THE VLASOV-POISSON-BOLTZMANN SYSTEM IN THE
WHOLE SPACE: THE HARD POTENTIAL CASE
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ABSTRACT. This paper is concerned with the Cauchy problem on the Vlasov-
Poisson-Boltzmann system for hard potentials in the whole space. When the
initial data is a small perturbation of a global Maxwellian, a satisfactory global
existence theory of classical solutions to this problem, together with the cor-
responding temporal decay estimates on the global solutions, are established.
Our analysis is based on time-decay properties of solutions and a new time-
velocity weight function which is designed to control the large-velocity growth
in the nonlinear term for the case of non hard-sphere interactions.
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The Vlasov-Poisson-Boltzmann (called VPB in the sequel for simplicity) system

is a physical model describing mutual interactions of the electrons through collisions
in the self-consistent electric field. When the constant background charge density

is normalized to be unit, the VPB system takes the form of

(1.1) OWf+&-Vaf +Vad-Vef =Q(f, ),

(1.2) Ay = / fdé—1, ¢(z) = 0as |z| = oo,
R3

(1.3) f(0,2,8) = fo(z,8).
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Here the unknown f = f(¢,x,&) > 0 is the number density for the particles located
at * = (z1,792,73) € R® with velocity & = (£1,&,£3) € R? at time ¢ > 0. The
potential function ¢ = ¢(t, z) generating the self-consistent electric field V,¢ in
(1.1) is coupled with f(t,z,£) through the Poisson equation (1.2). The bilinear
collision operator @ acting only on the velocity variable [2, 11] is defined by

Q)= [[| 1= P uOUEE) ~ F€a(E)} dus..
Here

€=6—[-&) ww, &=6+[E-8&) ww, wes
is the relation between velocities &', £, after and the velocities &, &, before the
collision, which is induced by the conservation of momentum and energy.
Throughout this paper, we are concentrated on the hard potential case, i.e.,
0 <~ <1 under Grad’s angular cutoff assumption

0<qo(0) <Cleost], cos=(§—E&)/I€ =&l -w.

The case for soft potentials will be pursued by the same authors in a forthcoming
manuscript [10].

Let M = (27)3/2¢71€1*/2 e a normalized Maxwellian. We are concerned with
the well-posedness of the Cauchy problem (1.1)-(1.3) when fj is sufficiently close to
M in a certain sense that we shall clarify later on. To this end, set the perturbation
u by f — M = M'/24, then, the Cauchy problem (1.1)-(1.3) of the VPB system is
reformulated as

1
(1.4) Ou+&-Vau+Vyd-Veu — 55 Vadu — Voo - EMY? = Lu + T'(u, u),
(1.5) Ao = / MY2udg,  ¢(z) — 0 as |z| = oo,
R3

(1.6) w(0,2,€) = uo(x,&) = M™2(fo — M),

where
Lu=M"% {Q (M M1/2u> e (Ml/Qu, M)} ,
D(u,u) = M~ 3Q (M1/2u,M1/2u) .

Note that one can write L = —v + K with v = v(§) ~ (1 + [¢])” and Ku =
Jrs K (&, & )u(&s) dé for a real symmetric integral kernel K (£,&,); see [11, Section
3.2]. In addition, due to (1.5), ¢ is always determined in terms of u by
B(t, ) = _fm g /]R MY 2u(t, z, ) de.
Observe that by plugging the above formula into the dynamical equation (1.4)
of the reformulated VPB system, one has the single evolution equation for the
perturbation u; see [9, §].

Before stating our main result, we first introduce a mixed time-velocity weight

function
Algl

(1.7) we(t, €) = (€) 5007,
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where £ € R, A > 0 and # > 0 are suitably chosen constants, and (¢) := (14 |¢|>)'/2.
For given u(t,z,€) and an integer N, define a temporal energy norm

(1.8) lulwe®) = > llwe(t, )35l + IVod(®)l|

lee|+]|BI<N

where as in [6, 9], time derivatives are not included into the energy norm.
The main result of this paper is stated as follows. Notations will be explained
at the end of this section.

Theorem 1.1. Let N > 4, £ > 2, A > 0, 0 < 0 < 1/4. Assume that fo =
M + M1/2u0 >0 and ffRssz, M1/2u0 dxdé = 0, then there exist positive constants
€0 >0, C > 0 such that if

(1.9) > we(0,€)05uoll + 11 + [#)uollz, < €o,
lal+|Bl<N

the Cauchy problem (1.4), (1.5), (1.6) of the VPB system admits a unique global
solution u(t, z,€) satisfying f(t,z,&) = M+ MY?u(t,z, &) > 0 and

(1.10) sup {(1 +t)%\||u|\|N,z(t)} < Cep.
t>0

Under the framework of small perturbations around global Maxwellians either in
the whole space or on torus, there have been extensive studies on the VPB system
[16, 30, 31, 9, 8, 32, 29] and even the more general Vlasov-Maxwell-Boltzmann
system [15, 24, 7, 5]. However, only the hard-sphere model with v = 1 is considered
among those existing work, and the case of general hard potentials 0 < v < 1 has
remained open. One of the main difficulties lies in the fact that the dissipation
of the linearized Boltzmann operator L for non hard-sphere potentials v < 1 can
not control the full nonlinear dynamics due to the velocity growth effect of ¢ -
Véu in the nonlinear term. One of our main ideas is to introduce the new mixed
time-velocity weight function wy(t, &), especially the factor exp{\|¢|/(1 + t)?}, to
overcome this main difficulty and the main purpose of this paper is to show that
a suitable application of such a new weight can indeed yield a satisfactory global
existence theory of classical solution to the VPB system in the whole space for the
case 0 < v < 1. It is worth to pointing out that the arguments employed here
can be adopted straightforwardly to deal with either the VPB system on torus
with additional conservation laws as in [16] or the two-species VPB system as in
[15, 32, 29].

The proof of Theorem 1.1 is based on a new weighted energy method. Before
explaining the feature of this method, let us recall some existing work related to
Theorem 1.1. In the perturbation theory of the Boltzmann equation for the global
well-posedness of solutions around Maxwelians, the energy method was first de-
veloped independently in [16, 14] and in [22, 21]. We also mention the pioneering
work [26] and its recent improvement [27] by using the spectral analysis and the
contraction mapping principle. When the self-induced potential force is taken into
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account, even though [13] considered the spectral property of the system, the spec-
tral theory corresponding to [26] has not been known so far, partially because the
Poisson equation produces an additional nonlocal term with singular kernels.

Fortunately, the energy method still works well in the presence of the self-induced
electric field [16, 9] or even electromagnetic field [15, 24, 5]. Moreover, in such situa-
tions, the large-time behavior of global solutions is also extensively studied in recent
years by using different approaches. One approach which usually leads to slower
time-decay than in the linearized level is used in [31] on the basis of the improved
energy estimates together with functional inequalities. The method of thirteen mo-
ments and compensation functions is found by [19] which gives the optimal time
rate without using the spectral theory; see [12] and [29] for two applications. Re-
cently, concerning with the optimal time rate, a time-frequency analysis method
has been developed in [8, 7, 5]. Precisely, in the same spirit of [28], some time-
frequency functionals or interactive energy functionals are constructed in [8, 7, 5]
to capture the dissipation of the degenerate components of the full system. We
finally also mention [25] about the time-velocity splitting method for the study of
soft potentials. It would be quite interesting to combine [25] with the current work
to investigate the same topic for the VPB system with soft potentials —3 <~ < 0,
which is now under our current research [10].

