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Abstract This paper is concerned with the decay structure for linear sym-
metric hyperbolic systems with relaxation. When the relaxation matrix is
symmetric, the dissipative structure of the systems is completely character-
ized by the Kawashima-Shizuta stability condition formulated in [21,17], and
we obtain the asymptotic stability result together with the explicit time-
decay rate under that stability condition. However, some physical models
which satisfy the stability condition have non-symmetric relaxation term
(cf. the Timoshenko system and the Euler-Maxwell system). Moreover, it
had been already known that the dissipative structure of such systems is
weaker than the standard type and is of the regularity-loss type (cf. [5,8,9,
20,19]). Therefore our purpose of this paper is to formulate a new structural
condition which include the Kawashima-Shizuta condition, and to analyze
the weak dissipative structure for general systems with non-symmetric relax-
ation.
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1 Introduction

Consider the Cauchy problem for the first-order linear symmetric hyperbolic
system of equations with relaxation:

A0ut +

n∑
j=1

Ajuxj + Lu = 0 (1.1)

with
u|t=0 = u0. (1.2)

Here u = u(t, x) ∈ Rm over t > 0, x ∈ Rn is an unknown function, u0 =
u0(x) ∈ Rm over x ∈ Rn is a given function, and Aj (j = 0, 1, · · · , n) and
L are m × m real constant matrices, where integers m ≥ 1, n ≥ 1 denote
dimensions. Throughout this paper, it is assumed that all Aj (j = 0, 1, · · · , n)
are symmetric, A0 is positive definite and L is nonnegative definite with a
nontrivial kernel. Notice that L is not necessarily symmetric. For this general
linear degenerately dissipative system it is interesting to study its decay
structure under additional conditions on the coefficient matrices and further
investigate the corresponding time-decay property of solutions to the Cauchy
problem.

When the degenerate relaxation matrix L is symmetric, Umeda-Kawashima-
Shizuta [21] proved the large-time asymptotic stability of solutions for a
class of equations of hyperbolic-parabolic type with applications to both
electro-magneto-fluid dynamics and magnetohydrodynamics. The key idea
in [21] and the later generalized work [17] that first introduced the so-called
Kawashima-Shizuta condition is to design the compensating matrix to cap-
ture the dissipation of systems over the degenerate kernel space of L. The
typical feature of the time-decay property of solutions established in those
work is that the high frequency part decays exponentially while the low fre-
quency part decays polynomially with the rate of the heat kernel.

For clearness and for later use let us precisely recall the results in [21,
17] mentioned above. Taking the Fourier transform of (1.1) with respect to
x yields

A0ût + i|ξ|A(ω)û+ Lû = 0. (1.3)

Here and hereafter, ξ ∈ Rn denotes the Fourier variable, ω = ξ/|ξ| ∈ Sn−1
is the unit vector whenever ξ 6= 0, and we define A(ω) :=

∑n
j=1A

jωj with

ω = (ω1, · · · , ωn) ∈ Sn−1. The following two conditions for the coefficient
matrices are needed:

Condition (A)0: A0 is real symmetric and positive definite, Aj (j =
1, · · · , n) are real symmetric, and L is real symmetric and nonnegative defi-
nite with the nontrivial kernel.

Namely, we assume that

(Aj)T = Aj for j = 0, 1, · · · , n, LT = L,

A0 > 0, L ≥ 0 on Cm, Ker(L) 6= {0}.
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Here and in the sequel, the superscript T stands for the transpose of matrices,
and given a matrix X, X ≥ 0 means that Re 〈Xz, z〉 ≥ 0 for any z ∈
Cm, while X > 0 means that Re 〈Xz, z〉 > 0 for any z ∈ Cm with z 6= 0,
where 〈·, ·〉 denotes the standard complex inner product in Cm. Also, for
simplicity of notations, given a real matrix X, we use X1 and X2 to denote
the symmetric and skew-symmetric parts of X, respectively, namely, X1 =
(X +XT )/2 and X2 = (X −XT )/2.

Condition (K): There is a real compensating matrix K(ω) ∈ C∞(Sn−1)
with the following properties: K(−ω) = −K(ω), (K(ω)A0)T = −K(ω)A0

and
(K(ω)A(ω))1 > 0 on Ker(L) (1.4)

for each ω ∈ Sn−1.

Remark 1.1 Under the condition (A)0, the positivity (1.4) in the condition
(K) holds if and only if

α(K(ω)A(ω))1 + L > 0 on Cm (1.5)

for each ω ∈ Sn−1, where α is a suitably small positive constant.

This remark is easily verified as follows. First, we assume (1.5) and sup-
pose that φ ∈ Ker(L). Then, noting that Lφ = 0, we have

α〈(K(ω)A(ω))1φ, φ〉 = 〈(α(K(ω)A(ω))1 + L)φ, φ〉 ≥ c|φ|2

for some positive constant c, where α is the positive constant in (1.5). This
shows that (1.5) implies (1.4).

Next, assuming (1.4), we show (1.5). Let φ ∈ Cm and let P denote the
orthogonal projection onto Ker(L). We have the decomposition φ = Pφ +
(I − P )φ. Then the positivity (1.4) on Ker(L) yields 〈(K(ω)A(ω))1φ, φ〉 ≥
c|Pφ|2 −C|(I − P )φ|2, where c and C are some positive constants. Also, we
have 〈Lφ, φ〉 ≥ c|(I −P )φ|2 for a positive constant c. Now, letting α > 0, we
can compute as

〈(α(K(ω)A(ω))1 + L)φ, φ〉 ≥ αc|Pφ|2 + (c− αC)|(I − P )φ|2 ≥ c1|φ|2,

where we choose α > 0 so small that αC ≤ c/2, and c1 is a positive constant
satisfying c1 ≤ min{αc, c/2}. Thus we have shown that (1.4) implies (1.5).
This completes the proof of Remark 1.1.

Under the conditions (A)0 and (K) one has:

Theorem 1.2 (Decay property of the standard type ([21,17])) As-
sume that both the conditions (A)0 and (K) hold. Then the Fourier image
û of the solution u to the Cauchy problem (1.1)-(1.2) satisfies the pointwise
estimate:

|û(t, ξ)| ≤ Ce−cρ(ξ)t|û0(ξ)|, (1.6)

where ρ(ξ) := |ξ|2/(1+|ξ|2). Furthermore, let s ≥ 0 be an integer and suppose
that the initial data u0 belong to Hs ∩ L1. Then the solution u satisfies the
decay estimate:

‖∂kxu(t)‖L2 ≤ C(1 + t)−n/4−k/2‖u0‖L1 + Ce−ct‖∂kxu0‖L2 (1.7)

for k ≤ s. Here C and c are positive constants.
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Unfortunately, when the degenerate relaxation matrix L is not symmetric,
Theorem 1.2 can not be applied any longer. In fact, this is the case for
some concrete systems, for example, the Timoshenko system [8,9] and the
Euler-Maxwell system [5,20,19], where the linearized relaxation matrix L
indeed has a nonzero skew-symmetric part while it was still proved that
solutions decay in time in some different way that we shall point out later
on. Therefore, our purpose of this paper is to formulate some new structural
conditions in order to extend Theorem 1.2 to the general system (1.1) when
L is not symmetric, which can include both the Timoshenko system and the
Euler-Maxwell system.

More precisely, we introduce a constant matrix S which satisfies some
properties in Condition (S) in Section 2. When the relaxation matrix L is not
symmetric, we have a partial positivity on Ker(L1)⊥ only. In this situation,
we try finding a real compensating matrix S to make a positivity on Ker(L)⊥.
Then, employing further the condition (K), we can construct a full positivity
on Cm. As the consequence, we can show the following weaker estimates:

|û(t, ξ)| ≤ Ce−cη(ξ)t|û0(ξ)|, (1.8)

where η(ξ) := |ξ|2/(1 + |ξ|2)2, and

‖∂kxu(t)‖L2 ≤ C(1 + t)−n/4−k/2‖u0‖L1 + C(1 + t)−`/2‖∂k+`x u0‖L2 (1.9)

for k + ` ≤ s. See Theorem 2.2 for the details. We note that these estimates
(1.8) and (1.9) are weaker than (1.6) and (1.7), respectively. In particular,
the decay estimate (1.8) is of the regularity-loss type.

