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Abstract

The global existence of weak solutions to the compressible Navier-Stokes equations
with vacuum attracts many research interests recently. For the isentropic gas, the
viscosity coefficient depends on density function from physical point of view. When
the density function connects to vacuum continuously, the vacuum degeneracy gives
some analytic difficulties in proving global existence. In this paper, we consider this
case with gravitational force and fixed boundary condition. By giving a series of a
priori estimates on the solution coping with the degeneracy of vacuum, gravitational
force and boundary effect, we give global existence and uniqueness results similar to
the case without force and boundary.
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1. Introduction

Consider the one-dimensional compressible Navier-Stokes equations for isentropic flow
with gravitational force in Eulerian coordinates: ρτ + (ρu)ξ = 0,

(ρu)τ + (ρu2 + P (ρ))ξ = (µuξ)ξ + ρg, in y(τ) < ξ < 0, τ > 0,
(1.1)
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with initial data

ρ(ξ, 0) = ρ0(ξ), u(ξ, 0) = u0(ξ), on y(0) ≤ ξ ≤ 0, (1.2)

and boundary condition
u(1, τ) = 0. (1.3)

Here the unknown functions ρ = ρ(ξ, τ) and u = u(ξ, τ) represent the density and velocity
respectively. P (ρ) = Aργ is the pressure with A being a positive constant and γ > 1,
µ ≥ 0 is the viscosity coefficient, and g > 0 is the gravitational constant. y(τ) is the
vacuum boundary, i.e., the particle path separating the gas and the vacuum, satisfying

dy

dτ
= u(y(τ), τ), ρ(y(τ), τ) = 0. (1.4)

Our main concern here is the global existence and the uniqueness of weak solutions
with some regularity for the description on the vacuum boundary to the above initial
boundary value problem when the viscosity coefficient depends on the density function. It
is a continuation of works in [26, 28, 29, 30] which are about the case when no boundary and
external force are considered. As usual, the main estimate is to obtain the lower bound
on the density function. When the gas connects to vacuum continuously, the viscosity
coefficient also vanishes at the boundary. In this case, we can expect only a lower bound
of the density function in the form of a power function xβ for some constant β determined
by the initial data and viscosity coefficient.

Furthermore, the interface separating the gas and vacuum propagates with finite speed
because of the hyperbolic-parabolic property of the system (1.1). And the proof of this
finite speed propagation follows from the lower bound of the density function estimate.

Some of the previous works in this direction can be summarized as follows. When
the viscosity coefficient µ is a constant, there is no continuous dependence on the initial
data to the Navier-Stokes equations (1.1) with vacuum, see [8]. This leads to the study
on the initial boundary value problem instead of initial value problem. For this, the free
boundary problem of one dimensional Navier-Stokes equations with one boundary fixed
and the other connected to vacuum was investigated in [19], where the global existence of
the weak solutions was proved. Similar results were obtained in [20] for the equations of
spherically symmetric motion of viscous gases. Furthermore, the free boundary problem
of the one-dimensional viscous gas expanding into the vacuum has been studied by many
people, see [19, 20, 25] and reference therein. A further understanding of the regularity
and behavior of solutions near the interfaces between the gas and vacuum was given in
[15].

It is known that the physically important case related to vacuum is when µ is not a
constant, see [23, 24, 31]. It can be seen from the derivation of the Navier-Stokes equations
from the Boltzmann equation through the Chapman-Enskog expansion to the second order,
cf. [5], where the viscosity coefficient depends on the temperature. For isentropic flow,
this dependence is reduced to the dependence on the density by the laws of Boyle and
Gay-Lussac for ideal gas as discussed in [14]. When the viscosity coefficient is a function
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of density, such as µ = cρθ with c and θ being positive constants, the local existence of
weak solutions to Navier-Stokes equations with vacuum was studied in [14] on the case
when the initial density connects to vacuum with discontinuities. The global existence of
weak solutions was obtained in [21] with the same assumption when 0 < θ < 1

3 and it is
later generalized to the cases for 0 < θ < 1

2 and 0 < θ < 1 in [28] and [11] respectively.
It is noticed that the above analysis is based on the uniform positive lower bound of

the density with respect to the construction of the approximate solutions. This estimate is
crucial because the other estimates for the convergence of a subsequence of the approximate
solutions and the uniqueness of the solution thus obtained will follow from the estimation
by standard techniques as long as the vacuum does not appear in the solutions in finite
time. And this uniform positive lower bound on the density function can only be obtained
when the density function connects to vacuum with discontinuities. In this situation, the
density function is positive for any finite time and thus the viscosity coefficient never
vanishes. This good property of the solution was obtained and used to prove global
existence of solutions to (1.1) when the initial data is of compact support, cf. [11, 21, 28].

