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Abstract. This paper is concerned with the Cauchy problem on the Vlasov-

Poisson-Boltzmann system for hard potentials in the whole space. When the

initial data is a small perturbation of a global Maxwellian, a satisfactory global

existence theory of classical solutions to this problem, together with the cor-

responding temporal decay estimates on the global solutions, are established.

Our analysis is based on time-decay properties of solutions and a new time-

velocity weight function which is designed to control the large-velocity growth

in the nonlinear term for the case of non hard-sphere interactions.
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1. Introduction

The Vlasov-Poisson-Boltzmann (called VPB in the sequel for simplicity) system

is a physical model describing mutual interactions of the electrons through collisions

in the self-consistent electric field. When the constant background charge density

is normalized to be unit, the VPB system takes the form of

∂tf + ξ · ∇xf +∇xφ · ∇ξf = Q(f, f),(1.1)

∆xφ =

∫
R3

f dξ − 1, φ(x)→ 0 as |x| → ∞,(1.2)

f(0, x, ξ) = f0(x, ξ).(1.3)
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Here the unknown f = f(t, x, ξ) ≥ 0 is the number density for the particles located

at x = (x1, x2, x3) ∈ R3 with velocity ξ = (ξ1, ξ2, ξ3) ∈ R3 at time t ≥ 0. The

potential function φ = φ(t, x) generating the self-consistent electric field ∇xφ in

(1.1) is coupled with f(t, x, ξ) through the Poisson equation (1.2). The bilinear

collision operator Q acting only on the velocity variable [2, 11] is defined by

Q(f, g) =

∫∫
R3×S2

|ξ − ξ∗|γq0(θ){f(ξ′∗)g(ξ′)− f(ξ∗)g(ξ)} dωdξ∗.

Here

ξ′ = ξ − [(ξ − ξ∗) · ω]ω, ξ′∗ = ξ∗ + [(ξ − ξ∗) · ω]ω, ω ∈ S2

is the relation between velocities ξ′, ξ′∗ after and the velocities ξ, ξ∗ before the

collision, which is induced by the conservation of momentum and energy.

Throughout this paper, we are concentrated on the hard potential case, i.e.,

0 ≤ γ ≤ 1 under Grad’s angular cutoff assumption

0 ≤ q0(θ) ≤ C| cos θ|, cos θ = (ξ − ξ∗)/|ξ − ξ∗| · ω.

The case for soft potentials will be pursued by the same authors in a forthcoming

manuscript [10].

Let M = (2π)−3/2e−|ξ|
2/2 be a normalized Maxwellian. We are concerned with

the well-posedness of the Cauchy problem (1.1)-(1.3) when f0 is sufficiently close to

M in a certain sense that we shall clarify later on. To this end, set the perturbation

u by f −M = M1/2u, then, the Cauchy problem (1.1)-(1.3) of the VPB system is

reformulated as

∂tu+ ξ · ∇xu+∇xφ · ∇ξu−
1

2
ξ · ∇xφu−∇xφ · ξM1/2 = Lu+ Γ(u, u),(1.4)

∆xφ =

∫
R3

M1/2u dξ, φ(x)→ 0 as |x| → ∞,(1.5)

u(0, x, ξ) = u0(x, ξ) = M−1/2(f0 −M),(1.6)

where

Lu = M−
1
2

{
Q
(
M,M1/2u

)
+Q

(
M1/2u,M

)}
,

Γ(u, u) = M−
1
2Q
(
M1/2u,M1/2u

)
.

Note that one can write L = −ν + K with ν = ν(ξ) ∼ (1 + |ξ|)γ and Ku =∫
R3 K(ξ, ξ∗)u(ξ∗) dξ∗ for a real symmetric integral kernel K(ξ, ξ∗); see [11, Section

3.2]. In addition, due to (1.5), φ is always determined in terms of u by

φ(t, x) = − 1

4π|x|
∗x
∫
R3

M1/2u(t, x, ξ) dξ.

Observe that by plugging the above formula into the dynamical equation (1.4)

of the reformulated VPB system, one has the single evolution equation for the

perturbation u; see [9, 8].

Before stating our main result, we first introduce a mixed time-velocity weight

function

(1.7) w`(t, ξ) = 〈ξ〉 `2 e
λ|ξ|

(1+t)θ ,
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where ` ∈ R, λ > 0 and θ > 0 are suitably chosen constants, and 〈ξ〉 := (1+|ξ|2)1/2.

For given u(t, x, ξ) and an integer N , define a temporal energy norm

(1.8) |||u|||N,`(t) =
∑

|α|+|β|≤N

‖w`(t, ξ)∂αβ u(t)‖+ ‖∇xφ(t)‖HN ,

where as in [6, 9], time derivatives are not included into the energy norm.

The main result of this paper is stated as follows. Notations will be explained

at the end of this section.

Theorem 1.1. Let N ≥ 4, ` ≥ 2, λ > 0, 0 < θ ≤ 1/4. Assume that f0 =

M+M1/2u0 ≥ 0 and
∫∫

R3×R3 M
1/2u0 dxdξ = 0, then there exist positive constants

ε0 > 0, C > 0 such that if

(1.9)
∑

|α|+|β|≤N

‖w`(0, ξ)∂αβ u0‖+ ‖(1 + |x|)u0‖Z1
≤ ε0,

the Cauchy problem (1.4), (1.5), (1.6) of the VPB system admits a unique global

solution u(t, x, ξ) satisfying f(t, x, ξ) = M + M1/2u(t, x, ξ) ≥ 0 and

(1.10) sup
t≥0

{
(1 + t)

3
4 |||u|||N,`(t)

}
≤ Cε0.

Under the framework of small perturbations around global Maxwellians either in

the whole space or on torus, there have been extensive studies on the VPB system

[16, 30, 31, 9, 8, 32, 29] and even the more general Vlasov-Maxwell-Boltzmann

system [15, 24, 7, 5]. However, only the hard-sphere model with γ = 1 is considered

among those existing work, and the case of general hard potentials 0 ≤ γ < 1 has

remained open. One of the main difficulties lies in the fact that the dissipation

of the linearized Boltzmann operator L for non hard-sphere potentials γ < 1 can

not control the full nonlinear dynamics due to the velocity growth effect of ξ ·
∇xφu in the nonlinear term. One of our main ideas is to introduce the new mixed

time-velocity weight function w`(t, ξ), especially the factor exp{λ|ξ|/(1 + t)θ}, to

overcome this main difficulty and the main purpose of this paper is to show that

a suitable application of such a new weight can indeed yield a satisfactory global

existence theory of classical solution to the VPB system in the whole space for the

case 0 ≤ γ ≤ 1. It is worth to pointing out that the arguments employed here

can be adopted straightforwardly to deal with either the VPB system on torus

with additional conservation laws as in [16] or the two-species VPB system as in

[15, 32, 29].

The proof of Theorem 1.1 is based on a new weighted energy method. Before

explaining the feature of this method, let us recall some existing work related to

Theorem 1.1. In the perturbation theory of the Boltzmann equation for the global

well-posedness of solutions around Maxwelians, the energy method was first de-

veloped independently in [16, 14] and in [22, 21]. We also mention the pioneering

work [26] and its recent improvement [27] by using the spectral analysis and the

contraction mapping principle. When the self-induced potential force is taken into
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account, even though [13] considered the spectral property of the system, the spec-

tral theory corresponding to [26] has not been known so far, partially because the

Poisson equation produces an additional nonlocal term with singular kernels.

Fortunately, the energy method still works well in the presence of the self-induced

electric field [16, 9] or even electromagnetic field [15, 24, 5]. Moreover, in such situa-

tions, the large-time behavior of global solutions is also extensively studied in recent

years by using different approaches. One approach which usually leads to slower

time-decay than in the linearized level is used in [31] on the basis of the improved

energy estimates together with functional inequalities. The method of thirteen mo-

ments and compensation functions is found by [19] which gives the optimal time

rate without using the spectral theory; see [12] and [29] for two applications. Re-

cently, concerning with the optimal time rate, a time-frequency analysis method

has been developed in [8, 7, 5]. Precisely, in the same spirit of [28], some time-

frequency functionals or interactive energy functionals are constructed in [8, 7, 5]

to capture the dissipation of the degenerate components of the full system. We

finally also mention [25] about the time-velocity splitting method for the study of

soft potentials. It would be quite interesting to combine [25] with the current work

to investigate the same topic for the VPB system with soft potentials −3 < γ < 0,

which is now under our current research [10].

Our weighted energy method used here contains some new ingredients, compared

with the previous work [16] for the hard-sphere model. One of the most important

ingredients is to combine the time-decay of solutions with the usual weighted energy

inequalities in order to obtain the uniform-in-time a priori estimates. In fact, the

pure energy estimates without using time-decay can not be closed; see (4.7). As

mentioned before, this is because the nonlinear term ξ ·∇xφu may increase linearly

in |ξ| but the dissipation of systems only has the growth of |ξ|γ with 0 ≤ γ ≤ 1

as given in (2.1). Therefore, we are forced to postulate the a priori assumption

(A1) on the time-decay of solutions with certain explicit rates so that the trouble

term ξ ·∇xφu can be controlled through introducing the mixed time-velocity weight

factor exp{λ|ξ|/(1 + t)θ}; see the key estimates (4.16), (4.19) and (4.23). Formally,

a good term with the extra weight in the form of |ξ|/(1 + t)1+θ naturally arises

from the time derivative of exp{λ|ξ|/(1 + t)θ} in the w`(t, ξ)-weighted estimate.

For all details of these arguments, see the proof of Lemma 4.2 and Lemma 4.3.

We here remark that Lemmas 2.1, 2.2 and 2.3 play a vital role in the weighted

energy estimates. In particular, we used a velocity-time splitting trick to prove

(2.9) in Lemma 2.2 concerning the w`(t, ξ)-weighted estimate on K. An important

observation is that the second part on the right-hand side of (2.9) not only excludes

the exponential weight factor exp{λ|ξ|/(1+t)θ} but also contains the strictly slower

velocity growth 〈ξ〉`−1 than 〈ξ〉`.
To recover the time-decay of solutions, we apply the Duhamel’s principle to the

nonlinear system and use the linearized time-decay property combined with two

nonlinear energy estimates (5.3) and (4.27) under both a priori assumptions (A1)

and (A2). Thus, the uniform-in-time a priori estimates can be closed with the

help of the time-weighted energy functional XN,`(t) given in (5.1). It should be
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emphasized that ‖∇2
xφ‖HN−1 decays with the rate at most (1 + t)−5/4 and hence

we have to assume 0 < θ ≤ 1/4 in the weight function w`(t, ξ). Exactly the high-

order energy functional EhN,`(t) is employed to obtain the time-decay of ‖∇2
xφ‖HN−1 .

