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Abstract. We are concerned with a two-phase flow system consisting of the
Vlasov-Fokker-Planck equation for particles coupled to the compressible Euler

equations for the fluid through the friction force. Global well-posedness of the
Cauchy problem is established in perturbation framework, and rates of conver-

gence of solutions toward equilibrium, which are algebraic in the whole space

and exponential on torus, are also obtained under some additional conditions
on initial data. The proof is based on the classical energy estimates.

1. Main result. Consider the Vlasov-Fokker-Planck equation with friction force

∂tF + ξ · ∇xF = ν∇ξ·[(ξ − u)F + β∇ξF ], (1.1)

coupled with the compressible Euler equations

∂tn+∇x · (nu) = 0, (1.2)

∂t(nu) +∇x(nu⊗ u) +∇xP = µ

∫
R3

(ξ − u)F dξ. (1.3)

Here, the unknowns are F = F (t, x, ξ) ≥ 0 for t ≥ 0, x ∈ Ω, ξ ∈ R3, denoting the
density distribution function of particles in the phase space, and n = n(t, x) and
u = u(t, x) ∈ R3, for t ≥ 0, x ∈ Ω, denoting respectively the mass density and
velocity field of the fluid. The spatial domain Ω = R3 or T3. Initial data

F (0, x, ξ) = F0(x, ξ), n(0, x) = n0(x), u(0, x) = u0(x),

are given. In (1.3), P is the pressure function depending only on n with P ′(·) > 0,
for instance, P (n) = cγn

γ with γ > 1 and cγ > 0. In (1.1) and (1.3), ν > 0, β > 0
and µ > 0 are generic physical constants.

It is obvious to see that system (1.1), (1.2), (1.3) admits a trivial steady state

F = M[ρ∞,u∞,β], n = n∞, u = u∞, (1.4)
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with ρ∞ > 0, n∞ > 0 and u∞ = (u∞1, u∞2, u∞3) being constants, where for (ρ, v, θ)
the Maxwellian M[ρ,v,θ] denotes

M[ρ,v,θ] = M[ρ,v,θ](ξ) =
ρ

(2πθ)3/2
e−
|ξ−v|2

2θ .

Moreover, it is also straightforward to verify that the coupled system admits the
following local dissipation identity

∂t

{
ν

βµ
nE +

∫
R3

F ln
F

M[ρ∞,u∞,β]
dξ

}
+∇x ·

{
ν

βµ
(nE + P )u+

∫
R3

ξF ln
F

M[ρ∞,u∞,β]
dξ

}
+
ν

β

∫
R3

1

F
|β∇ξF + (ξ − u)F |2 dξ = 0,

where E denotes

E =
1

2
|u|2 +

∫ n P (η)

η2
dη.

Hence it is natural to ask if the constant steady state (1.4) is stable for small
smooth perturbations. It will be seen later on that even though the compressible
Euler equations in general develop singularity in finite time, the coupling to the
Vlasov-Fokker-Planck equation through the friction force can assure that solutions
with small initial data are time-asymptotically stable. Thus, the friction term plays
a key role for the stability of the coupled system.

For the above purpose, let us reformulate the Cauchy problem in the framework
of perturbations. Without loss of generality and for brevity of presentation, we
suppose that all involving constants ν, β and µ are normalized to be one and we
also choose ρ∞ = n∞ = 1 and u∞ = 0. Denote M = M[1,0,1]. Set

F = M +M1/2f

so that the reformulated Cauchy problem reads

∂tf + ξ · ∇xf + u · ∇ξf −
1

2
u · ξf − u · ξM1/2 = Lf, (1.5)

∂tn+ (n+ 1)∇x · u+ u · ∇xn = 0, (1.6)

∂tu+ u · ∇xu+
P ′(n+ 1)

n+ 1
∇xn =

b− u− au
n+ 1

, (1.7)

with initial data

f(0, x, ξ) = f0(x, ξ) ≡M−1/2(F0 −M), n(0, x) = n0(x), u(0, x) = u0(x). (1.8)

Here, for simplicity of notations we have used n + 1 to still replace n. L is the
linearized Fokker-Planck operator defined by

Lf =
1

M1/2
∇ξ ·

[
M∇ξ

(
f

M1/2

)]
,

and a = af , b = bf depending on f are the moments of f defined by

af (t, x) =

∫
R3

M1/2f(t, x, ξ) dξ, bf (t, x) =

∫
R3

ξM1/2f(t, x, ξ) dξ.