If the density function connects to vacuum continuously, there is no positive lower
bound for the density function and the viscosity coefficient vanishes at vacuum. This
degeneracy in the viscosity coefficient gives arise to new analysis difficulties because of
the less regularizing effect on the solutions. A local existence result was obtained on this
case in [29], and global existence result in [30] for 0 < θ < 2

9 and in [26] for 0 < θ < 1
3 .

Another difficulty comes from the singularity at the vacuum boundary when the density
function connects to vacuum continuously. This can be seen from the analysis in [25] on
the non-global existence of regular solution to Navier-Stokes equations when the density
function is of compact support with the viscosity coefficient being constant. The proof
there is based on the estimation on the growth rate of the support on density function in
time t. If the growth rate is sub-linear, then a nonlinear functional was introduced in [25]
which yields the non-global existence of regular solutions. The intuitive explanation of
this phenomena comes from the consideration of the pressure in the gas. No matter how
smooth the initial data is, the pressure of the gas will build up at the vacuum boundary
in finite time and it will push the gas into the vacuum region. This effect can not be
compensated by the dissipation from the viscosity so that the support of the gas stays
unchanged. This is different from the system of Euler-Poisson equations for gaseous stars
where the pressure and the gravitational force can become balanced to have a stationary
solutions. In the case of compressible Navier-Stokes equation, the pressure will have the
effort on the evolution of the vacuum boundary in finite time so that the density function
at the interface will not be smooth. This singularity at the derivatives , maybe of the
second order for one-dimensional case, cf. [25], gives some analytic difficulty, but it can be
overcome by introducing some appropriate weights in the energy estimates as in [30, 26, 4].
Notice that these weight functions vanish at the vacuum boundary.

The last but not least, there has been a lot of investigation on the Navier-Stokes
equations when the initial density is away from vacuum, both for smooth initial data or
discontinuous initial data, and one dimensional or multidimensional problems. For these
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results, please refer to [6, 8, 10, 12, 13, 22] and reference therein. The non-appearance
of vacuum in the solutions for any finite time if the initial data does not contain vacuum
was proved in [9]. It is not known yet whether the corresponding result holds for the
density-dependent viscosity.

The rest of this paper is organized as follows. In Section 2, we will give the definition
of the weak solution and then state the main theorems in this paper. In Section 3, we
will prove some a priori estimates for the global existence of weak solutions to (1.1)-(1.3).
In Section 4, we will construct the approximate solutions by the line method and state a
series of lemmas following the estimates on Section 3. A uniqueness theorem for the weak
solution will be given in the last section.

2. The Main Theorems

The free boundary value problem (1.1)-(1.4) can be reformed in Lagrangian coordinates
by using the transformation:

x =
∫ ξ

0
ρ(z, τ)dz, t = τ, i.e.,

∂

∂τ
=

∂

∂t
− ρu

∂

∂x
,

∂

∂ξ
= ρ

∂

∂x
,

Now, considering the position of boundary X(τ) = x(y(τ), τ) =
∫ y(τ)
0 ρ(z, τ)dz and using

(1.1)1, (1.3) and (1.4), we have dX
dτ = 0, i.e., X is independent of τ . Thus we can set

X ≡
∫ y(0)
0 ρ(z, 0)dz. We consider y(0) > −∞ and X > −∞, i.e., a finite total mass on a

finite interval. After rescaling the variables, the problem (1.1)-(1.4) is transformed to the
following fixed boundary problem: ρt + ρ2ux = 0,

ut + P (ρ)x = (µρux)x + g, 0 < x < 1, t > 0,
(2.1)

with the boundary conditions ρ(0, t) = 0 at the free end,

u(1, t) = 0 at the fixed end,
(2.2)

the initial data
(ρ, u)(x, 0) = (ρ0(x), u0(x)), 0 ≤ x ≤ 1, (2.3)

and the compatibility conditions at x = 0, 1,

ρ0(0) = 0, u0(1) = 0, (2.4)

where P (ρ) = Aργ , µ = cρθ. We normalize A = 1 and c = 1.
Throughout this paper, the assumptions on the initial data, θ and γ can be stated as

follows:

(A1) 0 < θ < 1
3 , γ > 1;
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(A2) There exists a positive constant C such that 0 ≤ ρ0(x) ≤ C with ρ0(0) = 0,
ρ0(1) > 0, (ρ0(x))−1 ∈ L1([0, 1]), (ργ

0(x))x ∈ L2([0, 1]), u0(x) ∈ L∞([0, 1]) and (ρ1+θ
0 (x)u0x(x))x ∈

L2([0, 1]);

(A3) For 0 < θ < 1
3 , there exists a sufficiently large positive integer m such that

2m− 1
4m2

≤ θ ≤ 4m2 − 8m+ 3
12m2 − 14m+ 2

. (2.5)

For such fixed positive integer m, let x2m−2
[
(ρθ

0)x

]2m
∈ L1([0, 1]).

