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Abstract. In this paper we discuss the dissipative property of near-equilibrium classical solutions
to the Cauchy problem of the Vlasov-Maxwell-Boltzmann System in the whole space R3 when the
positive charged ion flow provides a spatially uniform background. The most key point of studying
this coupled degenerately dissipative system here is to establish the dissipation of the electromagnetic
field which turns out to be of the regularity-loss type. Precisely, for the linearized non-homogeneous
system, some L2 energy functionals and L2 time-frequency functionals which are equivalent with
the naturally existing ones are designed to capture the optimal dissipation rate of the system, which
in turn yields the optimal Lp-Lq type time-decay estimates of the corresponding linearized solution
operator. These results show a special feature of the one-species Vlasov-Maxwell-Boltzmann system
different from the case of two-species, that is, the dissipation of the magnetic field in one-species is
strictly weaker than the one in two-species. As a by-product, the global existence of solutions to the
nonlinear Cauchy problem is also proved by constructing some similar energy functionals but the
time-decay rates of the obtained solution still remain open.
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1. Introduction. The Vlasov-Maxwell-Boltzmann system is an important model
for plasma physics to describe the time evolution of dilute charged particles (e.g., elec-
trons and ions in the case of two-species) under the influence of the self-consistent
internally generated Lorentz forces [16]. In physical situations the ion mass is usually
much larger than the electron mass so that the electrons move much faster than the
ions. Thus, the ions are often described by a fixed ion background nb(x) and only the
electrons move. For such simple case, the Vlasov-Maxwell-Boltzmann system takes
the form of 

∂tf + ξ · ∇xf + (E + ξ ×B) · ∇ξf = Q(f, f),

∂tE −∇x ×B = −
∫

R3
ξf dξ,

∂tB +∇x × E = 0,

∇ · E =
∫

R3
f dξ − nb, ∇x ·B = 0.

(1.1)

Here, the unknowns are f = f(t, x, ξ) : (0,∞) × R3 × R3 → [0,∞), E = E(t, x) :
(0,∞) × R3 → R3 and B = B(t, x) : (0,∞) × R3 → R3, with f(t, x, ξ) standing
for the number distribution function of one-species of particles (e.g., electrons) which
have position x = (x1, x2, x3) and velocity ξ = (ξ1, ξ2, ξ3) at time t, and E(t, x) and
B(t, x) denoting the electromagnetic field in terms of the time-space variable (t, x).
The initial data of the system at t = 0 is given by

f(0, x, ξ) = f0(x, ξ), E(0, x) = E0(x), B(0, x) = B0(x). (1.2)
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Q is the bilinear Boltzmann collision operator [1] for the hard-sphere model defined
by

Q(f, g) =
∫

R3×S2
(f ′g′∗ − fg∗)|(ξ − ξ∗) · ω|dωdξ∗,

f = f(t, x, ξ), f ′ = f(t, x, ξ′), g∗ = g(t, x, ξ∗), g′∗ = g(t, x, ξ′∗),
ξ′ = ξ − [(ξ − ξ∗) · ω]ω, ξ′∗ = ξ∗ + [(ξ − ξ∗) · ω]ω, ω ∈ S2.

Notice that system (1.1) in general contains physical constants such as the charge
and mass of electrons and the speed of light, cf. [11]. Since our purpose in this paper
is to investigate the dissipative property of solutions near global Maxwellians, those
physical constants in system (1.1) have been normalized to be one for notational
simplicity. Through this paper, nb(x) is assumed to be a positive constant denoting
the spatially uniform density of the ionic background, and we also set nb = 1 without
loss of generality.

1.1. Main results. We are interested in the solution to the Cauchy problem for
the case when the number distribution function f(t, x, ξ) is near an equilibrium state
M and E(t, x) and B(t, x) have small amplitudes, where M denotes the normalized
Maxwellian

M = M(ξ) = (2π)−3/2e−|ξ|
2/2.

For that, set the perturbation u by

f(t, x, ξ) = M + M1/2u(t, x, ξ).

Then, the Cauchy problem (1.1), (1.2) can be reformulated as

∂tu+ ξ · ∇xu+ (E + ξ ×B) · ∇ξu− ξM1/2 · E
= Lu+ Γ(u, u) +

1
2
ξ · Eu,

∂tE −∇x ×B = −
∫

R3
ξM1/2u dξ,

∂tB +∇x × E = 0,

∇ · E =
∫

R3
M1/2u dξ, ∇x ·B = 0,

(1.3)

with initial data

u(0, x, ξ) = u0(x, ξ), E(0, x) = E0(x), B(0, x) = B0(x). (1.4)

Here, the linear term Lu and the nonlinear term Γ(u, u) are defined in (2.1) and (2.2)
later on. The problems to be considered are (i) whether or not any small amplitude
solution

[u(t), E(t), B(t)] : R+ → X = HN (R3
x × R3

ξ)×HN (R3
x)×HN (R3

x)

with a properly large N for the above reformulated Cauchy problem uniquely exists
for all t > 0 if initial data [u0, E0, B0] ∈ X is sufficiently small; (ii) if so, does
the solution decay in time with some explicit rate? We shall give in this paper a
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satisfactory answer to the first question and a partial answer to the second one only
in the linearized level. Since these two issues have been extensively studied in different
contents such as the Boltzmann equation [4, 3], the Vlasov-Poisson-Boltzmann system
[7, 6] and the Vlasov-Maxwell-Boltzmann system for two-species [5], our emphasize
here will be put on the study of the weakly dissipative property of the electromagnetic
field and its resulting slow time-decay rate of solutions, which are even different from
the case of two-species. All details for their discussions are left to the next subsection.

Let us begin with the Cauchy problem on the linearized non-homogeneous Vlasov-
Maxwell-Boltzmann system, in the form of

∂tu+ ξ · ∇xu− ξM1/2 · E = Lu+ h,

∂tE −∇x ×B = −
∫

R3
ξM1/2u dξ,

∂tB +∇x × E = 0,

∇ · E =
∫

R3
M1/2u dξ, ∇x ·B = 0,

(1.5)

with

u(0, x, ξ) = u0(x, ξ), E(0, x) = E0(x), B(0, x) = B0(x), (1.6)

where h = h(t, x, ξ) denotes a given non-homogeneous source term. For simplicity, we
write

U = [u,E,B], U0 = [u0, E0, B0].

Moreover, U0 = [u0, E0, B0] is always supposed to satisfy the last equation of (1.5)
for t = 0.

The first result, concerning the naturally existing energy functional and its op-
timal dissipation rate, is stated as follows. Here and hereafter, ν = ν(ξ) and P are
defined in (2.3) and (2.5), respectively; see Subsection 1.3 for more notations used in
this paper.

Theorem 1.1. Let N ≥ 3. Assume ν−1/2h ∈ L2
ξ(H

N
x ) with Ph(t, x, ξ) = 0.

Define the temporal L2-energy functional E lin
N (U(t)) and its dissipation rate Dlin

N (U(t))
by

E lin
N (U(t)) ∼ ‖u(t)‖2L2

ξ(H
N
x ) + ‖[E(t), B(t)]‖2HNx , (1.7)

Dlin
N (U(t)) = ‖ν1/2{I−P}u(t)‖2L2

ξ(H
N
x ) + ‖∇xPu(t)‖2

L2
ξ(H

N−1
x )

(1.8)

+‖∇xE(t)‖2
HN−2
x

+ ‖∇2
xB(t)‖2

HN−3
x

.

Then, for any smooth solution U = [u,E,B] of the Cauchy problem (1.5)-(1.6) be-
longing to L2

ξ(H
N
x )×HN

x ×HN
x , there exists a continuous functional E lin

N (U(t)) given
in (3.12) such that

d

dt
E lin
N (U(t)) + λDlin

N (U(t)) ≤ C‖ν−1/2h(t)‖2L2
ξ(H

N
x ) (1.9)

for any t ≥ 0.
Remark 1.1. The above theorem shows the precise dissipative property of the

naturally existing L2-energy functional

‖u(t)‖2L2
ξ(H

N
x ) + ‖[E(t), B(t)]‖2HNx
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for a properly large N . The construction of the equivalent energy functional E lin
N (U(t))

is used to capture the optimal dissipation rate Dlin
N (U(t)), which will also be revisited

in Corollary 1.4. This is different from the case of the two-species Vlasov-Maxwell-
Boltzmann system as in [5], where the dissipation rate is a little stronger due to
a cancelation phenomenon between two species which was firstly observed in [17].
Specifically, if it is here supposed that h = 0 and E lin

N (U0) is finite, then not only
all macroscopic quantities Pu, E, B and the highest-order derivative ∇Nx [E,B] of
the electromagnetic field lose their time-space integrability, but also the same thing
happens to the second-order derivative ∇2

xB of the magnetic field. On the other hand,
for the energy space with m-order spatial regularity for any integer m ≥ 0, its optimal
dissipation rate can be described by Dlin

m (U(t)) once again from Corollary 1.4. Finally,
as seen from Theorem 1.5 later on, this kind of weaker dissipation property leads to
some slower time-decay rates of solutions.

The second result about some time-frequency functional and its optimal dissipa-
tion rate is stated as follows.