The main results of the paper, concerning the global well-posedness and conver-
gence rates for the above Cauchy problem on the coupled Vlassov-Fokker-Planck
equations with the compressible Euler equations, are stated as follows.
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Theorem 1.1. Let Ω = R3. Suppose that ‖f0‖L2
ξ(H

3
x)

+‖(n0, u0)‖H3 is small enough

and F0 = M + M1/2f0 ≥ 0. Then, the Cauchy problem (1.5), (1.6), (1.7), (1.8)
admits a unique global solution (f(t, x, ξ), n(t, x), u(t, x)) satisfying

f ∈ C([0,∞);L2
ξ(H

3
x)), n, u ∈ C([0,∞);H3),

F = M +M1/2f ≥ 0,

sup
t≥0

(‖f(t)‖L2
ξ(H

3
x)

+ ‖(n, u)(t)‖H3) ≤ C(‖f0‖L2
ξ(H

3
x)

+ ‖(n0, u0)‖H3).

Moreover, if ‖f0‖L2
ξ(H

3
x∩L1

x)
+ ‖(n0, u0)‖H3∩L1 is sufficiently small then

‖f(t)‖L2
ξ(H

3
x)

+ ‖(n, u)(t)‖H3 ≤ C(1 + t)−
3
4 ,

for all t ≥ 0.

Theorem 1.2. Let Ω = T3. Suppose that ‖f0‖L2
ξ(H

3
x)

+‖(n0, u0)‖H3 is small enough,

F0 = M +M1/2f0 ≥ 0, and∫
T3

a0 dx = 0,

∫
T3

n0 dx = 0,

∫
T3

[b0 + (n0 + 1)u0] dx = 0. (1.9)

Then, the Cauchy problem (1.5), (1.6), (1.7), (1.8) admits a unique global solution
(f(t, x, ξ), n(t, x), u(t, x)) satisfying

f ∈ C([0,∞);L2
ξ(H

3
x)), n, u ∈ C([0,∞);H3),

F = M +M1/2f ≥ 0,

sup
t≥0

eλt(‖f(t)‖L2
ξ(H

3
x)

+ ‖(n, u)(t)‖H3) ≤ C(‖f0‖L2
ξ(H

3
x)

+ ‖(n0, u0)‖H3),

where λ > 0 is a constant.

The background for the study of the coupled system under consideration is related
to the modelling of fluid-particle interactions, for instance, to describe the behaviour
of sprays, aerosols or more generically two phase flows where one phase (disperse)
can be considered as a suspension of particles onto the other one (dense) thought
as a fluid, cf. [1, 2, 3, 6, 17, 25].

Let us mention some previous mathematical work on the coupled kinetic-fluid
systems related to the paper. [20] obtained global existence and large time be-
havior of solutions to the Vlasov-Stokes system, where the fluid is assumed to be
viscous and incompressible and its velocity satisfies the Stokes equations with the
same friction force as in (1.3). When the motion of the fluid is described by the
incompressible Navier-Stokes equations, [15, 16] considered hydrodynamic limits
of the Vlasov-Navier-Stokes system in different regimes (see also the recent work
[18]), [10, 11, 13] dealt with similar singular perturbation problems, and [5] recently
gave a proof of global existence of weak solutions on the periodic domain. [22, 23]
provided a detailed study of the global existence and asymptotic analysis for the
coupled system of the Vlasov-Fokker-Planck equation with the compressible Navier-
Stokes equations in R3. [14] also proved global existence of classical solutions near
equilibrium for the incompressible model, and [7] obtained global existence and con-
vergence rates of solutions close to equilibrium when the fluid is modelled by the
incompressible Euler equations. The extension of [14] to the compressible fluid was
made by [9].

In the framework of the inviscid compressible flow under friction forces, existence
of smooth solutions for short time was proved in [4] when there is no Brownian effect
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in the kinetic equation, see also the recent work [24]. When the velocity diffusion
is considered, stability and asymptotic analysis were discussed in [8].

The goal of the paper is to extend the results in [7] for the incompressible Euler
equations to the compressible case. The main additional difficulty comes from the
appearance of the fluid density equation. We find that the coupled system in the
case when the fluid is compressible has the similar dissipative structure, and the
dissipation rate corresponding to the fluid density which is a hyperbolic component
can be recovered in a way as for the damped compressible Euler equations, cf. [21].
The key point in the proof of global existence, also used in [7], is based on the fact
that the local momentum component bf (t, x) of f(t, x, ξ) behaves like an elliptic
equation with the remaining terms which involve either the microscopic part of
f(t, x, ξ) or the relaxation term b− u.