Under the assumptions (A1)-(A3), we will prove the existence of global weak solutions
to the initial boundary value problem (2.1)-(2.4). The weak solution defined bellow is
similar to the one in [21].

Definition 2.1. A pair of functions (ρ(x, t), u(x, t)) is called a global weak solution to
the initial boundary value problem (2.1)-(2.4), if for any T > 0

ρ, u ∈ L∞([0, 1]× [0, T ]) ∩ C1([0, T ];L2([0, 1])), (2.6)

ρ1+θux ∈ L∞([0, 1]× [0, T ]) ∩ C
1
2 ([0, T ];L2([0, 1])). (2.7)

Furthermore, the following equations hold:∫ ∞

0

∫ 1

0
(ρφt − ρ2uxφ)dxdt+

∫ 1

0
ρ0(x)φ(x, 0)dx = 0, (2.8)

and ∫ ∞

0

∫ 1

0
(uψt + (P (ρ)− µρux)ψx − gψ)dxdt+

∫ 1

0
u0(x)ψ(x, 0)dx = 0, (2.9)

for any test functions φ(x, t) and ψ(x, t) ∈ C∞0 (Ω) with Ω = {(x, t) : 0 ≤ x ≤ 1, t ≥ 0}.

In what follows, we always use C (C(T )) to denote a generic positive constant depend-
ing only on the initial data (or the given time T ).

We now state the main theorem in this paper as follows:

Theorem 2.2 (Existence). Under the conditions (A1)-(A3), the free boundary problem
(2.1)-(2.4) has a weak solution (ρ(x, t), u(x, t)) which satisfies Definition 2.1 and ρ(x, t)
satisfies

C(T )x1+k3 ≤ ρ(x, t) ≤ C(T ), (2.10)

where k3 satisfies

2mθ
2m(1− θ)− 1

= max
{

1
2m− 1

,
2mθ

2m(1− θ)− 1

}
≤ k3 ≤

1
2θ
− 1− 1

(2m− 1)θ
. (2.11)
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Remark 2.3. There exists some constant k3 which satisfies (2.11).
In fact, from (2.5), we have

1
2m− 1

≤ 2mθ
2m(1− θ)− 1

≤ 1
2θ
− 1− 1

(2m− 1)θ
. (2.12)

Choose
k3 =

1
2

(
2mθ

2m(1− θ)− 1
+

1
2θ
− 1− 1

(2m− 1)θ

)
, (2.13)

so that k3 satisfies (2.11).

To get the uniqueness of the weak solution, we need the following assumptions:

(A1)′ For any 0 < α < 1, let 0 < θ < α
1+2α+

√
1+4α+α2

, and γ > 1;

(A2)′ There exists a positive constant C such that 0 ≤ ρ0(x) ≤ Cxα with 0 < α < 1,
ρ0(0) = 0, ρ0(1) > 0, (ρ0(x))−1 ∈ L1([0, 1]), (ργ

0(x))x ∈ L2([0, 1]), u0(x) ∈ L∞([0, 1]) and
(ρ1+θ

0 (x)u0x(x))x ∈ L2([0, 1]);

(A3)′ For 0 < θ <
α

1 + 2α+
√

1 + 4α+ α2
, there exists a sufficiently large positive

integer m such that
4θm2 − 2m+ 1 ≥ 0,

4(1− 3θ)m2 − (8− 14θ)m+ (3− 2θ) ≥ 0,

4(3αθ2 − (4α+ 2)θ + α)m2 − 4(αθ2 − (3α+ 2)θ + α)m+ α− (2α+ 2)θ ≥ 0.

(2.14)

For such fixed positive integer m, let x2m−2
[
(ρθ

0)x

]2m
∈ L1([0, 1]).

It is noted that assumptions (A1)′, (A2)′ and (A3)′ imply assumptions (A1), (A2) and
(A3), respectively. Then the uniqueness of the weak solution can be stated as follows:

Theorem 2.4 (Uniqueness). Assume (A1)′-(A3)′, let (ρ1, u1)(x, t) and (ρ2, u2)(x, t)be
two weak solutions to the initial boundary value problem (2.1)-(2.4) in 0 ≤ t ≤ T as
described in Definition 2.1. Then

(ρ1, u1)(x, t) = (ρ2, u2)(x, t) (2.15)

for a.e. (x, t) ∈ [0, 1]× [0, T ].