Theorem 1.2. Assume ν−1/2ĥ ∈ L2
ξ for t ≥ 0, k ∈ R3, and Ph = 0. Define the

L2 time-frequency functional E(Û(t, k)) and its dissipation rate D(Û(t, k)) by

E(Û(t, k)) ∼ ‖û‖2L2
ξ

+ |[Ê, B̂]|2, (1.10)

D(Û(t, k)) = ‖ν1/2{I−P}û‖L2
ξ

+ |k · Ê|2 +
|k|2

1 + |k|2
|[â, b̂, ĉ]|2 (1.11)

+
|k|2

(1 + |k|2)2
|Ê|2 +

|k|4

(1 + |k|2)3
|B̂|2.

Then, for any solution U = [u,E,B] of the Cauchy problem (1.5) and (1.6) satisfying
that ‖û‖2

L2
ξ
+|[Ê, B̂]|2 is finite for t ≥ 0 and k ∈ R3, there indeed exists a time-frequency

functional E(Û(t, k)) given in (3.30) such that

∂tE(Û(t, k)) + λD(Û(t, k)) ≤ C‖ν−1/2ĥ‖2L2
ξ

(1.12)

for any t ≥ 0 and k ∈ R3.
Corollary 1.3. Under Theorem 1.2, E(Û(t, k)) further satisfies

∂tE(Û(t, k)) +
λ|k|4

(1 + |k|2)3
E(Û(t, k)) ≤ C‖ν−1/2ĥ‖2L2

ξ
(1.13)

for any t ≥ 0 and k ∈ R3.
Remark 1.2. Theorem 1.2 and Corollary 1.3 show that the magnetic field B

bears the weakest dissipation property among all quantities {I − P}u, a, b, c, E and
B, and even the dissipation of B here is much weaker than that in the case of two-
species Vlasov-Maxwell-Boltzmann system as in [5]. This is also consistent with what
has been mentioned in Remark 1.1.

Corollary 1.4. Let m ≥ 0 be an integer. Assume ν−1/2∇mx h ∈ L2
x,ξ with

Ph(t, x, ξ) = 0. Define the L2 energy functional E lin
m (U(t)) and its dissipation rate

Dlin
m (U(t)) by

E lin
m (U(t)) ∼ ‖∇mx u(t)‖2 + ‖∇mx [E(t), B(t)]‖2, (1.14)
Dlin
m (U(t)) = ‖ν1/2∇mx {I−P}u(t)‖2 (1.15)

+‖∇mx a‖2 + ‖∇1+m
x 〈∇x〉−1[a, b, c]‖2

+‖∇1+m
x 〈∇x〉−2E‖2 + ‖∇2+m

x 〈∇x〉−3B‖2.
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Then, for any smooth solution U = [u,E,B] of the Cauchy problem (1.5) and (1.6)
whose m-order spatial derivative belongs to L2

x,ξ × L2 × L2, there indeed exists a
continuous functional E lin

m (U(t)) given in (3.31) such that

d

dt
E lin
m (U(t)) + λDlin

m (U(t)) ≤ C‖ν−1/2∇mx h(t)‖2 (1.16)

for any t ≥ 0.
Remark 1.3. It is straightforward to observe that Corollary 1.4 implies Theorem

1.1 by defining

E lin
N (U(t)) =

N∑
m=0

E lin
m (U(t)), Dlin

N (U(t)) =
N∑
m=0

Dlin
m (U(t)),

and using

N∑
m=0

|∇x|1+m〈∇x〉−1 = |∇x|〈∇x〉−1
N∑
m=0

|∇x|m ∼ |∇x|〈∇x〉N−1,

and likewise

N∑
m=0

|∇x|1+m〈∇x〉−2 ∼ |∇x|〈∇x〉N−2,

N∑
m=0

|∇x|2+m〈∇x〉−3 ∼ |∇x|2〈∇x〉N−3.

Notice that the above identities and equivalent relations can be verified with respect
to the frequency variable under the Fourier transform. On the other hand, it is also
interesting to see that even when 0 ≤ m < N , Dlin

m (U(t)) can capture the optimal
dissipation rate of the naturally existing m-order energy functional E lin

m (U(t)). For
instance, when m = 0, the direct energy estimate on system (1.5) produces the only
dissipation of the microscopic component {I−P}u, which is partially contained in the
optimal form Dlin

0 (U(t)).
Furthermore, we can obtain the large-time behavior of solutions to the linearized

non-homogeneous Cauchy problem. Formally, the solution to the Cauchy problem
(1.5) and (1.6) is denoted by the summation of two parts,

U(t) = U I(t) + U II(t), (1.17)
U I(t) = A(t)U0, U I = [uI , EI , BI ], (1.18)

U II(t) =
∫ t

0

A(t− s)[h(s), 0, 0]ds, U II = [uII , EII , BII ], (1.19)

where A(t) is the linear solution operator for the Cauchy problem on the linearized
homogeneous system corresponding to (1.5) with h = 0. Notice that U II(t) is well-
defined because [h(s), 0, 0] for any 0 ≤ s ≤ t satisfies the last equation of (1.5) due to
the fact that Ph(s) = 0 and hence∫

R3
M1/2h(s)dξ = 0.

For brevity, we introduce the norms ‖ · ‖Hm , ‖ · ‖Zr with m ≥ 0 and r ≥ 1 given by

‖U‖2Hm = ‖u‖2L2
ξ(H

m
x ) + ‖[E,B]‖2Hmx , ‖U‖Zr = ‖u‖Zr + ‖[E,B]‖Lrx ,
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for U = [u,E,B], and note Z2 = H0. Then, the third result to describe the time-decay
property of the linearized solution is stated as follows.

Theorem 1.5. Let 1 ≤ p, r ≤ 2 ≤ q ≤ ∞, σ ≥ 0, and let m ≥ 0 be an integer.
Suppose Ph = 0. Let U be defined in (1.17), (1.18) and (1.19) as the solution to the
Cauchy problem (1.5)-(1.6). Then, the first part U I corresponding to the solution of
the linearized homogeneous system satisfies

‖∇mx U I(t)‖Zq ≤ C(1 + t)−
3
4 ( 1
p−

1
q )−m4 ‖U0‖Zp + C(1 + t)−

σ
2 ‖∇m+[σ+3( 1

r−
1
q )]+

x U0‖Zr ,
(1.20)

for any t ≥ 0, and the second part U II corresponding to the solution of the linearized
nonhomogeneous system with vanishing initial data satisfies

‖∇mx U II(t)‖2Z2
≤ C

∫ t

0

(1 + t− s)− 3
2 ( 1
r−

1
2 )−m‖ν−1/2h(s)‖2Zpds

+ C

∫ t

0

(1 + t− s)−σ‖ν−1/2∇m+[σ]+
x h(s)‖2 ds, (1.21)

for any t ≥ 0. Here, [·]+ is defined by

[σ + 3(
1
r
− 1
q

)]+ =

σ if σ is integer and r = q = 2,

[σ + 3( 1
r −

1
q )] + 1 otherwise,

(1.22)

where [·] means the integer part of the nonnegative argument.
Finally, let us go back to the Cauchy problem on the nonlinear Vlasov-Maxwell-

Boltzmann system. The global existence and uniqueness of solutions are stated as
follows.

Theorem 1.6. Let N ≥ 4. Define L2 energy functional EN (U(t)) and its dissi-
pation rate DN (U(t)) by

EN (U(t)) ∼ ‖u(t)‖2HNx,ξ + ‖[E(t), B(t)]‖2HNx , (1.23)

DN (U(t)) = ‖ν1/2{I−P}u(t)‖2HNx,ξ + ‖ν1/2∇xu(t)‖2
L2
ξ(H

N−1
x )

(1.24)

+‖∇xE(t)‖2
HN−2
x

+ ‖∇2
xB(t)‖2

HN−3
x

.

Suppose f0 = M+M1/2u0 ≥ 0. There indeed exists a continuous functional EN (U(t))
given in (4.7) or (4.8) such that if initial data U0 = [u0, E0, B0] satisfies (1.3)4 for
t = 0 and EN (U0) is sufficiently small, then the nonlinear Cauchy problem (1.3)-(1.4)
admits a global solution U = [u,E,B] satisfying

f(t, x, ξ) = M + M1/2u(t, x, ξ) ≥ 0,
[u(t), E(t), B(t)] ∈ C([0,∞);HN

x,ξ ×HN
x ×HN

x ),

and

EN (U(t)) + λ

∫ t

0

DN (U(s))ds ≤ EN (U0)

for any t ≥ 0.
The decay rate of the solution obtained in Theorem 1.6 remains open. We shall

discuss at the end of this paper the main difficulty of extending the linear decay
property in Theorem 1.5 to the time-decay of the nonlinear system.
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1.2. Related work and key points in the proof. As mentioned before, the
method of constructing energy functionals or time-frequency functionals to deal with
the global existence and time-decay estimates presented in this paper has been also
extensively applied in [4, 7, 6, 3, 5]. Specifically, [4] is a starting point of these series
of work. In [4], some interactive energy functionals were constructed to consider the
dissipation of the macroscopic part of the solution and also the global existence of
solutions without any initial layer was proved. Later, the same thing was done in
[7] for the one-species Vlasov-Poisson-Boltzmann system, where the additional efforts
are made to take care of the coupling effect from the self-consistent potential force
through the Poisson equation. In order to investigate the optimal rate of convergence
for the one-species Vlasov-Poisson-Boltzmann system, a new method on the basis of
the linearized Fourier analysis was developed in [6] to study the time-decay property
of the linear solution operator, where the key point is again to construct some proper
time-frequency functionals so as to capture the optimal dissipation rate of the system.
At the same time, [3] provided another method to study the exponential time-decay for
the linear Boltzmann equation with a confining force by using the operator calculations
instead of the Fourier analysis.