Our weighted energy method used here contains some new ingredients, compared
with the previous work [16] for the hard-sphere model. One of the most important
ingredients is to combine the time-decay of solutions with the usual weighted energy
inequalities in order to obtain the uniform-in-time a priori estimates. In fact, the
pure energy estimates without using time-decay can not be closed; see (4.7). As
mentioned before, this is because the nonlinear term & - V,¢u may increase linearly
in |£] but the dissipation of systems only has the growth of |£]7 with 0 < v <1
as given in (2.1). Therefore, we are forced to postulate the a priori assumption
(A1) on the time-decay of solutions with certain explicit rates so that the trouble
term £ -V, ¢u can be controlled through introducing the mixed time-velocity weight
factor exp{A|¢|/(1+1)%}; see the key estimates (4.16), (4.19) and (4.23). Formally,
a good term with the extra weight in the form of |¢|/(1 + t)'*? naturally arises
from the time derivative of exp{A|¢|/(1 + ¢)?} in the wy(t, &)-weighted estimate.
For all details of these arguments, see the proof of Lemma 4.2 and Lemma 4.3.
We here remark that Lemmas 2.1, 2.2 and 2.3 play a vital role in the weighted
energy estimates. In particular, we used a velocity-time splitting trick to prove
(2.9) in Lemma 2.2 concerning the wy(t, {)-weighted estimate on K. An important
observation is that the second part on the right-hand side of (2.9) not only excludes
the exponential weight factor exp{\|£|/(1+4)?} but also contains the strictly slower
velocity growth (€)1 than (¢)*.

To recover the time-decay of solutions, we apply the Duhamel’s principle to the
nonlinear system and use the linearized time-decay property combined with two
nonlinear energy estimates (5.3) and (4.27) under both a priori assumptions (A1)
and (A2). Thus, the uniform-in-time a priori estimates can be closed with the
help of the time-weighted energy functional Xy ¢(¢) given in (5.1). It should be
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emphasized that ||V26| z~-1 decays with the rate at most (14 ¢)~%/4 and hence
we have to assume 0 < 6 < 1/4 in the weight function wy (¢, ). Exactly the high-
order energy functional SJI\‘M(t) is employed to obtain the time-decay of | V2¢|| gn-1.
In addition, we also point out that the condition £ > 2 in wy(t, &) is necessary in
our proof, otherwise one can not use the energy functional Ey ¢(t) to bound the full
nonlinear term; see (5.7) and (5.13).

Finally, for the study of the VPB system in other respects, we also mention
[1, 3, 17, 20, 23]. Notice that [20] used the approach of the well-known work [4]
to establish the trend of solutions to global Maxwellians for the VPB system with
general potentials in the collision kernel but under some additional conditions.

The rest of this paper is organized as follows. In Section 2, we mainly prove
some important lemmas to show how the new weight function wy(t,€) is involved
in the estimates with the linear operator L = —v + K and the nonlinear operator
I'(+,-). In Section 3, we improve the linearized result [8, Theorem 2| under the
natural assumption [ps ag(z)dz = 0. In Section 4, we devote ourselves to the a
priori estimates, and in Section 5, we complete the proof of Theorem 1.1.

Notations: Throughout this paper, C' denotes some positive (generally large)
constant and x denotes some positive (generally small) constant, where both C' and
k may take different values in different places. A ~ B means kA < B < %A for a

generic constant 0 < k < 1. For an integer m > 0, we use H;’fg, a7 Hg” to denote

the usual Hilbert spaces H™(R3 x Rg), H™(R3), Hm(Rg), respectively, and L2,
L?, Lg are used for the case when m = 0. When without confusion, we use H™ to
denote H;™ and use L? to denote L7 or L2 .. For ¢ > 1, we also define the mixed
velocity-space Lebesgue space Z, = LZ(L4) = L*(RY; L9(R3)) with the norm

2/q 1/2
||u||zq=(43(43|u<x75>|de) df) L u=uln,§) € 7,

For multi-indices a = (a1, @, a3) and 8 = (51, B2, B3), we denote 05 = 82‘8?, that
is, 0 = 03} 8;‘228;‘;8?11 8?;8?5 The length of « is |a] = ag + a2 + a3 and the length
of Bis |8] = B1 + B2 + Bs.

2. PRELIMINARIES

It is known that the linearized collision operator L is non-positive, the null space
of LL is given by
N = span {1\/11/2,@1\/11/2 (1<i<3), |§|2M1/2} :

and —L is locally coercive in the sense that there is a constant ko > 0 such that [2]
(2.1) —/ uLu dé > mo/ V(&I — Plul?de
R3 R3

holds for u = (), where I means the identity operator and P denotes the or-
thogonal projection from LZ to M. Given any u(t,z,&), one can write P in (2.1)
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as
Pu = {a(t,z) +b(t,z) - € + c(t, x)(|¢]> — 3)} M2,
a= [ MY?ud¢ = | MY?*Pude,
R3 R3
bi:/ &,Ml/zudf:/ &EMY?Puds, 1<i <3,
R3 R3
1 1
e=g [ (6P~ M uds = ¢ [ (e - 3 Pud,
6 R3 6 R3
so that

U(t, €, 5) = Pu(t7 €L, 5) + {I - P}u(ta €L, g)
Here, Pu is called the macroscopic component of u(t, z,&) and {I —P}u the micro-

scopic component of u(t, x,§), cf. [16, 15, 14] and [22, 21]. For later use, one can
rewrite P as

Pu=Pyu @ Pju,
(2.2) Pou = a(t,z)MY/2

Piu = {b(t,z) - & + c(t, z)(|¢]> — 3)}M"/2,

where Py and P are the projectors corresponding to the hyperbolic and parabolic
parts of the macroscopic component, respectively, cf. [8].
Recall that L = —v + K is defined as

@3 o= [[ - eraOME) dude. ~ 1+ 1€
and

(2.4) Ku(f) = //]Rs < |£ 7g*‘qu(Q)MI/Q(S*)MI/Q(gi)u(fl) dwdf*
—i_\/‘/]Rs 52 |f - g*|V(]0(9)M1/2(5*)M1/2(§/)u(£;)dwdf*
o //]RS g2 |§ - 5*|’Yq0(9)M1/2(€*)M1/2(f)u(f*) dwdf*

R«j

For properties on the collision frequency v(§) and the integral operator K, we
have

Lemma 2.1. (i) v(§) is smooth in &, and for B > 0, dgv(§) is bounded.
(ii) Let § > 0. For any 0 < q < 1, there is C|g| 4 such that

(25) arul < Cpyy [ Ke.6) Y louleo)lde.
1871<18]

where K4(&, &) is a real nonnegative symmetric kernel in the form of

2
2—|gx|?|

_dje— Q,QL
(2.6) Kq(fag*):{|§*f*|+\€f£*|7l}e & =8 e
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Moreover, for any n > 0, there is C\g|, > 0 such that

(2.7) lopcull <n Y 195 ull + Ciapp lull-
1B"1=181

Proof. Write (2.3) as
v(€) = Cy, /R3 || "M(€ + 2) dz

for some constant Cy, > 0. Since v > 0 and M(§) is smooth and decays exponen-
tially in &, v(§) is smooth in &. For 8 > 0, write 8 = 8’ + 3; with |5;| = 1. Note
that 9;]z|7 = v|2|7712;/|2| whenever z # 0. Then, from integration by parts,

%aﬁ,M(g +2)dz.