Through the paper C denotes a positive (generally large) constant and λ a pos-
itive (generally small) constant, where both C and λ may take different values in
different places. A ∼ B means λA ≤ B ≤ 1

λA for a generic constant λ > 0.

2. A priori estimate over the whole space. The main tool, initiated by [19]
and introduced in [12], is to decompose f(t, x, ξ) as the sum of the fluid part Pf
and the particle part {I−P}f

f(t, x, ξ) = Pf + {I−P}f,
where the projection operator P is to be defined later on. Let σ(ξ) = 1 + |ξ|2 and
denote | · |σ by

|f |2σ =

∫
R3

[
|∇ξf(ξ)|2 + σ(ξ)|f |2

]
dξ, f = f(ξ).

‖ · ‖σ stands for the spatial integration of | · |σ. Notice that the operator L satisfies
that there is a constant λ0 > 0 such that

−
∫
R3

fLf dξ ≥ λ0|{I−P0}f |2σ, (2.1)

for f = f(ξ), where P0f = afM1/2. Moreover, define the velocity orthogonal
projection P : L2

ξ → span{M1/2, ξM1/2} by P = P0 ⊕P1 with P1f = bf · ξM1/2.
Therefore, Lf can be computed as

Lf = L{I−P}f + LPf = L{I−P}f −P1f,

which implies

−
∫
R3

fLf dξ ≥ λ0|{I−P}f |2σ + |bf |2.

Now, we begin to make the global a priori estimates in the case of the whole
space Ω = R3 under the assumption

sup
0≤t<T

{‖f(t)‖L2
ξ(H

3
x)

+ ‖(n, u)‖H3} ≤ δ, (2.2)

where 0 < δ < 1 is a generic constant small enough and (f(t, x, ξ), n(t, x), u(t, x)) is
the smooth solution to the Cauchy problem (1.5), (1.6), (1.7) and (1.8) on 0 ≤ t < T
for T > 0.

Lemma 2.1. It holds that
1

2

d

dt
(‖f‖2 + ‖n‖2 + ‖u‖2) + λ(‖{I−P}f‖2σ + ‖b− u‖2)

≤ C‖(n, u)‖H1(‖b− u‖2 + ‖∇x(a, b, n, u)‖2) + C‖u‖H2‖{I−P}f‖2σ, (2.3)
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for all 0 ≤ t < T .

Proof. Multiplying (1.5), (1.6), (1.7) by f , n and u respectively and then taking
integrations and the sum, one has

1

2

d

dt
(‖f‖2 + ‖n‖2 + ‖u‖2) +

∫
R3

〈−L{I−P}f, f〉 dx+

∫
R3

|b− u|2 dx

=

∫
R3

u · 〈1
2
ξf, f〉 dx−

∫
R3

(u · ∇xu) · u dx−
∫
R3

n(b− u) · u+ au · u
n+ 1

dx

+

∫
R3

[
P ′(n+ 1)

n+ 1
− P ′(1)

]
∇xn · u dx. (2.4)

The first and third terms on the right can be estimated as follows. As in [7], we
notice

〈1
2
ξf, f〉 = ab+ 〈ξPf, {I−P}f〉+ 〈1

2
ξ, |{I−P}f |2〉.

Furthermore, by Hölder and Sobolev inequalities as well as (2.2), it holds that∫
R3

u · (ab) dx−
∫
R3

au · u
n+ 1

dx =

∫
R3

au · (b− u) dx+

∫
R3

an|u|2

n+ 1
dx

≤ ‖a‖L6‖u‖L3‖b− u‖L2 + 2‖a‖L6‖n‖L3

∥∥|u|2∥∥
L3

≤ C‖∇xa‖L2‖u‖H1‖b− u‖L2 + C‖∇xa‖L2‖n‖H1‖∇xu‖2L2

≤ C‖(n, u)‖H1(‖b− u‖2 + ‖∇x(a, u)‖2),∫
R3

u · 〈ξPf, {I−P}f〉 dx ≤ C

∫
R3

|u| · |(a, b)| · ‖{I−P}f‖L2
ξ
dx

≤ C‖u‖L3‖(a, b)‖L6‖{I−P}f‖L2
x,ξ

≤ C‖u‖H1(‖∇x(a, b)‖2 + ‖{I−P}f‖2),∫
R3

u · 〈1
2
ξ, |{I−P}f |2〉 dx ≤ C‖u‖L∞‖|ξ|1/2{I−P}f‖2

≤ C‖∇xu‖H1‖{I−P}f‖2σ,

and

−
∫
R3

n(b− u) · u
n+ 1

dx ≤ C‖n‖L6‖b− u‖L2‖u‖L3 ≤ C‖u‖H1(‖∇xn‖2 + ‖b− u‖2).