In addition, we also point out that the condition ` ≥ 2 in w`(t, ξ) is necessary in

our proof, otherwise one can not use the energy functional EN,`(t) to bound the full

nonlinear term; see (5.7) and (5.13).

Finally, for the study of the VPB system in other respects, we also mention

[1, 3, 17, 20, 23]. Notice that [20] used the approach of the well-known work [4]

to establish the trend of solutions to global Maxwellians for the VPB system with

general potentials in the collision kernel but under some additional conditions.

The rest of this paper is organized as follows. In Section 2, we mainly prove

some important lemmas to show how the new weight function w`(t, ξ) is involved

in the estimates with the linear operator L = −ν + K and the nonlinear operator

Γ(·, ·). In Section 3, we improve the linearized result [8, Theorem 2] under the

natural assumption
∫
R3 a0(x) dx = 0. In Section 4, we devote ourselves to the a

priori estimates, and in Section 5, we complete the proof of Theorem 1.1.

Notations: Throughout this paper, C denotes some positive (generally large)

constant and κ denotes some positive (generally small) constant, where both C and

κ may take different values in different places. A ∼ B means κA ≤ B ≤ 1
κA for a

generic constant 0 < κ < 1. For an integer m ≥ 0, we use Hm
x,ξ, H

m
x , Hm

ξ to denote

the usual Hilbert spaces Hm(R3
x × R3

ξ), H
m(R3

x), Hm(R3
ξ), respectively, and L2,

L2
x, L2

ξ are used for the case when m = 0. When without confusion, we use Hm to

denote Hm
x and use L2 to denote L2

x or L2
x,ξ. For q ≥ 1, we also define the mixed

velocity-space Lebesgue space Zq = L2
ξ(L

q
x) = L2(R3

ξ ;L
q(R3

x)) with the norm

‖u‖Zq =

(∫
R3

(∫
R3

|u(x, ξ)|q dx
)2/q

dξ

)1/2

, u = u(x, ξ) ∈ Zq.

For multi-indices α = (α1, α2, α3) and β = (β1, β2, β3), we denote ∂αβ = ∂αx ∂
β
ξ , that

is, ∂αβ = ∂α1
x1
∂α2
x2
∂α3
x3
∂β1

ξ1
∂β2

ξ2
∂β3

ξ3
. The length of α is |α| = α1 +α2 +α3 and the length

of β is |β| = β1 + β2 + β3.

2. Preliminaries

It is known that the linearized collision operator L is non-positive, the null space

of L is given by

N = span
{
M1/2, ξiM

1/2 (1 ≤ i ≤ 3), |ξ|2M1/2
}
,

and −L is locally coercive in the sense that there is a constant κ0 > 0 such that [2]

(2.1) −
∫
R3

uLu dξ ≥ κ0
∫
R3

ν(ξ)|{I−P}u|2dξ

holds for u = u(ξ), where I means the identity operator and P denotes the or-

thogonal projection from L2
ξ to N . Given any u(t, x, ξ), one can write P in (2.1)
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as 

Pu =
{
a(t, x) + b(t, x) · ξ + c(t, x)(|ξ|2 − 3)

}
M1/2,

a =

∫
R3

M1/2udξ =

∫
R3

M1/2Pudξ,

bi =

∫
R3

ξiM
1/2udξ =

∫
R3

ξiM
1/2Pudξ, 1 ≤ i ≤ 3,

c =
1

6

∫
R3

(|ξ|2 − 3)M1/2udξ =
1

6

∫
R3

(|ξ|2 − 3)M1/2Pudξ,

so that

u(t, x, ξ) = Pu(t, x, ξ) + {I−P}u(t, x, ξ).

Here, Pu is called the macroscopic component of u(t, x, ξ) and {I−P}u the micro-

scopic component of u(t, x, ξ), cf. [16, 15, 14] and [22, 21]. For later use, one can

rewrite P as

(2.2)


Pu = P0u⊕P1u,

P0u = a(t, x)M1/2,

P1u = {b(t, x) · ξ + c(t, x)(|ξ|2 − 3)}M1/2,

where P0 and P1 are the projectors corresponding to the hyperbolic and parabolic

parts of the macroscopic component, respectively, cf. [8].

Recall that L = −ν +K is defined as

(2.3) ν(ξ) =

∫∫
R3×S2

|ξ − ξ∗|γq0(θ)M(ξ∗) dωdξ∗ ∼ (1 + |ξ|)γ ,

and

Ku(ξ) =

∫∫
R3×S2

|ξ − ξ∗|γq0(θ)M1/2(ξ∗)M
1/2(ξ′∗)u(ξ′) dωdξ∗(2.4)

+

∫∫
R3×S2

|ξ − ξ∗|γq0(θ)M1/2(ξ∗)M
1/2(ξ′)u(ξ′∗) dωdξ∗

−
∫∫

R3×S2

|ξ − ξ∗|γq0(θ)M1/2(ξ∗)M
1/2(ξ)u(ξ∗) dωdξ∗

=

∫
R3

K(ξ, ξ∗)u(ξ∗)dξ∗.

For properties on the collision frequency ν(ξ) and the integral operator K, we

have

Lemma 2.1. (i) ν(ξ) is smooth in ξ, and for β > 0, ∂βν(ξ) is bounded.

(ii) Let β ≥ 0. For any 0 < q < 1, there is C|β|,q such that

(2.5) |∂βKu| ≤ C|β|,q
∫
R3

Kq(ξ, ξ∗)
∑
|β′|≤|β|

|∂β′u(ξ∗)|dξ∗,

where Kq(ξ, ξ∗) is a real nonnegative symmetric kernel in the form of

(2.6) Kq(ξ, ξ∗) = {|ξ − ξ∗|+ |ξ − ξ∗|−1}e
− q8 |ξ−ξ∗|

2− q8
||ξ|2−|ξ∗|2|2
|ξ−ξ∗|2 .
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Moreover, for any η > 0, there is C|β|,η > 0 such that

(2.7) ‖∂βKu‖ ≤ η
∑
|β′|=|β|

‖∂β′u‖+ C|β|,η‖u‖.

Proof. Write (2.3) as

ν(ξ) = Cq0

∫
R3

|z|γM(ξ + z) dz

for some constant Cq0 > 0. Since γ ≥ 0 and M(ξ) is smooth and decays exponen-

tially in ξ, ν(ξ) is smooth in ξ. For β > 0, write β = β′ + βi with |βi| = 1. Note

that ∂i|z|γ = γ|z|γ−1zi/|z| whenever z 6= 0. Then, from integration by parts,

∂βν(ξ) = Cq0

∫
R3

|z|γ∂βM(ξ + z) dz = Cq0

∫
R3

γ|z|γ−1 zi
|z|
∂β′M(ξ + z) dz.

Since |∂β′M(ξ + z)| ≤ CMq′(ξ + z) for some 0 < q′ < 1,

|∂βν(ξ)| ≤ C
∫
R3

|z|γ−1Mq′(ξ + z) dz.

Therefore, ∂βν(ξ) is bounded due to 0 ≤ γ ≤ 1. Then (i) is proved.

To prove (ii), rewrite (2.4) as

Ku(ξ) =

∫∫
R3×S2

|z|γq0(θ)M1/2(ξ + z)M1/2(ξ + z⊥)u(ξ + z‖) dωdz

+

∫∫
R3×S2

|z|γq0(θ)M1/2(ξ + z)M1/2(ξ + z‖)u(ξ − z⊥) dωdz

−
∫∫

R3×S2

|z|γq0(θ)M1/2(ξ + z)M1/2(ξ)u(ξ + z) dωdz,

where for given ω ∈ S2, z‖ = z · ωω and z⊥ = z − z‖. Then, for β ≥ 0, ∂βKu(ξ)

takes the form of∑
β′≤β

Cββ′

∫∫
R3×S2

|z|γq0(θ)∂β−β′
{
M1/2(ξ + z)M1/2(ξ + z⊥)

}
∂β′u(ξ + z‖) dωdz

+
∑
β′≤β

Cββ′

∫∫
R3×S2

|z|γq0(θ)∂β−β′
{
M1/2(ξ + z)M1/2(ξ + z‖)

}
∂β′u(ξ − z⊥) dωdz

−
∑
β′≤β

Cββ′

∫∫
R3×S2

|z|γq0(θ)∂β−β′
{
M1/2(ξ + z)M1/2(ξ)

}
∂β′u(ξ + z) dωdz.

Here observe that for any 0 < q < 1, there is C|β|,q such that∣∣∣∂β−β′ {M1/2(ξ + z)M1/2(ξ + z⊥)
}∣∣∣ ≤ C|β|,qMq/2(ξ + z)Mq/2(ξ + z⊥),

|| ∂β−β′
{
M1/2(ξ + z)M1/2(ξ + z‖)

}
≤ C|β|,qMq/2(ξ + z)Mq/2(ξ + z‖),∣∣∣∂β−β′ {M1/2(ξ + z)M1/2(ξ)

}∣∣∣ ≤ C|β|,qMq/2(ξ + z)Mq/2(ξ).
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Thus, |∂βKu(ξ)| is bounded by

C|β|,q
∑
β′≤β

{∫∫
R3×S2

|z|γq0(θ)Mq/2(ξ + z)Mq/2(ξ + z⊥)
∣∣∂β′u(ξ + z‖)

∣∣ dωdz
+

∫∫
R3×S2

|z|γq0(θ)Mq/2(ξ + z)Mq/2(ξ + z‖) |∂β′u(ξ − z⊥)| dωdz

+

∫∫
R3×S2

|z|γq0(θ)Mq/2(ξ + z)Mq/2(ξ) |∂β′u(ξ + z)| dωdz
}
.

From the above expression of the upper bound of |∂βKu(ξ)|, one can now use the

same calculations as in [11, Section 3.2] to obtain (2.5) with the integral kernel

Kq(ξ, ξ∗) defined by (2.6). Furthermore, by also the same proof as in [11, Section

3.5], (2.5) together with (2.6) imply that K is a compact operator from H
|β|
ξ to

H
|β|
ξ , which leads to (2.7). (ii) is proved. �

Now we state two weighted estimates on the integral operator K and the non-

linear term Γ(f, g) with respect to the new time-velocity weight w`(t, ξ). First for

the weighted estimates on the integral operator K, we have

Lemma 2.2. Let ` ∈ R, 0 < q < 1 and let β ≥ 0 be a multi-index. Then, there is

Cq,` > 0 such that

(2.8)

∫
R3

Kq(ξ, ξ∗)
w`(t, ξ)

w`(t, ξ∗)
dξ∗ ≤

Cq,`
1 + |ξ|

.