Recently, following a combination of [6] and [17], the optimal large-time behavior
of the two-species Vlasov-Maxwell-Boltzmann system was analyzed in [5]. The main
finding in [5] is that although the non-homogeneous Maxwell system conserves the
energy of the electromagnetic field, the coupling of the Boltzmann equation with the
Maxwell system can generate some weak dissipation of the electromagnetic field which
is actually of the regularity-loss type. It should be pointed out that even though the
form of two-species Vlasov-Maxwell-Boltzmann system looks more complicated than
that of the case of one-species, the study of global existence and time-decay rate is
much more delicate in the case of one-species because the coupling term in the source
of the Maxwell system

−
∫

R3
ξM1/2u(t, x, ξ)dξ = −b(t, x)

corresponds to the momentum component of the macroscopic part of the solution
which is degenerate with respect to the linearized operator L. Essentially, it is this
kind of the macroscopic coupling feature that leads to some different dissipation prop-
erties between two-species and one-species for the Vlasov-Maxwell-Boltzmann system.

For the convenience of readers, let us list a table below to present in a clear
way similarity and difference of the dissipative and time-decay properties for three
models: Boltzmann equation (BE), Vlasov-Poisson-Boltzmann system (VPB) and
Vlasov-Maxwell-Boltzmann system (VMB). In Table 1, 1-s means one-species and 2-s
two-species. Corresponding to different models, E(t, k) stands for some time-frequency
functional equivalent with the naturally existing one and D(t, k) denotes the optimal
dissipation rate of E(t, k) satisfying

d

dt
E(t, k) + λD(t, k) ≤ 0

for all t ≥ 0 and k ∈ R3. All estimates are written for the linearized homogeneous
equation or system. For more details and proof of other models in the above table,
interested readers can refer to [3, 6, 5]. Notice that the 1-s VMB system decays
faster than the 1-s VPB system due to the choice of initial data, that is, E0 ∈ L1

x is
assumed in the case of 1-s VMB system, whereas in the case of 1-s VPB system, the
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electric field E0 = −∇xφ0 with the potential force φ0 satisfying the Poisson equation
−∆xφ0 =

∫
R3 M1/2u0 dξ may not belong to L1

x under the assumption of u0 ∈ Z1∩L2.
We remark that the decay rate (1 + t)−1/4 for the 1-s VPB system can be improved
to be (1+ t)−3/4 provided that ∇xφ0 ∈ L1

x is additionally supposed. Finally, it should
also be pointed out that the method developed in [3, 6, 5] and this paper could provide
a good tool to deal with similar studies for other physical models with the structure
involving not only the free transport operator but also the degenerately dissipative
operator; see also [20].

E(t, k) ∼ D(t, k) = ‖u(t)‖L2 ≤

BE ‖û‖2
L2
ξ

‖ν1/2{I−P}û‖2
L2
ξ

+ |k|2
1+|k|2 |[â, b̂, ĉ]|

2
C(1 + t)−

3
4 ‖u0‖Z1∩L2

1-s VPB ‖û‖2
L2
ξ

+ |â|2
|k|2

‖ν1/2{I−P}û‖2
L2
ξ

+ |k|2
1+|k|2 |[â, b̂, ĉ]|

2 + |â|2
C(1 + t)−

1
4 ‖u0‖Z1∩L2

1-s VMB ‖û‖2
L2
ξ

+ |[Ê, B̂]|2
‖ν1/2{I−P}û‖L2

ξ

+ |k|2
1+|k|2 |[â, b̂, ĉ]|

2 + |k · Ê|2

+ |k|2
(1+|k|2)2 |Ê|

2 + |k|4
(1+|k|2)3 |B̂|

2

C(1 + t)−
3
8

×(‖U0‖Z1 + ‖∇xU0‖Z2)

2-s VMB ‖û‖2
L2
ξ

+ |[Ê, B̂]|2
‖ν1/2{I−P}û‖L2

ξ

+ |k|2
1+|k|2 |[â±, b̂, ĉ]|

2 + |k · Ê|2

+ |k|2
(1+|k|2)2 (|Ê|2 + |B̂|2)

C(1 + t)−
3
4

×(‖U0‖Z1 + ‖∇2
xU0‖Z2)

Table 1.1
Dissipative and time-decay properties of different models

Since the current work is a further development in the study of the Vlasov-
Maxwell-Boltzmann system as in [5], we omit the detailed literature review for brevity,
and readers can refer to [5] and reference therein. Here, we only mention some of
them. The spectral analysis and global existence for the Boltzmann equation with
near-equilibrium initial data was given by [19]. For the same topic, thirteen moments
method and global existence was found by [13]. The energy method of the Boltz-
mann equation was developed independently in [9, 10, 11] and [15, 14, 21] by using
the different macro-micro decomposition. The almost exponential rate of convergence
of the Boltzmann equation on torus for large initial data was obtained in [2] under
some additional regularity assumption. [18] provided a very simple proof of [2] in
the framework of small perturbation. The diffusive limit of the two-species Vlasov-
Maxwell-Boltzmann system over the torus was studied in [8]. It could be interesting
to consider the same issue as in [8] for the one-species Vlasov-Maxwell-Boltzmann
system because of its weaker dissipation property.

In what follows, let us explain some new technical points in the proof of our main
results which are different from previous work. The first one is about the dissipation
estimate on the momentum component b(t, x) in the macroscopic part Pu in Theorem
1.1. Recall that in the previous work [7] and [3], the dissipation estimate of b(t, x)
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was based on (2.7)1 and (2.6)2. This fails in the case of one-species Vlasov-Maxwell-
Boltzmann system because it is impossible to control a term such as∑

ij

δij

∫
c(∂iEj + ∂jEi)dx.

Instead, the right way is to make estimates on (2.9)4. Therefore, one can get the
macroscopic dissipation estimate (3.8) with the dissipation of E multiplied by a small
constant on the right-hand side. The second key point is about the dissipation of the
electromagnetic field. Different from [5], although there is no cancelation in the case
of one-species, one can still design some interactive energy functional E lin,2

N (U(t)) to
capture the weaker dissipation rate∑

1≤|α|≤N−1

‖∂αE‖2 +
∑

2≤|α|≤N−1

‖∂αB‖2.

The third key point is about the time-decay estimate on the linearized solution op-
erator. In fact, for a general frequency function φ(k) which is of the regularity-loss
type as in Lemma 3.1, one can repeatedly apply the Minkowski inequality to make
interchanges between frequency and space variables so that the more general Lp-Lq

type time-decay than in Theorem 1.5 can be obtained. The last key point is about the
estimate on the nonlinear term ξ ·Eu in the proof of Lemma 4.1 concerning the a priori
estimates of solutions. In particular, it is impossible to bound

∫∫
ξ · E(Pu)2 dxdξ by

using EN (U(t))1/2DN (U(t)) up to a constant since both E and Pu do not enter into
the dissipation rate DN (U(t)) given in (1.24). Instead, we first take the velocity inte-
gration and then use the macroscopic balance laws (2.6) so as to obtain an estimate
as∫∫

ξ · E(Pu)2 dxdξ ≤ d

dt

∫
|b|2(a+ 2c) dx+ C

[
EN (U(t))1/2 + EN (U(t))

]
DN (U(t)).

We remark that this also has been observed in [7] in the study of the one-species
Vlasov-Poisson-Boltzmann system.

1.3. Notations. Throughout this paper, C denotes some positive (generally
large) constant and λ denotes some positive (generally small) constant, where both
C and λ may take different values in different places. In addition, A ∼ B means
λA ≤ B ≤ 1

λA for a generic constant 0 < λ < 1. For any integer m ≥ 0, we use
Hm
x,ξ, H

m
x , Hm

ξ to denote the usual Hilbert spaces Hm(R3
x × R3

ξ), H
m(R3

x), Hm(R3
ξ),

respectively, and L2, L2
x, L2

ξ are used for the case when m = 0. When without
confusion, we use Hm to denote Hm

x and use L2 to denote L2
x or L2

x,ξ. For a Banach
space X, ‖ · ‖X denotes the corresponding norm, while ‖ · ‖ always denotes the norm
‖·‖L2 for simplicity. For r ≥ 1, we also define the standard time-space mixed Lebesgue
space Zr = L2

ξ(L
r
x) = L2(R3

ξ ;L
r(R3

x)) with the norm

‖g‖Zr =

(∫
R3

(∫
R3
|g(x, ξ)|rdx

)2/r

dξ

)1/2

, g = g(x, ξ) ∈ Zr.