Therefore, the first and third terms on the right of (2.4) are bounded by

C‖(n, u)‖H1(‖b− u‖2 + ‖∇x(a, b, u)‖2) + C‖u‖H2‖{I−P}f‖2σ.

For the remaining terms, one also has

−
∫
R3

(u · ∇xu) · u dx+

∫
R3

[
P ′(n+ 1)

n+ 1
− P ′(1)

]
∇xn · u dx

≤ C‖u‖L3‖∇xu‖L2‖u‖L6 + C‖n‖L3‖∇xn‖L2‖u‖L6

≤ C‖(n, u)‖H1‖∇x(n, u)‖2.

Then, (2.3) follows by plugging all estimates above into (2.4) and applying (2.1),
and hence Lemma 2.1 is proved.
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Lemma 2.2. It holds that

1

2

d

dt

∑
1≤|α|≤3

(‖∂αx f‖2 + ‖
√
P ′(n+ 1)

n+ 1
∂αxn‖2 + ‖∂αx u‖2)

+λ
∑

1≤|α|≤3

(‖∂αx {I−P}f‖2σ + ‖∂αx (b− u)‖2)

≤ C‖(a, b, n, u)‖H3(‖∇x(a, b, n, u)‖2H2 +
∑

1≤|α|≤3

‖∂αx {I−P}f‖2σ), (2.5)

for all 0 ≤ t < T .

Proof. Applying ∂αx with 1 ≤ |α| ≤ 3 to (1.5), (1.6) and (1.7), one has

∂t(∂
α
x f) + ξ · ∇x(∂αx f) + u · ∇ξ(∂αx f)− ∂αx u · ξM1/2 − L∂αx f

= [−∂αx , u · ∇ξ]f + ∂αx (
1

2
u · ξf), (2.6)

∂t(∂
α
xn) + (n+ 1)∇x · ∂αx u+ u · ∇x∂αxn

= [−∂αx , n∇x·]u+ [−∂αx , u · ∇x]n, (2.7)

∂t(∂
α
x u) + u · ∇x(∂αx u) +

P ′(n+ 1)

n+ 1
∇∂αxn− ∂αx (b− u)

= ∂αx

[
−n(b− u) + au

n+ 1

]
+ [−∂αx , (u · ∇x)]u+ [−∂αx ,

P ′(n+ 1)

n+ 1
∇x]n, (2.8)

where [·, ·] stands for [A,B] = AB − BA for two operators A and B. Further

multiplying (2.6), (2.7), (2.8) by ∂αx f , P ′(n+1)
(n+1)2 ∂

α
xn and ∂αx u, respectively and then

taking integration and the sum, it follows that

1

2

d

dt
(‖∂αx f‖2 + ‖

√
P ′(n+ 1)

n+ 1
∂αxn‖2 + ‖∂αx u‖2)

+

∫
R3

〈−L∂αx {I−P}f, ∂αx f〉 dx+

∫
R3

|∂αx (b− u)|2 dx = I1 + I2 + I3, (2.9)

where I1, I2, I3 denote

I1 =

∫
R3

〈[−∂αx , u · ∇ξ]f, ∂αx f〉 dx+

∫
R3

〈∂αx (
1

2
u · ξf), ∂αx f〉 dx,

I2 =

∫
R3

1

2
∂t

[
P ′(n+ 1)

(n+ 1)2

]
|∂αxn|2 dx

+

∫
R3

P ′(n+ 1)

(n+ 1)2
{[−∂αx , n∇x·]u+ [−∂αx , u · ∇x]n}∂αxndx,

I3 =

∫
R3

{[−∂αx , (u · ∇x)]u+ [−∂αx ,
P ′(n+ 1)

n+ 1
∇x]n} · ∂αx u dx

+

∫
R3

∂αx

[
−n(b− u) + au

n+ 1

]
· ∂αx u dx.

Each term can be estimated as follows. Notice 1 ≤ |α| ≤ 3. For I1, as in [7, Lemma
2.3], it holds that

I1 ≤ C‖u‖H3(‖∇x(a, b)‖2H2 +
∑

1≤|α|≤3

‖∂αx {I−P}f‖2σ).
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For I2, recalling (1.5) as well as (2.2), one has

sup
0≤t<T,x∈R3

|∂tn(t, x)| ≤ (‖n‖L∞ + 1)‖∇x · u‖L∞ + ‖u‖L∞‖∇xn‖L∞ ≤ C‖u‖H3 ,

and hence it follows from Hölder and Sobolev inequalities that

I2 ≤ C‖(n, u)‖H3‖∇x(n, u)‖2H2 .