Similar decay properties of the regularity-loss type have been recently
observed for several interesting systems. We refer the reader to [8,9,14] (cf. [1,
16]) for the dissipative Timoshenko system, [5,20,19] for the Euler-Maxwell
system, [7,10] for a hyperbolic-elliptic system in radiation gas dynamics, [11–
13,15,18] for a dissipative plate equation, and [4,6] for the Vlasov-Maxwell-
Boltzmann system.

The contents of this paper are as follows. In Section 2 we formulate several
structural conditions and state our main results on the decay property of the
system (1.1) when the relaxation matrix L is not symmetric. The obtained
decay estimates are of the regularity-loss type. In Section 3 we develop the
energy method in the Fourier space and derive the pointwise estimates for the
Fourier image of the solution, which is crucial in showing our decay estimates.
In Section 4 we discuss the relationship between the structural conditions. In
particular, we show that the rank condition (R) in [2] is a sufficient condition
for the condition (K) even if L is not symmetric. The decay property of the
system (1.1) with constraints is investigated in Section 5. Finally, in Sections
6 and 7, we treat the Timoshenko system and the Euler-Maxwell system as
applications of our general theory.

Notations. For a nonnegative integer k, we denote by ∂kx the totality of all
the k-th order derivatives with respect to x = (x1, · · · , xn).

Let 1 ≤ p ≤ ∞. Then Lp = Lp(Rn) denotes the usual Lebesgue space
over Rn with the norm ‖ · ‖Lp . For a nonnegative integer s, Hs = Hs(Rn)
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denotes the s-th order Sobolev space over Rn in the L2 sense, equipped with
the norm ‖ · ‖Hs . We note that L2 = H0.

Finally, in this paper, we use C or c to denote various positive constants
without confusion.

2 Decay structure

In this section we shall introduce new structural conditions to investigate the
decay structure and time-decay property for the system (1.1) when L is not
necessarily symmetric, and then state under those conditions the main results
which are the generalization of Theorem 1.2. Our structural conditions are
formulated as follows.

Condition (A): A0 is real symmetric and positive definite,Aj (j = 1, · · · , n)
are real symmetric, while L is not necessarily real symmetric but is nonneg-
ative definite with the nontrivial kernel.

Namely, it is assumed that

(Aj)T = Aj for j = 0, 1, · · · , n,

A0 > 0, L ≥ 0 on Cm, Ker(L) 6= {0}.

Condition (S): There is a real constant matrix S with the following prop-
erties: (SA0)T = SA0 and

(SL)1 + L1 ≥ 0 on Cm, Ker((SL)1 + L1) = Ker(L). (2.1)

Remark 2.1 Under the conditions (A) and (S), the positivity (1.4) in the
condition (K) holds if and only if

α(K(ω)A(ω))1 + (SL)1 + L1 > 0 on Cm (2.2)

for each ω ∈ Sn−1, where α is a suitably small positive constant.

In fact, by virtue of (2.1), we find that

〈((SL)1 + L1)φ, φ〉 ≥ c|(I − P )φ|2

for any φ ∈ Cm, where c is a positive constant and P denotes the orthogonal
projection onto Ker(L). Using this property, we can show the equivalence of
(1.4) and (2.2) in a similar way as in the proof of Remark 1.1.

When we use the condition (S), we additionally assume either the condi-
tion (S)1 or (S)2 below.

Condition (S)1: For each ω ∈ Sn−1, the matrix S in the condition (S)
satisfies

i(SA(ω))2 ≥ 0 on Ker(L1). (2.3)
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Condition (S)2: For each ω ∈ Sn−1, the matrix S in the condition (S)
satisfies

i(SA(ω))2 ≥ 0 on Cm. (2.4)

Under the above structural conditions, we can state our main results on
the decay property for the system (1.1). The first one uses the condition (S)1.

Theorem 2.2 (Decay property of the regularity-loss type) Assume
that the conditions (A), (S), (S)1 and (K) hold. Then the Fourier image û
of the solution u to the Cauchy problem (1.1)-(1.2) satisfies the pointwise
estimate:

|û(t, ξ)| ≤ Ce−cη(ξ)t|û0(ξ)|, (2.5)

where η(ξ) := |ξ|2/(1 + |ξ|2)2. Moreover, let s ≥ 0 be an integer and suppose
that the initial data u0 belong to Hs ∩ L1. Then the solution u satisfies the
decay estimate:

‖∂kxu(t)‖L2 ≤ C(1 + t)−n/4−k/2‖u0‖L1 + C(1 + t)−`/2‖∂k+`x u0‖L2 (2.6)

for k + ` ≤ s. Here C and c are positive constants.

Remark 2.3 The decay estimate (2.6) is of the regularity-loss type because
we have the decay rate (1+ t)−`/2 only by assuming the additional l-th order
regularity on the initial data.

Our second main result uses the stronger condition (S)2 instead of (S)1
and gives the decay estimate of the standard type.

Theorem 2.4 (Decay property of the standard type) If the condi-
tion (S)1 in Theorem 2.2 is replaced by the stronger condition (S)2, then the
pointwise estimate (2.5) and the decay estimate (2.6) in Theorem 2.2 can be
refined as (1.6) and (1.7) in Theorem 1.2, respectively.

It should be pointed out that Theorem 2.4 is a direct extension of Theorem
1.2 and is applicable to the system (1.1) with a non-symmetric relaxation
matrix L. More specifically, we have:

Claim 2.5 Theorem 1.2 holds as a corollary of Theorem 2.4. In other words,
when L is real symmetric, Theorem 2.4 is reduced to Theorem 1.2.

In fact, when L is real symmetric, the condition (A) is reduced to (A)0.
Moreover, in this case, we have L = L1 so that the conditions (S) and (S)2 are
satisfied trivially with S = 0. This shows that Theorem 2.4 implies Theorem
1.2.

Next we introduce the rank condition (R) which was formulated by Beauchard
and Zuazua in [2].

Condition (R): The matrices A0, A(ω) and L satisfies the following rank
condition:

Rank


L

LÃ(ω)
...

LÃ(ω)m−1

 = m (2.7)
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for each ω ∈ Sn−1, where Ã(ω) := (A0)−1A(ω).

This condition (R) is called the Kalman rank condition in the control theory
and is proved to be equivalent to the condition (K) under the condition (A)0
where L is real symmetric. For the details, see [2]. In our case where L is
not necessarily real symmetric, under the condition (A), we can show that
the condition (R) implies the condition (K); see Theorem 4.3 in Section 4.
Consequently, we have the following claim.

Claim 2.6 In Theorems 2.2 and 2.4 above, we can replace the condition (K)
by the rank condition (R).

In Theorems 2.2 and 2.4, the decay estimates (2.6) and (1.7) can be
derived by using the pointwise estimates (2.5) and (1.6), respectively. Before
closing this section, we prove this fact.

Proof of the decay estimates in Theorems 2.2 and 2.4. We first prove
(2.6) in Theorem 2.2. By virtue of the Plancherel theorem and the pointwise
estimate (2.5), we obtain

‖∂kxu(t)‖2L2 =

∫
Rn

|ξ|2k|û(t, ξ)|2dξ ≤ C
∫
Rn

|ξ|2ke−cη(ξ)t|û0(ξ)|2dξ. (2.8)

We divide the integral on the right-hand side of (2.8) into two parts I1 and I2
according to the low frequency region |ξ| ≤ 1 and the high frequency region
|ξ| ≥ 1, respectively. Since η(ξ) ≥ c|ξ|2 for |ξ| ≤ 1, we see that

I1 ≤ C sup
|ξ|≤1

|û0(ξ)|2
∫
|ξ|≤1

|ξ|2ke−c|ξ|
2tdξ ≤ C(1 + t)−n/2−k‖u0‖2L1 .

On the other hand, we have η(ξ) ≥ c|ξ|−2 in the region |ξ| ≥ 1. Consequently,
we obtain

I2 ≤ C sup
|ξ|≥1

e−ct/|ξ|
2

|ξ|2`

∫
|ξ|≥1

|ξ|2(k+`)|û0(ξ)|2dξ ≤ C(1 + t)−`‖∂k+`x u0‖2L2 .

Therefore, substituting these estimates into (2.8), we get the desired decay
estimate (2.6).