For multi-indices α = [α1, α2, α3] and β = [β1, β2, β3], we denote

∂αβ = ∂α1
x1
∂α2
x2
∂α3
x3
∂β1
ξ1
∂β2
ξ2
∂β3
ξ3
.
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The length of α is |α| = α1 + α2 + α3 and the length of β is |β| = β1 + β2 + β3. For
simplicity, we also use ∂j to denote ∂xj for each j = 1, 2, 3. For an integrable function
g : R3 → R, its Fourier transform is defined by

ĝ(k) = Fg(k) =
∫

R3
e−2πix·kg(x)dx, x · k :=

3∑
j=1

xjkj , k ∈ R3,

where i =
√
−1 ∈ C is the imaginary unit. For two complex vectors a, b ∈ C3, (a | b)

denotes the dot product of a with the complex conjugate of b over the complex field.
〈∇x〉 = (1 + |∇x|2)1/2 is defined in terms of the Fourier transform.

The rest of this paper is arranged as follows. In Section 2 we present some basic
property of the linearized collision operator and derive some macroscopic moment
equations. In Section 3 we study the linearized non-homogeneous Vlasov-Maxwell-
Boltzmann system in order to prove Theorem 1.1, Theorem 1.2 and Theorem 1.5.
Finally, we prove in Section 4 Theorem 1.6 for the global existence of solutions to the
nonlinear Cauchy problem.

2. Moment equations. It is easy to see that Lu and Γ(u, u) are given by

Lu =
1√
M

[
Q(M,

√
Mu) +Q(

√
Mu,M)

]
, (2.1)

Γ(u, u) =
1√
M
Q(
√

Mu,
√

Mu). (2.2)

For the linearized collision operator L, one has the following standard facts [1]. L can
be split as Lu = −ν(ξ)u+Ku, where the collision frequency is given by

ν(ξ) =
∫∫

R3×S2
|(ξ − ξ∗) · ω|M(ξ∗) dωdξ∗. (2.3)

Notice that ν(ξ) ∼ (1 + |ξ|2)1/2. The null space of L is given by

N = span
{
M1/2, ξiM1/2 (1 ≤ i ≤ 3), |ξ|2M1/2

}
.

The linearized collision operator L is non-positive and further −L is known to be
locally coercive in the sense that there is a constant λ0 > 0 such that [1]:

−
∫

R3
uLu dξ ≥ λ0

∫
R3
ν(ξ)|{I−P}u|2dξ, (2.4)

where, for fixed (t, x), P denotes the orthogonal projection from L2
ξ to N . Given any

u(t, x, ξ), one can write P in (2.4) as

Pu = {a(t, x) + b(t, x) · ξ + c(t, x)(|ξ|2 − 3)}M1/2. (2.5)

Since P is a projection, the coefficient functions a(t, x), b(t, x) ≡ [b1(t, x), b2(t, x), b3(t, x)]
and c(t, x) depend on u(t, x, ξ) in terms of

a =
∫

R3
M1/2udξ =

∫
R3

M1/2Pudξ,

bi =
∫

R3
ξiM1/2udξ =

∫
R3
ξiM1/2Pudξ, 1 ≤ i ≤ 3,

c =
1
6

∫
R3

(|ξ|2 − 3)M1/2udξ =
1
6

∫
R3

(|ξ|2 − 3)M1/2Pudξ.
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To derive evolution equations of a, b and c, we start from the local balance laws
of the original system (1.1) to obtain

∂t

∫
R3
fdξ +∇x ·

∫
R3
ξfdξ = 0,

∂t

∫
R3
ξfdξ +∇x ·

∫
R3
ξ ⊗ ξfdξ − E

∫
R3
fdξ −

∫
R3
ξfdξ ×B = 0,

∂t

∫
R3

1
2
|ξ|2fdξ +∇x ·

∫
R3

1
2
|ξ|2ξfdξ − E ·

∫
R3
ξfdξ = 0.

The above system implies

∂ta+∇x · b = 0,

∂tb+∇x(a+ 2c) +∇x ·
∫

R3
ξ ⊗ ξM1/2{I−P}udξ − E(1 + a)− b×B = 0,

∂tc+
1
3
∇x · b+

1
6
∇x ·

∫
R3
|ξ|2ξM1/2{I−P}udx− 1

3
E · b = 0.

(2.6)

As in [6], define

Θij(u) =
∫

R3
(ξiξj − 1)M1/2udξ, Λi(u) =

1
10

∫
R3

(|ξ|2 − 5)ξiM1/2udξ

for 1 ≤ i, j ≤ 3. Applying them to the first equation of (1.3), one has{
∂t[Θij({I−P}u) + 2cδij ] + ∂ibj + ∂jbi = Θij(`+ g),
∂tΛi({I−P}u) + ∂ic = Λi(`+ g),

(2.7)

where δij means Kronecker delta, and ` = −ξ · ∇x · {I−P}u+ Lu,

g =
1
2
ξ · Eu− (E + ξ ×B) · ∇ξu+ Γ(u, u).

(2.8)

One can replace ∂tc in (2.7)1 by using (2.6)3 so that

∂tΘij({I−P}u) + ∂ibj + ∂jbi −
2
3
δij∇x · b

− 10
3
δij∇x · Λ({I−P}u) = Θij(`+ g)− 2

3
δijE · b.

In a summary, we obtained the following moment system

∂ta+∇x · b = 0,
∂tb+∇x(a+ 2c) +∇x ·Θ({I−P}u)− E = Ea+ b×B,

∂tc+
1
3
∇x · b+

5
3
∇x · Λ({I−P}u) =

1
3
E · b,

∂tΘij({I−P}u) + ∂ibj + ∂jbi −
2
3
δij∇x · b−

10
3
δij∇x · Λ({I−P}u)

= Θij(`+ g)− 2
3
δijE · b, 1 ≤ i, j ≤ 3,

∂tΛi({I−P}u) + ∂ic = Λi(`+ g), 1 ≤ i ≤ 3.

(2.9)
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On the other hand, the Maxwell system in (1.4) is equivalent with
∂tE −∇x ×B = −b,
∂tB +∇x × E = 0,
∇x · E = 0, ∇x ·B = 0.

Finally, we should point out that the key analysis of all results in this paper is based
on the above moment equations coupled with the Maxwell system.

3. Linear non-homogeneous system. In this section we consider the Cauchy
problem (1.5) and (1.6) on the linearized Vlasov-Maxwell-Boltzmann system. For
convenience of readers, recall it by

∂tu+ ξ · ∇xu− ξM1/2 · E = Lu+ h,

∂tE −∇x ×B = −
∫

R3
ξM1/2udξ,

∂tB +∇x × E = 0,

∇ · E =
∫

R3
M1/2udξ, ∇x ·B = 0,

(3.1)

with

u(0, x, ξ) = u0(x, ξ), E(0, x) = E0(x), B(0, x) = B0(x). (3.2)

Here, h = h(t, x, ξ) is a given non-homogenous source term, satisfying Ph = 0.

3.1. L2 energy functional and its optimal dissipation rate. In this sub-
section we shall prove Theorem 1.1. Before that, similar to obtain (2.9), one can also
derive the following moment equations corresponding to the linear equation (3.1):

∂ta+∇x · b = 0,
∂tb+∇x(a+ 2c) +∇x ·Θ({I−P}u)− E = 0,

∂tc+
1
3
∇x · b+

5
3
∇x · Λ({I−P}u) = 0,

∂tΘij({I−P}u) + ∂ibj + ∂jbi −
2
3
δij∇x · b−

10
3
δij∇x · Λ({I−P}u) = Θij(`+ h),

∂tΛi({I−P}u) + ∂ic = Λi(`+ h),
(3.3)

where 1 ≤ i, j ≤ 3, and as in (2.8), ` still denotes

` = −ξ · ∇x · {I−P}u+ Lu.

The Maxwell system also takes the form of
∂tE −∇x ×B = −b,
∂tB +∇x × E = 0,
∇x · E = 0, ∇x ·B = 0.

(3.4)

Proof of Theorem 1.1: Let N ≥ 3. First of all, a usual energy estimate on (3.1)
gives

1
2

∑
|α|≤N

d

dt
(‖∂αu‖2+‖∂α[E,B]‖2)+λ

∑
|α|≤N

‖ν1/2∂α{I−P}u‖2 ≤ C
∑
|α|≤N

‖ν−1/2∂αg‖2.

(3.5)
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As in [3, 7] or [5], one can further deduce from (3.3) the dissipation of a, b and c. In
fact, let ε1 > 0, ε2 > 0 be arbitrary constants to be chosen later. From (3.3)5 and
(3.3)3, it follows that

d

dt

∑
|α|≤N−1

∫
R3
∇x∂αc · Λ(∂α{I−P}u)dx+ λ

∑
|α|≤N−1

‖∇x∂αc‖2

≤ ε1
∑

|α|≤N−1

‖∇x∂αb‖2 +
C

ε1

 ∑
|α|≤N

‖∂α{I−P}u‖2 +
∑

|α|≤N−1

‖ν−1/2∂αg‖2
 .

(3.3)4 and (3.3)2 imply

d

dt

∑
|α|≤N−1

3∑
ij=1

∫
R3

(∂i∂αbj + ∂j∂
αbi −

2
3
δij∇x · ∂αb)Θij(∂α{I−P}u)dx

+ λ
∑

|α|≤N−1

‖∇x∂αb‖2 ≤ ε2

 ∑
|α|≤N−1

‖∇x∂α[a, c]‖2 +
∑

|α|≤N−2

‖∇x∂αE‖2


+
C

ε2

 ∑
|α|≤N

‖∂α{I−P}u‖2 +
∑

|α|≤N−1

‖ν−1/2∂αg‖2
 .