Moreover, for any η > 0, there is C|β|,`,η > 0 such that

(2.9)

∣∣∣∣∫
R3

w2
` (t, ξ)v∂βKudξ

∣∣∣∣ ≤ η ∫
R3

w2
` (t, ξ)

|v|2 +
∑
|β′|≤|β|

|∂β′u|2
 dξ

+ C|β|,`,η

∫
R3

〈ξ〉`−1
|v|2 +

∑
|β′|≤|β|

|∂β′u|2
 dξ.

Proof. Notice

w`(t, ξ)

w`(t, ξ∗)
=
〈ξ〉 `2 e

λ|ξ|
(1+t)θ

〈ξ∗〉
`
2 e

λ|ξ∗|
(1+t)θ

≤ C`〈ξ − ξ∗〉
|`|
2 e

λ|ξ−ξ∗|
(1+t)θ ≤ C`〈ξ − ξ∗〉

|`|
2 eε|ξ−ξ∗|

2+λ2

4ε

for any ε > 0. Recall (2.6) for Kq(ξ, ξ∗), we have by fixing ε > 0 small enough that

Kq(ξ, ξ∗)
w`(t, ξ)

w`(t, ξ∗)
≤ C`,λKq′(ξ, ξ∗)

holds for some 0 < q′ < q. Hence, by using∫
R3

Kq′(ξ, ξ∗)〈ξ∗〉−s dξ∗ ≤ Cq′〈ξ〉−(s+1)
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for any s ≥ 0 as proved in [11, Lemma 3.3.1], (2.8) follows. To prove (2.9), by

applying (2.5), one has∣∣∣∣∫
R3

w2
` (t, ξ)v∂βKudξ

∣∣∣∣ ≤ C ∑
|β′|≤|β|

∫∫
R3×R3

w2
` (t, ξ)|v(ξ)|Kq(ξ, ξ∗)|∂β′u(ξ∗)| dξdξ∗,

where from Hölder’s inequality, each term in the right-hand summation is further

bounded by{∫∫
R3×R3

Kq(ξ, ξ∗)
w2
` (t, ξ)

w2
` (t, ξ∗)

|w`(t, ξ)v(ξ)|2dξdξ∗
} 1

2

×
{∫∫

R3×R3

Kq(ξ, ξ∗)|w`(t, ξ∗)∂β′u(ξ∗)|2dξdξ∗
} 1

2

.

Therefore, by (2.8), it follows that

(2.10)∣∣∣∣∫
R3

w2
` (t, ξ)v∂βKudξ

∣∣∣∣ ≤ C ∫∫
R3×R3

w2
` (t, ξ)

1 + |ξ|

|v(ξ)|2 +
∑
|β′|≤|β|

|∂β′u(ξ)|2
 dξdξ∗.

We now split the integration domain into |ξ| ≥ R(1 + t)θ and |ξ| ≤ R(1 + t)θ for an

arbitrary constant R > 0. For the case when |ξ| ≥ R(1 + t)θ, due to θ > 0, one has

|ξ| ≥ R, and hence

w2
` (t, ξ)

1 + |ξ|
χ|ξ|≥R(1+t)θ ≤

1

1 +R
w2
` (t, ξ),

while if |ξ| ≤ R(1 + t)θ one has

w2
` (t, ξ)

1 + |ξ|
χ|ξ|≤R(1+t)θ =

〈ξ〉`e
2λ|ξ|

(1+t)θ

1 + |ξ|
χ|ξ|≤R(1+t)θ ≤ C〈ξ〉`−1e2λR.

Then, (2.9) follows by applying the above two estimates into (2.10). This completes

the proof of Lemma 2.2. �

For the weighted estimates on the nonlinear term Γ(f, g), we have

Lemma 2.3. Let ` ≥ 0, and let β ≥ 0 be a multi-index.

(2.11)

∣∣∣∣∫
R3

w2
` (t, ξ)h(ξ)∂βΓ(f, g) dξ

∣∣∣∣
≤ C

∑
β1+β2≤β

{[∫
R3

ν(ξ)w2
` (t, ξ)|∂β1

f(ξ)|2dξ
] 1

2
[∫

R3

w2
0(t, ξ)|∂β2

g(ξ)|2dξ
] 1

2

+

[∫
R3

ν(ξ)w2
` (t, ξ)|∂β2g(ξ)|2dξ

] 1
2
[∫

R3

w2
0(t, ξ)|∂β1f(ξ)|2dξ

] 1
2

}

×
[∫

R3

ν(ξ)w2
` (t, ξ)|h(ξ)|2dξ

] 1
2

.
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Proof. One can write Γ(f, g)(ξ) as∫∫
R3×S2

|ξ − ξ∗|γq0(θ)M1/2(ξ∗)f(ξ′∗)g(ξ′) dωdξ∗

−
∫∫

R3×S2

|ξ − ξ∗|γq0(θ)M1/2(ξ∗)f(ξ∗)g(ξ) dωdξ∗

=

∫∫
R3×S2

|z|γq0(θ)M1/2(ξ + z)f(ξ + z⊥)g(ξ + z‖) dωdz

−
∫∫

R3×S2

|z|γq0(θ)M1/2(ξ + z)f(ξ + z)g(ξ) dωdz,

where as before, for given ω ∈ S2, z‖ = z · ωω and z⊥ = z − z‖. Then, ∂βΓ(f, g)(ξ)

equals

∑
|β0|+|β1|+|β2|≤|β|

∫∫
R3×S2

|z|γq0(θ)∂β0M
1/2(ξ + z)∂β1f(ξ + z⊥)∂β2g(ξ + z‖) dωdz

−
∑

|β0|+|β1|+|β2|≤|β|

∫∫
R3×S2

|z|γq0(θ)∂β0
M1/2(ξ + z)∂β1

f(ξ + z)∂β2
g(ξ) dωdz.

Using ∂β0M
1/2(ξ + z) ≤ CMq′/2(ξ + z) for 0 < q′ < 1, it follows that

(2.12)

∣∣∣∣∫
R3

w2
` (t, ξ)h(ξ)∂βΓ(f, g) dξ

∣∣∣∣ ≤ C ∑
|β1|+|β2|≤|β|

(I1,β1,β2 + I2,β1,β2)

with I1,β1,β2 and I2,β1,β2 , respectively, denoting∫∫∫
R3×R3×S2

|ξ − ξ∗|γq0(θ)Mq′/2(ξ∗)|∂β1f(ξ′∗)| · |∂β2g(ξ′)|w2
` (t, ξ)|h(ξ)| dωdξdξ∗

and∫∫∫
R3×R3×S2

|ξ − ξ∗|γq0(θ)Mq′/2(ξ∗)|∂β1
f(ξ∗)| · |∂β2

g(ξ)|w2
` (t, ξ)|h(ξ)| dωdξdξ∗.

For each (β1, β2) with |β1|+ |β2| ≤ |β|, from Hölder’s inequality, I1,β1,β2 is bounded

by

{∫∫∫
R3×R3×S2

w2
` (t, ξ)|ξ − ξ∗|γq0(θ)Mq′/2(ξ∗)|∂β1

f(ξ′∗)|2|∂β2
g(ξ′)|2 dωdξdξ∗

} 1
2

×
{∫∫∫

R3×R3×S2

w2
` (t, ξ)|ξ − ξ∗|γq0(θ)Mq′/2(ξ∗)|h(ξ)|2 dωdξdξ∗

} 1
2

.

Here, noticing∫∫
R3×S2

|ξ − ξ∗|γq0(θ)Mq′/2(ξ∗) dωdξ∗ ≤ C〈ξ〉γ ≤ Cν(ξ),
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one has{∫∫∫
R3×R3×S2

w2
` (t, ξ)|ξ − ξ∗|γq0(θ)Mq′/2(ξ∗)|h(ξ)|2 dωdξdξ∗

} 1
2

≤ C
{∫

R3

ν(ξ)w2
` (t, ξ)|h(ξ)|2dξ

} 1
2

,

and by using

w2
` (t, ξ)|ξ − ξ∗|γMq′/2(ξ∗) ≤ C〈ξ〉γ+`e

2λ|ξ|
(1+t)θ

≤ C{〈ξ′〉γ+` + 〈ξ′∗〉γ+`}e
2λ|ξ′|
(1+t)θ

+
2λ|ξ′∗|
(1+t)θ

≤ C{ν(ξ′)w2
` (t, ξ

′)w2
0(t, ξ′∗) + ν(ξ′∗)w

2
` (t, ξ

′
∗)w

2
0(t, ξ′)}

which is due to γ ≥ 0 and ` ≥ 0, one also has{∫∫∫
R3×R3×S2

w2
` (t, ξ)|ξ − ξ∗|γq0(θ)Mq′/2(ξ∗)|∂β1f(ξ′∗)|2|∂β2g(ξ′)|2 dωdξdξ∗

} 1
2

≤ C
{∫∫∫

R3×R3×S2

ν(ξ′)w2
` (t, ξ

′)w2
0(t, ξ′∗)q0(θ)|∂β1f(ξ′∗)|2|∂β2g(ξ′)|2 dωdξdξ∗

} 1
2

+C

{∫∫∫
R3×R3×S2

ν(ξ′∗)w
2
` (t, ξ

′
∗)w

2
0(t, ξ′)q0(θ)|∂β1

f(ξ′∗)|2|∂β2
g(ξ′)|2 dωdξdξ∗

} 1
2

,

which is further bounded by

C

{∫∫∫
R3×R3×S2

ν(ξ)w2
` (t, ξ)w

2
0(t, ξ∗)q0(θ)|∂β1f(ξ∗)|2|∂β2g(ξ)|2 dωdξdξ∗

} 1
2

+ C

{∫∫∫
R3×R3×S2

ν(ξ∗)w
2
` (t, ξ∗)w

2
0(t, ξ)q0(θ)|∂β1

f(ξ∗)|2|∂β2
g(ξ)|2 dωdξdξ∗

} 1
2

≤ C

{[∫
R3

ν(ξ)w2
` (t, ξ)|∂β2

g(ξ)|2dξ
] 1

2
[∫

R3

w2
0(t, ξ)|∂β1

f(ξ)|2dξ
] 1

2

+

[∫
R3

ν(ξ)w2
` (t, ξ)|∂β1

f(ξ)|2dξ
] 1

2
[∫

R3

w2
0(t, ξ)|∂β2

g(ξ)|2dξ
] 1

2

}
.