For I3, in a similar way, it holds that

I3 ≤ C‖(a, b, n, u)‖H3‖∇x(n, u)‖2H2 .

Plugging these estimates into (2.9), using (2.1) and then taking the sum over 1 ≤
|α| ≤ 3, (2.5) follows and thus Lemma 2.2 is proved.

To include ‖∇x(a, b)‖2H2 into the energy dissipation rate, as in [7], we need to
study the following equations of a and b

∂ta+∇x · b = 0, (2.10)

∂tbi + ∂xia+
∑
j

∂xjΓij({I−P}f) = −bi + ui(1 + a), (2.11)

∂tΓij({I−P}f) + ∂xibj + ∂xj bi − (uibj + ujbi) = Γij(`+ r), (2.12)

for 1 ≤ i, j ≤ 3, where Γij is the moment functional defined by Γij(g) = 〈(ξiξj −
1)M1/2, g〉, for any g = g(ξ), and `, r denote

` = −ξ · ∇x{I−P}f + L{I−P}f,

r = −u · ∇ξ{I−P}f +
1

2
u · ξ{I−P}f.

See [7] for the derivation of (2.10), (2.11) and (2.12). Define a temporal functional
E0(t) by

E0(t) =
∑
|α|≤2

∑
ij

∫
R3

∂αx (∂xibj + ∂xj bi)∂
α
xΓij({I−P}f) dx

−
∑
|α|≤2

∫
R3

∂αx a∂
α
x∇x · b dx, (2.13)

The following lemma was proved in [7].

Lemma 2.3. It holds that

d

dt
E0(t) + λ‖∇x(a, b)‖2H2 ≤ C(‖{I−P}f‖2L2

ξ(H
3
x)

+ ‖u− b‖2H2)

+C‖u‖2H2

{
‖∇x(a, b)‖2H2 + ‖∇x{I−P}f‖2L2

ξ(H
2
x)

}
, (2.14)

for all 0 ≤ t < T .

Moreover, since b−u is dissipative, it is straightforward to derive from (1.6) and
(1.7) the dissipation rate of n(t, x).

Lemma 2.4. It holds that

d

dt

∑
|α|≤2

∫
R3

∂αx∇xn · ∂αx u dx+ λ
∑
|α|≤2

‖∇x∂αxn‖2

≤ C(‖∇xu‖2H2 + ‖b− u‖2H2) + C‖(a, n, u)‖3H3‖∇x(n, u)‖2H2 , (2.15)

for all 0 ≤ t < T .
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Proof. Let |α| ≤ 2. By (1.7), one can compute

P ′(1)‖∇x∂αxn‖2

=

∫
R3

∇x∂αxn · ∂αx (−∂tu) dx+

∫
R3

∇x∂αxn · ∂αx
{
b− u
n+ 1

}
dx

+

∫
R3

∇x∂αxn · ∂αx
{
−u · ∇xu−

au

n+ 1
−
[
P ′(n+ 1)

n+ 1
− P ′(1)

]
∇xn

}
dx

= I4 + I5 + I6. (2.16)

For I4, by (1.5), one has

I4 = − d

dt

∫
R3

∂αx∇xn · ∂αx u dx+

∫
R3

∂αx∇x∂tn · ∂αx u dx

= − d

dt

∫
R3

∂αx∇xn · ∂αx u dx+

∫
R3

∂αx [(n+ 1)∇x · u+ u · ∇xn]∂αx∇x · u dx

≤ − d

dt

∫
R3

∂αx∇xn · ∂αx u dx+ ‖∂αx∇x · u‖2 + C‖(n, u)‖H3‖∇xu‖2.

For I5 and I6, due to (2.2), it can be directly estimated by Cauchy-Schwarz inequal-
ity that

I5 ≤
P ′(1)

4
‖∇x∂αxn‖2 + C‖b− u‖2H2 ,

I6 ≤
P ′(1)

4
‖∇x∂αxn‖2 + C‖(a, n, u)‖2H3‖∇x(n, u)‖2H2 .

Putting these estimates into (2.16) and then taking the sum over |α| ≤ 2 gives
(2.15). Lemma 2.4 is proved.