To prove (1.7) in Theorem 2.4, we make use of the pointwise estimate
(1.6). Since ρ(ξ) ≥ c|ξ|2 for |ξ| ≤ 1 and ρ(ξ) ≥ c for |ξ| ≥ 1, a similar
computation as in the proof of (2.6) yields the decay estimate (1.7). Thus
we got the desired decay estimates and this completes the proof. ut

3 Energy method in the Fourier space

The aim of this section is to prove the pointwise estimates stated in Theorems
2.2 and 2.4 by employing the energy method in the Fourier space.
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Proof of the pointwise estimate in Theorem 2.2. We derive the energy
estimate for the system (1.3) in the Fourier space. Taking the inner product
of (1.3) with û, we have

〈A0ût, û〉+ i|ξ|〈A(ω)û, û〉+ 〈Lû, û〉 = 0.

Taking the real part, we get the basic energy equality

1

2

d

dt
E0 + 〈L1û, û〉 = 0, (3.1)

where E0 := 〈A0û, û〉. Next we create the dissipation terms. For this purpose,
we multiply (1.3) by the matrix S in the condition (S) and take the inner
product with û. This yields

〈SA0ût, û〉+ i|ξ|〈SA(ω)û, û〉+ 〈SLû, û〉 = 0.

Taking the real part of this equality, we get

1

2

d

dt
E1 + |ξ|〈i(SA(ω))2û, û〉+ 〈(SL)1û, û〉 = 0, (3.2)

where E1 := 〈SA0û, û〉. Moreover, letting K(ω) be the compensating matrix
in the condition (K), we multiply (1.3) by −i|ξ|K(ω) and take the inner
product with û. Then we have

−i|ξ|〈K(ω)A0ût, û〉+ |ξ|2〈K(ω)A(ω)û, û〉 − i|ξ|〈K(ω)Lû, û〉 = 0.

Taking the real part of the above equality, we obtain

−1

2
|ξ| d
dt
E2 + |ξ|2〈(K(ω)A(ω))1û, û〉 − |ξ|〈i(K(ω)L)2û, û〉 = 0, (3.3)

where E2 := 〈iK(ω)A0û, û〉.
Now we combine the energy equalities (3.1), (3.2) and (3.3). First, letting

α be the positive number in Remark 2.1, we multiply (3.2) and (3.3) by
1 + |ξ|2 and α2α, respectively, and add these two equalities, where α2 is a
positive constant to be determined. This yields

1

2
(1 + |ξ|2)

d

dt
E + (1 + |ξ|2)〈(SL)1û, û〉+ α2|ξ|2〈α(K(ω)A(ω))1û, û〉

= −|ξ|(1 + |ξ|2)〈i(SA(ω))2û, û〉+ α2|ξ|〈iα(K(ω)L)2û, û〉,
(3.4)

where E := E1 − α2|ξ|
1+|ξ|2αE2. Furthermore, we multiply (3.1) and (3.4) by

(1 + |ξ|2)2 and α1, respectively, and add the resulting two equalities, where
α1 is a positive constant to be determined. This yields

1

2
(1 + |ξ|2)2

d

dt

(
E0 +

α1

1 + |ξ|2
E
)

+ (1 + |ξ|2)2〈L1û, û〉

+ α1

{
(1 + |ξ|2)〈(SL)1û, û〉+ α2|ξ|2〈α(K(ω)A(ω))1û, û〉

}
= α1

{
− |ξ|(1 + |ξ|2)〈i(SA(ω))2û, û〉+ α2|ξ|〈iα(K(ω)L)2û, û〉

}
.

(3.5)
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We write the equality (3.5) as

1

2

d

dt
E +D1 +D2 = G, (3.6)

where we define E, D1, D2 and G as

E := E0 +
α1

1 + |ξ|2
E = E0 +

α1

1 + |ξ|2
(
E1 +

α2|ξ|
1 + |ξ|2

αE2

)
,

(1 + |ξ|2)2D1 := (1 + |ξ|2)2〈L1û, û〉
+ α1

{
(1 + |ξ|2)〈(SL)1û, û〉+ α2|ξ|2〈α(K(ω)A(ω))1û, û〉

}
,

(1 + |ξ|2)2D2 := α1|ξ|(1 + |ξ|2)〈i(SA(ω))2P1û, P1û〉,

(1 + |ξ|2)2G := α1α2|ξ|〈iα(K(ω)L)2û, û〉
− α1|ξ|(1 + |ξ|2)

{
〈i(SA(ω))2û, û〉 − 〈i(SA(ω))2P1û, P1û〉

}
.

(3.7)

We estimate each term in (3.6). Because of the positivity of A0, for suit-
ably small α1 > 0 and α2 > 0, we see that

c0|û|2 ≤ E ≤ C0|û|2, (3.8)

where c0 and C0 are positive constants not depending on (α1, α2). On the
other hand, we can rewrite D1 as

(1 + |ξ|2)2D1 = α1α2|ξ|2〈(α(K(ω)A(ω))1 + (SL)1 + L1)û, û〉

+ α1((1 + |ξ|2)− α2|ξ|2)〈((SL)1 + L1)û, û〉

+ (1 + |ξ|2)((1 + |ξ|2)− α1)〈L1û, û〉.

(3.9)

Here, using the positivity (2.2) which is based on the condition (K), we have

〈(α(K(ω)A(ω))1 + (SL)1 + L1)û, û〉 ≥ c1|û|2, (3.10)

where c1 is a positive constant. Therefore we can estimate D1 as

(1 + |ξ|2)2D1 ≥ α1α2c1|ξ|2|û|2 + α1c2(1 + |ξ|2)|(I − P )û|2

+ c3(1 + |ξ|2)2|(I − P1)û|2,
(3.11)

where c1 is the constant in (3.10), c2 and c3 are positive constants not de-
pending on (α1, α2), and P and P1 denote the orthogonal projections onto
Ker(L) and Ker(L1), respectively. Here we have used (2.1) in the condition
(S) and the fact that L1 ≥ 0 on Cm which is due to the condition (A). Also
we see that D2 ≥ 0 by the condition (S)1.

Finally, we estimate each term in G. Note that

〈i(K(ω)L)2û, û〉 = Re〈iK(ω)Lû, û〉 = Re〈iK(ω)L(I − P )û, û〉,

where we used LP = 0. Thus we have

|ξ||〈iα(K(ω)L)2û, û〉| ≤ C|ξ||(I −P )û||û| ≤ ε|ξ|2|û|2 +Cε|(I −P )û|2 (3.12)
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for any ε > 0, where Cε is a constant depending on ε. For the remaining term
in G, by using the equality

〈i(SA(ω))2û, û〉 − 〈i(SA(ω))2P1û, P1û〉
= 〈i(SA(ω))2P1û, (I − P1)û〉+ 〈i(SA(ω))2(I − P1)û, û〉,

we estimate as

|ξ|(1 + |ξ|2)
∣∣〈i(SA(ω))2û, û〉 − 〈i(SA(ω))2P1û, P1û〉

∣∣
≤ C|ξ|(1 + |ξ|2)|(I − P1)û||û|

≤ δ|ξ|2|û|2 + Cδ(1 + |ξ|2)2|(I − P1)û|2
(3.13)

for any δ > 0, where Cδ is a constant depending on δ. Consequently, we
obtain

(1 + |ξ|2)2|G| ≤ α1(α2ε+ δ)|ξ|2|û|2

+ α1α2Cε|(I − P )û|2 + α1Cδ(1 + |ξ|2)2|(I − P1)û|2.
(3.14)

We choose ε > 0 and δ > 0 such that ε = c1/4 and δ = α2c1/4. For
this choice of (ε, δ), we take α2 > 0 and α1 > 0 so small that α2Cε ≤ c2/2
and α1Cδ ≤ c3/2. Then, by using (3.11), (3.12) and (3.13), we conclude that
|G| ≤ D1/2 and

D1 ≥ c
{ |ξ|2

(1 + |ξ|2)2
|û|2 +

1

1 + |ξ|2
|(I − P )û|2 + |(I − P1)û|2

}
, (3.15)

where c is a positive constant. Consequently, (3.6) becomes

d

dt
E +D1 + 2D2 ≤ 0. (3.16)

Moreover, it follows from (3.8) and (3.15) that D1 ≥ cη(ξ)E, where η(ξ) =
|ξ|2/(1 + |ξ|2)2, and c is a positive constant. Also we have D2 ≥ 0. Thus
(3.16) leads the estimate

d

dt
E + cη(ξ)E ≤ 0. (3.17)

Solving this differential inequality, we get E(t, ξ) ≤ e−cη(ξ)tE(0, ξ), which
together with (3.8) gives the desired pointwise estimate (2.5). This completes
the proof of Theorem 2.2. ut

When the condition (S)1 is replaced by (S)2, the above computations can
be simplified and we obtain the better pointwise estimate (1.6).