Here, we made change of variables (ξ, ξ∗)→ (ξ′, ξ′∗) with the unit Jacobian. There-

fore, by collecting the above estimates on I1,β1,β2
,
∑
|β1|+|β2|≤|β| I1,β1,β2

is bounded

by the right-hand term of (2.11). In the simpler way, it is straightforward to ver-

ify that
∑
|β1|+|β2|≤|β| I2,β1,β2

is also bounded by the right-hand term of (2.11).

Therefore, (2.11) follows from (2.12). This completes the proof of Lemma 2.3. �

3. Linearized time-decay

Consider the linearized system with a nonhomogeneous microscopic source:

∂tu+ ξ · ∇xu−∇xφ · ξM1/2 = Lu+ h, Ph = 0,(3.1)

φ(t, x) = − 1

4π|x|
∗x
∫
R3

M1/2u(t, x, ξ) dξ → 0 as |x| → ∞.(3.2)
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Given initial data u0, we formally define etBu0 to be the solution to the linearized

homogeneous system with h ≡ 0. For 1 ≤ q ≤ 2 and an integer m, set the index

σq,m of the time-decay rate in three dimensions by

σq,m =
3

2

(
1

q
− 1

2

)
+
m

2
.

Theorem 3.1. Assume
∫
R3 a0(x) dx = 0, where a0(x) = a(0, x) is defined by u0 in

terms of P0u = a(t, x)M1/2 at t = 0. Then,∥∥∂αx etBu0∥∥ +
∥∥∂αx∇x∆−1x P0e

tBu0
∥∥(3.3)

≤ C(1 + t)−σ1,|α|
(
‖u0‖Z1 + ‖∂αx u0‖+ ‖|x|a0‖L1

x

)
,

and in particular, when P0u0 ≡ 0,

(3.4)
∥∥∂αx etBu0∥∥+

∥∥∂αx∇x∆−1x P0e
tBu0

∥∥ ≤ C(1 + t)−σ1,|α| (‖u0‖Z1
+ ‖∂αx u0‖) .

Moreover, for h = {I−P}h,

(3.5)

∥∥∥∥∂αx ∫ t

0

e(t−s)Bh(s)ds

∥∥∥∥2 +

∥∥∥∥∂αx∇x∆−1x P0

∫ t

0

e(t−s)Bh(s)ds

∥∥∥∥2
≤ C

∫ t

0

(1 + t− s)−2σ1,|α|
(
‖ν−1/2h(s)‖2Z1

+ ‖ν−1/2∂αxh(s)‖2
)
ds.

Proof. Both (3.4) and (3.5) were proved in [8, Theorem 2 on page 303]. It suffices

to prove (3.3). As in [8], recall that by letting u = etBu0 be the solution to (3.1)-

(3.2) when h = 0, there is a time-frequency functional E(û(t, k)) ∼ ‖û(t, k)‖2
L2
ξ

+

|â(t, k)|2/|k|2 such that

d

dt
E(û(t, k)) +

c|k|2

1 + |k|2
E(û(t, k)) ≤ 0,

and hence E(û(t, k)) ≤ e
− c|k|2

1+|k|2
t
E(û(0, k)). Setting kα = kα1

1 kα2
2 kα3

3 and by notic-

ing ∥∥∂αx etBu0∥∥2 +
∥∥∂αx∇x∆−1x P0e

tBu0
∥∥2

=

∫
R3
k

|k2α| · ‖û(t, k)‖2L2
ξ
dk +

∫
R3
k

|k2α| · 1

|k|2
|â(t, k)|2dk

≤ C
∫
R3
k

|k2α| |E(û(t, k))| dk,

one has

(3.6)
∥∥∂αx etBu0∥∥2 +

∥∥∂αx∇x∆−1x P0e
tBu0

∥∥2
≤ C

∫
R3
k

|k2α|e−
c|k|2

1+|k|2
t‖û0(k)‖2L2

ξ
dk + C

∫
R3
k

|k2α|
|k|2

e
− c|k|2

1+|k|2
t|â0(k)|2dk.

To prove (3.3), it now suffices to estimate the second term in the right-hand of

(3.6) over the low frequency domain |k| ≤ 1, cf. [18]. In fact, due to the assumption
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R3 a0(x) dx = 0, i.e. â0(0) = 0, one has

|â0(k)| = |â0(k)− â0(0)| ≤
∫
R3

|k · x| |a0(x)| dx ≤ |k|
∫
R3

|x| |a0(x)| dx.

Then,∫
|k|≤1

|k2α|
|k|2

e
− c|k|2

1+|k|2
t|â0(k)|2dk ≤

∫
|k|≤1

|k2α|e− c2 |k|
2tdk ‖|x|a0‖2L1

x

≤ C(1 + t)−2σ1,|α|‖|x|a0‖2L1
x
.

This completes the proof of (3.3) and hence Theorem 3.1. �

4. A priori estimates

This section is devoted to deducing certain a priori estimates on the solutions

to the VPB system. For this purpose, it is supposed that the Cauchy problem

(1.4)-(1.6) of the VPB system admits a smooth solution u(t, x, ξ) over 0 ≤ t < T

for 0 < T ≤ ∞. To make the presentation easy to read, we divide this section into

four subsections. The first one is on the macro dissipation of the VPB system.

4.1. Macro dissipation. As in [8], by introducing

Θij(u) =

∫
R3

(ξiξj − 1)M1/2u dξ, Λi(u) =
1

10

∫
R3

(|ξ|2 − 5)ξiM
1/2u dξ,

one can derive from (1.4)-(1.5) a fluid-type system of equations

∂ta+∇x · b = 0,

∂tb+∇x(a+ 2c) +∇x ·Θ({I−P}u)−∇xφ = ∇xφa,

∂tc+
1

3
∇x · b+

5

3
∇x · Λ({I−P}u) =

1

3
∇xφ · b,

∆xφ = a,

and

∂tΘij({I−P}u) + ∂ibj + ∂jbi −
2

3
δij∇x · b−

10

3
δij∇x · Λ({I−P}u)

= Θij(r + g)− 2

3
δij∇xφ · b,

∂tΛi({I−P}u) + ∂ic = Λi(r + g)

with

r = −ξ · ∇x{I−P}u+ Lu, g =
1

2
ξ · ∇xφu−∇xφ · ∇ξu+ Γ(u, u).

Here, r is a linear term only related to the micro component {I − P}u and g is a

quadratic nonlinear term.

Our main result in this subsection can be stated as in the following

Lemma 4.1. There is a temporal interactive functional E intN (t) such that

(4.1) |E intN (t)| ≤ C

‖a‖2 +
∑

|α|≤N−1

(
‖∂αx {I−P}u(t)‖2 + ‖∂αx∇x(a, b, c)‖2

)
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and

(4.2)
d

dt
E intN (t) + κ

‖a‖2 +
∑

|α|≤N−1

‖∂αx∇x(a, b, c)‖2


≤ C
∑
|α|≤N

‖∂αx {I−P}u‖2 + C
{
‖u‖2L2

ξ(H
N
x ) + ‖∇xφ‖2HN

}

×

 ∑
|α|≤N

‖∂αx {I−P}u‖2 +
∑

1≤|α|≤N

‖∂αx (a, b, c)‖2


hold for any 0 ≤ t < T .

Proof. Basing on the analysis of the above macro fluid-type system, the desired

estimates follow by the repeating the arguments employed in the proof of [8, The-

orem 5.2] for the hard-sphere case and hence details are omitted. Here, we only

point out the representation of E intN (t) as

E intN (t) =
∑

|α|≤N−1

∫
R3

∇x∂αc · Λ(∂α{I−P}u) dx

+
∑

|α|≤N−1

3∑
ij=1

∫
R3

(
∂i∂

αbj + ∂j∂
αbi −

2

3
δij∇x · ∂αb

)
Θij(∂

α{I−P}u) dx

− κ
∑

|α|≤N−1

∫
R3

∂αa∂α∇x · b dx,

for a constant κ > 0 small enough. Here, for simplicity, we used ∂j to denote ∂xj
for each j = 1, 2, 3. �

4.2. Non-weighted energy estimates. Set

EN (t) ∼
∑

|α|+|β|≤N

∥∥∂αβ u(t)
∥∥2 + ‖∇xφ(t)‖2HN ,(4.3)

DN (t) =
∑

|α|+|β|≤N

∥∥∥ν1/2∂αβ {I−P}u(t)
∥∥∥2(4.4)

+
∑

|α|≤N−1

‖∂α∇x(a, b, c)(t)‖2 + ‖a(t)‖2,

this subsection is concerned with the non-weighted energy estimates on the solutions

of the VPB system based on the following a priori assumption (A1): There is δ > 0

small enough such that

(4.5) sup
0≤t<T

‖∇xφ‖+ (1 + t)1+θ
∑

1≤|α|≤N

‖∂α∇xφ(t)‖

 ≤ δ,
where θ > 0 is a positive constant to be determined later.
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For later use, let us write down the time evolution of {I−P}u:

∂t{I−P}u+ ξ · ∇x{I−P}u+∇xφ · ∇ξ{I−P}u(4.6)

−1

2
ξ · ∇xφ{I−P}u+ ν(ξ){I−P}u

= K{I−P}u+ Γ(u, u) + P{ξ · ∇xu+∇xφ · ∇ξu−
1

2
ξ · ∇xφu}

−{ξ · ∇x +∇xφ · ∇ξ −
1

2
ξ · ∇xφ}Pu.

Our main results in this subsection is

Lemma 4.2. Under the a priori assumption (A1), there is EN (t) satisfying (4.3)

such that

(4.7)
d

dt
EN (t) + κDN (t) ≤ C

{
EN (t)1/2 + EN (t)

}
DN (t)

+
Cδ

(1 + t)1+θ

∑
|α|+|β|≤N

∫∫
R3×R3

|ξ| · |∂αβ {I−P}u|2dxdξ

holds for any 0 ≤ t < T , where DN (t) is given by (4.4).

Proof. We proceed along the same line as in [9, Lemmas 4.4, 4.5 and 4.6]. The

main difference now lies in the way to deal with the nonlinear term 1
2ξ · ∇xφu. For

simplicity we shall only give the detailed estimates on that term. First of all, after

multiplying (1.4) by u and integrating over R3 × R3, one has zero-order estimate:

(4.8)
1

2

d

dt

{
‖u‖2 + ‖∇xφ‖2 −

∫
R3

|b|2(a+ 2c) dx

}
+ κ

∫∫
R3×R3

ν(ξ)|{I−P}u|2dxdξ

≤ C‖u‖L2
ξ(H

2
x)

{
‖∇x(a, b, c)‖2 + ‖ν1/2{I−P}u‖2

}
+ C {‖(a, b, c,∇xφ)‖H1 + ‖∇xφ‖ · ‖∇xb‖}

×
{
‖∇x(a, b, c)‖2 + ‖{I−P}u‖2L2

ξ(H
1
x)

}
+

Cδ

(1 + t)1+θ

∫∫
R3×R3

|ξ| · |{I−P}u|2dxdξ.