3. Some a priori estimates

In this section, for simplicity of presentation, we establish a series of a priori estimates in
continuous version to the initial boundary value problem (2.1)-(2.4). The corresponding
discrete version will be given in Section 4.
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Lemma 3.1. Under the conditions of Theorem 2.2, we have that for 0 < x < 1, t > 0,

(ρθ)t(x, t) = −θρ1+θux(x, t), (3.1)

(
ρ1+θux

)
(x, t) = ργ(x, t) +

∫ x

0
ut(y, t)dy − gx, (3.2)

and

ρθ(x, t) + θ

∫ t

0
ργ(x, s)ds = ρθ

0(x) + θgxt− θ

∫ t

0

∫ x

0
ut(y, s)dyds. (3.3)

Proof. From (2.1)1, we have

(ρθ)t = θρθ−1ρt = −θρ1+θux,

which implies (3.1).
Integrating (2.1)2 over [0, x] and using the boundary condition (2.2), we have

∫ x

0
ut(y, t)dy + ργ(x, t) =

(
ρ1+θux

)
(x, t) + gx,

which implies (3.2).
Integrating (3.1) over [0, t], we have

ρθ(x, t) = −θ
∫ t

0
(ρ1+θux)(x, s)ds+ ρθ

0(x). (3.4)

From (3.2) and (3.4), we get (3.3). Lemma 3.1 is completed.

Lemma 3.2. Under the conditions of Theorem 2.2, the following energy estimates
hold: ∫ 1

0

(
1
2
u2 +

1
γ − 1

ργ−1 +
gx

ρ

)
dx+

∫ t

0

∫ 1

0
ρ1+θu2

xdxdt

=
∫ 1

0

(
1
2
u2

0(x) +
1

γ − 1
ργ−1
0 (x) +

gx

ρ0(x)

)
dx

≤ C, 0 < t ≤ T. (3.5)

Proof. Multiplying (2.1)1 and (2.2)2 by ργ−2 − gxρ−2 and u, respectively and summing
them, we get

d

dt

(
1
2
u2 +

1
γ − 1

ργ−1 +
gx

ρ

)
+ (ργu)x − gxux = u(ρ1+θux)x + gu. (3.6)
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Integrating (3.6) over [0, 1]× [0, t] and using the boundary condition (2.2) and the assump-
tion (A1) and (A2), we have∫ 1

0

(
1
2
u2 +

1
γ − 1

ργ−1 +
gx

ρ

)
dx+

∫ t

0

∫ 1

0
ρ1+θu2

xdxdt

=
∫ 1

0

(
1
2
u2

0(x) +
1

γ − 1
ργ−1
0 (x) +

gx

ρ0(x)

)
dx+

∫ t

0

∫ 1

0
gudxds+

∫ t

0

∫ 1

0
gxuxdxds

=
∫ 1

0

(
1
2
u2

0(x) +
1

γ − 1
ργ−1
0 (x) +

gx

ρ0(x)

)
dx+

∫ t

0
(gxu)|x=1

x=0ds

=
∫ 1

0

(
1
2
u2

0(x) +
1

γ − 1
ργ−1
0 (x) +

gx

ρ0(x)

)
dx

≤
∫ 1

0

(
1
2
u2

0(x) +
1

γ − 1
ργ−1
0 (x) +

g

ρ0(x)

)
dx, (3.7)

which implies (3.5). The proof of Lemma 3.2 is completed.

Lemma 3.3. Under the conditions of Theorem 2.2, we have

ρ(x, t) ≤ C(T ), 0 < x < 1, 0 < t ≤ T. (3.8)

Proof. Using (3.3), Cauchy-Schwarz inequality, the assumption (A2) and Lemma 3.2, we
have that for 0 < x < 1, 0 < t ≤ T ,

ρθ(x, t) + θ

∫ t

0
ργ(x, s)ds = ρθ

0(x) + θgxt− θ

∫ t

0

∫ x

0
ut(y, s)dyds

= ρθ
0(x) + θgxt+ θ

∫ x

0
u0(y)dy − θ

∫ x

0
u(y, t)dy

≤ C(T ) + C‖u0‖L∞([0,1]) + C

∫ 1

0
u2dx

≤ C(T ),

which implies (3.8). Lemma 3.3 is completed.