Proof of the pointwise estimate in Theorem 2.4. Under the assump-
tion (2.4) in the condition (S)2, the first term on the right-hand side of (3.4)
becomes a good term and we obtain

1

2
(1 + |ξ|2)

d

dt
E + (1 + |ξ|2)〈(SL)1û, û〉+ α2|ξ|2〈α(K(ω)A(ω))1û, û〉

+ |ξ|(1 + |ξ|2)〈i(SA(ω))2û, û〉 = α2|ξ|〈iα(K(ω)L)2û, û〉.
(3.18)
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In this case, we multiply (3.1) and (3.18) by 1 + |ξ|2 and α1, respectively,
and combine the resultant two equalities. This yields

1

2

d

dt
Ẽ + D̃1 + D̃2 = G̃, (3.19)

where we define as

Ẽ := E0 + α1E = E0 + α1

(
E1 +

α2|ξ|
1 + |ξ|2

αE2

)
,

(1 + |ξ|2)D̃1 := (1 + |ξ|2)〈L1û, û〉
+ α1

{
(1 + |ξ|2)〈(SL)1û, û〉+ α2|ξ|2〈α(K(ω)A(ω))1û, û〉

}
,

D̃2 := α1|ξ|〈i(SA(ω))2û, û〉,

(1 + |ξ|2)G̃ := α1α2|ξ|〈iα(K(ω)L)2û, û〉.

(3.20)

Here, for suitably small α1 > 0 and α2 > 0, we see that

c0|û|2 ≤ Ẽ ≤ C0|û|2, (3.21)

where c0 and C0 are positive constants not depending on (α1, α2). On the

other hand, we can rewrite D̃1 as

(1 + |ξ|2)D̃1 = α1α2|ξ|2〈(α(K(ω)A(ω))1 + (SL)1 + L1)û, û〉

+ α1((1 + |ξ|2)− α2|ξ|2)〈((SL)1 + L1)û, û〉

+ (1− α1)(1 + |ξ|2)〈L1û, û〉.

Then, as in the derivation of (3.11), for suitably small α1 > 0 and α2 > 0,

we can estimate D̃1 as

(1+|ξ|2)D̃1 ≥ α1α2c1|ξ|2|û|2+α1c2(1+|ξ|2)|(I−P )û|2+c3(1+|ξ|2)|(I−P1)û|2,
where c1, c2 and c3 are positive constants not depending on (α1, α2). Also,

making use of (3.12), we can estimate the term G̃ as

(1 + |ξ|2)|G̃| ≤ α1α2ε|ξ|2|û|2 + α1α2Cε|(I − P )û|2 (3.22)

for any ε > 0, where Cε is a constant depending on ε but not on (ε, δ).
We choose ε > 0 in (3.22) so small that ε = c1/2. For this choice of ε, we

take α2 > 0 so small that α2Cε ≤ c2/2. Then we obtain |G̃| ≤ D̃1/2 and

D̃1 ≥ c
{ |ξ|2

1 + |ξ|2
|û|2 + |(I − P )û|2 + |(I − P1)û|2

}
, (3.23)

where c is a positive constant. Consequently, (3.19) becomes

d

dt
Ẽ + D̃1 + 2D̃2 ≤ 0.

Here we note that D2 ≥ 0 by (2.4) in the condition (S)2. Also we have from

(3.21) and (3.23) that D̃1 ≥ ρ(ξ)Ẽ, where ρ(ξ) = |ξ|2/(1 + |ξ|2), and c is

a positive constant. Thus we obtain d
dt Ẽ + cρ(ξ)Ẽ ≤ 0, which is solved as

Ẽ(t, ξ) ≤ e−cρ(ξ)tẼ(0, ξ). This together with (3.21) gives the desired point-
wise estimate (1.6). Thus the proof of Theorem 2.4 is complete. ut
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4 Relation between structural conditions

In this section we discuss the dissipative structure for the system (1.1). To
this end, we introduce a notion of the uniform dissipativity of the system
(1.1). We consider the eigenvalue problem for the system (1.1) or (1.3):

(λA0 + i|ξ|A(ω) + L)φ = 0, (4.1)

where λ ∈ C and φ ∈ Cm. The corresponding characteristic equation is given
by

det(λA0 + i|ξ|A(ω) + L) = 0. (4.2)

The solution λ = λ(iξ) of (4.2) is called the eigenvalue of the system (1.1)
or (1.3). Then we define the notion of the uniform dissipativity of the system
as follows.

Definition 4.1 The system (1.1) is called uniformly dissipative of the type
(p, q) if the eigenvalue λ = λ(iξ) satisfies

Reλ(iξ) ≤ −c|ξ|2p/(1 + |ξ|2)q

for ξ ∈ Rn, where c is a positive constant and (p, q) is a pair of positive
integers.

For example, under the assumption in Theorem 2.2 or 2.4, the system
(1.1) is uniformly dissipative of the type (1, 2) or (1, 1), respectively. More
precisely, we obtain the following theorem.

Theorem 4.2 (Uniform dissipativity) (i) Assume the conditions (A),
(S), (S)1 and (K). Then the system (1.1) is uniformly dissipative of the type
(1,2).

(ii) Assume the conditions (A), (S), (S)2 and (K). Then the system (1.1)
is uniformly dissipative of the type (1,1).

Proof Let λ = λ(iξ) be the eigenvalue of the system (1.1). Then we have
(4.1) for some φ ∈ Cm with φ 6= 0. Note that the system (1.3) becomes (4.1)
if d/dt and û are replaced by λ and φ, respectively. Therefore, employing the
same computations as in the proof of the pointwise estimate (2.5), we have
as a counterpart of (3.17) that

{Reλ+ cη(ξ)}|φ|2 ≤ 0,

where η(ξ) = |ξ|2/(1 + |ξ|2)2, and c is a positive constant. Since φ 6= 0, we
obtain Reλ ≤ −cη(ξ), which proves (i). The proof of (ii) is similar. In fact,
the same computations as in the proof of the pointwise estimate (1.6) yield
the inequality {Reλ + cρ(ξ)}|φ|2 ≤ 0, where ρ(ξ) = |ξ|2/(1 + |ξ|2), and c is
a positive constant. This gives Reλ ≤ −cρ(ξ), which proves (ii). Thus the
proof of Theorem 4.2 is complete.

Next we discuss the relationship between the conditions (K) and (R).
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Theorem 4.3 (Relation between (K) and (R)) Assume that the con-
dition (A) hold. Then the rank condition (R) implies the condition (K), that
is, (R) is a sufficient condition for (K).