In fact, we need only to consider

1

2

∫∫
R3×R3

ξ · ∇xφu2dxdξ =
1

2

∫∫
R3×R3

ξ · ∇xφ|Pu|2dxdξ

+

∫∫
R3×R3

ξ · ∇xφPu{I−P}u dxdξ +
1

2

∫∫
R3×R3

ξ · ∇xφ|{I−P}u|2dxdξ,

where the first two terms on the right-hand side can be estimated as in [9, Lemma

4.4], and for the third term, by using the inequality ‖∇xφ‖L∞x ≤ C‖∇2
xφ‖H1

x
and
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the a priori assumption (A1), we have

1

2

∫∫
R3×R3

ξ · ∇xφ|{I−P}u|2dxdξ

≤ Cδ

(1 + t)1+θ

∫∫
R3×R3

|ξ| · |{I−P}u|2dxdξ.

This proves (4.8).

Next, by applying ∂αx with 1 ≤ |α| ≤ N to (1.4), multiplying it by ∂αx u, inte-

grating over R3 × R3 and taking summation over 1 ≤ |α| ≤ N , one has the pure

space-derivative estimate:

(4.9)
1

2

d

dt

∑
1≤|α|≤N

{
‖∂αx u‖2 + ‖∂αx∇xφ‖2

}
+ κ

∑
1≤|α|≤N

∫∫
R3×R3

ν(ξ)|∂αx {I−P}u|2dxdξ

≤ C
{
‖u‖L2

ξ(H
N
x ) + ‖∇xφ‖HN

} ∑
1≤|α|≤N

{∥∥∥ν1/2∂αx {I−P}u
∥∥∥2 + ‖∂αx (a, b, c)‖2

}

+ C‖∇2
xφ‖HN−1

 ∑
|α|≤N−1

‖∂αx∇ξ{I−P}u‖

 ∑
1≤|α|≤N

‖∂αx u‖

+
Cδ

(1 + t)1+θ

∑
1≤|α|≤N

∫∫
R3×R3

|ξ| · |∂αx {I−P}u|2dxdξ.

Again, let us only consider the estimate on

∫∫
R3×R3

∂αx

(
1

2
ξ · ∇xφu

)
∂αx u dxdξ

=
∑
β≤α

Cα,β

∫∫
R3×R3

1

2
ξ · ∂α−βx ∇xφ∂βxu∂αx u dxdξ.

By writing further u = Pu+ {I−P}u, one has the estimate on the trouble term

∑
β≤α

Cα,β

∫∫
R3×R3

1

2
ξ · ∂α−βx ∇xφ∂βx{I−P}u∂αx {I−P}u dxdξ

≤ C
∫
R3

|ξ| · ‖∇2
xφ‖HN−1

x

 ∑
1≤|β|≤N

‖∂βx{I−P}u‖L2
x

 ‖∂αx {I−P}u‖L2
x
dξ

≤ Cδ

(1 + t)1+θ

∑
1≤|α|≤N

∫∫
R3×R3

|ξ| · |∂αx {I−P}u|2dxdξ

due to the a priori assumption (A1). This proved (4.9).
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For the mixed space-velocity derivative estimate, one has

(4.10)
1

2

d

dt

N∑
m=1

Cm
∑
|β|=m

|α|+|β|≤N

‖∂αβ {I−P}u‖2

+ κ
∑
|β|≥1

|α|+|β|≤N

∫∫
R3×R3

ν(ξ)|∂αβ {I−P}u|2dxdξ

≤ C

 ∑
|α|≤N

‖∂αx {I−P}u‖2 +
∑

1≤|α|≤N

‖∂αx (a, b, c)‖2
+ C

{
‖u‖HNx,ξ + ‖∇xφ‖HN

}

×

 ∑
|α|+|β|≤N

∥∥∥ν1/2∂αβ {I−P}u
∥∥∥2 +

∑
1≤|α|≤N

‖∂αx (a, b, c)‖2


+
Cδ

(1 + t)1+θ

∑
|β|≥1

|α|+|β|≤N

∫∫
R3×R3

|ξ| · |∂αβ {I−P}u|2dxdξ,

where Cm > 0 (1 ≤ m ≤ N) are properly chosen constants. In fact, it follows from

applying ∂αβ with |β| = m and |α| + |β| ≤ N to the equation (4.6) of {I − P}u,

multiplying it by ∂αβ {I − P}u, integrating over R3 × R3, taking summation over

{|β| = m, |α| + |β| ≤ N} for each given 1 ≤ m ≤ N and then taking the proper

linear combination of those N−1 estimates with properly chosen constants Cm > 0

(1 ≤ m ≤ N). Let us only consider the estimate on

∫∫
R3×R3

∂αβ

(
1

2
ξ · ∇xφ{I−P}u

)
∂αβ {I−P}u dxdξ

=
∑

α′≤α,β′≤β

Cαα′C
β
β′

∫∫
R3×R3

1

2
∂β−β′ξ · ∂α−α

′
∇xφ∂α

′

β′ {I−P}u∂αβ {I−P}u dxdξ.

From the Sobolev and Hölder inequalities, the term on the right-hand of the above

identity is bounded by

 ∑
α′≤α,β′<β

+
∑

α′≤α,β′=β

Cαα′C
β
β′

∫∫
R3×R3

· · ·

≤ C‖∇2
xφ‖HN−1

∑
|β|≤m

|α|+|β|≤N

‖∂αβ {I−P}u‖2

+ C

∫
R3

|ξ| · ‖∇2
xφ‖HN−1

∑
|β|=m

|α|+|β|≤N

∥∥∂αβ {I−P}u
∥∥2
L2
x

dξ,
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which by the a priori assumption (A1), is further bounded by

C‖∇2
xφ‖HN−1

∑
|β|≤m

|α|+|β|≤N

‖∂αβ {I−P}u‖2

+
Cδ

(1 + t)1+θ

∑
|β|=m

|α|+|β|≤N

∫∫
R3

|ξ| · |∂αβ {I−P}u|2 dxdξ.

This proved (4.10).

Finally, we take the linear combination of the above four estimates (4.8), (4.9),

(4.10) and (4.2) as
{

[(4.8)+(4.9)]×M1+(4.2)
}
× M2+(4.10) for constants M1 >

0,M2 > 0 large enough. Recall (4.1), (4.7) follows for a well-defined energy func-

tional EN (t) satisfying (4.3) and the energy dissipation rate DN (t) given by (4.4).

This completes the proof of Lemma 4.2. �

4.3. Weighted energy estimates. Recall (1.7) for the definition of the mixed

time-velocity weight function w`(t, ξ) and set

EN,`(t) ∼
∑

|α|+|β|≤N

‖w`(t, ξ)∂αβ u(t)‖2 + ‖∇xφ(t)‖2HN ,(4.11)

DN,`(t) =
∑

|α|+|β|≤N

∥∥∥ν1/2w`(t, ξ)∂αβ {I−P}u(t)
∥∥∥2(4.12)

+
∑

|α|≤N−1

‖∂α∇x(a, b, c)(t)‖2 + ‖a(t)‖2,

we have

Lemma 4.3. Let ` ≥ 0. Under the a priori assumption (A1), there is EN,`(t)
satisfying (4.11) such that

d

dt
EN,`(t) + κDN,`(t) ≤ C{EN,`(t)1/2 + EN,`(t)}DN,`(t)(4.13)

for any 0 ≤ t < T , where DN,`(t) is given by (4.12).

Proof. For any given ` ≥ 0, to construct EN,`(t), we perform the weighted energy

estimates by the following three steps. To the end, 〈·, ·〉 is used to denote the inner

product over L2
x,ξ for brevity.

Step 1. Weighted estimate on zero-order of {I−P}u:

(4.14)
1

2

d

dt
‖w`(t, ξ){I−P}u(t)‖2 + κ

∫∫
R3×R3

ν(ξ)w2
` (t, ξ)|{I−P}u|2dxdξ

+
κ

(1 + t)1+θ

∫∫
R3×R3

|ξ|w2
` (t, ξ)|{I−P}u|2dxdξ

≤ C
{
‖〈ξ〉

`−1
2 {I−P}u‖2 + ‖∇xu‖2

}
+ CEN,`(t)1/2DN,`(t).
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In fact, by multiplying (4.6) by w2
` (t, ξ){I−P}u and taking integration over R3×R3,

one has

1

2

d

dt
‖w`(t, ξ){I−P}u‖2 +

〈
ν(ξ), w2

` (t, ξ)|{I−P}u|2
〉

(4.15)

+

〈
−1

2

d

dt
w2
` (t, ξ), |{I−P}u|2

〉
+

〈
−1

2
ξ · ∇xφ,w2

` (t, ξ)|{I−P}u|2
〉

= 〈K{I−P}u,w2
` (t, ξ){I−P}u〉+ 〈Γ(u, u), w2

` (t, ξ){I−P}u〉
+〈−∇xφ · ∇ξ{I−P}u,w2

` (t, ξ){I−P}u〉

+

〈
P{ξ · ∇xu+∇xφ · ∇ξu−

1

2
ξ · ∇xφu}, w2

` (t, ξ){I−P}u
〉

+

〈
−{ξ · ∇x +∇xφ · ∇ξ −

1

2
ξ · ∇xφ}Pu,w2

` (t, ξ){I−P}u
〉
.

The last two terms on the left-hand side of (4.15) are estimated as follows. Noticing

−1

2

d

dt
w2
` (t, ξ) =

λθ|ξ|
(1 + t)1+θ

w2
` (t, ξ),

then it holds from the a priori assumption (A1) that

(4.16)

〈
−1

2

d

dt
w2
` (t, ξ), |{I−P}u|2

〉
+

〈
−1

2
ξ · ∇xφ,w2

` (t, ξ)|{I−P}u|2
〉

≥
{

λθ

(1 + t)1+θ
− C‖∇xφ‖L∞x

}
〈|ξ|, w2

` (t, ξ)|{I−P}u|2〉

≥ λθ − Cδ
(1 + t)1+θ

〈|ξ|, w2
` (t, ξ)|{I−P}u|2〉

≥ λθ

2(1 + t)1+θ
〈|ξ|, w2

` (t, ξ)|{I−P}u|2〉,

where smallness of δ > 0 in (A1) such that Cδ ≤ 1
2λθ was used.