Proof of global existence: It is now immediate to obtain the global a priori estimates.
In fact, define the temporal energy functional

E(t) = ‖f‖2 + ‖n‖2 + ‖u‖2

+
∑

1≤|α|≤3

(‖∂αx f‖2 + ‖
√
P ′(n+ 1)

n+ 1
∂αxn‖2 + ‖∂αx u‖2)

+κ1E0(t) + κ2
∑
|α|≤2

∫
R3

∂αx u · ∂αx∇xndx, (2.17)

and the corresponding dissipation rate functional

D(t) = ‖∇x(a, b, n, u)‖2H2 + ‖b− u‖2H3 +
∑
|α|≤3

‖∂αx {I−P}f‖2σ, (2.18)

where 0 < κ1, κ2 � 1 are constants. Notice that since κ1 > 0 and κ2 > 0 are
sufficiently small, under the assumption (2.2), recalling (2.13), it holds that

E(t) ∼ ‖f(t)‖2L2
ξ(H

3
x)

+ ‖(n, u)(t)‖2H3 ,

uniformly for all 0 ≤ t < T . Moreover, by suitably choosing constants κ1 and κ2
with 0 < κ2 � κ1 � 1, the sum of equations (2.3), (2.5), κ1×(2.14) and κ2×(2.15)
gives

d

dt
E(t) + λD(t) ≤ C[E1/2(t) + E(t)]D(t), (2.19)
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for all 0 ≤ t < T . By (2.2), one has E1/2(t) + E(t) ≤ C(δ2 + δ). Thus, as long as
0 < δ < 1 is small enough, the time integration of (2.19) yields

E(t) + λ

∫ t

0

D(s) ds ≤ E(0), (2.20)

for all 0 ≤ t < T . Besides, (2.2) can be justified by choosing

E(0) ∼ ‖f0‖2L2
ξ(H

3
x)

+ ‖(n0, u0)‖2H3

sufficiently small. For brevity, the proof for local existence of smooth solutions is
omitted. Then, the global existence of solutions follows by the obtained global a
priori estimates as well the continuity argument, and also (2.20) holds true for all
t ≥ 0.

3. Time-decay of solutions. We deal with the time-decay of the obtained global
solutions under the additional assumption that L1 norm of initial data is bounded.
First of all, we consider the following linearized Cauchy problem

∂tf + ξ · ∇xf − u · ξM1/2 − Lf = S, (3.1)

∂tn+∇x · u = 0, (3.2)

∂tu+ P ′(1)∇xn+ u− b = 0, (3.3)

with initial data

f(0, x, ξ) = f0(x, ξ), n(0, x) = n0(x), u(0, x) = u0(x). (3.4)

Here, for the later use in order to handle the velocity differentiation in the nonlinear
term, the source term S in the linearized Fokker-Planck equation takes the form of

S = ∇ξG−
1

2
ξ ·G+ h,

where G = G(t, x, ξ) ∈ R3 and h = h(t, x, ξ) ∈ R satisfy

P0G = 0, Ph = 0.

Let us introduce some notations for simplicity of presentation. Denote U(t) =
(f(t), n(t), u(t)) to be the solution to the Cauchy problem (3.1), (3.2), (3.3) and
(3.4), and denote U0 = (f0, n0, u0). Define A(t) to be the solution operator in the
case of S = 0. Then, by Duhamel’s principle,

U(t) = A(t)U0 +

∫ t

0

A(t− s)(S(s), 0, 0) ds,

for all t ≥ 0. Set Zq = L2
ξ(L

q
x) for q ≥ 1. Define norms ‖ · ‖Hm , ‖ · ‖Zq by

‖U‖2Hm = ‖f‖2L2
ξ(H

m
x ) + ‖n‖2Hm + ‖u‖2Hm , ‖U‖Zq = ‖f‖Zq + ‖n‖Lq + ‖u‖Lq ,

and set L2 = H0 when m = 0.

Lemma 3.1. Let 1 ≤ q ≤ 2. For any α, α′ with α′ ≤ α and m = |α− α′|,

‖∂αxA(t)U0‖L2 ≤ C(1 + t)−
3
2 (

1
q−

1
2 )−

m
2 (‖∂α

′

x U0‖Zq + ‖∂αxU0‖L2), (3.5)

and∥∥∥∥∂αx ∫ t

0

A(t− s)(S(s), 0, 0) ds

∥∥∥∥2
L2

≤ C
∫ t

0

(1 + t− s)−3(
1
q−

1
2 )−m

× {‖∂α
′

x (G(s), σ−1/2h(s))‖2Zq + ‖∂αx (G(s), σ−1/2h(s))‖2L2} ds, (3.6)
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hold for all t ≥ 0.