Proof We assume the conditions (A) and (R). It suffices to construct a com-
pensating matrix K(ω). As in [2], we put

K(ω) =

m−1∑
k=1

µκk
{

(LÃ(ω)k)TLÃ(ω)k−1 − (LÃ(ω)k−1)TLÃ(ω)k
}

(A0)−1,

where Ã(ω) = (A0)−1A(ω), µ is a small positive constant determined below,
and κk are constants satisfying

0 = κ0 < κ1 < · · · < κm,

κk − (κk−1 + κk+1)/2 ≥ ν for k = 1, 2, · · · ,m− 1,
(4.3)

for some constant ν > 0. We show that this K(ω) is the desired compen-
sating matrix. Obviously, we see that K(−ω) = −K(ω) and (K(ω)A0)T =
−K(ω)A0. We show that our K(ω) satisfies (1.4) in the condition (K). By a
simple computation, we have

(K(ω)A(ω))1 =

m−1∑
k=1

µκk(LÃkω)TLÃkω

− 1

2

m−1∑
k=1

µκk
{

(LÃk−1ω )TLÃk+1
ω + (LÃk+1

ω )TLÃk−1ω

}
,

where we used the simplified notation Ãω = Ã(ω). Let φ ∈ Cm and consider
the inner product 〈(K(ω)Aω)1φ, φ〉. It is easy to see that

〈(K(ω)A(ω))1φ, φ〉 ≥
m−1∑
k=1

µκk |LÃkωφ|2 −
m−1∑
k=1

µκk |LÃk−1ω φ||LÃk+1
ω φ|. (4.4)

For the second term on the right hand side of (4.4), by using (4.3), we can
estimate as

m−1∑
k=1

µκk |LÃk−1ω φ||LÃk+1
ω φ|

≤ µν
m−1∑
k=1

µ(κk−1+κk+1)/2|LÃk−1ω φ||LÃk+1
ω φ|

≤ 1

2
µν

m−1∑
k=1

(
µκk−1 |LÃk−1ω φ|2 + µκk+1 |LÃk+1

ω φ|2
)

≤ µν
m∑
k=0

µκk |LÃkωφ|2,

(4.5)
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where we assumed 0 < µ < 1. To estimate the term |LÃmω φ|2, we consider
the characteristic polynomial

pm(λ) = det(λI − Ãω) = λm +

m−1∑
k=0

ak(ω)λk,

where ak(ω) are some polynomials of ω ∈ Sn−1. Then, by the Cayley-

Hamilton theorem, we have pm(Ãω) = 0, that is, Ãmω = −
∑m−1

k=0 ak(ω)Ãkω.
Using this identity, one has

µκm |LÃmω φ|2 ≤ C1µ
κm

m−1∑
k=0

|LÃkωφ|2 ≤ C1

m−1∑
k=0

µκk |LÃkωφ|2

for 0 < µ < 1, where C1 is a constant satisfying |ak(ω)|2 ≤ C1 for k =
0, 1, · · · ,m− 1 and ω ∈ Sn−1. Plugging the above estimate into (4.5) yields

m−1∑
k=1

µκk |LÃk−1ω φ||LÃk+1
ω φ| ≤ µν(1 + C1)

m−1∑
k=0

µκk |LÃkωφ|2. (4.6)

We substitute (4.6) into (4.4) to get

〈(K(ω)Aω)1φ, φ〉 ≥ {1− µν(1 + C1)}
m−1∑
k=1

µκk |LÃkωφ|2 − µν(1 + C1)|Lφ|2.

Therefore, letting µ > 0 suitably small, we obtain

〈(K(ω)A(ω))1φ, φ〉 ≥ c
m−1∑
k=0

µκk |LÃkωφ|2 − C|Lφ|2, (4.7)

where c and C are positive constants. Now we use the rank condition (R)

and deduce from Lemma 4.4 below that
∑m−1

k=0 µ
κk |LÃkωφ|2 > 0 for each

φ ∈ Cm with |φ| = 1 and ω ∈ Sn−1. Then, by the property of contin-
uous functions on compact sets, we find a positive constant c such that∑m−1

k=0 µ
κk |LÃkωφ|2 ≥ c for any φ ∈ Cm with |φ| = 1 and ω ∈ Sn−1. Hence we

have
∑m−1

k=0 µ
κk |LÃkωφ|2 ≥ c|φ|2 for any φ ∈ Cm and ω ∈ Sn−1. Substituting

this inequality into (4.7), we conclude that

〈(K(ω)A(ω))1φ, φ〉 ≥ c|φ|2 − C|Lφ|2,

where c and C are positive constants. This shows (1.4) in the condition (K)
and therefore the proof of Theorem 4.3 is complete.

The rest of this section is devoted to the proof of the following
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Lemma 4.4 Let k and m be positive integers, and let M1,M2, · · · ,Mk be
m ×m real matrices. Then the following three statements are equivalent to
each other.

(i) The km×m real matrix

M :=


M1

M2

...
Mk


has full column rank m, that is, RankM = m.

(ii) There exists an integer j with 1 ≤ j ≤ m such that Mjz 6= 0 for any
z ∈ Cm with z 6= 0.

(iii) inf
06=z∈Cm

∑k
j=1 |Mjz|2

|z|2
> 0.

Proof (i)⇒(ii): Suppose that (ii) fails. Then there is a z ∈ Cm with z 6= 0 such
that M jz = 0 for all j = 1, 2, · · · , k. For this z 6= 0, we have Mz = 0. This
implies that the column rank of M can not be full, which is a contradiction
to (i).

(ii)⇒(iii): Suppose that (iii) fails. Then we have

inf
|z|=1, z∈Cm

k∑
j=1

|Mjz|2 = 0.

By the property of continuous functions over compact sets, we find a z ∈ Cm
with |z| = 1 and hence z 6= 0 such that

∑k
j=1 |Mjz|2 = 0. Thus we have

M jz = 0 for all j = 1, 2, · · · , k. This is a contradiction to (ii).
(iii)⇒(i): Notice that (iii) is equivalent to (iii)′: There exists a constant

c > 0 such that
k∑
j=1

|Mjz|2 ≥ c|z|2

for any z ∈ Cm. Now we assume that there is a z ∈ Cm such that Mz = 0.
Then we have M jz = 0 for all j = 1, 2, · · · , k. ¿From (iii)′ we conclude that
|z| = 0, that is, z = 0. This shows that M is injective and thus it has full
column rank m. This completes the proof of Lemma 4.4.

5 Decay structure for systems with constraint

In this section we consider the system (1.1) with the constraint condition

n∑
j=1

Qjuxj
+Ru = 0, (5.1)

where Qj and R are m1 ×m real constant matrices with m1 < m. Let Π1

be the orthogonal projection from Cm1 onto Image(R) := {Rφ ; φ ∈ Cm} ⊂
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Cm1 , and put Π2 := I − Π1. Notice that Π1 and Π2 are m1 × m1 real
symmetric matrices. By using these projections, we decompose the condition
(5.1) as

n∑
j=1

Π1Q
juxj

+Ru = 0,

n∑
j=1

Π2Q
juxj

= 0.

We take the Fourier transform of (5.1). This yields

i|ξ|Q(ω)û+Rû = 0, (5.2)

where Q(ω) :=
∑n

j=1Q
jωj . The condition (5.2) is decomposed as

i|ξ|Π1Q(ω)û+Rû = 0, (5.3)

i|ξ|Π2Q(ω)û = 0. (5.4)

First we formulate a condition concerning the constraint (5.1).

Condition(C): The matrices Q(ω) and R satisfy

Q(ω)(A0)−1A(ω) = 0, R(A0)−1L = 0,

Q(ω)(A0)−1L+R(A0)−1A(ω) = 0
(5.5)

for each ω ∈ Sn−1.

This condition (C) implies the following fact: (5.1) (or (5.2)) holds at an
arbitrary time t > 0 for the solution of (1.1) (or (1.3)) if it holds initially.
Indeed, by differentiating (5.2) with respect to t and using (1.3), we obtain

d

dt
(i|ξ|Q(ω)û+Rû) = −(i|ξ|Q(ω) +R)(A0)−1(i|ξ|A(ω) + L)û = 0.

Next we formulate new structural conditions which are useful to treat
the Euler-Maxwell system in Section 7. In order to take into account of the
constraint condition (5.4), we introduce the subspace Xω of Cm by

Xω := {φ ∈ Cm ; Π2Q(ω)φ = 0}. (5.6)

Using this subspace, we modify the condition (K) as follows.

Condition (K*): There is a real matrix K(ω) ∈ C∞(Sn−1) with the fol-
lowing properties: K(−ω) = −K(ω), (K(ω)A0)T = −K(ω)A0 and

(K(ω)A(ω))1 > 0 on Xω ∩Ker(L) (5.7)

for each ω ∈ Sn−1, where Xω is the subspace defined in (5.6).

Remark 5.1 Under the conditions (A) and (S), the positivity (5.7) in the
condition (K*) holds if and only if

α(K(ω)A(ω))1 + (SL)1 + L1 > 0 on Xω (5.8)

for each ω ∈ Sn−1, where α is a suitably small constant.
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The following conditions are modifications of the conditions (S)1 and (S)2,
respectively.

Condition (S*)1: The matrix S in the condition (S) satisfies

i(SA(ω)− T (ω))2 ≥ 0 on Ker(L1) (5.9)

for each ω ∈ Sn−1, where T (ω) is the m ×m real matrix given by T (ω) :=

(Π1Q(ω))T S̃R with S̃ being an m1 × m1 real matrix such that S̃1 ≥ 0 on
Image(R).