050(€) = Cyy [ |POMI¢ + ) = Cyy [ Al
R3 R3 ‘ |

Since [9g M(£ 4 2)| < CMY (€ + 2) for some 0 < ¢’ < 1,
(@) <€ [ | (¢4 2)
RS

Therefore, dgv(§) is bounded due to 0 <y < 1. Then (i) is proved.
To prove (ii), rewrite (2.4) as

Ku(@) = [ 1P a0V + M€ 2 pule + ) dds
+ // |z|7q0(0)M1/2(€ + z)M1/2(§ +zp)u(§ — z1) dwdz
R3xS2
B //R o [P aOMP(E+ M Eu(E + 2) duwdz,

where for given w € 52, 2| = z-ww and z; = z — 2. Then, for 8 > 0, dgKu(§)
takes the form of

S //R @) MY+ MVEE + 21} Oyl + 7)) dudz
B<p xS

#3000 {MYAE MU ) 0l — 2) dds
<8 Roxs?

-N ' cf 127 q0(0)D5—p { MY2(& + 2)MY2(€) } dgru(€ + 2) dwdz.
200 [ 0055 { bos

Here observe that for any 0 < ¢ <1, there is (|5 , such that
[0 {MY2(E + AIMR(E 4 20) | < Gl MO2(E+IM2(E 4 20),
105 {MY2( + 2)MY2(6 + 29) b < Clag oMV (€ + )MV (€ + 29),

035 {MY2(6 + M2() }| < Cpgy MI2(6 + )MV ().
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Thus, |0gKu(€)| is bounded by

Cial.q {//3 El( )Mq/Q(f + Z)MQ/2(§ +z1) |3g/u &+ 2) | dwdz
5/<B R3x.S

+ / / |2 q0(O)M(€ + 2)MY2(€ + 2) B ué — 21)]| duwd
R3x S2

+ // |27 g0 (0)MY/2(€ 4 2)M2(€) |Opu(€ + 2)] dwdz} .
R3x S2

From the above expression of the upper bound of |9gKu(£)|, one can now use the
same calculations as in [11, Section 3.2] to obtain (2.5) with the integral kernel
K,(&,&4) defined by (2.6). Furthermore, by also the same proof as in [11, Section
3.5], (2.5) together with (2.6) imply that K is a compact operator from Héﬁ " to

Hg‘ﬁl, which leads to (2.7). (ii) is proved. O
Now we state two weighted estimates on the integral operator K and the non-

linear term I'(f, g) with respect to the new time-velocity weight wy(t,§). First for
the weighted estimates on the integral operator K, we have

Lemma 2.2. Let L € R, 0< g <1 and let 8> 0 be a multi-index. Then, there is
Cq.e > 0 such that

wg(t f) C
(2.8) / Ky(6,6) e e, < So

Moreover, for any n > 0, there is Cg) ¢, > 0 such that

(2.9)

/ w?(t,ovaﬁmdf\m [utaodwie > ol e
RS e 168'1<18]

+C\ﬂll,n/3<§>é_l o+ D 10sul® ¢ de.
E 18/1<18|
Proof. Notice

_AIEl

wlt,€) _ (©benr
we(t, &) (€, >%eﬁ

< Co(€ — &) e e < Cpl€ - &, > 15 pele—e.”+57

for any € > 0. Recall (2.6) for K (&, &), we have by fixing € > 0 small enough that

we(t, §)
(6 E*) (t é-*) < CZ,)\Kq’(gag*)

holds for some 0 < ¢’ < ¢. Hence, by using

/R3 Ky (&,6)(E) 72 dE, < Cyp (€)™Y
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for any s > 0 as proved in [11, Lemma 3.3.1], (2.8) follows. To prove (2.9), by
applying (2.5), one has

bt uopKude <c Y- 2(1,6) (6| K (6 £) |0 u(e.) | dede.
/R?’ [ |5'</3//]R e

where from Holder’s inequality, each term in the right-hand summation is further
bounded by

[ riee) S o e pasae. |

. {//Rsxm Kq(@f*)|w€(t75*)85/u(§*)|2d§d§*}

Therefore, by (2.8), it follows that
(2.10)

[ wttgnosrua <o [ 4HEE {|v<5)|2+ > |3ﬁ'U(£)|2}d€d£*~

1871<18I

(NI

We now split the integration domain into |¢] > R(1+¢)? and [¢] < R(14t)? for an
arbitrary constant R > 0. For the case when |¢| > R(1+t)?, due to # > 0, one has
|¢] > R, and hence

t 1
lic(r |§|)X£>R(1+t) S1TR wi(t,€),

while if |¢] < R(1 + t)? one has

wd(1.6) (€)etirr

= — < CUEVE12AR.
1+ €] T 1 1) XIEISR(1+1)° 1+ € X|e|<R(1+t)0 = &) le

Then, (2.9) follows by applying the above two estimates into (2.10). This completes
the proof of Lemma 2.2. |

For the weighted estimates on the nonlinear term T'(f, g), we have

Lemma 2.3. Let £ >0, and let 5 > 0 be a multi-index.

(2.11)

[ wrtonoosrraa

<o Y {[/ ud(1,€)10s, <5>|2d§r[/Rswéw,snaﬁzg(@%zf}é

B1+B2<pB

N { / o §)|8ﬂ29(5)2d4 ' [ / 3 w3<t,g>|aﬁlf<f>2df} é}

< | [ ot omerPe] %
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Proof. One can write T'(f, g)(£) as

//S € = &7 a0(O)M (&) F(€1)9(€)) dwde.
- / /RS € = &[0 (O)M(£.) £ (£2)9(&) dwde,
- //M |2 q0(O)MY?(& + 2) F(€ + 21)g(& + 2) dwd
- //Rsxsz |20 (O)MY2(€ + 2) (€ + 2)g() duwdsz,

where as before, for given w € 52, z| = z-ww and z, = z — z. Then, 93L(f, g)(§)
equals

S [ w0 M e + 2105 £(€+ 21)0sale + =) dd
|Bol+181]+1821<|B| *

T 20740 ()0, M2 (€ + 2)0p, F(& + 2)05,9(€) dwz.
|Bol+181|+821<18| //]R3><32

Using 93, M/2(£ 4 2) < CM?/2(¢ + 2) for 0 < ¢’ < 1, it follows that

(2.12)

/w%(t,s>h<s>aﬁr<f,g>ds\<c S (Lpss + Bops)
R 1B1+1821<|8]

with I g, g, and I3 g, g,, respectively, denoting

JILo = TN (€105, )] 5,(€ 0. OIAE)| i
and
JILo = T O (€105, )] (€)1 €)h(6)| du..

For each (S, B2) with |51]+ 82| < |B], from Hoélder’s inequality, I g, g, is bounded
by

UL w00 = 6P @M 6100, /€ 0ral€) )P .}

1
2

A [ w8 e Faonr e e dudcas.