Lemma 3.4. For the positive integer m defined by (2.5), we have∫ 1

0
u2mdx+

∫ t

0

∫ 1

0
u2m−2ρ1+θu2

xdxds ≤ C(T ). (3.9)

Proof. Multiplying (2.1)2 by 2mu2m−1, integrating it over [0, 1] × [0, t] and using the
boundary condition (2.2), we have∫ 1

0
u2mdx+ 2m(2m− 1)

∫ t

0

∫ 1

0
u2m−2ρ1+θu2

xdxds

=
∫ 1

0
u2m

0 dx+ 2m(2m− 1)
∫ t

0

∫ 1

0
u2m−2ργuxdxds+ 2mg

∫ t

0

∫ 1

0
u2m−1dxds.
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Using the assumption (A2), Cauchy-Schwarz inequality and Young’s inequality ab ≤ 1
pa

p+
1
q b

q for a, b ≥ 0, p, q > 1, 1
p + 1

q = 1, we have

∫ 1

0
u2mdx+ 2m(2m− 1)

∫ t

0

∫ 1

0
u2m−2ρ1+θu2

xdxds

≤ C +m(2m− 1)
∫ t

0

∫ 1

0
u2m−2ρ1+θu2

xdxds+m(2m− 1)
∫ t

0

∫ 1

0
u2m−2ρ2γ−1−θdxds

+(2m− 1)
∫ t

0

∫ 1

0
u2mdxds+

∫ t

0

∫ 1

0
g2mdxds

≤ C(T ) +m(2m− 1)
∫ t

0

∫ 1

0
u2m−2ρ1+θu2

xdxds

+m(2m− 1)
∫ t

0

∫ 1

0

(
1
m
ρ(2γ−1−θ)m +

m− 1
m

u2m
)
dxds+ (2m− 1)

∫ t

0

∫ 1

0
u2mdxds,

which implies together with Lemma 3.3 and 2γ − 1− θ > 0 that∫ 1

0
u2mdx+m(2m− 1)

∫ t

0

∫ 1

0
u2m−2ρ1+θu2

xdxds

≤ C(T ) +m(2m− 1)
∫ t

0

∫ 1

0
u2mdxds. (3.10)

Then (3.10) shows ∫ 1

0
u2mdx ≤ C(T ) +m(2m− 1)

∫ t

0

∫ 1

0
u2mdxds.

By Gronwall’s inequality, we have∫ 1

0
u2mdx ≤ C(T )em(2m−1)t. (3.11)

Substituting (3.11) into the right-hand of (3.10), we deduce (3.9). The proof of Lemma
3.4 is completed.

Now we will prove a weighted energy estimate on the function (ρθ)x.

Lemma 3.5. Under the conditions of Theorem 2.2, we have for the positive integer m
defined by (2.5) and any positive constant k1 ≥ 2m− 2 that∫ 1

0
xk1

[
(ρθ)x

]2m
dx ≤ C(T ). (3.12)

Proof. From (3.1), we have
(ρθ)t = −θρ1+θux, (3.13)
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which implies by using (2.1)2

(
ρθ
)

xt
= −θ(ρ1+θux)x = −θ (ut + (ργ)x) + θg. (3.14)

Integrating (3.14) with respect to t over [0, t], we have

(
ρθ
)

x
=
(
ρθ
0

)
x
− θ(u(x, t)− u0(x))− θ

∫ t

0
(ργ)xds+ θgt. (3.15)

Multiplying (3.15) by xk1 [(ρθ)x]2m−1 and integrating it with respect to x over [0, 1], we
have ∫ 1

0
xk1

[
(ρθ)x

]2m
dx =

∫ 1

0
xk1(ρθ

0)x

[
(ρθ)x

]2m−1
dx

−θ
∫ 1

0
xk1(u(x, t)− u0(x))

[
(ρθ)x

]2m−1
dx

−θ
∫ 1

0
xk1

[
(ρθ)x

]2m−1
∫ t

0
(ργ)xdsdx

+θgt
∫ 1

0
xk1

[
(ρθ)x

]2m−1
dx. (3.16)