Condition (S*)2: The matrix S in the condition (S) satisfies

i(SA(ω)− T (ω))2 ≥ 0 on Cm (5.10)

for each ω ∈ Sn−1, where T (ω) is the same matrix as in the condition (S*)1.

Under the above conditions, we obtain the following decay results.

Theorem 5.2 (Decay property of the regularity-loss type) Suppose
that conditions (A), (C), (S), (S*)1 and (K*) hold. Let s ≥ 0 be an integer
and we suppose that the initial data u0 belong to Hs ∩ L1 and satisfy (5.1).
Then the solution to the Cauchy problem (1.1)-(1.2) satisfies (5.1) for all
t > 0. Moreover, the solution satisfies the pointwise estimate (2.5) and decay
estimate (2.6) stated in Theorem 2.2.

Theorem 5.3 (Decay property of the standard type) If the condition
(S*)1 in Theorem 5.2 is replaced by the stronger condition (S*)2, then the
pointwise estimate (2.5) and the decay estimate (2.6) in Theorem 5.2 can be
improved to (1.6) and (1.7) stated in Theorem 1.2, respectively.

Proof of Theorems 5.2 and 5.3. First we observe that the solution û(t, ξ)
of the system (1.3) satisfies the constraint condition (5.2) and hence (5.3)
and (5.4) for t > 0 and ξ ∈ Rn. In particular, we have

û(t, ξ) ∈ Xω (5.11)

for t > 0 and ξ ∈ Rn, where Xω is the subspace defined i (5.6).
We show the pointwise estimate (2.5). Then the corresponding decay

estimate (2.6) can be shown just in the same way as before. We employ the
same computations as in the proof of Theorem (2.2) and obtain the energy
equality (3.6). This energy equality is rewritten as

1

2

d

dt
E +D1 +D′2 = G′, (5.12)

where E and D1 are defined in (3.7) and

(1 + |ξ|2)2D′2

:= α1|ξ|(1 + |ξ|2)
{
〈i(SA(ω)− T (ω))2P1û, P1û〉+ 〈i(T (ω))2û, û〉

}
,

(1 + |ξ|2)2G′ := α1α2|ξ|〈iα(K(ω)L)2û, û〉
− α1|ξ|(1 + |ξ|2)

{
〈i(SA(ω)− T (ω))2û, û〉 − 〈i(SA(ω)− T (ω))2P1û, P1û〉

}
.
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Here the term E1 was estimated in (3.8) for suitably small α1 > 0 and
α2 > 0. Also we note that the term D1 has the expression (3.9). Since our
solution verifies (5.11), we can use the positivity (5.8) which is based on the
condition (K*) and conclude that D1 satisfies the same estimate (3.11) for
suitably small α1 > 0 and α2 > 0. Next we treat the term D′2. By virtue of
(5.9) in the condition (S*)1, we have 〈i(SA(ω) − T (ω))2P1û, P1û〉 ≥ 0. On
the other hand, using the explicit form of the matrix T (ω) in (S*)1, we see
that

|ξ|〈i(T (ω))2û, û〉 = |ξ|〈i((Π1Q(ω))T S̃R)2û, û〉

=
1

2
i|ξ|
{
〈(Π1Q(ω))T S̃Rû, û〉 − 〈û, (Π1Q(ω))T S̃Rû〉

}
.

Moreover, using the constraint (5.3), we know that

i|ξ|〈(Π1Q(ω))T S̃Rû, û〉 = i|ξ|〈S̃Rû,Π1Q(ω)û〉 = 〈S̃Rû, Rû〉.

Similarly, we have i|ξ|〈û, (Π1Q(ω))T S̃Rû〉 = −〈S̃TRû,Rû〉. Consequently,
we find that

|ξ|〈i(T (ω))2û, û〉 = 〈S̃1Rû,Rû〉.

Hence we obtain

(1 + |ξ|2)2D′2 ≥ α1(1 + |ξ|2)〈S̃1Rû,Rû〉 ≥ 0, (5.13)

where we used the nonnegativity of S̃1 on Image(R) in the last inequality.
Finally, we estimate the termG′. For the first term inG′, we have the estimate
(3.12). Also, similarly to (3.13), we have

|ξ|(1 + |ξ|2)
∣∣〈i(SA(ω)− T (ω))2û, û〉 − 〈i(SA(ω)− T (ω))2P1û, P1û〉

∣∣
≤ δ|ξ|2|û|2 + Cδ(1 + |ξ|2)2|(I − P1)û|2

for any δ > 0, where Cδ is a constant depending on δ. Thus, as a counterpart
of (3.14), we obtain

(1 + |ξ|2)2|G′| ≤ α1(α2ε+ δ)|ξ|2|û|2

+ α1α2Cε|(I − P )û|2 + α1Cδ(1 + |ξ|2)2|(I − P1)û|2.

Now we choose ε, δ, α1 and α2 suitably small as in the proof of Theo-
rem 2.2, and deduce that |G′| ≤ D1/2, where D1 satisfies (3.15) by (3.11).
Consequently, (5.12) becomes

d

dt
E +D1 + 2D′2 ≤ 0. (5.14)

Since D1 ≥ cη(ξ)E and D′2 ≥ 0 by (3.8), (3.15) and (5.13), the inequality
(5.14) is reduced to d

dtE + cη(ξ)E ≤ 0, where η(ξ) = |ξ|2/(1 + |ξ|2)2, and c
is a positive constant. Solving this differential inequality and using (3.8), we
arrive at the desired pointwise estimate (2.5). Thus the proof of Theorem 5.2
is complete.
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Finally, we prove the pointwise estimate (1.6). To this end, we rewrite the
energy equality (3.19) in the form

1

2

d

dt
Ẽ + D̃1 + D̃′2 = G̃,

where Ẽ, D̃1 and G̃ are defined in (3.20) and

D̃′2 := α1|ξ|
{
〈i(SA(ω)− T (ω))2û, û〉+ 〈i(T (ω))2û, û〉

}
.

Here, using (5.10) in the condition (S*)2 and computing similarly as in the
derivation of (5.13), we have

D′2 ≥ α1〈S̃1Rû,Rû〉 ≥ 0.

On the other hand, the previous estimates for Ẽ, D̃1 and G̃ are valid also
in the present case. Therefore, by employing the same computing as in the
proof of Theorem 2.4, we can deduce the desired pointwise estimate (1.6).
This completes the proof of Theorem 5.3. ut

6 Application to the Timoshenko system

In this section, as an application of Theorems 2.2 and 2.4, we treat the
following dissipative Timoshenko system{

wtt − (wx − ψ)x = 0,

ψtt − a2ψxx − (wx − ψ) + γψt = 0,
(6.1)

where a and γ are positive constants, and w = w(t, x) and ψ = ψ(t, x)
are unknown scalar functions of t > 0 and x ∈ R. The Timoshenko system
above is a model system describing the vibration of the beam called the
Timoshenko beam, and w and ψ denote the transversal displacement and
the rotation angle of the beam, respectively. Here we only mention [1,16]
and [8,9,14] for related mathematical results.

As in [8,9], we introduce the vector-valued function u = (wx−ψ,wt, aψx, ψt)T .
Then the Timoshenko system (6.1) is written in the form of (1.1) with the
coefficient matrices

A0 = I, A = −

0 1 0 0
1 0 0 0
0 0 0 a
0 0 a 0

 , L =

 0 0 0 1
0 0 0 0
0 0 0 0
−1 0 0 γ

 , (6.2)

where I is the 4× 4 identity matrix. Here the space dimension is n = 1 and
the size of the system is m = 4. Notice that the relaxation matrix L is not
symmetric. For this Timoshenko system we obtain the following result.