Here, noticing

L e ePaomar ) dude. < 07 < Cvte)
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one has

-

{/// w?(t,)[€ — E7q0(0)MT/2(£.)|h(€)[? dwdédf*}z
R3xR3xS52
<c { / u<§>w3<t,§>|h<5>|2df}2 ,
]RS
and by using

WHELOIE — EMIV(E,) < gt

axje’| |, 2M€L]

< C{E)H () et Ty
< C{r(€)wi(t, & ywi(t, &) + v(E)wi (t, & )wi(t,€)}
which is due to v > 0 and £ > 0, one also has

UL b6l = €M (€0, F€)P 0ol dudsds. }

<ol [[[[, O e (010 5050l dodsis. )

[SIE

e { / / / V(€L ywd (£, €3 (1 €)q0(6) 05, F(EL) 105 (€)) 2 dwdfdé‘*} ,
R3 xR3 x S2
which is further bounded by

2 2 2 2 %
A HOuteude )05 F€)Plosg(e)? dudeit. |

=

2

col [ veutecudt. om0 (6100 )P dwdsie. |

<c { [ et | [ wielon o]

+ | [ (Wi (t,€)[s, F(€)*dE : wi (£, €)0s,9(6)|*dg % :
L I'IL '

Here, we made change of variables (£, ¢&,) — (£/,€.) with the unit Jacobian. There-
fore, by collecting the above estimates on I; g, 3,, Zlﬁllﬂﬁfz\élﬁ\ I g, g, is bounded
by the right-hand term of (2.11). In the simpler way, it is straightforward to ver-
ify that >° 5 |1 6, <|5 [2.8:,8. is also bounded by the right-hand term of (2.11).
Therefore, (2.11) follows from (2.12). This completes the proof of Lemma 2.3. O

3. LINEARIZED TIME-DECAY
Consider the linearized system with a nonhomogeneous microscopic source:
(3.1) Ou+E&-Vou—Vad-EMY2 =Lu+h, Ph=0,

1
(3.2) o(t,x) = ~ Tl g . MY 2u(t,z,£) dé — 0 as |z| — oco.
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Given initial data wug, we formally define e'Pug to be the solution to the linearized
homogeneous system with A = 0. For 1 < ¢ < 2 and an integer m, set the index
04,m of the time-decay rate in three dimensions by

3/1 1 er
o =—-|-—z -
9 \g 2 2

Theorem 3.1. Assume [, ao(x) dz = 0, where ag(x) = a(0,x) is defined by ug in
terms of Pou = a(t,z)M/? at t = 0. Then,
(3.3) ||8§‘etBu0|| + ||5‘§‘VzA;1PoetBuo||

< O+ t) 77 ([luoll 2, + 107 uol| + [l]2laollzy)
and in particular, when Poug = 0,
(3.4) ||8§‘etBuo|| + ’|8§‘VxA;1PQetBuOH < CA+t)7701 (Jlugllz, + |05 uol]) -
Moreover, for h ={I—P}h,

2

2 t
(3.5) + ‘ [oRAVAANE o8 / =B (s)ds
0

t
o / =B (s)ds
0

t
<C [t sy (a3, + sk do.
0

Proof. Both (3.4) and (3.5) were proved in [8, Theorem 2 on page 303]. It suffices

to prove (3.3). As in [8], recall that by letting u = e*Pug be the solution to (3.1)-

(3.2) when h = 0, there is a time-frequency functional E(a(t,k)) ~ |la(t,k)||2, +
¢

la(t, k)|?/|k|* such that

k[

TR + 15

dt

E(a(t, k) <0,

‘ 2
and hence E(u(t, k)) <e 1+\k|2 E(u(0,k)). Setting k~ = k"' k52k5® and by notic-
ing

|02 Bug|” + (|02 V. A5 PoeBug]|*
=/ Ik2“|~||ﬂ(t,k)llizdk+/ k2] - o= la(t, k)[*dk
R2 ¢ R |
<c [ B0 dr,
R}
one has
(3.6) [|aceBuo” + |02V A—lpoetBuoy|2

<C/ K26 1+|k\2 Huo( )||2L§dk+C/Rs |k|?
k

clk|?

L TR Y ag (k) [P dk.

To prove (3.3), it now suffices to estimate the second term in the right-hand of
(3.6) over the low frequency domain |k| < 1, cf. [18]. In fact, due to the assumption
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Jgs ao(x) dz =0, i.e. o(0) = 0, one has

(k)] = lao(k) = a0(0)| < [ k-l lao(a)ldo < K| [ Jalao(a) -

Then,

‘k2a| |kl t 9 2 < k|2t 9
/ e T g () Pdk < / k2| 2Nk ] ao 2,
k<1 |kl |kI<1 :

< C+ )72l [[zlaolZ, -
This completes the proof of (3.3) and hence Theorem 3.1. O

4. A PRIORI ESTIMATES

This section is devoted to deducing certain a priori estimates on the solutions
to the VPB system. For this purpose, it is supposed that the Cauchy problem
(1.4)-(1.6) of the VPB system admits a smooth solution wu(t,z,§) over 0 <t < T
for 0 < T < oco. To make the presentation easy to read, we divide this section into
four subsections. The first one is on the macro dissipation of the VPB system.

4.1. Macro dissipation. As in [8], by introducing

0,j(u) = /Rs (&€ — 1MV 2ude, Aj(u) = % /]Rs(|g|2 — 5)&MY 2y, de,

one can derive from (1.4)-(1.5) a fluid-type system of equations

8ta + Vg; -b= 0,
O+ Vi(a+2¢)+ V- O{I —Plu) — V¢ = V,oa,

1 5 L
e+ Ve b+ 3Ve - AT = Plu) = 2Vi6 - b,

Aw¢ = a,
and
2 10
00 ({1 = Phu) + 9ib; + jbi = 5655V - b — =0,V - A{T — Plu)
2
=0;j(r+g) - §5ijvz¢ -b,

IN,({I—Plu) + 0;c = Ai(r + g)

with

1
r=—¢-V{I-Plu+Lu, g= 55 -Vaodu —Vad - Veu+T'(u, u).

Here, r is a linear term only related to the micro component {I — P}u and g is a
quadratic nonlinear term.
Our main result in this subsection can be stated as in the following

Lemma 4.1. There is a temporal interactive functional EW(t) such that

@1) el <oqlal®+ Y- (191 = Pru®)? + 193V (a,b,0)%)

la|<N-1
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and
1) Term o+ Y 105Ve(ab o)
la|<N—1
Z 10241 = PYul® + C {Jlul3z ) + IVa0ln }

al|<N

x ¢ > ST -Phu®+ D 92(a,b,0)
la|<N 1<la|<N
hold for any 0 <t < T.
Proof. Basing on the analysis of the above macro fluid-type system, the desired
estimates follow by the repeating the arguments employed in the proof of [8, The-

orem 5.2 for the hard-sphere case and hence details are omitted. Here, we only
point out the representation of £1(¢) as

Nt = > /}Ravx8ac-/\(8“{1—P}u)do:

la|<N-1

+ > Z/ (68% + 9;0%; gézjvz-aab> 04;(0°{1 — P}u) dx

la|<N-11ij=1

kY / 0%ad°V,

la|<N-1

for a constant £ > 0 small enough. Here, for simplicity, we used 9; to denote 0,
for each j =1,2,3. O

4.2. Non-weighted energy estimates. Set

(4.3) Ext)~ > [Jagul®)]]® + IVao®) 5
la|+|BI<N
2
(4.4) Dyt = Y Hul/Qag{I—P}u(t)H
la]+]8|<N
+ S 110°Va(a,b, )0 + alt)])?,
|| <N-1

this subsection is concerned with the non-weighted energy estimates on the solutions
of the VPB system based on the following a priori assumption (A1): Thereis § > 0
small enough such that

(4.5) sup Q IVaoll + L+ Y [9°Vas(t)] p <6,

0<t<T 1<|al<N

where 6 > 0 is a positive constant to be determined later.
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For later use, let us write down the time evolution of {I — P}u:
(4.6) O{I —Plu+¢ -V {I-Plu+ V0 - Ve{I-Plu
— 56 Vao{I— Phu+ w(){I - Phu
— K{I—Plu+T(u,u) + P{E-Vou+ Voo - Veu— %g Vadul}
~{&- Ve + Vo Ve — %g - Va0 }Pu.
Our main results in this subsection is

Lemma 4.2. Under the a priori assumption (A1), there is En(t) satisfying (4.3)
such that

(17) Den) +rDu(t) < € {En1)7 + Ex ()} Dy (1)

(&)
e X [ 10— P

la|+[B]I<N
holds for any 0 <t < T, where Dn(t) is given by (4.4).