It holds from (3.3)2 and (3.3)1 that

d

dt

∑
|α|≤N−1

∫
R3
∇x∂αa · ∂αbdx+ λ

∑
|α|≤N

‖∂αa‖2

≤ C
∑

|α|≤N−1

‖∇x∂α[b, c]‖2 + C
∑

|α|≤N−1

‖∇x∂α{I−P}u‖2.

Define

E lin,1
N (U(t)) =

∑
|α|≤N−1

∫
R3
∇x∂αc · Λ(∂α{I−P}u)dx

+
∑

|α|≤N−1

3∑
ij=1

∫
R3

(∂i∂αbj + ∂j∂
αbi −

2
3
δij∇x · ∂αb)Θij(∂α{I−P}u)dx

+ κ1

∑
|α|≤N−1

∫
R3
∇x∂αa · ∂αbdx,

(3.6)

for some small constant κ1 > 0. Therefore, by taking κ1 > 0 small enough and then
letting ε1 > 0 and ε2 > 0 be small enough, the dissipation of a, b and c can be obtained
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by the following inequality

d

dt
E lin,1
N (U(t)) + λ

∑
|α|≤N−1

‖∇x∂α[a, b, c]‖2 + ‖a‖2

≤ ε2
∑

|α|≤N−2

‖∇x∂αE‖2 +
C

ε2

 ∑
|α|≤N

‖∂α{I−P}u‖2 +
∑

|α|≤N−1

‖ν−1/2∂αg‖2
 ,

(3.7)

where ε2 > 0 is still left to be chosen later on.
The key part is to estimate the dissipation of E and B. We claim that

− d

dt

∑
1≤|α|≤N−1

∫
R3
∂αE · ∂αbdx+ λ

∑
1≤|α|≤N−1

‖∂αE‖2

≤ ε3
∑

1≤|α|≤N−2

‖∂α∇x ×B‖2 +
C

ε3

∑
|α|≤N−1

‖∇x∂αb‖2

+ C
∑

1≤|α|≤N−1

(
‖∇x∂α[a, c]‖2 + ‖∇x∂α{I−P}u‖2

)
, (3.8)

with ε3 > 0 to be chosen, and

− d

dt

∑
1≤|α|≤N−2

∫
R3
∂α∇x ×B · ∂αEdx+ λ

∑
1≤|α|≤N−2

‖∂α∇x ×B‖2

≤
∑

1≤|α|≤N−2

‖∂α∇x × E‖2 + C
∑

1≤|α|≤N−2

‖∂αb‖2. (3.9)

For this time, suppose that (3.8) and (3.9) hold true. Define

E lin,2
N (U(t)) = −

∑
1≤|α|≤N−1

∫
R3
∂αE · ∂αbdx− κ2

∑
1≤|α|≤N−2

∫
R3
∂α∇x ×B · ∂αEdx

(3.10)
for some constant κ2 > 0. Then, by taking κ2 > 0 and further ε3 > 0 both small
enough, it follows from (3.8) and (3.9) that

d

dt
E lin,2
N (U(t)) + λ

∑
1≤|α|≤N−1

‖∂αE‖2 + λ
∑

2≤|α|≤N−1

‖∂αB‖2

≤ C‖∇xb‖2 + C
∑

1≤|α|≤N−1

(
‖∇x∂α[a, b, c]‖2 + ‖∇x∂α{I−P}u‖2

)
, (3.11)

which is the desired dissipation estimate of the electromagnetic field E and B. Now,
define

E lin
N (U(t)) =

∑
|α|≤N

(‖∂αu‖2 +‖∂α[E,B]‖2)+κ4

(
E lin,1
N (U(t)) + κ3E lin,2

N (U(t))
)

(3.12)

with constants κ3 > 0 and κ4 > 0, where E lin,1
N (U(t)), E lin,2

N (U(t)) are defined in (3.6)
and (3.10). In the same way as before, by taking properly small constants κ3 > 0,
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ε2 > 0 and κ4 > 0 in turn, (1.9) follows from the linear combination of (3.5), (3.7)
and (3.11). Moreover, it is easy to verify that E lin

N (U(t)) is the desired L2 energy
functional satisfying (1.7) and Dlin

N (U(t)) is given by (1.8). Here, one has to check∑
2≤|α|≤N−1

‖∂αB‖2 ≤ C
∑

1≤|α|≤N−2

‖∂α∇x ×B‖2. (3.13)

In fact, by taking α with 2 ≤ |α| ≤ N − 1 and using B = −∆−1
x ∇x ×∇x ×B due to

∇x ·B = 0, it holds

∂αB = −∂α∆−1
x ∇x ×∇x ×B = −∂α−γi∂i∆−1

x ∇x ×∇x ×B,

for some γi (1 ≤ i ≤ 3) with |γi| = 1. Since ∂i∆−1
x ∂j for any 1 ≤ i, j ≤ 3 is a bounded

operator from Lp to itself with 1 < p <∞,

‖∂αB‖ ≤ C‖∂α−γi∇x ×B‖.

Hence, (3.13) follows from taking summation of the above inequality over 2 ≤ |α| ≤
N − 1.

Now, the rest is to prove (3.8) and (3.9). Take α with 1 ≤ |α| ≤ N − 1. By using
(3.3)2 to replace E and then using (3.4)1 to replace ∂tE, one can compute

‖∂αE‖2 =
∫

R3
∂αE · ∂αEdx (3.14)

=
∫

R3
∂αE · ∂α[∂tb+∇x(a+ 2c) +∇xΘ({I−P}u)]dx

=
d

dt

∫
R3
∂αE · ∂αbdx−

∫
R3
∂α∂tE · ∂αbdx

+
∫

R3
∂αE · ∂α[∇x(a+ 2c) +∇xΘ({I−P}u)]dx

=
d

dt

∫
R3
∂αE · ∂αbdx+

∫
R3
∂α(b−∇x ×B) · ∂αbdx

+
∫

R3
∂αE · ∂α[∇x(a+ 2c) +∇xΘ({I−P}u)]dx.

Then, (3.8) follows from the above identity after taking summation over 1 ≤ |α| ≤
N − 1 and further applying the Cauchy-Schwarz inequality and integration by parts.
In fact, it suffices to consider the second term on the r.h.s. of (3.14). It can be
estimated by

∑
1≤|α|≤N−1

∫
R3
∂α(b−∇x ×B) · ∂αbdx =

∑
1≤|α|≤N−1

‖∂αb‖2

−
∑

1≤|α|≤N−2

∫
R3
∂α∇x ×B · ∂αbdx+

∑
|α|=N−1

∫
R3
∂α−γi∇x ×B · ∂α+γibdx

≤ ε3
∑

1≤|α|≤N−2

‖∂α∇x ×B‖2 +
C

ε3

∑
|α|≤N−1

‖∇x∂αb‖2,

where as before 0 < ε3 ≤ 1 is small to be chosen, and γi denotes a multi-index with
|γi| = 1 for some 1 ≤ i ≤ 3. To prove (3.9), take α with 1 ≤ |α| ≤ N − 2. By using
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(3.4)1 to replace ∇x ×B and then using (3.4)2 to replace ∂tB, one has

‖∂α∇x ×B‖2 =
∫

R3
∂α∇x ×B · ∂α∇x ×Bdx =

∫
R3
∂α∇x ×B · ∂α(∂tE + b)dx

=
d

dt

∫
R3
∂α∇x ×B · ∂αEdx−

∫
R3
∂α∇x × ∂tB · ∂αEdx+

∫
R3
∂α∇x ×B · ∂αbdx

=
d

dt

∫
R3
∂α∇x×B ·∂αEdx+

∫
R3
∂α∇x×∇x×E ·∂αEdx+

∫
R3
∂α∇x×B ·∂αbdx.

Then, (3.9) follows by applying integration by part to the right-hand second term of
the above identity, using the Cauchy-Schwarz inequality and then taking summation
over 1 ≤ |α| ≤ N − 2. The proof of Theorem 1.1 is complete.

3.2. L2 time-frequency functional and its optimal dissipation rate. In
this subsection we shall prove Theorem 1.2 as well as Corollary 1.3 and Corollary
1.4. For that, we need to consider the solution U = [u,E,B] to the Cauchy problem
(3.1)-(3.2) in the Fourier space R3

k. By taking the Fourier transform in x from (3.1)1,
(3.3) and (3.4), one has

∂tû+ iξ · kû− ξM1/2 · Ê = Lû+ ĥ, (3.15)



∂tâ+ ik · b̂ = 0,

∂tb̂+ ik(â+ 2ĉ) + ik ·Θ({I−P}û)− Ê = 0,

∂tĉ+
1
3
ik · b̂+

5
3
ik · Λ({I−P}û) = 0,

∂tΘij({I−P}û) + ikib̂j + ikj b̂i −
2
3
δijik · b̂−

10
3
δijik · Λ({I−P}û) = Θij(ˆ̀+ ĥ),

∂tΛi({I−P}û) + ikiĉ = Λi(ˆ̀+ ĥ),
(3.16)

and 
∂tÊ − ik × B̂ = −b̂,
∂tB̂ + ik × Ê = 0,

ik · Ê = â, ik · B̂ = 0,

(3.17)

where ˆ̀ is given by

ˆ̀= −ik · ξ{I−P}û+ Lû.