Theorem 6.1 (Decay property for the Timoshenko system) The Tim-
oshenko system with a > 0 (resp. a = 1) satisfies all the conditions in Theo-
rem 2.2 (resp. Theorem 2.4). Therefore the solution to the Timoshenko sys-
tem with a > 0 (resp. a = 1) verifies the pointwise estimate (2.5) (resp. (1.6))
and the decay estimate (2.6) (resp. (1.7)).
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Proof The symmetric part of L is given by

L1 =

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 γ


and we see that

Ker(L) = span{e2, e3}, Ker(L1) = span{e1, e2, e3},

where e1 = (1, 0, 0, 0)T , e2 = (0, 1, 0, 0)T , e3 = (0, 0, 1, 0)T , and e4 = (0, 0, 0, 1)T .
It is obvious that the matrices in (6.2) satisfies the condition (A). For ex-
ample, we have 〈Lφ, φ〉 = γ|φ4|2 ≥ 0 for φ = (φ1, φ2, φ3, φ4)T ∈ C4, so that
L ≥ 0 on C4.

We verify the conditions (K), (S) and (S)1 for a > 0, and also the condition
(S)2 for a = 1. To this end, we define the real symmetric matrix S and the
real skew-symmetric matrix K by

S = −β

 0 0 0 1
0 0 a 0
0 a 0 0
1 0 0 0

 , K =

 0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0

 , (6.3)

where β is a positive constant determined later. This choice of the matrices S
andK is based on the computations employed in [8,9]. A simple computation,
using (6.2) and (6.3), yields

SA = β

 0 0 a 0
0 0 0 a2

a 0 0 0
0 1 0 0

 , SL = β

1 0 0 −γ
0 0 0 0
0 0 0 0
0 0 0 −1

 , KA =

−1 0 0 0
0 1 0 0
0 0 a 0
0 0 0 −a

 .

Hence we have

(SA)2 =
1

2
β(a2 − 1)

0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0

 , (SL)1 = β

 1 0 0 −γ/2
0 0 0 0
0 0 0 0
−γ/2 0 0 −1

 ,

and (KA)1 = KA.
First we check the condition (K). A simple computation gives

〈(KA)1φ, φ〉 = −|φ1|2 + |φ2|2 + a|φ3|2 − a|φ4|2

for φ = (φ1, φ2, φ3, φ4)T ∈ C4. Let φ ∈ Ker(L). Then φ = (0, φ2, φ3, 0)T . For
this φ, we have

〈(KA)1φ, φ〉 = |φ2|2 + a|φ3|2.
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This shows (1.4) and hence the condition (K) has been verified. Next we
check the condition (S). We have

(SL)1 + L1 =

 β 0 0 −βγ/2
0 0 0 0
0 0 0 0

−βγ/2 0 0 γ − β

 .

Then a simple computation gives

〈((SL)1 + L1)φ, φ〉 = β|φ1|2 + (γ − β)|φ4|2 − βγRe(φ1φ̄4)

≥ β|φ1|2 + (γ − β)|φ4|2 − βγ|φ1||φ̄4|

for φ = (φ1, φ2, φ3, φ4)T ∈ C4. The corresponding discriminant is β2γ2 −
4β(γ − β) = β{(γ2 + 4)β − 4γ}. Therefore, letting β > 0 so small that
β < 4γ/(γ2 + 4), we get

〈((SL)1 + L1)φ, φ〉 ≥ c(|φ1|2 + |φ4|2),

where c is a positive constant. This shows that (SL)1 + L1 ≥ 0 on C4 and
Ker((SL)1 + L1) = span{e2, e3}. Hence we have Ker((SL)1 + L1) = Ker(L).
Thus we have verified the condition (S). Finally, we check (2.3) in the con-
dition (S)1. By direct calculation, we get

〈i(SA)2φ, φ〉 = β(a2 − 1)Im(φ2φ̄4)

for φ = (φ1, φ2, φ3, φ4)T ∈ C4. Let φ ∈ Ker(L1). Then φ = (φ1, φ2, φ3, 0).
For this φ, we have 〈i(SA)2φ, φ〉 = 0. This shows (2.3) and hence the condi-
tion (S)1 has been verified. Consequently, Theorem 2.2 is applicable to the
Timoshenko system with a > 0 and we obtain the estimates (2.5) and (2.6).

On the other hand, when a = 1, we have (SA)2 = 0, which shows (2.3) in
the condition (S)2. Therefore Theorem 2.4 is applicable to the Timoshenko
system with a = 1 and we obtain the estimate (1.6) and (1.7) in this special
case. This completes the proof of Theorem 6.1.

Finally in this section, we check that the Timoshenko system satisfies the
condition (R). By direct calculation, we have

LA =


0 0 −a 0

0 0 0 0

0 0 0 0

0 1 −γa 0

 , LA2 =


0 0 0 a2

0 0 0 0

0 0 0 0

−1 0 0 γa2

 , LA3 =


0 0 −a3 0

0 0 0 0

0 0 0 0

0 1 −γa3 0

 .

Moreover, one can verify that the linear system of equations LAkφ = 0
(0 ≤ k ≤ 3) has a unique solution φ = 0, which implies the rank equality (2.7)
with m = 4. Thus we find that the Timoshenko system satisfies the condition
(R). It means that Theorem 2.2 and 2.4 with condition (K) replaced by the
condition (R) are applicable to the Timoshenko system.
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7 Application to the Euler-Maxwell system

In this last section, as an application of Theorem 5.2, we deal with the fol-
lowing Euler-Maxwell system

ρt + div(ρv) = 0,

(ρv)t + div(ρv ⊗ v) +∇p(ρ) = −ρ(E + v ×B)− ρv,
Et − rotB = ρv,

Bt + rotE = 0,

(7.1)

divE = ρ∞ − ρ, divB = 0. (7.2)

Here the density ρ > 0, the velocity v ∈ R3, the electric field E ∈ R3, and
the magnetic induction B ∈ R3 are unknown functions of t > 0 and x ∈ R3,
the pressure p(ρ) is a given smooth function of ρ satisfying p′(ρ) > 0 for
ρ > 0, and ρ∞ is a positive constant. The Euler-Maxwell system above arises
from the study of plasma phsyics; refer to [3] for detailed discussions on this
model.

We now observe that the system (7.1) is written in the form of a symmetric
hyperbolic system. For this purpose, it is convenient to introduce

u = (ρ, v, E,B)T , u∞ = (ρ∞, 0, 0, B∞)T ,

which are regarded as column vectors in R10, where B∞ ∈ R3 is an arbitrarily
fixed constant. Then the Euler-Maxwell system (7.1) is rewritten as

A0(u)ut +

3∑
j=1

Aj(u)uxj + L(u)u = 0, (7.3)

where the coefficient matrices are given explicitly as

A0(u) =


p′(ρ)/ρ 0 0 0

0 ρI 0 0

0 0 I 0

0 0 0 I

 , L(u) =


0 0 0 0

0 ρ(I −ΩB) ρI 0

0 −ρI 0 0

0 0 0 0

 ,

3∑
j=1

Aj(u)ξj =


(p′(ρ)/ρ)(v · ξ) p′(ρ)ξ 0 0

p′(ρ)ξT ρ(v · ξ)I 0 0

0 0 0 −Ωξ
0 0 Ωξ 0

 .

Here I denotes the 3× 3 identity matrix, ξ = (ξ1, ξ2, ξ3) ∈ R3, and Ωξ is the
skew-symmetric matrix defined by

Ωξ =

 0 −ξ3 ξ2

ξ3 0 −ξ1
−ξ2 ξ1 0


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for ξ = (ξ1, ξ2, ξ3) ∈ R3, so that we have ΩξE
T = (ξ × E)T (as a column

vector in R3) for E = (E1, E2, E3) ∈ R3. We note that (7.3) is a symmetric
hyperbolic system because A0(u) is real symmetric and positive definite and
Aj(u), j = 1, 2, 3, are real symmetric. Also, the matrix L(u) is nonnegative
definite, so that it is regarded as a relaxation matrix. Moreover, we have
L(u)u∞ = 0 for each u so that the constant state u∞ lies in the kernel of
L(u). However, the matrix L(u) or L(u∞) has skew-symmetric part and is
not real symmetric. Consequently, our system is not included in a class of
systems considered in [21,17].