Proof. We proceed along the same line as in [9, Lemmas 4.4, 4.5 and 4.6]. The
main difference now lies in the way to deal with the nonlinear term %f -Vyou. For
simplicity we shall only give the detailed estimates on that term. First of all, after
multiplying (1.4) by u and integrating over R3 x R3, one has zero-order estimate:

d
48) g {19207 = [ P+ 200ds
+ﬁ//Rg  VOHT =~ Pufdris

< Clull a2y {IVala b, o) + v /2{T - P}
+C{ll@b e Ved)llm + V2] - [Vab]}
% {IVaa,b,0) |2 + T = Phulz )}

Co
+ g [T = PhuPdsds

In fact, we need only to consider

%//Rsxwg-vmu?dxdg _ %/ASXng-Vz¢IPUI2dwd£

: - 1 . _pp2
+//Rw3£ V. ¢Pu{I P}udwd£+2//RSXR3£ V. d|{I — Plul>dzdé,

where the first two terms on the right-hand side can be estimated as in [9, Lemma
4.4], and for the third term, by using the inequality [|V.¢|lre < C||VZ6| g1 and
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the a priori assumption (A1), we have

. . P
Co
= W//R - €[ - {I — P}ul*dxde.

This proves (4.8).

Next, by applying 0% with 1 < |a] < N to (1.4), multiplying it by d%u, inte-
grating over R? x R? and taking summation over 1 < |a| < N, one has the pure
space-derivative estimate:

1d
(49) 5o Yo {lozull® + 102 Vas*}

1<]al<N

o o u? T
D | BT S SRR

1<]a|<N

< C{llullrzmy) + IVatllan } D2 {Hv”zas{lP}uH2+||as<a,b,c>|2}

1<[a|<N

+CIVidllan-1q D 10VI-Pul o > [95u]

la| <N -1 1<[a|<N

o)
+m Z //R - €] - 10241 — PYu|>dadt.

1<|a|<N

Again, let us only consider the estimate on

/ /RR o <;5 ' Vzm) O udwdg

=Y Cup / / %g 02OV 0P ud u dade.
R3 xR3

B
By writing further u = Pu + {I — P}u, one has the estimate on the trouble term

S Cus // L e 90-0Y, 605 {1 — PYud® {1 — PYudude
’ R3><R3 2

BLa

<C [ 16190l S IOHI-Phullsz p 105~ Phulszde

I<|BISN

Cs
S Trome > //R R3I£\~I6${I—P}u|2dxdg

1<]a|<N

due to the a priori assumption (A1). This proved (4.9).
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For the mixed space-velocity derivative estimate, one has

1d & N
m=1 |Bl=m
loe+[BI<N
Y // (€)|05{1 — P}u|*dzdg
181>1 R3 ><R3
la]+[BI<N

<CO S o T-PhlP+ > 02 b0l b+ C {llullay, + Vel |

la| <N 1<[a|<N

SR S D PA7EC T3 S A S A O

la|+|BI<N 1<|a|<N
s ,
t— ) // | 183 {1 — P}ul?dxde,
(1+1) ) RS xR
lal+IBI<N

where Cy,, > 0 (1 < m < N) are properly chosen constants. In fact, it follows from
applying 03 with |[3] = m and |af + 8] < N to the equation (4.6) of {I — P}u,
multiplying it by ag{l — Plu, integrating over R® x R?, taking summation over
{18] = m,|a| +|B] < N} for each given 1 < m < N and then taking the proper
linear combination of those IV —1 estimates with properly chosen constants C,, > 0
(1 <m < N). Let us only consider the estimate on

// o3 (15 Vao{I— P}u) 03 {1 - Pludrdt

R3><]R3 2

= ) ey / / laﬁ,g/g -9V ,005 {1 — PYudg {1 — Pudade.
R3 xR3

a'<a,f'<B

From the Sobolev and Hélder inequalities, the term on the right-hand of the above
identity is bounded by

Yo+ X opad|f -

a'<a,f'<B a'<a,f'=

< C”V.ﬁbHHN*l > 105{T - Phul?
|Bl<m
lal+[BI<N

+0 [ eIVl 3D o5 T Phul, de
ol BIEN
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which by the a priori assumption (A1), is further bounded by

ClIViglmy—s Y 95{L - Plul?
[Bl<m
lal+1BI<N

Co
t 7 D €] - |95 {T — P}u|? dzde.
(14 ¢t)1+0 e /Rg

laf+|BISN

This proved (4.10).

Finally, we take the linear combination of the above four estimates (4.8), (4.9),
(4.10) and (4.2) as {[(4.8)+(4.9)]x M1+(4.2)} x My+(4.10) for constants M; >
0, My > 0 large enough. Recall (4.1), (4.7) follows for a well-defined energy func-
tional En(t) satisfying (4.3) and the energy dissipation rate Dy (t) given by (4.4).
This completes the proof of Lemma 4.2. O

4.3. Weighted energy estimates. Recall (1.7) for the definition of the mixed
time-velocity weight function wy(t, &) and set

(4.11) Enve®) ~ Y fwe(t, ©u®)? + 1| Vad(t) |3
|a|+|BI<N

2 D= Y [ we oo - P’
|a|+[BI<N
+ > [0°Va(a.b, ) @) + lla(t)]?,
lo|<N-1

we have

Lemma 4.3. Let { > 0. Under the a priori assumption (A1), there is En(t)
satisfying (4.11) such that

d
%51\1,@(75) + KD (t) < C{ENL()Y? + Enp(t)}Dr (1)

for any 0 <t < T, where Dy ¢(t) is given by (4.12).

(4.13)

Proof. For any given £ > 0, to construct En ¢(t), we perform the weighted energy
estimates by the following three steps. To the end, (-, -) is used to denote the inner
product over L2 . for brevity.

Step 1. Weighted estimate on zero-order of {I — P}u:

(@14) gl = Ph@ +5 [ vt 91— Phufdsae
1+9 // \§|w, (t, {1 — Pu|?dzde

< C{H<£>T{I = Phul + | Voul?} + CExe(®)*Duvat).
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In fact, by multiplying (4.6) by w?(t, £){I—P}u and taking integration over R? x R3,
one has

2dtllwe(t O — Phul® + (v(€), w(t, &)|{I — P}ul?)
+< Faieo. {I‘P}“'2> < ;f-vz¢,wz<t,s>|{I—P}u|2>

= (K{I - P}u, wi (t, )T — Phu) + (L(u, u), w (t, {1 — P}u)
+<_vm¢ ’ VE{I - P}u7 wy (tv f){I - P}u>

#(PLE Vo Vit Veu— 36 Vatu) (1,91 - Phu

(4.15)

+ <—{€ Va4 Vap Ve - 26 Vap}Puwd (T - P}u>.

The last two terms on the left-hand side of (4.15) are estimated as follows. Noticing

1d A€
*§£w?( &) = (1+7|5)1|+9 wi (¢, ),

then it holds from the a priori assumption (A1) that

(410) (-5 ub(t .- PYu?) + (=56 Vo ud(e T~ Phul?)