Proof. The proof is quite similar to the case of the incompressible Euler equations
given by [7, Theorem 3.1]. In fact, denote ·̂ to be the Fourier transform with respect
to space variable. Then, as for proving [7, Equations (49) and (50) in Theorem 3.1],
one has

1

2
∂t(‖f̂‖2L2

ξ
+ P ′(1)|n̂|2 + |û|2) + λ(|{I−P}f̂ |2σ + |b̂− u|2)

≤ C(‖Ĝ‖2L2
ξ

+ ‖σ−1/2h‖2L2
ξ
), (3.7)

and

∂t< Ẽ1(t) +
λ|k|2

1 + |k|2
|(̂a, b)|2

≤ C(|{I−P}f̂ |2L2
ξ

+ |b̂− u|2) + C(‖Ĝ‖2L2
ξ

+ ‖σ−1/2h‖2L2
ξ
), (3.8)

where Ẽ1(t) is defined by

Ẽ1(t) =
1

1 + |k|2
∑
ij

(ikib̂j + ikj b̂i|Γij({I−P}f̂))− 1

1 + |k|2
(â|ikb̂).

Here (·|·) means the complex inner product. The additional consideration only
occurs to gaining the dissipation of n̂. For that, one can compute from (3.2) and
(3.3) that

P ′(1)|k|2|n̂|2 = (ikn̂| − ∂tû+ b̂− u)

= −∂t(ikn̂|û) + (ik∂tn̂|û) + (ikn̂|b̂− u),

which further implies

∂t
< (ikn̂|û)

1 + |k|2
+

1

2
P ′(1)

|k|2

1 + |k|2
|n̂|2 ≤ |k · û|

2

1 + |k|2
+ C|b̂− u|2. (3.9)

Now, as in (2.17), we define

Ẽ(t) = ‖f̂‖2L2
ξ

+ P ′(1)|n̂|2 + |û|2 + κ3Ẽ1(t) + κ4
< (ikn̂|û)

1 + |k|2
,

where 0 < κ3, κ4 � 1 are constants. It is also immediate to verify from (3.7), (3.8)
and (3.9) that

Ẽ(t) ∼ ‖f̂(t)‖2L2
ξ

+ |n̂(t)|2 + |û(t)|2,

and for 0 < κ4 � κ3 � 1,

∂tẼ(t) +
λ|k|2

1 + |k|2
Ẽ(t) ≤ C(‖Ĝ‖2L2

ξ
+ ‖σ−1/2h‖2L2

ξ
).

The conclusions of Lemma 3.1 directly follows from the above estimate, and the
detailed proof is omitted for brevity.

Proof of rate of convergence: We can rewrite the nonlinear Cauchy problem (1.5),
(1.6), (1.7) and (1.8) as

U(t) = A(t)U0 +

∫ t

0

A(t− s)(S(s), G1(s), G2(s)) ds, (3.10)
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with

S = −u · ∇ξf −
1

2
u · ξf

= ∇ξG−
1

2
ξ ·G+ u · aξM1/2, G = −u{I−P0}f,

G1 = −n∇x · u− u · ∇xu,

G2 = −u · ∇xn−
[
P ′(n+ 1)

n+ 1
− P ′(1)

]
∇xn−

n(b− u) + au

n+ 1
.

To estimate ‖U(t)‖L2 , we further rewrite (3.10) as

U(t) = J1(t) + J2(t) + J3(t) + J4(t),

with

J1(t) = A(t)U0,

J2(t) =

∫ t

0

A(t− s)(S(s), 0, 0) ds,

J3(t) =

∫ t

0

A(t− s)(u · aξM1/2, 0, 0) ds,

J4(t) =

∫ t

0

A(t− s)(0, G1(s), G2(s)) ds.

Define
E∞(t) = sup

0≤s≤t
(1 + s)

3
2 E(s).

One has that from (3.5),

‖J1(t)‖L2 ≤ C(1 + t)−
3
4 ‖U0‖L2∩Z1

,

‖J3(t)‖L2 + ‖J4(t)‖L2

≤ C
∫ t

0

(1 + t− s)− 3
4 (‖u · aξM1/2‖L2∩Z1

+ ‖(G1, G2)(s)‖L2∩L1 ds

≤ C
∫ t

0

(1 + t− s)− 3
4 E(s) ds ≤ C

∫ t

0

(1 + t− s)− 3
4 (1 + s)−

3
2 ds E∞(t)

≤ C(1 + t)−
3
4 E∞(t),

and from (3.6),

‖J2(t)‖2L2 ≤ C

∫ t

0

(1 + t− s)− 3
2 ‖u{I−P0}f‖2L2∩Z1

ds

≤ C

∫ t

0

(1 + t− s)− 3
2 [E(s)]2 ds ≤ C(1 + t)−

3
2 [E∞(t)]2.