Now we turn to deal with the corresponding terms on the right-hand side of

(4.15). First, from Lemma 2.2, we have

〈K{I−P}u,w2
` (t, ξ){I−P}u〉

≤ η‖w`(t, ξ){I−P}u‖2 + Cη‖〈ξ〉
`−1
2 {I−P}u‖2

for an arbitrary constant η > 0, and from Lemma 2.3,

〈Γ(u, u), w2
` (t, ξ){I−P}u〉

= 〈Γ(Pu,Pu) + Γ(Pu, {I−P}u) + Γ({I−P}u,Pu)

+Γ({I−P}u, {I−P}u), w2
` (t, ξ){I−P}u〉 ≤ CEN,`(t)1/2DN,`(t),

where the Sobolev inequality ‖f‖L∞x ≤ C‖∇xf‖H1
x

and the inequality w0(t, ξ) ≤
w`(t, ξ) due to ` ≥ 0 were used. Notice that

∇ξw2
` (t, ξ) = `〈ξ〉`−1 ξ

|ξ|
e

2λ|ξ|
(1+t)θ + 〈ξ〉`e

2λ|ξ|
(1+t)θ

2λ

(1 + t)θ
ξ

|ξ|
,
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which implies |∇ξw2
` (t, ξ)| ≤ (2λ+`)w2

` (t, ξ), and hence, by the a priori assumption

(A1),〈
−∇xφ · ∇ξ{I−P}u,w2

` (t, ξ){I−P}u
〉

=

〈
∇xφ ·

1

2
∇ξw2

` (t, ξ), |{I−P}u|2
〉
≤ 2λ+ `

2
‖∇xφ‖L∞x ‖w`(t, ξ){I−P}u‖2

≤ Cδ‖w`(t, ξ){I−P}u‖2.

Here and hereafter, we skip the dependence of C on constants λ and `. Finally, it

holds that 〈
P{ξ · ∇xu+∇xφ · ∇ξu−

1

2
ξ · ∇xφu}, w2

` (t, ξ){I−P}u
〉

≤ η‖{I−P}u‖2 +
C

η
‖∇xu‖2

+C‖∇xφ‖H2{‖{I−P}u‖2 + ‖∇x(a, b, c)‖2}

and 〈
−{ξ · ∇x +∇xφ · ∇ξ −

1

2
ξ · ∇xφ}Pu,w2

` (t, ξ){I−P}u
〉

≤ η‖{I−P}u‖2 +
C

η
‖∇x(a, b, c)‖2

+C‖∇xφ‖H2{‖{I−P}u‖2 + ‖∇x(a, b, c)‖2}.

Here η > 0 is an arbitrary constant. Therefore, by choosing a small constant

η > 0 and also using smallness of δ > 0, (4.14) follows from collecting all the above

estimates into (4.15).

Step 2. Weighted estimate on pure space-derivative of u:

(4.17)
1

2

d

dt

∑
1≤|α|≤N

‖w`(t, ξ)∂αx u(t)‖2

+ κ
∑

1≤|α|≤N

∫∫
R3×R3

ν(ξ)w2
` (t, ξ)|∂αx {I−P}u|2dxdξ

+
κ

(1 + t)1+θ

∑
1≤|α|≤N

∫∫
R3×R3

|ξ|w2
` (t, ξ)|∂αx u|2dxdξ

≤ C
∑

1≤|α|≤N

{∥∥∥〈ξ〉 12 max{`−1,0}∂αx {I−P}u
∥∥∥2 + ‖∂αx (a, b, c)‖2

}
+ ‖a‖2

+ Cδ
∑

1≤|α|≤N−1

‖w`(t, ξ)∇ξ∂αx {I−P}u‖2 + CEN,`(t)1/2DN,`(t).

In fact, take 1 ≤ |α| ≤ N , and by applying ∂αx to (1.4) with

Lu = L{I−P}u = −ν{I−P}u+K{I−P}u,
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multiplying by w2
` (t, ξ)∂

α
x u and integrating over R3 × R3, one has

1

2

d

dt
‖w`(t, ξ)∂αx u‖2 + 〈ν(ξ)∂αx {I−P}u,w2

` (t, ξ)∂
α
x u〉(4.18)

+

〈
−1

2

d

dt
w2
` (t, ξ), |∂αx u|2

〉
+

〈
−∂αx (

1

2
ξ · ∇xφu), w2

` (t, ξ)∂
α
x u

〉
=
〈
K∂αx {I−P}u,w2

` (t, ξ)∂
α
x u
〉

+
〈
∂αxΓ(u, u), w2

` (t, ξ)∂
α
x u
〉

+
〈
∂αx∇xφ · ξM1/2, w2

` (t, ξ)∂
α
x u
〉

+
〈
−∂αx (∇xφ · ∇ξu), w2

` (t, ξ)∂
α
x u
〉
.

The left-hand terms of (4.18) are estimated as〈
ν(ξ)∂αx {I−P}u,w2

` (t, ξ)∂
α
x u
〉

=
〈
ν(ξ), w2

` (t, ξ)|∂αx {I−P}u|2
〉

+
〈
ν(ξ)∂αx {I−P}u,w2

` (t, ξ)∂
α
xPu

〉
≥
〈
ν(ξ), w2

` (t, ξ)|∂αx {I−P}u|2
〉
− C{‖∂αx {I−P}u‖2 + ‖∂αx (a, b, c)‖2},

and ∑
1≤|α|≤N

{〈
−1

2

d

dt
w2
` (t, ξ), |∂αx u|2

〉
+

〈
−∂αx (

1

2
ξ · ∇xφu), w2

` (t, ξ)∂
α
x u

〉}
(4.19)

=
λθ

(1 + t)1+θ

∑
1≤|α|≤N

〈|ξ|, w2
` (t, ξ)|∂αx u|2〉

−
∑

1≤|α|≤N

∑
|α′|≤|α|

〈
−1

2
ξ · ∂α−α

′

x ∇xφ∂α
′

x u,w
2
` (t, ξ)∂

α
x u

〉

≥
{

λθ

(1 + t)1+θ
− C‖∇2

xφ‖HN−1

} ∑
1≤|α|≤N

〈
|ξ|, w2

` (t, ξ)|∂αx u|2
〉

≥ λθ

2(1 + t)1+θ

∑
1≤|α|≤N

〈
|ξ|, w2

` (t, ξ)|∂αx u|2
〉
,

where as in Step 1, the a priori assumption (A1) was used.

The right-hand terms of (4.18) are estimated as follows. From Lemma 2.2 and

Lemma 2.3, respectively, one has

〈K∂αx {I−P}u,w2
` (t, ξ)∂

α
x u〉

= 〈K∂αx {I−P}u,w2
` (t, ξ)∂

α
x {I−P}u〉+ 〈K∂αx {I−P}u,w2

` (t, ξ)∂
α
xPu〉

≤ η‖w`(t, ξ)∂αx {I−P}u‖2 + Cη

∥∥∥〈ξ〉 `−1
2 ∂αx {I−P}u

∥∥∥2
+ C

{
‖∂αx {I−P}u‖2 + ‖∂αx (a, b, c)‖2

}
for an arbitrary constant η > 0, and

〈∂αxΓ(u, u), w2
` (t, ξ)∂

α
x u〉 =

∑
α1+α2=α

〈Γ(∂α1
x u, ∂α2

x u), w2
` (t, ξ)∂

α
x u〉

≤ CEN,`(t)1/2DN,`(t).
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Moreover, for the rest two terms, one has

〈∂αx∇xφ · ξM1/2, w2
` (t, ξ)∂

α
x u〉 ≤ η‖∂αx u‖2 + Cη‖∂αx∇xφ‖2

≤ Cη{‖∂αx {I−P}u‖2 + ‖∂αx (a, b, c)‖2}+ Cη
∑

|α′|=|α|−1

‖∂α
′

x a‖2

for any η > 0, and〈
−∂αx (∇xφ · ∇ξu), w2

` (t, ξ)∂
α
x u
〉

=

〈
∇xφ|∂αx u|2,

1

2
∇ξw2

` (t, ξ)

〉
+
∑
α′<α

Cαα′〈−∂α−α
′

x ∇xφ · ∇ξ∂α
′

x u,w
2
` (t, ξ)∂

α
x u〉

≤ 2λ+ γ

2
‖∇xφ‖L∞x ‖w`(t, ξ)∂

α
x u‖2

+ C‖∇2
xφ‖HN−1

‖w`(t, ξ)∂αx u‖2 +
∑

1≤|α|≤N−1

‖w`(t, ξ)∇ξ∂αx u‖2


≤ Cδ

‖w`(t, ξ)∂αx {I−P}u‖2 +
∑

1≤|α|≤N

‖∂αx (a, b, c)‖2


+ Cδ
∑

1≤|α|≤N−1

‖w`(t, ξ)∇ξ∂αx {I−P}u‖2.

Therefore, by choosing a small constant η > 0 and also using smallness of δ > 0,

(4.17) follows from plugging all the above estimates into (4.18) and then taking

summation over 1 ≤ |α| ≤ N .