> { gy — 19l b (6l w20, 11 - Phul)

> e (e wb T = Phf)

A0

> s gy el wit T = Pul?),

where smallness of § > 0 in (A1) such that C§ < 10 was used.
Now we turn to deal with the corresponding terms on the right-hand side of
(4.15). First, from Lemma 2.2, we have

£—1
< nflwe(t, T = Phul® + Cy[[(§) = {T = Plul*

for an arbitrary constant > 0, and from Lemma 2.3,

<F(u’ u)a wg(ta f){l - P}u>

= (['(Pu,Pu) + T'(Pu, {I— P}u) + T'({I — P}u, Pu)

+L({T = Pu, {I = Phu), wi(t, ){I — Plu) < CEn (1) *Duv e (t),

where the Sobolev inequality ||f|lre < C||Vaf|lg: and the inequality wo(t,€) <
we(t, &) due to £ > 0 were used. Notice that

27 (€| 2X€]|
—1 é| e (1+t)0 + <§>Ze(1+t>9 2\ 5

Vewg(t, &) = ((€) (1+8)7 [¢]’
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which implies |Vew? (¢, )| < (2A+0)w?(t,€), and hence, by the a priori assumption
(A1),

2\ + ¢
— (Voo 5 Teut 01— Ph? )y < 2

2

IV llzse l[we(t, E){T — Pul?
< CO8|we(t, E){T — Pull*.

Here and hereafter, we skip the dependence of C' on constants A and ¢. Finally, it
holds that

<P{§ “Vau+ Vo Veu — %5 Vadul, wi(t, {1 — P}u>

C
< {1 - Phul® + gIIVIUII2
+CO||Vadll 2 {I{L = Phull* + [ Va(a, b,0) [}

and
<{€ Vot Vab Ve~ 6 Vad}Pu, w1, O){T - P}u>

c
< l{I - Phul® + ﬂvz(% b,c)|®
+C|Vao |l {IH{T = Phull + [ Va(a, b, o)}
Here n > 0 is an arbitrary constant. Therefore, by choosing a small constant

7 > 0 and also using smallness of 6 > 0, (4.14) follows from collecting all the above
estimates into (4.15).

Step 2. Weighted estimate on pure space-derivative of w:

(@17 203 et gl

1<[a|<N

+ kK Z //RSXR?» v(&)wi(t, £)|094{1 — P}ul*dzd

1<[a|<N

s DN | BN - O

1<]al<N

S {H<§>%W“-lv°}as{1—P}u\f+||as(a,b,c>||2}+||a||2

1<]al<N

+C6 > Jwilt, &) Ve {I — Phul® + CEno(t) /> Div.a(t).
1<]a|<N-1

In fact, take 1 < |a| < N, and by applying 0% to (1.4) with

Lu=L{I-Plu=—v{I-Plu+ K{I — P}u,
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multiplying by w?(¢,£)0%u and integrating over R* x R?, one has
(118) 5 0 use(t, ] + (€D (X — Pu w1, )95 w)

(=5 R0 ) + (~05(56 - Vuou) uBle. 05

= (KO — P, wd(t, €08 ) + (92T (u, ), wR (1, €)02 )

+ (05920 - M2 W (1,00 ) + (~02 (Vo - Veu), wi(t, €)05u)

The left-hand terms of (4.18) are estimated as
V(€T — Phu, wi (¢, €)07u)

= (v(©), wi (t, )10 = PYul*) + (v(§)07 {T — Phu, wi (t,£)0; Pu)
> (v(©), wi (1, )|03{T = Phuf*) — C{I92{L - Pull* + |07 (a. b, ) "},

and
(4.19) {<—;5tw?(t,§), I8§UI2> + <—8§(;£ - Vaou), wg(t,g)agu>}
1<]a|<N
Y
=g 2 (e wit.9lozup)

1<]a|<N

_ Z Z <;£ : 8?7alvx¢8§/ua w[%(t7 g)agu>

I<]a|<N [a'[<|a|

O
Z{Wc”vgwml} S (el Rt o)losul)

1<]a|<N

O
> s 2 (ehwioozal),

1<[a|<N

where as in Step 1, the a priori assumption (A1) was used.
The right-hand terms of (4.18) are estimated as follows. From Lemma 2.2 and
Lemma 2.3, respectively, one has

(KO8 {1~ P, wl (1, €)0%0)
= (KOS {1~ PYu, wd (1, )05 {1~ Phu) + (KOS {1~ P, wi (1, )0 Pu)
< nllwet, 5 {1~ PYull> + 0y | i€) a1 — Py
£ O {051~ Phul + |02 (a,b,0) |}

for an arbitrary constant n > 0, and

(09T (u, w), w7 (6, )0 u)y = > (0 u, 092u), wi (t,€) 0% u)

a1 tas=a

< CEN () * Dy ().
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Moreover, for the rest two terms, one has
02V 0 - EMV2, wi(t,€)05u) < nl|ogull® + CyllOg V.o
< On{[|o3{T = Phull® + |02 (a. b, )P} + Cy - D (105 alf?

lo’|=]al-1

for any 1 > 0, and
(=05 ( anﬁ'VﬂL) wy (t,€)d5u)

<v SN, L £> S O (08 V06 - VDS w w1, €)% )
« <Oé

2 N
< Vel e et )05l

+ COIVEllan 1 4 lwe(t, )5 ull® + Y~ [lwe(t, &) Vedgull?

1<]al<N -1

< 06 3 |lwe(t, 0T —Phull® + > (105 (a,b,c)|?

1<|a|<N
+C8 Y we(t, ) Veds{T — Plul®.
1<]a|<N-1

Therefore, by choosing a small constant 1 > 0 and also using smallness of § > 0,

(4.17) follows from plugging all the above estimates into (4.18) and then taking
summation over 1 < |a| < N.

Step 3. For later use, set

(420) Dye(t)= Y. H<5>%8§{I_P}“(ﬂH2

l+|BI<N

+ Y 109Vala, b)) + [la(®)],

la|<N-1

one has the weighted estimate on mixed space-velocity-derivative of {I — P}u:

1d
(4.21) QCTZC > lwe(t,©)o5{T - Phul®

m=1 \Blzm
lal+I8I<N
DY // 2(t, )05 {1 — Plul*drde
|B|>1 ]R3><]R3
lal+IBI<N
camm X[ e 01051 - PhuPdeds
(1+t) + FE S
lal+IBI<N

§ CﬁN,max{e—l,O} (t) +C Z ||’U.)[(t, 5)8a{1 - :P},U’”2 + CEN7E(t)1/2DN,E<t)'

la|<N
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In fact, let 1 < m < N. By applying 9§ with [8| = m and |a| + [3| < N to the
equation (4.6) of {I — P}u, multiplying it by w7 (t,£)95{I — P}u and integrating
over R3 x R3, one has

(122) 5w, 05 (T~ PYul + (&), wh (1, 105 {1 - Phu?)