Using Young’s inequality ab ≤ εap + C(ε)bq for a, b ≥ 0, ε > 0, C(ε) = (εp)−
q
p q−1, we

have

∫ 1

0
xk1

[
(ρθ)x

]2m
dx

≤ 1
8

∫ 1

0
xk1

[
(ρθ)x

]2m
dx+ C

∫ 1

0
xk1

[
(ρθ

0)x

]2m
dx

+
1
8

∫ 1

0
xk1

[
(ρθ)x

]2m
dx+ C

∫ 1

0
xk1(u2m + u2m

0 )dx

+
1
8

∫ 1

0
xk1

[
(ρθ)x

]2m
dx+ C

∫ 1

0
xk1

(∫ t

0
|(ργ)x|ds

)2m

dx

+
1
8

∫ 1

0
xk1

[
(ρθ)x

]2m
dx+ Ct2m

∫ 1

0
xk1dx

≤ 1
2

∫ 1

0
xk1

[
(ρθ)x

]2m
dx+ C

∫ 1

0
xk1

(∫ t

0
|(ργ)x|ds

)2m

dx

+Cmax
[0,1]

(
xk1−(2m−2)

) ∫ 1

0
x2m−2

[
(ρθ

0)x

]2m
dx+ C

∫ 1

0
(u2m + u2m

0 )dx+ C(T ), (3.17)

Noticing k1 ≥ 2m − 2 and using Lemma 3.3, Lemma 3.4, assumptions (A2), (A3) and
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Hölder’s inequality, we have from (3.17)∫ 1

0
xk1

[
(ρθ)x

]2m
dx ≤ C(T )

∫ 1

0
xk1

∫ t

0
[(ργ)x]2m dsdx+ C(T )

≤ C(T )
∫ t

0
max
[0,1]

(ργ−θ)2m
∫ 1

0
xk1

[
(ρθ)x

]2m
dxds+ C(T )

≤ C(T )
∫ t

0

∫ 1

0
xk1

[
(ρθ)x

]2m
dxds+ C(T ).

Gronwall inequality implies Lemma 3.5.

For the positive integer m defined by (2.5), if we choose k1 = 2m − 2, then we have
the following result:

Corollary 3.6. Under the conditions of Theorem 2.2, we have∫ 1

0
x2m−2

[
(ρθ)x

]2m
dx ≤ C(T ). (3.18)

Based on Lemma 3.3, Lemma 3.4 and Corollary 3.6, the following lemma gives this
kind of estimate with a weighted function xk2 .

Lemma 3.7. For any k2 >
1

2m , we have∫ 1

0

xk2

ρ(x, t)
dx ≤ C(T ). (3.19)

Proof. From (2.1)1, we have (
xk2

ρ(x, t)

)
t

= xk2ux(x, t). (3.20)

Integrating (3.20) over [0, 1]× [0, T ] and using Young’s inequality, we have∫ 1

0

xk2

ρ(x, t)
dx =

∫ 1

0

xk2

ρ0(x)
dx+

∫ t

0

∫ 1

0
xk2ux(x, s)dxds

=
∫ 1

0

xk2

ρ0(x)
dx+

∫ t

0

(
xk2u(x, s)

)∣∣∣x=1

x=0
ds− k2

∫ t

0

∫ 1

0
xk2−1u(x, s)dxds

≤ C + C

∫ t

0

∫ 1

0
u2m(x, s)dxds+ C

∫ t

0

∫ 1

0
x

2m(k2−1)

2m−1 dxds.

(3.21)
By using Lemma 3.4 and noticing 2m(k2−1)

2m−1 > −1 when k2 >
1

2m , we have∫ 1

0

xk2

ρ(x, t)
dx ≤ C(T ).

This proves Lemma 3.7.
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Remark 3.8. The finite propagation property implies that the finiteness of the integral∫ 1
0

1
ρ(x,t) which is stronger than Lemma 3.7. However, this boundedness can not be obtained

here without using a weight xk2, where k2 is a positive constant which can be arbitrarily
small. The boundedness of

∫ 1
0

1
ρ(x,t) holds once the L∞ bound on the velocity is given in

Lemma 3.13.
If we choose k2 = 1

2m−1 (> 1
2m) in Lemma 3.7, then we have the following result which

is used to get the lower bound estimate of the density function ρ(x, t).

Corollary 3.9. The following estimate holds:

∫ 1

0

x
1

2m−1

ρ(x, t)
dx ≤ C(T ), (3.22)

where m is defined by (2.5).

The next lemma gives a estimate on the lower bound for the density function ρ(x, t).
This crucial estimate can be used to study the other property of the solution (ρ, u)(x, t)
for compactness of the sequence of the approximate solutions given in the next section.