Step 3. For later use, set

(4.20) D̃N,`(t) =
∑

|α|+|β|≤N

∥∥∥〈ξ〉 `2 ∂αβ {I−P}u(t)
∥∥∥2

+
∑

|α|≤N−1

‖∂α∇x(a, b, c)(t)‖2 + ‖a(t)‖2,

one has the weighted estimate on mixed space-velocity-derivative of {I−P}u:

(4.21)
1

2

d

dt

N∑
m=1

Cm
∑
|β|=m

|α|+|β|≤N

‖w`(t, ξ)∂αβ {I−P}u‖2

+ κ
∑
|β|≥1

|α|+|β|≤N

∫∫
R3×R3

ν(ξ)w2
` (t, ξ)|∂αβ {I−P}u|2dxdξ

+
κ

(1 + t)1+θ

∑
|β|≥1

|α|+|β|≤N

∫∫
R3×R3

|ξ|w2
` (t, ξ)|∂αβ {I−P}u|2dxdξ

≤ CD̃N,max{`−1,0}(t) + C
∑
|α|≤N

‖w`(t, ξ)∂α{I−P}u‖2 + CEN,`(t)1/2DN,`(t).
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In fact, let 1 ≤ m ≤ N . By applying ∂αβ with |β| = m and |α| + |β| ≤ N to the

equation (4.6) of {I − P}u, multiplying it by w2
` (t, ξ)∂

α
β {I − P}u and integrating

over R3 × R3, one has

(4.22)
1

2

d

dt
‖w`(t, ξ)∂αβ {I−P}u‖2 + 〈ν(ξ), w2

` (t, ξ)|∂αβ {I−P}u|2〉

+

〈
−1

2

d

dt
w2
` (t, ξ), |∂αβ {I−P}u|2

〉
+

〈
∂αβ

(
−1

2
ξ · ∇xφ{I−P}u

)
, w2

` (t, ξ)∂
α
β {I−P}u

〉
= 〈∂αβK{I−P}u,w2

` (t, ξ)∂
α
β {I−P}u〉+ 〈∂αβΓ(u, u), w2

` (t, ξ)∂
α
β {I−P}u〉

+ 〈−∂αβ (∇xφ · ∇ξ{I−P}u), w2
` (t, ξ)∂

α
β {I−P}u〉

+ 〈−[[∂αβ , ξ · ∇x + ν(ξ)]]{I−P}u,w2
` (t, ξ)∂

α
β {I−P}u〉

+

〈
∂αβP

{
ξ · ∇xu+∇xφ · ∇ξu−

1

2
ξ · ∇xφu

}
, w2

` (t, ξ)∂
α
β {I−P}u

〉
+

〈
−∂αβ

{
ξ · ∇x +∇xφ · ∇ξ −

1

2
ξ · ∇xφ

}
Pu,w2

` (t, ξ)∂
α
β {I−P}u

〉
,

where [[·, ·]] denotes the usual commutator. Similarly as in Step 2, by noticing the

identity

∂αβ

(
−1

2
ξ · ∇xφ{I−P}u

)
= −1

2

∑
α′≤α

Cαα′ξ · ∇x∂α−α
′

x φ∂α
′

β {I−P}u

− 1

2

∑
α′≤α

∑
β′<β

Cαα′C
β
β′∂β−β′ξ · ∇x∂

α−α′
x φ∂α

′

β′ {I−P}u

and using the a priori assumption (A1), the left-hand terms of (4.22) are estimated

as

(4.23)
∑
|β|=m

|α|+|β|≤N

{〈
−1

2

d

dt
w2
` (t, ξ), |∂αβ {I−P}u|2

〉

+

〈
∂αβ

(
−1

2
ξ · ∇xφ{I−P}u

)
, w2

` (t, ξ)∂
α
β {I−P}u

〉}
≥ λθ

2(1 + t)1+θ

∑
|β|=m

|α|+|β|≤N

〈|ξ|, w2
` (t, ξ)|∂αβ {I−P}u|2〉

− Cδ
∑
|β|≤m

|α|+|β|≤N

‖w`(t, ξ)∂αβ {I−P}u‖2.
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The right-hand terms of (4.22) are estimated as follows. Lemma 2.2 implies

〈∂αβK{I−P}u,w2
` (t, ξ)∂

α
β {I−P}u〉

= 〈∂βK∂α{I−P}u,w2
` (t, ξ)∂

α
β {I−P}u〉

≤ η
∫∫

R3×R3

w2
` (t, ξ)

|∂αβ {I−P}u|2 +
∑
|β′|≤|β|

|∂αβ′{I−P}u|2
 dxdξ

+ C|β|,`,η

∫∫
R3×R3

〈ξ〉`−1
|∂αβ {I−P}u|2 +

∑
|β′|≤|β|

|∂αβ′{I−P}u|2
 dxdξ

for any η > 0, and Lemma 2.3 together with Sobolev inequalities imply

〈∂αβΓ(u, u), w2
` (t, ξ)∂

α
β {I−P}u〉

=
∑

α1+α2=α

〈∂βΓ(∂α1u, ∂α2u), w2
` (t, ξ)∂

α
β {I−P}u〉

≤ CEN,`(t)1/2DN,`(t).

Moreover, as in Step 2,

〈−∂αβ (∇xφ · ∇ξ{I−P}u), w2
` (t, ξ)∂

α
β {I−P}u〉

=

〈
∇xφ|∂αβ {I−P}u|2, 1

2
∇ξw2

` (t, ξ)

〉
+
∑
α′<α

Cαα′〈−∂α−α
′

x ∇xφ · ∇ξ∂α
′

β {I−P}u,w2
` (t, ξ)∂

α
β {I−P}u〉

≤ 2λ+ `

2
‖∇xφ‖L∞x ‖w`(t, ξ)∂

α
β {I−P}u‖2

+ C‖∇2
xφ‖HN−1

∑
|β|≥1

|α|+|β|≤N

‖w`(t, ξ)∂αβ {I−P}u‖2

≤ Cδ
∑
|β|≥1

|α|+|β|≤N

‖w`(t, ξ)∂αβ {I−P}u‖2.

Finally, it is straightforward to obtain

〈−[[∂αβ , ξ · ∇x + ν(ξ)]]{I−P}u,w2
` (t, ξ)∂

α
β {I−P}u〉

≤ η‖w`(t, ξ)∂αβ {I−P}u‖2 + Cη
∑

|β|≤m−1
|α|+|β|≤N

‖w`(t, ξ)∂αβ {I−P}u‖2
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and〈
∂αβP

{
ξ · ∇xu+∇xφ · ∇ξu−

1

2
ξ · ∇xφu

}
, w2

` (t, ξ)∂
α
β {I−P}u

〉
+

〈
−∂αβ

{
ξ · ∇x +∇xφ · ∇ξ −

1

2
ξ · ∇xφ

}
Pu,w2

` (t, ξ)∂
α
β {I−P}u

〉
≤ η‖w`(t, ξ)∂αβ {I−P}u‖2 + Cη

{
‖∇x∂αx u‖2 + ‖∇x∂αx (a, b, c)‖2

}
+ C‖∇xφ‖HN−1

∑
1≤|α|≤N

{‖∂αx u‖2 + ‖∂αx (a, b, c)‖2}

≤ η‖w`(t, ξ)∂αβ {I−P}u‖2 + Cη
∑

1≤|α|≤N

{
‖∂αx {I−P}u‖2 + ‖∂αx (a, b, c)‖2

}
for any η > 0. Therefore, one can choose a small constant η > 0 and use smallness

of δ > 0 and (4.20) for the definition of D̃N,`(t), so that (4.21) follows by plugging

all the estimates above into (4.22), taking summation over {|β| = m, |α|+ |β| ≤ N}
for each given 1 ≤ m ≤ N and then taking the proper linear combination of those

N − 1 estimates with properly chosen constants Cm > 0 (1 ≤ m ≤ N).

We are now in a position to prove (4.13) by induction on ` ≥ 0. When 0 ≤ ` ≤ 1,

(4.13) with properly defined EN,`(t) follows from the linear combination

{[(4.14) + (4.17)]×M1 + (4.21)}+ (4.7)×M2

for properly chosen constants M2 � M1 � 1 large enough. In fact, in the linear

combination [(4.14) + (4.17)]×M1 + (4.21), one can first take M1 > 0 large enough

in order to absorb the right-hand second term of (4.21), and in the mean time the

right-hand third term of (4.17) is absorbed by the dissipation terms in (4.21) since

δ > 0 is small enough. In the further linear combination with (4.7), one can take

M2 > 0 large enough to absorb all the right-hand dissipation terms without velocity

weighted functions due to 0 ≤ ` ≤ 1, and meanwhile, again thanks to smallness of

δ > 0, the right-hand second term of (4.7) is also absorbed by the dissipation terms

obtained in the previous step. This proves (4.13) in the case 0 ≤ ` ≤ 1. Next,

assume that (4.13) is true for `− 1 with ` ≥ 1, i.e.

(4.24)
d

dt
EN,`−1(t) + κDN,`−1(t) ≤ C{EN,`−1(t)1/2 + EN,`−1(t)}DN,`−1(t).

Then, in the completely same way as before, (4.13) with properly defined EN,`(t)
follows from the linear combination

{[(4.14) + (4.17)]×M1 + (4.21)}+ (4.24)×M2

for properly chosen constants M2 � M1 � 1 large enough. Here, the fact that

D̃N,max{`−1,0}(t) ≤ CDN,`−1(t) with ` ≥ 1 was used. Hence, by induction on `,

(4.13) holds true for any given ` ≥ 0. This completes the proof of Lemma 4.3. �
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4.4. High-order energy estimates. Set

EhN,`(t) ∼
∑

|α|+|β|≤N

‖w`(t, ξ)∂αβ {I−P}u(t)‖2(4.25)

+‖∇2
xφ(t)‖2HN−1 +

∑
|α|≤N−1

‖∂α∇x(a, b, c)(t)‖2,

we now deduce the high-order energy estimates based on another a priori assump-

tion (A2): There is δ > 0 is small enough such that

(4.26) sup
0≤t<T

EN,`(t) ≤ δ.

Our main result in this subsection can be stated in the following

Lemma 4.4. Let ` ≥ 0. Under the a priori assumptions (A1) and (A2), there is

EhN,`(t) satisfying (4.25) such that

d

dt
EhN,`(t) + κDN,`(t) ≤ C‖∇x(a, b, c)‖2(4.27)

holds for any 0 ≤ t < T , where DN,`(t) is given by (4.12).

Proof. We proceed along the same line as in the proof of Lemma 4.3. First of all,

similar to that of Lemma 4.2, we claim that under the a priori assumption (A1),

there is EhN (t) with

(4.28) EhN (t) ∼ ‖{I−P}u(t)‖2

+
∑

1≤|α|≤N

{
‖∂αu(t)‖2 + ‖∂α∇xφ(t)|2

}
+

∑
|β|≥1

|α|+|β|≤N

‖∂αβ {I−P}u(t)‖2

such that

(4.29)
d

dt
EhN (t) + κDN (t) ≤ C‖∇x(a, b, c)‖2 + C

{
EN (t)1/2 + EN (t)

}
DN (t)

+
Cδ

(1 + t)1+θ

∑
|α|+|β|≤N

∫∫
R3×R3

|ξ| · |∂αβ {I−P}u|2dxdξ,

where DN (t) is given by (4.4). In fact, it suffices to replace (4.8) by the following

zero-order estimate

(4.30)
1

2

d

dt
‖{I−P}u(t)‖2 + κ

∫∫
R3×R3

ν(ξ)|{I−P}u|2 dxdξ

≤ C‖∇x(a, b, c)‖2 + C
{
EN (t)1/2 + EN (t)

}
DN (t)

+
Cδ

(1 + t)1+θ

∑
|α|+|β|≤N

∫∫
R3×R3

|ξ| · |∂αβ {I−P}u|2dxdξ.

Then, by exploiting the same argument used in the proof of Lemma 4.2, (4.29) with

a properly defined energy functional EhN (t) satisfying (4.28) follows from the proper
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linear combination of (4.30), (4.9), (4.10) and (4.2). Here, by (4.1), we used the

fact that

|E intN (t)| ≤ C

‖{I−P}u(t)‖2 +
∑

1≤|α|≤N

(
‖∂αx u(t)‖2 + ‖∂αx∇xφ(t)‖2

) .