+(~5 U .15 T - PHP)
+ (08 (-3¢ VaolT-Phu) (. 0051 - Phu)
= (OB KAT~ P, w} (1,95 (1~ PYu) + (957 (,u), (1, 03 1~ P)
(08 (Ve VeI~ Phu), (1, 03 1~ P)
F{108.€- Vi + O~ Phu,uf (1,98 T - Pl

+ <agP {5 Ve + Vo Veu — %g . quﬁu} L wi (t,€)95{I - P}u>

+ <—8g {5 Vo + Vit Ve — %g : vm} Pu, w?(t, )5 {1 - P}u> :

where [, ] denotes the usual commutator. Similarly as in Step 2, by noticing the
identity

05 (-3¢ VaslT-Pu) = -3 3 €6 V.0 05 (1- Phu

a’'<a

1 « Ot—O/ Ozl
-5 >N CeCh0s-pE - V08 $05 {1 - Phu

a'<a f'<fp

and using the a priori assumption (A1), the left-hand terms of (4.22) are estimated
as

(4.23) > {<—;jtw§(t,5),|ag{1—P}u|2>

|B|=m
lal+|BISN
- <ag (‘ 36 Vaoll- P}u> Wt €I — P}u>}
A0
> st 2 (b wb 05T - Phup)
\allﬁllz\wﬁlN

—C3 > [lwe(t,€)95{T — Pul®.
[B]<m
la|+|BI<N
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The right-hand terms of (4.22) are estimated as follows. Lemma 2.2 implies

(05 K{I — P}u,wj(t,£)05{I — P}u)
= (0K 0™{I — P}u,wi(t,£)05{I — P}u)

< 77//]R3XR3 wi(t, ) {Iag{l —Plu*+ Z 0541 — P}u|2} dude

18'1<18]

+ e [t {wg{l PR Y gL Pw} dude

18/1<18]

for any n > 0, and Lemma 2.3 together with Sobolev inequalities imply

(05T (u, w), wi (t, )95 {1 — P}u)
= Y (9T (0" u,0u), wi(t, §)9{I - Plu)

a1 tas=a

< CENU()Y? Dy 4(t).

Moreover, as in Step 2,

(-0 (V.- V{1~ P, wi (1,95 (1 - Py
— (V.05 1 - PhP. g Veut(e.6))

+ 3 CU(=02"" Vg Vedy {1 — Phu, wi(t,€)95{I - Plu)
a'<a

A+ { .
< IV oo lwe(t, €)95 {1 — PYulf®

+COIV20lv—r Y we(t, )95 {1 — Plul®
[8]>1
la|+]BISN
<C5 > [wet, o5 {I— Phul®.

18]1>1
laf+IBI<N

Finally, it is straightforward to obtain

(~105,€ - Vo + V(I — Plu, wi (t, )95 {1 — P}u)

< nllwet, I~ Phul® +C; Y [lwe(t, ©)F{T - Plul®
[Bl<m—1
| +[BI<N
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and

<agP {g Vot + Vo - Veu — %g : qubu} L w3 (t, €)93 {1 — P}u>

1
+ (-0 {9+ 9.0 Ve - 56 Voo Puui (. 9051 - P
< nllwet YO~ PYul? + O, (I V00l + 19205 (0, )}
FOITaolv Y ol + 1030, 0))

1<|a|<N

< llwe(t, 0T = Phul®> + Gy Y {195 {I = Phull® + 0 (a,0,0)|*}

1<|a|<N

for any 1 > 0. Therefore, one can choose a small constant n > 0 and use smallness
of § > 0 and (4.20) for the definition of 751\/75(25), so that (4.21) follows by plugging
all the estimates above into (4.22), taking summation over {|3| = m, |a|+|8] < N}
for each given 1 < m < N and then taking the proper linear combination of those
N — 1 estimates with properly chosen constants C,, >0 (1 <m < N).

We are now in a position to prove (4.13) by induction on £ > 0. When 0 < ¢ <1,
(4.13) with properly defined En (t) follows from the linear combination

{[(4.14) + (4.17)] x My + (4.21)} + (4.7) x M,

for properly chosen constants Ms > M; > 1 large enough. In fact, in the linear
combination [(4.14) 4 (4.17)] x My + (4.21), one can first take M; > 0 large enough
in order to absorb the right-hand second term of (4.21), and in the mean time the
right-hand third term of (4.17) is absorbed by the dissipation terms in (4.21) since
d > 0 is small enough. In the further linear combination with (4.7), one can take
My > 0 large enough to absorb all the right-hand dissipation terms without velocity
weighted functions due to 0 < ¢ < 1, and meanwhile, again thanks to smallness of
0 > 0, the right-hand second term of (4.7) is also absorbed by the dissipation terms
obtained in the previous step. This proves (4.13) in the case 0 < ¢ < 1. Next,
assume that (4.13) is true for £ — 1 with £ > 1, i.e.

d
(4.24) %51\[,@—1@) + kDN 1(t) < CL{EN 11 (1) + Ene1(t)}Dro—1(2).

Then, in the completely same way as before, (4.13) with properly defined En ¢(t)
follows from the linear combination

{[(4.14) + (4.17)] x My + (4.21)} + (4.24) x M>
for properly chosen constants Ms > Mj; > 1 large enough. Here, the fact that

DN maxfr—1,0}(t) < CDng—1(t) with £ > 1 was used. Hence, by induction on /,
(4.13) holds true for any given ¢ > 0. This completes the proof of Lemma 4.3. O
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4.4. High-order energy estimates. Set

(4.25) ENe(t) ~ Y we(t, ©)9F{T — Phu(t)|?
lo|+|BISN
HIVESDO I+ D 107Vala b)),
lal<N-1

we now deduce the high-order energy estimates based on another a prior: assump-
tion (A2): There is § > 0 is small enough such that

(426) sup gNyg(t) S 0.
0<t<T

Our main result in this subsection can be stated in the following

Lemma 4.4. Let £ > 0. Under the a priori assumptions (A1) and (A2), there is
51}\1[%(75) satisfying (4.25) such that

4
dt
holds for any 0 <t < T, where Dy ¢(t) is given by (4.12).

(4.27) ENo(t) + KD (1) < C||Va(a,b, )|

Proof. We proceed along the same line as in the proof of Lemma 4.3. First of all,
similar to that of Lemma 4.2, we claim that under the a priori assumption (A1),
there is EY () with
(4.28)  EX(t) ~ [HI - Plu(t)|
+ 2 @I+ 10°Vas P} + > 195{T- Phu()?
1<]al<N 18|21

la|+|BI<N

such that
d
(429) ZEX () + D (1) < CIIVala,b, | +C {sN(t)W + 5N(t)} Dy(t)

06

lf+|BI<N

where Dy (t) is given by (4.4). In fact, it suffices to replace (4.8) by the following
zero-order estimate

(4.30) 2dt||{I—P}u ||2+/<;// (E){I — P}ul? dede

< C|[Vala,b, o)l +C {SN(L‘)W +En(t) } D (1)
Co
+ | - |05{T — PYu|*dxdE.
(1+t1+9 a|+%}:<N//RX s

Then, by exploiting the same argument used in the proof of Lemma 4.2, (4.29) with
a properly defined energy functional X (¢) satisfying (4.28) follows from the proper
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linear combination of (4.30), (4.9), (4.10) and (4.2). Here, by (4.1), we used the
fact that

ER 1< CFIRI-Pru@I+ > (102u@®)] + 102 Va6()]*)

I<[a|<N

To prove (4.30), by multiplying (4.6) by {I — P}u and integrating over R® x R?,
one has
1d

5 = 1= PYu@)? + (L{T - P}u, {1 - P}u)

= (T(u,u),{I-Plu) + <;§ Vadp{I—Plu, {I— P}u>

1
+<—{£~VI+VI¢-V5—Zf-VI¢}Pu,{I—P}u>.
Here, the right-hand third term is bounded by
n{I = PYul® + Cy (1 + [IVadllin) IVa(a, b, )|

for n > 0 chosen properly small. Other terms can be estimated as in obtaining
(4.8). This hence proves (4.30).