These equations above are ones to be used through this subsection.
Proof of Theorem 1.2: It is similar to the proof of Theorem 1.1. The difference

is that all calculations are made in the Fourier space. Thus, some details in the
following proof will be omitted for simplicity. First of all, as in [3], on one hand, from
(3.15) and (3.17), one has

1
2
∂t(‖û‖2L2

ξ
+ |[Ê, B̂]|2) + λ‖ν1/2{I−P}û‖2L2

ξ
≤ C‖ν−1/2ĝ‖2L2

ξ
, (3.18)
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and on the other hand, from (3.16), the following three estimates hold true:

∂tR(ikĉ | Λ({I−P}û) + λ|k|2|ĉ|2

≤ ε1‖k · b̂‖2 +
C

ε1
(1 + |k|2)‖{I−P}û‖2L2

ξ
+ C‖ν−1/2ĝ‖2L2

ξ
, (3.19)

∂tR

3∑
ij=1

(ikib̂j + ikj b̂i −
2
3
δijik · b̂ | Θij({I−P}û) + λ|k|2|b̂|2

≤ ε2|k|2|[â, ĉ]|2 + ε2
|k|2

1 + |k|2
|Ê|2 +

C

ε2
(1 + |k|2)‖{I−P}û‖2L2

ξ
+ C‖ν−1/2ĝ‖2L2

ξ
,

(3.20)

and

∂tR(ikâ | b̂) + λ(1 + |k|2)|â|2 ≤ |k · b̂|2 + C|k|2|ĉ|2 + C|k|2‖{I−P}û‖2L2
ξ
, (3.21)

where constants 0 < ε1, ε2 ≤ 1 are to be chosen. Define

E lin,1(Û(t)) =
1

1 + |k|2
R{(ikĉ | Λ({I−P}û)

+
3∑

ij=1

(ikib̂j + ikj b̂i −
2
3
δijik · b̂ | Θij({I−P}û) + κ1(ikâ | b̂)} (3.22)

for a constant κ1 > 0. One can take κ1 and then ε1 both small enough such that the
sum of (3.19), (3.20) and κ1×(3.21) gives

∂tE lin,1(Û(t)) + λ
|k|2

1 + |k|2
|[â, b̂, ĉ]|2 + |â|2

≤ ε2
|k|2

(1 + |k|2)2
|Ê|2 +

C

ε2

(
‖{I−P}û‖2L2

ξ
+ ‖ν−1/2ĝ‖2L2

ξ

)
. (3.23)

For estimates on the dissipation of Ê and B̂, it is straightforward to deduce from
(3.15)2 and (3.16) the following two identities

− ∂t(k × Ê | k × b̂) + |k × Ê|2 = |k × b̂|2 − (ik × k × B̂ | k × b̂)
+ (k × Ê | ik × (k ·Θ({I−P}û))), (3.24)

and

−∂t(ik × B̂ | Ê) + |k × B̂|2 = |k × Ê|2 + (ik × B̂ | b̂). (3.25)

By applying the Cauchy-Schwarz to (3.25) and then multiplying it by |k|2/(1+ |k|2)3,
one has

−∂t
|k|2

(1 + |k|2)3
R(ik × B̂ | Ê) + λ

|k|2|k × B̂|2

(1 + |k|2)3
≤ |k|

2|k × Ê|2

(1 + |k|2)3
+ C

|k|2|b̂|2

(1 + |k|2)3
,
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which implies

−∂t
|k|2

(1 + |k|2)3
R(ik × B̂ | Ê) + λ

|k|2|k × B̂|2

(1 + |k|2)3
≤ |k × Ê|2

(1 + |k|2)2
+ C

|k|2|b̂|2

1 + |k|2
. (3.26)

Similarly, after dividing (3.24) by (1 + |k|2)2 and then using Cauchy-Schwarz,

−∂tR(k × Ê | k × b̂)
(1 + |k|2)2

+ λ
|k × Ê|2

(1 + |k|2)2
(3.27)

≤ |k × b̂|2

(1 + |k|2)2
+
|k × k × B̂| · |k × b̂|

(1 + |k|2)2
+ C
|k|4|Θ({I−P}û)|2

(1 + |k|2)2

≤ ε3
|k|2|k × B̂|2

(1 + |k|2)3
+
C

ε3

|k|2

1 + |k|2
|b̂|2 + C‖{I−P}û‖2L2

ξ
,

where we used the inequality

|k × k × B̂| · |k × b̂|
(1 + |k|2)2

≤ ε3
|k × k × B̂|2

(1 + |k|2)3
+
C

ε3

|k × b̂|2

1 + |k|2

for an arbitrary constant 0 < ε3 ≤ 1. Then, in terms of (3.26) and (3.27), let us define

E lin,2(Û(t)) = −R(k × Ê | k × b̂)
(1 + |k|2)2

− κ2
|k|2R(ik × B̂ | Ê)

(1 + |k|2)3
, (3.28)

where κ2 > 0 is chosen small enough such that

∂tE lin,2(Û(t)) + λ
|k × Ê|2

(1 + |k|2)2
+ λ

|k|4|B̂|2

(1 + |k|2)3
≤ C |k|

2|b̂|2

1 + |k|2
+ C‖{I−P}û‖2L2

ξ
. (3.29)

Here, we used |k × B̂| = |k| · |k × B̂| due to k · B̂ = 0.
Now, in terms of (3.18), (3.23) with 0 < ε2 ≤ 1 and (3.29), we define

E lin(Û(t)) = ‖û‖2L2
ξ

+ |[Ê, B̂]|2 + κ4

(
E lin,1(Û(t)) + κ3E lin,2(Û(t))

)
, (3.30)

where E lin,1(Û(t)), E lin,2(Û(t)) are denoted by (3.22) and (3.28), and κ3 > 0, ε2 > 0
and κ4 > 0 are chosen in turn small enough such that (1.10) and (1.12) hold true and
Dlin(Û(t)) is given by (1.11). Here, notice that we used

|k|2|Ê|2 = |k · Ê|2 + |k × Ê|2 = |â|2 + |k × Ê|2.

The proof of Theorem 1.2 is complete.
Proof of Corollary 1.3 and Corollary 1.4: First, (1.13) in Corollary 1.3

immediately results from (1.12) by noticing

D(Û(t, k)) ≥ λ |k|4

(1 + |k|2)3
E(Û(t, k))

due to the definitions (1.10), (1.11) of E(Û(t, k)), D(Û(t, k)). For Corollary 1.4, it
suffices to define

E lin
m (Û(t, k)) =

∑
|α|=m

E(∇̂kxU(t, k)) =
∑
|α|=m

E((ik)αÛ(t, k)). (3.31)

Since the system (3.1) satisfied by U = [u,E,B] is linear, it is easy to see from
Theorem 1.2 that E lin

m (Û(t, k)) satisfies (1.14) and (1.16) with Dlin
m (Û(t, k)) given by

(1.15). This hence completes the proof of Corollary 1.4.
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3.3. Time-decay estimates. In this subsection we turn to the proof of The-
orem 1.5. Theorem 1.5 actually follows from (1.13) in Corollary 1.3. However, we
would rather provide a similar much more general result. Recall the definition of A(t)
as in (1.18). In what follows, for the Fourier transform Û(t, k) of U = [u,E,B], we
set

|Û(t, k)| = ‖û‖L2
ξ

+ |[Ê, B̂]| (3.32)

for simplicity.
Lemma 3.1. Assume that for any initial data U0, the linear homogeneous solution

U(t) = A(t)U0 obeys the pointwise estimate

|Û(t, k)| ≤ Ce−φ(k)t|Û0(k)| (3.33)

for all t ≥ 0, k ∈ R3, where φ(k) is a strictly positive, continuous and real-valued
function over k ∈ R3 and satisfies

φ(k)→

{
O(1)|k|σ+ as |k| → 0,

O(1)|k|−σ− as |k| → ∞,
(3.34)

for two constants σ− > σ+ > 0. Let m ≥ 0 be an integer, 1 ≤ p, r ≤ 2 ≤ q ≤ ∞ and
σ ≥ 0. Then, U(t) = A(t)U0 obeys the time-decay estimate

‖∇mx U(t)‖Zq ≤ C(1 + t)−
3
σ+

( 1
p−

1
q )− m

σ+ ‖U0‖Zp +C(1 + t)−
σ
σ− ‖∇m+[σ+3( 1

r−
1
q )]+

x U0‖Zr ,
(3.35)

for any t ≥ 0, where [·]+ is defined in (1.22).
Proof. Take a constant R > 0. From the assumptions on φ(k), it is easy to see

φ(k) ≥

{
λ|k|σ+ if |k| ≤ R,

λ|k|−σ− if |k| ≥ R.

Take 2 ≤ q ≤ ∞ and an integer m ≥ 0. From Hausdorff-Young inequality,

‖∇mx U(t)‖Zq ≤ C
∥∥∥|k|me−φ(k)tÛ0

∥∥∥
Zq′

≤ C
∥∥∥|k|me−λ|k|σ+ tÛ0

∥∥∥
Zq′ (|k|≤R)

+ C
∥∥∥|k|me−λ|k|−σ− tÛ0

∥∥∥
Zq′ (|k|≥R)

:= I1 + I2,

(3.36)

where 1
q + 1

q′ = 1. For I1, by the definition of the norm ‖ · ‖Zq′ ,

I1 = C
∥∥∥|k|me−λ|k|σ+ tû0

∥∥∥
L2
ξ(L

q′ (|k|≤R))
+ C

∥∥∥|k|me−λ|k|σ+ t[Ê0, B̂0]
∥∥∥
Lq′ (|k|≤R)

.