To prove (4.30), by multiplying (4.6) by {I − P}u and integrating over R3 × R3,

one has

1

2

d

dt
‖{I−P}u(t)‖2 + 〈L{I−P}u, {I−P}u〉

= 〈Γ(u, u), {I−P}u〉+

〈
1

2
ξ · ∇xφ{I−P}u, {I−P}u

〉
+

〈
−
{
ξ · ∇x +∇xφ · ∇ξ −

1

2
ξ · ∇xφ

}
Pu, {I−P}u

〉
.

Here, the right-hand third term is bounded by

η‖{I−P}u‖2 + Cη
(
1 + ‖∇xφ‖2H1

)
‖∇x(a, b, c)‖2.

for η > 0 chosen properly small. Other terms can be estimated as in obtaining

(4.8). This hence proves (4.30).

Next, one can repeat the proof of (4.13) in Lemma 4.3 by replacing (4.7) by

(4.30) so that for any given ` ≥ 0, there is EhN,`(t) satisfying (4.25) such that

d

dt
EhN,`(t) + κDN,`(t) ≤ C‖∇x(a, b, c)‖2 + C{EN,`(t)1/2 + EN,`(t)}DN,`(t),

which further implies (4.27) by the assumption (A2) and smallness of δ > 0. This

completes the proof of Lemma 4.4. �

5. Global existence

Recall (4.11) and (4.25) and for t ≥ 0, define

(5.1) XN,`(t) = sup
0≤s≤t

(1 + s)
3
2 EN,`(s) + sup

0≤s≤t
(1 + s)

5
2 EhN,`(s).

Our main result in this section is

Lemma 5.1. Let N ≥ 4, and let ` ≥ 2, λ > 0 and θ > 0 in w`(t, ξ) given by (1.7).

Assume
∫
R3 a0(x) dx = 0. Then, under the a priori assumptions (A1) and (A2),

any smooth solution u(t, x, ξ) to the Cauchy problem (1.4)-(1.6) of the VPB system

over 0 ≤ t < T with 0 < T ≤ ∞ satisfies

(5.2) XN,`(t) ≤ C
{
EN,`(0) + ‖u0‖2Z1

+ ‖|x|a0‖2
}

+ CXN,`(t)
2

for 0 ≤ t < T and some positive constants independent of T .

Proof. Take N ≥ 4, ` ≥ 2, λ > 0 and θ > 0. Let (A1), (A2) hold with δ > 0 small

enough. It follows from Lemma 4.3 that

(5.3)
d

dt
EN,`(t) + κDN,`(t) ≤ 0.
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By comparing (4.11) with (4.12), there is κ > 0 such that

DN,`(t) + ‖(b, c,∇xφ)‖2 ≥ κEN,`(t).

Recall (2.2) for the definitions of P0 and P1. Applying the above inequality together

with the observation ‖(b, c,∇xφ)‖2 ≤ C(‖P1u(t)‖2 + ‖∇x∆−1x P0u(t)‖2) to (5.3),

one has

(5.4)
d

dt
EN,`(t) + κEN,`(t) ≤ C(‖P1u(t)‖2 + ‖∇x∆−1x P0u(t)‖2).

The right-hand terms of (5.4) are estimated as follows. Recall that the solution u

to the Cauchy problem (1.4)-(1.6) of the nonlinear VPB system can be written as

the mild form

(5.5) u(t) = etBu0 +

∫ t

0

e(t−s)Bg(s) ds

with g = 1
2ξ ·∇xφu−∇xφ ·∇ξu+ Γ(u, u). For later use, write g as g = g1 + g2 with

g1 = Γ(u, u) and g2 = 1
2ξ ·∇xφu−∇xφ ·∇ξu. Observe that Pg1 = 0 and P0g2 = 0.

Then, one can rewrite g as g = {I − P}g1 + {I − P}g2 + P1g2. With the help of

this representation for g, applying Theorem 3.1 to (5.5) gives

(5.6) ‖P1u(t)‖2 +
∥∥∇x∆−1x P0u(t)

∥∥2 ≤ C(1 + t)−
3
2

{
‖u0‖2L2∩Z1

+ ‖|x|a0‖2L1
x

}
+ C

2∑
j=1

∫ t

0

(1 + t− s)− 3
2

∥∥∥ν−1/2{I−P}gj(s)
∥∥∥2
L2∩Z1

ds

+ C

{∫ t

0

(1 + t− s)− 3
4 ‖P1g2(s)‖L2∩Z1

ds

}2

.

As in [8] or in [27, Lemma 2.6], it is straightforward to verify

(5.7)
∥∥∥ν−1/2{I−P}gj(t)

∥∥∥
L2∩Z1

+ ‖P1g2(t)‖L2∩Z1
≤ CEN,`(t),

where we notice N ≥ 4 and ` ≥ 2. By (5.1), one has

(5.8) EN,`(t) ≤ (1 + t)−3/2XN,`(t)

0 ≤ t < T . With this, it follows from (5.6) and (5.7) that

(5.9) ‖P1u(t)‖2 +
∥∥∇x∆−1x P0u(t)

∥∥2
≤ C(1 + t)−

3
2

{
‖u0‖2L2∩Z1

+ ‖|x|a0‖2L1
x

+XN,`(t)
2
}
.

Here, we used that XN,`(t) is nondecreasing in t. By the Growanll inequality, (5.4)

together with (5.9) yield

EN,`(t) ≤ C(1 + t)−
3
2

{
EN,`(0) + ‖u0‖2L2∩Z1

+ ‖|x|a0‖2L1
x

+XN,`(t)
2
}
,

which further implies

(5.10) sup
0≤s≤t

(1 + s)
3
2 EN,`(s) ≤ C

{
EN,`(0) + ‖u0‖2Z1

+ ‖|x|a0‖2L1
x

+XN,`(t)
2
}
.

This proves (5.2) corresponding to the right-hand first part of (5.1) for XN,`(t).
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To deduce an estimate on the second term on the right-hand side of (5.1), we

begin with (4.27). Notice EhN,`(t) ≤ CDN,`(t) by comparing (4.25) with (4.12),

where the identity ‖∇2
xφ‖ = ‖∆xφ‖ = ‖a‖ was used. Then, (4.27) implies

(5.11)
d

dt
EhN,`(t) + κEhN,`(t) ≤ C‖∇xPu‖2.

Similar to that of deducing (5.6) from Theorem 3.1, one has

(5.12) ‖∇xPu(t)‖2 ≤ C(1 + t)−
5
2

{
‖u0‖2Z1

+ ‖∇xu0‖2 + ‖|x|a0‖2L1
x

}
+ C

2∑
j=1

∫ t

0

(1 + t− s)− 5
2

{
‖ν−1/2{I−P}gj(s)‖2Z1

+‖ν−1/2∇x{I−P}gj(s)‖2
}
ds

+ C

{∫ t

0

(1 + t− s)− 5
4 (‖P1g2(s)‖Z1

+ ‖∇xP1g2(s)‖) ds
}2

.

Once again, it is straightforward to verify

(5.13)
∥∥∥ν−1/2{I−P}gj(t)

∥∥∥
Z1

+
∥∥∥ν−1/2∇x{I−P}gj(t)

∥∥∥
+ ‖P1g2(t)‖Z1

+ ‖∇xP1g2(t)‖ ≤ CEN,`(t).

Similarly as before, by using (5.8) and∫ t

0

(1 + t− s)− 5
2 (1 + s)−3 ds ≤ C(1 + t)−

5
2 ,∫ t

0

(1 + t− s)− 5
4 (1 + s)−

3
2 ds ≤ C(1 + t)−

5
4 ,

it follows from (5.12) and (5.13) that

‖∇xPu(t)‖2 ≤ C(1 + t)−
5
2

{
‖u0‖2L2

ξ(H
1
x)∩Z1

+ ‖|x|a0‖2L1
x

+XN,`(t)
2
}
,

which together with (5.11) give

(5.14) sup
0≤s≤t

(1 + s)
5
2 EhN,`(s) ≤ C

{
EN,`(0) + ‖u0‖2Z1

+ ‖|x|a0‖2L1
x

+XN,`(t)
2
}
.

Therefore, (5.2) holds by combining (5.10) and (5.14). This completes the proof of

Lemma 5.1. �

Proof of Theorem 1.1: We first fix N ≥ 4, ` ≥ 2, λ > 0 and 0 ≤ θ ≤ 1/4.

The local existence and uniqueness of the solution u(t, x, ξ) to the Cauchy problem

(1.4)-(1.6) can be proved in terms of the energy functional EN,`(t) given by (4.11),

and the details are omitted for simplicity; see [16]. Then, one only has to obtain

the uniform-in-time estimates over 0 ≤ t < T with 0 < T ≤ ∞. In fact, by the

continuity argument, Lemma 5.1 implies that under the a priori assumptions (A1)

and (A2),

(5.15) XN,`(t) ≤ C
{
EN,`(0) + ‖u0‖2Z1

+ ‖|x|a0‖2
}
, 0 ≤ t < T,
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provided that EN,`(0) +‖u0‖2Z1
+‖|x|a0‖2 is sufficiently small. The rest is to justify

that the a priori assumptions (A1) and (A2) can be closed; see (4.5) and (4.26).

Recall (1.9) and notice

EN,`(0)1/2 + ‖u0‖Z1
+ ‖|x|a0‖

≤ C

 ∑
|α|+|β|≤N

‖w`(0, ξ)∂αβ u0‖+ ‖(1 + |x|)u0‖Z1

 .

Here, in the above inequality, we used ‖∇xφ0‖ ≤ C‖a0‖2/3L1
x
‖a0‖1/3L2

x
and

‖∇2
xφ0‖HN−1 = ‖∇2

x∆−1x a0‖HN−1 ≤ C‖a0‖HN−1 .

Then, since 0 < θ ≤ 1/4, (A1) and (A2) directly follow from (5.15) together

with (5.1), (4.11) and (4.25) as well as smallness of EN,`(0) + ‖u0‖2Z1
+ ‖|x|a0‖2.

Therefore, the uniform-in-time estimate (5.15) holds true for any 0 ≤ t < T as long

as ∑
|α|+|β|≤N

‖w`(0, ξ)∂αβ u0‖+ ‖(1 + |x|)u0‖Z1

is sufficiently small. Then, the global existence follows, and (1.10) holds from (5.15)

by comparing (1.8) and (4.11). This completes the proof of Theorem 1.1. �
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