follows by putting these estimates into (3.59). This then completes the proof
of Lemma 3.8. �

3.7. Global existence. We are now in a position to complete the

Proof of Theorem 1.1. Recall X(t)-norm (1.14). From Lemma 3.4, Lemma 3.6,
Lemma 3.7 and Lemma 3.8, it follows that

X(t) . Y 2
0 +X2(t).

Since Y0 is sufficiently small, (1.16) holds true. The global existence follows further
from the local existence (cf. [38]) and the continuity argument in the usual way. �
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Appendix A

In this appendix, we collect some known basic estimates needed in the proof of
the main result of the paper. We first list the following propositions which have
been proved in [4].

Proposition A.1. Suppose 0 < s < 1 and γ > −3. Then, there exist two generic
constants C1, C2 > 0 such that for any suitable function g,

C1|{I−P}g|2D ≤ 〈L g, g〉 ≤ 2〈L1g, g〉 ≤ C2|g|2D,

C1

{
|g|2Hs

γ/2
+ |g|2L2

s+γ/2

}
≤ |g|2D ≤ C2|g|2Hs

s+γ/2
,

C1

{
|{I−P}g|2Hs

γ/2
+ |{I−P}g|2L2

s+γ/2

}
≤ 〈L g, g〉 ≤ C2|g|2Hs

s+γ/2
.

〈L1L21〉Proposition A.2. Suppose 0 < s < 1 and γ > −3. Then, one has

J2 ∼ |g|2L2
s+γ/2

, C1|g|2Hs
γ/2
− C2|g|2L2

s+γ/2
≤ J1 . |g|2Hs

s+γ/2
,

|〈L2g, h〉| .
∣∣∣µ1/103

g
∣∣∣
L2

∣∣∣µ1/103

h
∣∣∣
L2
, |g|2D ≥ 〈L1g, g〉 ≥

1

10
|g|2D − C|g|2L2

γ/2
.

〈L1L22〉Proposition A.3. Assume 0 < s < 1, γ > −3, |β| ≥ 1. Then, one has

|〈∂βL2g, h〉| .
∣∣∣µ1/104

g
∣∣∣
H
|β|
ξ

∣∣∣µ1/104

h
∣∣∣
L2
.

〈basic nonop〉Proposition A.4. Assume 0 < s < 1, γ > max{−3,−3/2− 2s}. Then, one has

|〈T (f, g), h〉| .
{
|f |L2

s+γ/2
|g|D + |g|L2

s+γ/2
|f |D

+ min
{
|f |L2 |g|L2

s+γ/2
, |g|L2 |f |L2

s+γ/2

}}
|h|D.

〈expo split〉Proposition A.5. For any integer k ≥ 2 one can write

µ
1
2
∗ = (µa1 − µa1

∗ )
k
k+2∑
i=1

αi,2µ
ai,2
∗ µbi,2 +

k∑
i=1

αi,3µ
ai,3
∗ µbi,3

= µ(ξ, ξ∗) +

k∑
i=1

αi,3µ
ai,3
∗ µbi,3 .

Above, αi,j are real numbers for all i and j, and the other exponents are strictly
positive, at the exception of b1,2 = 0, and with bi,3 > ai,3.

With Proposition A.4 in hand, as in [17, pp.819, Porposition 6.1] one can prove

〈estimates on nonop2〉Lemma A.1. Let ζ(ξ) be a smooth function that decays in ξ exponentially, and let
|α| ≤ N , N ≥ 8. Writing

∂αΓ(f, f) =
∑

α1+α2=α

Γ(∂α1f, ∂α2f),

one has ∥∥∥∥∫ Γ(∂α1f, ∂α2f)ζ(ξ) dξ

∥∥∥∥ . E1/2

N (t)D1/2

N (t).

We also borrow the following result from [30, Proposition 3.1].
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〈lem.non.z1〉Lemma A.2. Let ` ≥ 0. It holds that

|w`T (f, f)|L2 . |w`f |2H2
γ/2+s

,

and

‖w`T (f, f)‖H9
x

+ ‖w`T (f, f)‖Z1
.

∑
|α|+|β|≤11

∥∥∥w`− γ+2s
2γ

∂αβ f
∥∥∥2

.
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