Therefore, it follows that

‖U(t)‖2L2 ≤ C(1 + t)−
3
2 {‖U0‖2L2∩Z1

+ [E∞(t)]2}. (3.11)

On the other hand, recall that (2.19) implies

d

dt
E(t) + λE(t) ≤ C‖U(t)‖2L2 . (3.12)

Then, by Gronwall’s inequality, (3.12) together with (3.11) give

E(t) ≤ E(0)e−λt + C(1 + t)−
3
2 {‖U0‖2L2∩Z1

+ [E∞(t)]2},
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and hence

E∞(t) ≤ C{‖U0‖2L2∩Z1
+ [E∞(t)]2}.

Thus, since ‖U0‖L2∩Z1
can be small enough, one has E∞(t) ≤ C‖U0‖2L2∩Z1

for all
t ≥ 0, that is,

E(t) ≤ C(1 + t)−
3
2 ‖U0‖2L2∩Z1

.

This completes the proof of Theorem 1.1.

4. Torus case. In this section we consider the spatial domain Ω = T3. In such
case, we have the conservations of mass for both fluid and particles

d

dt

∫∫
T3×R3

F (t, x, ξ) dxdξ = 0,

d

dt

∫
T3

n(t, x) dx = 0,

and also the conservation of the total momentum

d

dt

[∫∫
T3×R3

ξF (t, x, ξ) dxdξ +

∫
T3

(nu)(t, x) dx

]
= 0.

This implies that under the assumption (1.9), it holds that∫
T3

a(t, x) dx = 0,

∫
T3

n(t, x) dx = 0,

∫
T3

[b(t, x)+(n(t, x)+1)u(t, x)] dx = 0, (4.1)

for all t ≥ 0.

Proof of Theorem 1.2: We only give the proof of the global a priori estimates. Let the
temporal energy functional E(t) and the corresponding dissipation rate functional
D(t) be defined in the same way as in (2.17) and (2.18) for the case of the whole
space Ω = R3. The similar process by making the energy estimates leads to

d

dt
E(t) + λD(t) ≤ C(‖(a, b, n, u)‖+ ‖(a, b, n, u)‖2)

×

∑
|α|≤3

‖{I−P}∂αx f‖2σ + ‖(a, b, n, u)‖2H3

 . (4.2)

It remains to find out the zero-order dissipation of (a, b, n, u) by using the conserva-
tion laws (4.1) with the help of the Poincaré inequality. In fact, it is straightforward
to obtain

‖a‖L2 ≤ C‖∇xa‖L2 , ‖n‖L2 ≤ C‖∇xn‖L2 , (4.3)

and

‖b+ u‖L2 ≤ ‖b+ u+ nu‖L2 + ‖nu‖L2

≤ C‖∇x(b+ u+ nu)‖L2 + ‖u‖L∞‖n‖L2

≤ C‖∇x(b, u)‖L2 + C‖∇x(nu)‖L2 + C‖u‖H2‖∇xn‖L2

≤ C‖∇x(b, u)‖L2 + C‖u‖H2‖∇xn‖L2 + C‖n‖H2‖∇xu‖L2 . (4.4)

Define

DT(t) = D(t) + κ5(‖a(t)‖2 + ‖n(t)‖2) + κ6‖(b+ u)(t)‖2,
where 0 < κ5, κ6 � 1 are constants. Notice

DT(t) ∼
∑
|α|≤3

‖{I−P}∂αx f‖2σ + ‖(a, b, n, u)‖2H3 , (4.5)



VLASOV-FOKKER-PLANCK-EULER SYSTEM 13

uniformly for all t ≥ 0. Moreover, by choosing 0 < κ6 � κ5 � 1 suitably small, it
follows from (4.2) together with (4.3) and (4.4) that

d

dt
E(t) + λDT(t) ≤ C[E1/2(t) + E(t)]DT(t),

which due to the fact that E(t) is small enough uniformly in time, implies

d

dt
E(t) + λDT(t) ≤ 0.

Since E(t) ≤ CDT(t) by (4.5), one has

d

dt
E(t) + λE(t) ≤ 0,

for all t ≥ 0. This gives the exponential decay of E(t) ∼ ‖(f, n, u)(t)‖2H3 . The proof
of Theorem 1.2 is complete.
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