Here, note that since 1 ≤ q′ ≤ 2, from the Minkowski inequality,∥∥∥|k|me−λ|k|σ+ tû0

∥∥∥
L2
ξ(L

q′ (|k|≤R))
≤
∥∥∥|k|me−λ|k|σ+ tû0

∥∥∥
Lq′ (|k|≤R;L2

ξ)

=
∥∥∥|k|me−λ|k|σ+ t‖û0‖L2

ξ

∥∥∥
Lq′ (|k|≤R)

.
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Hence, we arrive at

I1 ≤ C
∥∥∥|k|me−λ|k|σ+ t[‖û0‖L2

ξ
, Ê0, B̂0]

∥∥∥
Lq′ (|k|≤R)

.

Take 1 ≤ p ≤ 2. Further using the Hölder inequality for 1
q′ = p′−q′

p′q′ + 1
p′ with p′ given

by 1
p + 1

p′ = 1,

I1 ≤ C
∥∥∥|k|me−λ|k|σ+ t∥∥∥

L
p′q′
p′−q′ (|k|≤R)

∥∥∥[‖û0‖L2
ξ
, Ê0, B̂0]

∥∥∥
Lp′ (|k|≤R)

Here, the right-hand first term can be estimated in a standard way [12] as∥∥∥|k|me−λ|k|σ+ t∥∥∥
L

p′q′
p′−q′ (|k|≤R)

≤ C(1 + t)−
3
σ+

( 1
p−

1
q )− m

σ+

by using change of variable kt
1
σ+ → k, and the right-hand second term is estimated

by Minkowski and Hausdorff-Young inequalities as∥∥∥[‖û0‖L2
ξ
, Ê0, B̂0]

∥∥∥
Lp′ (|k|≤R)

= ‖û0‖Lp′ (|k|≤R;L2
ξ)

+
∥∥∥[Ê0, B̂0]

∥∥∥
Lp′ (|k|≤R)

≤ ‖û0‖L2
ξ(L

p′ (|k|≤R)) +
∥∥∥[Ê0, B̂0]

∥∥∥
Lp′ (|k|≤R)

≤ C(‖u0‖L2
ξ(L

p
x) + ‖[E0, B0]‖Lp) = C‖U0‖Zp ,

where the Minkowski inequality was validly used due to p′ ≥ 2. Therefore, for I1, one
has

I1 ≤ C(1 + t)−
3
σ+

( 1
p−

1
q )− m

σ+ ‖U0‖Zp .

To estimate I2, take a constant σ ≥ 0 so that

I2 = C
∥∥∥|k|me−λ|k|−σ− tÛ0

∥∥∥
Zq′ (|k|≥R)

≤ C sup
|k|≥R

|k|−σe−λ|k|
−σ− t

∥∥∥|k|m+σÛ0

∥∥∥
Zq′ (|k|≥R)

.

Here, the right-hand first term decays in time as

sup
|k|≥R

|k|−σe−λ|k|
−σ− t ≤ C(1 + t)−

σ
σ− .

We estimate the right-hand second term as follows. Take 1 ≤ r ≤ 2 with 1
r + 1

r′ = 1
and take a constant ε > 0 small enough. Then, similarly as before, from Minkowski
and Hölder inequalities for 1

q′ = r′−q′
r′q′ + 1

r′ , one has

∥∥∥|k|m+σÛ0

∥∥∥
Zq′ (|k|≥R)

≤
∥∥∥|k|m+σ[‖û0‖L2

ξ
, Ê0, B̂0]

∥∥∥
Lq′ (|k|≥R)

≤
∥∥∥∥|k|−3(1+ε) r

′−q′
r′q′

∥∥∥∥
L

r′q′
r′−q′ (|k|≥R)

∥∥∥∥|k|m+σ+3(1+ε) r
′−q′
r′q′ [‖û0‖L2

ξ
, Ê0, B̂0]

∥∥∥∥
Lr′ (|k|≥R)

≤ Cε
∥∥∥|k|m+[σ+3( 1

r−
1
q )]+ [‖û0‖L2

ξ
, Ê0, B̂0]

∥∥∥
Lr′ (|k|≥R)

.
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Here, by Minkowski inequality due to q′ ≥ 2 once again and further by Hausdorff-
Young inequality,∥∥∥|k|m+[σ+3( 1

r−
1
q )]+ [‖û0‖L2

ξ
, Ê0, B̂0]

∥∥∥
Lr′ (|k|≥R)

≤
∥∥∥|k|m+[σ+3( 1

r−
1
q )]+ û0

∥∥∥
L2
ξ(L

r′ (|k|≥R))
+
∥∥∥|k|m+[σ+3( 1

r−
1
q )]+ [Ê0, B̂0]

∥∥∥
Lr′ (|k|≥R)

≤ C‖∇m+[σ+3( 1
r−

1
q )]+

x U0‖Zr .

Then, it follows that∥∥∥|k|m+σÛ0

∥∥∥
Zq′ (|k|≥R)

≤ C‖∇m+[σ+3( 1
r−

1
q )]+

x U0‖Zr .

Thus, I2 is estimated by

I2 ≤ C(1 + t)−
σ
σ− ‖∇m+[σ+3( 1

r−
1
q )]+

x U0‖Zr .

Now, (3.35) follows by plugging the estimates of I1 and I2 into (3.36). This completes
the proof of Lemma 3.1.

Proof of Theorem 1.5: To prove (1.20), by letting h = 0 and using Corollary
1.3,

E(Û(t, k)) ≤ e−
λ|k|4

(1+|k|2)3
tE(Û0(k))

for any t ≥ 0 and k ∈ R3, where we have set U = U I for simplicity. Due to (1.10)
and (3.32), E(Û(t, k)) ∼ |Û(t, k)|2 holds so that

|Û(t, k)| ≤ Ce−
λ|k|4

2(1+|k|2)3
t|Û0(k)|

for any t ≥ 0 and k ∈ R3. This shows that corresponding to (3.33) and (3.34) of
Lemma 3.1, one has the special situation

φ(k) =
λ|k|4

2(1 + |k|2)3

with σ+ = 4, σ− = 2. Thus, one can apply Lemma 3.1 to obtain (1.20) from (3.35).
To prove (1.21), we let U0 = 0, and also set U = U II for simplicity. Note that

(1.13) implies

|Û(t, k)|2 ≤ C
∫ t

0

e
− λ|k|4

2(1+|k|2)3
(t−s)‖ν−1/2ĥ(s)‖2L2

ξ
ds

for any t ≥ 0 and k ∈ R3. One can again apply Lemma 3.1 with q = r = 2 so that
(1.21) follows. The proof of Theorem 1.5 is complete.

4. Nonlinear system. In this section we are concerned with the global existence
of solutions to the Cauchy problem (1.3)-(1.4) of the reformulated nonlinear Vlasov-
Maxwell-Boltzmann system. We first devote ourselves to the proof of some uniform-
in-time a priori estimates on the solution. In what follows, U = [u,E,B] is supposed
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to be smooth in all arguments and satisfy the system (1.3) over 0 ≤ t ≤ T for some
0 < T ≤ ∞.

Lemma 4.1. Under the assumption that sup0≤t≤T ‖(a+2c)(t)‖L∞ is small enough,
there is EN (U(t)) satisfying (1.23) such that

d

dt
EN (U(t)) + λDN (U(t)) ≤ C(EN (U(t))1/2 + EN (U(t)))DN (U(t)) (4.1)

for any 0 ≤ t ≤ T , where DN (U(t)) is defined in (1.24).
Proof. First, the zero-order energy estimate implies

1
2
d

dt
(‖u‖2 + ‖[E,B]‖2 −

∫
|b|2(a+ 2c)dx+ λ‖ν1/2{I−P}u‖2

≤ C(EN (U(t))1/2 + EN (U(t)))DN (U(t)). (4.2)

Here and hereafter, when EN (U(t)) occurs in the right-hand terms of inequalities, it
means an equivalent energy functional satisfying (1.23) and its explicit representation
will be determined later on. In fact, from the system (1.3),

1
2
d

dt
(‖u‖2 + ‖[E,B]‖2) + λ‖ν1/2{I−P}u‖2 ≤

∫∫
uΓ(u, u)dxdξ +

1
2

∫∫
ξ ·Eu2dxdξ.

(4.3)
Here, for the first term on the r.h.s. of (4.3), it is a standard fact as in [9] or [10] that
it is bounded by CEN (U(t))1/2DN (U(t)). Since all estimates on terms involving the
nonlinear term Γ(u, u) in the following can be handled in the similar way, we shall
omit the details of their proof for brevity. The right-hand second term of (4.3) can
be estimated as in [7, Lemma 4.4]:

1
2

∫∫
ξ · Eu2dxdξ =

1
2

∫∫
ξ · E|Pu|2dxdξ +

∫∫
ξ · EPu{I−P}udxdξ

+
1
2

∫∫
ξ · E|{I−P}u|2dxdξ.