Lemma 3.10. For any 0 < θ < 1
3 , the following estimate holds

ρ(x, t) ≥ C(T )x1+k3 , (3.23)

where k3 satisfies (2.11).
Proof. Now by using Sobolev’s embedding theorem W 1,1([0, 1]) ↪→ L∞([0, 1]) and
Hölder’s inequality, we have from Corollary 3.9 and Lemma 3.5

x1+k3

ρ(x, t)
≤
∫ 1

0

x1+k3

ρ(x, t)
dx+

∫ 1

0

∣∣∣∣∣
(
x1+k3

ρ(x, t)

)
x

∣∣∣∣∣ dx
≤ max

[0,1]

(
x1+k3−k2

) ∫ 1

0

xk2

ρ(x, t)
dx+

∫ 1

0

x1+k3 |ρx(x, t)|
ρ2(x, t)

dx

+(1 + k3) max
[0,1]

(
xk3−k2

) ∫ 1

0

xk2

ρ(x, t)
dx

≤ C(T ) +
1
θ

∫ 1

0

x1+k3 |(ρθ(x, t))x|
ρ1+θ(x, t)

dx

≤ C(T ) +
1
θ

(∫ 1

0
xk1

[(
ρθ
)

x

]2m
dx

) 1
2m
(∫ 1

0
x(1+k3−

k1
2m

)qρ−(1+θ)qdx

) 1
q

≤ C(T ) + C(T )

(∫ 1

0

xk2

ρ(x, t)
dx

) 1
q

max
[0,1]

x(1+k3−
k1
2m

)q−k2

ρ(1+θ)q−1

 1
q

≤ C(T ) + C(T ) max
[0,1]

(
x1+k3

ρ(x, t)

)1+θ− 1
q

max
[0,1]

xk4 , (3.24)
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where q = 2m
2m−1 and k4 = 1 + k3 − k1

2m − k2
q − (1 + k3)

(
1 + θ − 1

q

)
. Here we have used

k3 ≥ 1
2m−1 = k2 from (2.11).

By k3 ≥ 2mθ
2m(1−θ)−1 , we have

k4 = 1 + k3 −
k1

2m
− k2

q
− (1 + k3)

(
1 + θ − 1

q

)
= k3

(
1− θ − 1

2m

)
− θ ≥ 0.

This and (3.24) show

max
[0,1]

x1+k3

ρ(x, t)
≤ C(T ) + C(T )

(
max
[0,1]

x1+k3

ρ(x, t)

)1+θ− 1
q

,

i.e.,

max
[0,1]

x1+k3

ρ(x, t)
≤ C(T ) + C(T )

(
max
[0,1]

x1+k3

ρ(x, t)

)θ+ 1
2m

. (3.25)

For 0 < θ < 1
3 , we have 0 < θ + 1

2m < 1. Therefore, (3.25) implies

max
[0,1]

x1+k3

ρ(x, t)
≤ C(T ).

This proves (3.23) and the proof of Lemma 3.10 is completed.

Lemma 3.11. Under the conditions of Theorem 2.2, we have∫ 1

0
u2

tdx+
∫ t

0

∫ 1

0
ρ1+θu2

xtdxds ≤ C(T ). (3.26)

Proof. Differentiating (2.1)2 with respect to t, multiplying it by 2ut and integrating it
over [0, 1]× [0, t], we get∫ 1

0
u2

tdx+ 2
∫ t

0

∫ 1

0
(ργ)xt utdxds =

∫ 1

0
u2

0tdx+ 2
∫ t

0

∫ 1

0

(
ρ1+θux

)
xt
utdxds. (3.27)

Since
u0t =

(
ρ1+θ
0 u0x

)
x

+ g − (ργ
0)x , (3.28)

we have from the assumption (A2) that∫ 1

0
u2

0t(x)dx ≤ C. (3.29)

On the other hand, using integration by parts, we have from (2.1)1

2
∫ t

0

∫ 1

0

(
ρ1+θux

)
xt
utdxds

= 2
∫ t

0

∫ 1

0

{(
ρ1+θux

)
t
ut

}
x
dxds− 2

∫ t

0

∫ 1

0

(
ρ1+θux

)
t
uxtdxds

= −2
∫ t

0

∫ 1

0
ρ1+θu2

xtdxds+ 2(1 + θ)
∫ t

0

∫ 1

0
ρ2+θu2

xuxtdxds. (3.30)
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Similarly, we have

2
∫ t

0

∫ 1

0
(ργ)xt utdxds

= 2
∫ t

0

∫ 1

0
{(ργ)t ut}x dxds− 2

∫ t

0

∫ 1

0
(ργ)t uxtdxds

= 2γ
∫ t

0

∫ 1

0
ρ1+γuxuxtdxds. (3.31)

Here in (3.30) and (3.31), we have used the boundary condition (2.2) and the equation
(2.1)1.