Next, one can repeat the proof of (4.13) in Lemma 4.3 by replacing (4.7) by
(4.30) so that for any given ¢ > 0, there is Sg,g(t) satisfying (4.25) such that

d

ZrERe(®) + KD (1) < C[[ V(b 0)* + C{EN(D)"? + En ()} Div e (D),
which further implies (4.27) by the assumption (A2) and smallness of 6 > 0. This
completes the proof of Lemma 4.4. O

5. GLOBAL EXISTENCE
Recall (4.11) and (4.25) and for ¢t > 0, define

(5.1) Xne(t) = sup (1+8)En(s) + sup (1+5)3EY /().
0<s<t 0<s<t

Our main result in this section is

Lemma 5.1. Let N >4, and let £ > 2, A > 0 and 0 > 0 in wy(t,£) given by (1.7).
Assume [p ag(x) dz = 0. Then, under the a priori assumptions (A1) and (A2),
any smooth solution u(t,z,&) to the Cauchy problem (1.4)-(1.6) of the VPB system
over 0 <t < T with0<T < oo satisfies

(5.2) Xne(t) < C{Ene(0) + fluollZ, + Illzlaoll®} + CXnve(t)®
for 0 <t < T and some positive constants independent of T'.

Proof. Take N >4, ¢ >2 A>0and § > 0. Let (A1), (A2) hold with § > 0 small
enough. It follows from Lemma 4.3 that

d
(5.3) @SN,E(t) + HDNJ(t) <0.
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By comparing (4.11) with (4.12), there is x > 0 such that
Dy e(t) + [[(b, ¢, Vad)|* > £En,e(t).

Recall (2.2) for the definitions of Py and P;. Applying the above inequality together
with the observation ||(b,c, V.0)||?> < C(|P1u(t)||® + [|[VoAL Pou(t)]]?) to (5.3),
one has

(5-4) %&v,z(t) +rEne(t) < C(IPru®)|® + [IVa A7 Pou(t)|*).

The right-hand terms of (5.4) are estimated as follows. Recall that the solution u
to the Cauchy problem (1.4)-(1.6) of the nonlinear VPB system can be written as
the mild form

t
(5.5) u(t) = eBug +/ e=Bg(s) ds
0

with g = $€- Vadu— V¢ Veu+T(u, u). For later use, write g as g = g1 + g2 with
g1 =TD(u,u) and go = 3&- Vygu— V- Veu. Observe that Pg; = 0 and Pogo = 0.
Then, one can rewrite g as g = {I — P}g1 + {I — P}gs + P1go. With the help of
this representation for g, applying Theorem 3.1 to (5.5) gives

_ 2 _3
(5.6) [Pru®I + | V2A; Pout)|* < (1 + ) {Jluoll3znz, + lielaol3s |
2 t 5
JrCZ/(lthfs)*f
j=1"0
2

t
+0{/ (1t t— ) [Prga(s)] o, ds} -
0

As in [8] or in [27, Lemma 2.6], it is straightforward to verify

2
L= Phyi(s)|| | ds

L2NZ,

(5.7) [ =Py, POz, < CEn e,
where we notice N > 4 and ¢ > 2. By (5.1), one has
(5.8) Envo(t) < (1+8)732 Xy o(t)

0 <t < T. With this, it follows from (5.6) and (5.7) that

(59) [Pru@)| +[|V. A7 Pou®)|’

_3
< C+07F {lluolanz, + lalaolE + Xn.e(t)?}

Here, we used that Xy ¢(t) is nondecreasing in ¢. By the Growanll inequality, (5.4)
together with (5.9) yield

Enelt) < CO+17F {Ewe(0) + uolFanz, + lalaol}y + Xne(t)? }
which further implies

(510)  sup (1+8)3Ene(s) < C{Ew(0) + uolly, + lzlaol?; + Xw,e(t)?}.

0<s<t

This proves (5.2) corresponding to the right-hand first part of (5.1) for Xy ¢(t).
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To deduce an estimate on the second term on the right-hand side of (5.1), we
begin with (4.27). Notice 51}\1!1@) < CDny(t) by comparing (4.25) with (4.12),
where the identity ||[V2¢| = ||Az¢| = ||a|| was used. Then, (4.27) implies

d
(5.11) ag}b’g(t) + KEN 4 (t) < C||V,Pulf.
Similar to that of deducing (5.6) from Theorem 3.1, one has

(512) |V.Pu(t)] < €+ {uol, + Vool + [l efaoll3: )
2 t
w0 [ -9t (IRl
j=1

2,1 - Phy;(s)]2} ds
2

+C {/Ot(l +t—3)71 (|P1g2(s)] 2, + [ VaP1rga(s)]) dé‘} :
Once again, it is straightforward to verify
(513) |- Py, + [PV {1- PYg(0)]
+[Prg2(t)l 2, + [[VaPrg2(t)[| < CEN (1)
Similarly as before, by using (5.8) and
/Ot(l Ft—s) F(1+s) ds<C(1+1) 3,

-

t
/ (1+t—s5) 5145 2ds<C(1+1t)1,
0

PN

it follows from (5.12) and (5.13) that

_5
IVaPu@)? < 1+ )% {Jluol2s 10z, + l7lacll3s + X,e(t)?}

which together with (5.11) give

(5.14) Oiug (1+ 3)35}{,’@(5) <C {EN,Z(O) + ||u0||221 + |||x|ao||2L% + XN7g(t)2} )
<s<t :

Therefore, (5.2) holds by combining (5.10) and (5.14). This completes the proof of

Lemma 5.1. O

Proof of Theorem 1.1: We first fix N > 4, £/ > 2 A >0and 0 < 9 < 1/4.
The local existence and uniqueness of the solution u(¢, z, ) to the Cauchy problem
(1.4)-(1.6) can be proved in terms of the energy functional Ex ¢(t) given by (4.11),
and the details are omitted for simplicity; see [16]. Then, one only has to obtain
the uniform-in-time estimates over 0 < ¢ < T with 0 < T < oco. In fact, by the
continuity argument, Lemma 5.1 implies that under the a priori assumptions (A1)
and (A2),

(5.15)  Xwelt) < C{Ene(0) + fuoll?, + [lzlaol®}, 0<t<T,
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provided that Ex,¢(0) + [JuollZ, + [[|z|ao||? is sufficiently small. The rest is to justify
that the a priori assumptions (A1) and (A2) can be closed; see (4.5) and (4.26).
Recall (1.9) and notice

Ene(0)' + J|uollz, + |l|z]aoll

<C3 Y lwe(0,8)0Fuoll + (11 + |z ]uoll 2,
la|+|BI<N

Here, in the above inequality, we used ||V,¢o| < C||a0\|%é\\a0||iég and
192 60llin—+ = V2 A7 aoll s < Claollin-.

Then, since 0 < 6 < 1/4, (A1) and (A2) directly follow from (5.15) together
with (5.1), (4.11) and (4.25) as well as smallness of En¢(0) + [uoll%, + |lz[aol|?.
Therefore, the uniform-in-time estimate (5.15) holds true for any 0 < ¢ < T as long
as

Yo lwe(0,€)08uoll + (1 + |z])uol|z,

|l +IBI<N
is sufficiently small. Then, the global existence follows, and (1.10) holds from (5.15)
by comparing (1.8) and (4.11). This completes the proof of Theorem 1.1. |
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