Here, it is easy to see∫∫
ξ · EPu{I−P}udxdξ +

1
2

∫∫
ξ · E|{I−P}u|2dxdξ

≤ C‖E‖H2(‖∇x[a, b, c]‖2 + ‖ν1/2{I−P}u‖2) ≤ CEN (U(t))1/2DN (U(t)).

And, as in [7, Lemma 4.4], one can compute

1
2

∫∫
ξ · E|Pu|2dxdξ =

∫
E · b(a+ 2c)dx,

where by replacing E by equation (2.9)2, using integration by part in t and then
replacing ∂t(a+ 2c) by equations (2.9)1 and (2.9)3, gives∫

E · b(a+ 2c)dx =
1
2
d

dt

∫
|b|2(a+ 2c)dx

+
∫
|b|2[

5
6
∇x · b+

1
6
∇x · Λ({I−P}u)− 1

3
E · b]dx

+
∫

[∇x(a+ 2c) +∇xΘ({I−P}u)] · b(a+ 2c)dx

−
∫
Ea · b(a+ 2c)dx−

∫
b×B · b(a+ 2c)dx.
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Note b×B · b = 0. Hence, it follows that

1
2

∫∫
ξ · E|Pu|2dxdξ ≤ 1

2
d

dt

∫
|b|2(a+ 2c)dx

+ C‖[a, b, c, E]‖H1(‖∇x[a, b, c]‖2 + ‖∇x{I−P}u‖2) + C‖E‖ ‖∇xa‖ ‖∇x[a, b, c]‖2

≤ 1
2
d

dt

∫
|b|2(a+ 2c)dx+ C(EN (U(t))1/2 + EN (U(t)))DN (U(t)).

Collecting the above estimates and putting them into (4.3) proves (4.2).
Next, for the estimates on all derivatives including the pure spatial derivatives

and space-velocity mixed derivatives, one has

1
2
d

dt

∑
1≤|α|≤N

(‖∂αu‖2 + ‖∂α[E,B]‖2) + λ
∑

1≤|α|≤N

‖ν1/2∂α{I−P}u‖2

≤ CEN (U(t))1/2DN (U(t)), (4.4)

and

1
2
d

dt

N∑
k=1

Ck
∑
|β|=k

|α|+|β|≤N

‖∂αβ {I−P}u‖2 + λ
∑
|β|≥1

|α|+|β|≤N

‖ν1/2∂αβ {I−P}u‖2

≤ CEN (U(t))1/2DN (U(t))+C
∑

|α|≤N−1

‖∂α∇x[a, b, c]‖2+C
∑
|α|≤N

‖ν1/2∂α{I−P}u‖2,

(4.5)

where Ck (1 ≤ k ≤ N) are strictly positive constants. Since the nonlinear term g
takes the form as in (2.8), the proof of (4.4) and (4.5) is almost the same as in [7]
for the case of the Vlasov-Poisson-Boltzmann system and thus details are omitted for
brevity.

Finally, the key step is to obtain the macroscopic dissipation of a, b, c and E,B
for the nonlinear system (1.3). This is similar to the proof of Theorem 1.1 in Sub-
section 3.1 for the linearized system. Here, the additional efforts should be made
to take care of all quadratically nonlinear terms in g defined by (2.8). But, these
nonlinear estimates once again are almost the same as in [7] for the case of the
Vlasov-Poisson-Boltzmann system so we omit details for brevity. Thus, we have the
following estimates. Recall the definitions (3.6) and (3.10) of two interactive func-
tionals E lin,1

N (U(t)) and E lin,2
N (U(t)), where κ1 > 0, κ2 > 0 in (3.6) and (3.10) are

sufficiently small. It turns out that

d

dt

(
E lin,1
N (U(t)) + κ3E lin,2

N (U(t))
)

+ λ
∑
|α|≤N

‖∂αa‖2 + λ
∑

1≤|α|≤N

‖∂α[b, c]‖2

+ λ
∑

1≤|α|≤N−1

‖∂αE‖2 + λ
∑

2≤|α|≤N−1

‖∂αB‖2

≤ C
∑
|α|≤N

‖∂α{I−P}u‖2 + CEN (U(t))DN (U(t)), (4.6)

where κ3 > 0 is small enough. This is the desired estimate on the macroscopic
dissipation.
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Now, we are in a position to prove (4.1). Let κ4 > 0 be taken as in (3.12). Define

EN (U(t)) = E lin
N (U(t))−

∫
|b|2(a+ 2c)dx+ κ5

N∑
k=1

Ck
∑
|β|=k

|α|+|β|≤N

‖∂αβ {I−P}u‖2,(4.7)

where κ5 > 0 is a constant to be chosen. Here, notice that by recalling the definition
(3.12) of E lin

N (U(t)), EN (U(t)) can be rewritten as

EN (U(t)) (4.8)

=
∑
|α|≤N

(‖∂αu‖2 + ‖∂α[E,B]‖2)−
∫
|b|2(a+ 2c)dx

+κ4

 ∑
|α|≤N−1

∫
R3
∇x∂αc · Λ(∂α{I−P}u)dx

+
∑

1≤i,j≤3
|α|≤N−1

∫
R3

(∂i∂αbj + ∂j∂
αbi −

2
3
δij∇x · ∂αb)Θij(∂α{I−P}u)dx

+κ1

∑
|α|≤N−1

∫
R3
∇x∂αa · ∂αbdx


+κ4κ3

− ∑
1≤|α|≤N−1

∫
R3
∂αE · ∂αbdx− κ2

∑
1≤|α|≤N−2

∫
R3
∂α∇x ×B · ∂αEdx


+κ5

N∑
k=1

Ck
∑
|β|=k

|α|+|β|≤N

‖∂αβ {I−P}u‖2.

Due to smallness of sup0≤t≤T ‖(a+2c)(t)‖L∞ by the assumption, from (4.7) and (1.7),
it is easy to see

EN (U(t)) ∼ E lin
N (U(t)) +

N∑
k=1

Ck
∑
|β|=k

|α|+|β|≤N

‖∂αβ {I−P}u‖2,

which further implies

EN (U(t)) ∼ ‖u(t)‖2L2
ξ(H

N
x ) + ‖[E(t), B(t)]‖2HN +

N∑
k=1

Ck
∑
|β|=k

|α|+|β|≤N

‖∂αβ {I−P}u‖2

∼ ‖u(t)‖2HNx,ξ + ‖[E(t), B(t)]‖2HN .

Thus, EN (U(t)) satisfies (1.23) for any κ5 > 0. Moreover, by taking κ5 > 0 small
enough, the summation of (4.2), (4.4), κ4×(4.6) and then κ5×(4.6) leads to (4.1)
with DN (U(t)) defined in (1.24). This completes the proof of Lemma 4.1.

Proof of Theorem 1.6: Let us consider the uniform-in-time a priori estimates
of solutions under the smallness assumption that

sup
0≤t≤T

(
‖u(t)‖2HNx,ξ + ‖[E(t), B(t)]‖2HN

)
≤ δ
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for a sufficiently small constant δ > 0. This smallness assumption also implies that
sup0≤t≤T ‖(a+ 2c)(t)‖L∞ is small enough since N ≥ 4. Thus, it follows from Lemma
4.1 that there are EN (U(t)), DN (U(t)) defined in (4.8) and (1.24) such that (1.23)
holds true for EN (U(t)) and

d

dt
EN (U(t)) + λDN (U(t)) ≤ C(δ1/2 + δ)DN (U(t))

for any 0 ≤ t ≤ T , that is

EN (U(t)) + λ

∫ t

0

DN (U(s))ds ≤ EN (U0)

for any 0 ≤ t ≤ T , since δ > 0 is small enough. Now, the rest proof follows from the
standard process by combining the above uniform-in-time a priori estimates with the
local existence as well as the continuity argument as in [11] or [7] under the assumption
that EN (U0) is sufficiently small, and details are omitted for simplicity. The proof of
Theorem 1.6 is complete.

We conclude this paper with a discussion about the large-time behavior of so-
lutions to the nonlinear system. Although Theorem 1.6 shows the global existence
of close-to-equilibrium solutions to the Cauchy problem (1.3)-(1.4) of the nonlinear
Vlasov-Maxwell-Boltzmann system, the decay rate of the obtained solution remains
open. This issue has been studied in [5] for the case of two-species. However, the
approach of [5] by applying the linear decay property together with the Duhamel’s
principle to the nonlinear system can not be applied to the case of one-species here.
Let us explain a little the key difficulty in a formal way. In fact, the linear system in
one-species decays as (1 + t)−3/8 which is slower than (1 + t)−3/4 in two-species as
pointed out in Table 1. Thus, in one-species case, the quadratic nonlinear source de-
cays as at most (1+ t)−3/4, and if the Duhamel’s principle was used, the time-integral
term generated from the nonhomogeneous source decays as∫ t

0

(1 + t− s)− 3
8 (1 + s)−

3
4 ds ≤ C(1 + t)−

1
8 .

Thus, the bootstrap argument breaks down and one can not expect the solution to
decay as (1 + t)−3/8 in the nonlinear case. Therefore, the study of the large-time
behavior for the one-species Vlasov-Maxwell-Boltzmann system becomes much more
difficult than for the two-species case as in [5].
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