The constant state u∞ is an equilibrium of the system (7.3) with the
constraint (7.2). We consider the linearization of (7.3) with (7.2) around the
equilibrium state u∞. If we denote u−u∞ by u again, then the linearization
of the system (7.3) with (7.2) can be written in the form of (1.1) with (5.1),
where the coefficient matrices are given by

A0 =

a∞ 0 0 0
0 ρ∞I 0 0
0 0 I 0
0 0 0 I

 ,

A(ξ) =

3∑
j=1

Ajξj =

 0 b∞ξ 0 0
b∞ξ

T 0 0 0
0 0 0 −Ωξ
0 0 Ωξ 0

 ,

L =

0 0 0 0
0 ρ∞(I −ΩB∞) ρ∞I 0
0 −ρ∞I 0 0
0 0 0 0

 ,

(7.4)

and

Q(ξ) :=

3∑
j=1

Qjξj =

(
0 0 ξ 0
0 0 0 ξ

)
, R =

(
1 0 0 0
0 0 0 0

)
, (7.5)

where a∞ = p′(ρ∞)/ρ∞ and b∞ = p′(ρ∞) are positive constants. Here the
space dimension is n = 3 and the size of the systems are m = 10 and m1 = 2.
For this linearized Euler-Maxwell system, we obtain the following result.

Theorem 7.1 (Decay property for the Euler Maxwell system) The
linearized Euler-Maxwell system satisfies all the conditions in Theorem 5.2
and therefore the corresponding solution verifies the pointwise estimate (2.5)
and the decay estimate (2.6).

Proof The symmetric part of L is given by

L1 =

0 0 0 0
0 ρ∞I 0 0
0 0 0 0
0 0 0 0


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and we see that

ker(L) = span{e1, e8, e9, e10}, ker(L1) = span{e1, e5, e6, e7, e8, e9, e10},
where e1 = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0)T , · · · , e10 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 1)T form
the standard orthonormal basis of C10. The image of the matrix R in (7.5) is
spanned by (1, 0)T ∈ C2. Therefore the corresponding orthogonal projections
Π1 and Π2 are given respectively by

Π1 =

(
1 0
0 0

)
, Π2 =

(
0 0
0 1

)
.

Since

Π2Q(ω) =

(
0 0 0 0
0 0 0 ω

)
,

the subspace Xω defined in (5.6) consists of vectors φ = (φ1, φ2, φ3, φ4) ∈ C10

such that φ1 ∈ C, φ2, φ3, φ4 ∈ C3 and ω · φ4 = 0.
It is easy to check that the matrices in (7.4) satisfy the condition (A).

For instance, we have 〈Lφ, φ〉 = ρ∞|φ2|2 ≥ 0 for φ = (φ1, φ2, φ3, φ4) ∈ C10,
where φ1 ∈ C and φ2, φ3, φ4 ∈ C3. Thus we see that L ≥ 0 on C10. Also
we can check (5.5) in the condition (C) by direct computations using the
expressions

(A0)−1A(ω) =

 0 ρ∞ω 0 0
a∞ω

T 0 0 0
0 0 0 −Ωω
0 0 Ωω 0

 , (A0)−1L =

0 0 0 0
0 I −ΩB∞ I 0
0 −ρ∞I 0 0
0 0 0 0

 .

We show that our Euler-Maxwell system satisfies the conditions (K*), (S)
and (S*)1. We define the real matrices S and K(ω) by

S = β

0 0 0 0
0 0 I 0
0 (1/ρ∞)I 0 0
0 0 0 0

 , K(ω) =

 0 (1/ρ∞)ω 0 0
−(1/a∞)ωT 0 0 0

0 0 0 Ωω
0 0 Ωω 0

 ,

where β is a positive constant determined later. This choice of S and K(ω) is
based on the computations employed in our previous papers [5,20,19]. Then
straightforward computations yield

SA0 = β

0 0 0 0
0 0 I 0
0 I 0 0
0 0 0 0

 , SA(ω) = β

 0 0 0 0
0 0 0 −Ωω

a∞ω
T 0 0 0

0 0 0 0

 ,

SL = β

0 0 0 0
0 −ρ∞I 0 0
0 I −ΩB∞ I 0
0 0 0 0

 , K(ω)A0 =

 0 ω 0 0
−ωT 0 0 0

0 0 0 Ωω
0 0 Ωω 0

 ,

K(ω)A(ω) =

a∞ 0 0 0
0 −ρ∞(ω ⊗ ω) 0 0
0 0 Ω2

ω 0
0 0 0 −Ω2

ω

 .
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Hence we see that

(SA(ω))2 =
1

2
β

 0 0 −a∞ω 0
0 0 0 −Ωω

a∞ω
T 0 0 0

0 −Ωω 0 0

 ,

(SL)1 = β

0 0 0 0
0 −ρ∞I 1

2 (I +ΩB∞) 0
0 1

2 (I −ΩB∞) I 0
0 0 0 0

 ,

and (K(ω)A(ω))1 = K(ω)A(ω).
First we check the condition (K*). Obviously we see that K(−ω) =

−K(ω) and (K(ω)A(ω))T = −K(ω)A(ω). Also a simple computation gives

〈((K(ω)A(ω))1φ, φ〉 = a∞|φ1|2 − ρ∞|ω · φ2|2 − |Ωωφ3|2 + |Ωωφ4|2

for φ = (φ1, φ2, φ3, φ4) ∈ C10, where φ1 ∈ C and φ2, φ3, φ4 ∈ C3. Now we
suppose that φ ∈ Xω ∩ Ker(L). Then φ = (φ1, 0, 0, φ4) with ω · φ4 = 0. For
this φ, we have |Ωωφ4|2 = |φ4|2 and hence

〈((K(ω)A(ω))1φ, φ〉 = a∞|φ1|2 + |φ4|2.

This shows (5.7). Therefore we have checked the condition (K*).
Next we check the condition (S). We have

(SL)1 + L1 =

0 0 0 0
0 (1− β)ρ∞I

1
2β(I +ΩB∞) 0

0 1
2β(I −ΩB∞) βI 0

0 0 0 0

 .

Then a simple computation gives

〈((SL)1 + L1)φ, φ〉 = (1− β)ρ∞|φ2|2 + β|φ3|2 + βRe{(I +ΩB∞)φ3 · φ̄2}

≥ (1− β)ρ∞|φ2|2 + β|φ3|2 − β(1 + |B∞|)|φ2||φ3|

for φ = (φ1, φ2, φ3, φ4)T ∈ C10. The corresponding discriminant is β2(1 +
|B∞|)2− 4β(1− β)ρ∞ = β{(4ρ∞+ (1 + |B∞|)2)β− 4ρ∞}. Therefore, letting
β > 0 so small that β < 4ρ∞/(4ρ∞ + (1 + |B∞|)2), we get

〈((SL)1 + L1)φ, φ〉 ≥ c(|φ2|2 + |φ3|2),

where c is a positive constant. This shows that (SL)1 + L1 ≥ 0 on C10 and
Ker((SL)1 + L1) = span{e1, e8, e9, e10}. Hence we have Ker((SL)1 + L1) =
Ker(L). Thus we have verified the condition (S).

Finally, we check the condition (S*)1. We need to determine the matrix

T (ω) = (Π1Q(ω))T S̃R in (5.9). We take S̃ = β1a∞I. Then the corresponding
T (ω) is given by

T (ω) = β

 0 0 0 0
0 0 0 0

a∞ω
T 0 0 0

0 0 0 0

 .
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For this T (ω), we see that

(SA(ω)− T (ω))2 = −1

2
β

0 0 0 0
0 0 0 Ωω
0 0 0 0
0 Ωω 0 0

 .

Therefore we obtain

〈i(SA(ω)− T (ω))2φ, φ〉 = βIm(Ωωφ4 · φ̄2)

for φ = (φ1, φ2, φ3, φ4)T ∈ C10. Now let φ ∈ Ker(L1). Then φ = (φ1, 0, φ3, φ4)T .
For this φ, we have 〈i(SA(ω)− T (ω))2φ, φ〉 = 0, which shows (5.9). Thus we
have verified the condition (S*)1. Consequently, Theorem 5.2 is applicable to
the linearized Euler-Maxwell system and we obtain the pointwise estimate
(2.5) and the decay estimate (2.6). This completes the proof of Theorem 7.1.

Acknowledgements A part of this paper was completed when Y. Ueda visited
the Institute of Mathematical Sciences, the Chinese University of Hong Kong in
February, 2011. Y. Ueda expresses sincere gratitude to Professor Zhouping Xin for
his kind invitation and hospitality.

References

1. Ammar Khodja, F., Benabdallah, A., Muñoz Rivera, J.E., Racke, R.: Energy
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