Substituting (3.29)-(3.31) into (3.27), we have∫ 1

0
u2

tdx+ 2
∫ t

0

∫ 1

0
ρ1+θu2

xtdxds

≤ C + 2(1 + θ)
∫ t

0

∫ 1

0
ρ2+θu2

xuxtdxds− 2γ
∫ t

0

∫ 1

0
ρ1+γuxuxtdxds. (3.32)

From Cauchy-Schwarz inequality, we have

2(1 + θ)
∫ t

0

∫ 1

0
ρ2+θu2

xuxtdxds

≤ 1
2

∫ t

0

∫ 1

0
ρ1+θu2

xtdxds+ 2(1 + θ)2
∫ t

0

∫ 1

0
ρ3+θu4

xdxds, (3.33)

and

−2γ
∫ t

0

∫ 1

0
ρ1+γuxuxtdxds

≤ 1
2

∫ t

0

∫ 1

0
ρ1+θu2

xtdxds+ 2γ2
∫ t

0

∫ 1

0
ρ2γ+1−θu2

xdxds. (3.34)

Therefore, ∫ 1

0
u2

tdx+
∫ t

0

∫ 1

0
ρ1+θu2

xtdxds

≤ C + 2(1 + θ)2
∫ t

0

∫ 1

0
ρ3+θu4

xdxds+ 2γ2
∫ t

0

∫ 1

0
ρ2γ+1−θu2

xdxds

= C + 2(1 + θ)2I1 + 2γ2I2. (3.35)

Now we can estimate I1 and I2 as follows:

I1 =
∫ t

0

∫ 1

0
ρ3+θu4

xdxds ≤
∫ t

0
max
[0,1]

(
ρ2u2

x

)
(·, s)V (s)ds, (3.36)

where

V (s) =
∫ 1

0

(
ρ1+θu2

x

)
(x, s)dx.
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On the other hand, from (3.2), Lemma 3.3 and Lemma 3.10, we have by Hölder’s inequality

ρ2u2
x = ρ−2θ

(
ρ1+θux

)2

= ρ−2θ
(∫ x

0
ut(y, t)dy + ργ − gx

)2

≤ Cρ−2θx

∫ 1

0
u2

tdx+ Cρ2(γ−θ) + Cg2x2ρ−2θ

≤ C(T )x1−2θ(1+k3)
∫ 1

0
u2

tdx+ C(T ) + C(T )x2−2θ(1+k3). (3.37)

Since k3 ≤ 1
2θ − 1− 1

(2m−1)θ ≤
1
2θ − 1, we have

1− 2θ(1 + k3) ≥ 0,

which implies

max
[0,1]

(
ρ2u2

x

)
(·, t) ≤ C(T )

∫ 1

0
u2

tdx+ C(T ).

Therefore

I1 ≤ C(T )
∫ t

0
V (s)

∫ 1

0
u2

tdxds+ C(T )
∫ t

0
V (s)ds. (3.38)

Similarly, we have by Lemma 3.2 and Lemma 3.3

I2 =
∫ t

0

∫ 1

0
ρ2γ+1−θu2

xdxds = max
(
ρ2γ−2θ

) ∫ t

0

∫ 1

0
ρ1+θu2

xdxds ≤ C(T ). (3.39)

Substituting (3.38) and (3.39) into (3.35), we have by Lemma 3.2∫ 1

0
u2

tdx+
∫ t

0

∫ 1

0
ρ1+θu2

xtdxds ≤ C(T )
(

1 +
∫ t

0
V (s)

∫ 1

0
u2

tdxds

)
. (3.40)

Gronwall’s inequality and Lemma 3.2 give∫ 1

0
u2

tdx ≤ C(T ) exp
(
C(T )

∫ t

0
V (s)ds

)
≤ C(T ). (3.41)

Combining (3.40) with (3.41) and using Lemma 3.2, we can get (3.26) immediately. This
completes the proof of Lemma 3.11.

Lemma 3.12. Under the conditions of Theorem 2.2, we have∫ 1

0
|ρx(x, t)|dx ≤ C(T ), (3.42)

∥∥∥ρ1+θ(x, t)ux(x, t)
∥∥∥

L∞([0,1]×[0,T ])
≤ C(T ), (3.43)

and ∫ 1

0

∣∣∣(ρ1+θux)x(x, t)
∣∣∣ dx ≤ C(T ). (3.44)
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Proof. Since (
ρ1+θux

)
(x, t) =

∫ x

0
ut(y, t)dy + ργ(x, t)− gx, (3.45)

(3.43) follows from Lemma 3.3 and Lemma 3.11.
On the other hand, from (2.1)2, we have by Lemma 3.11, Corollary 3.6 and Young’s

inequality∫ 1

0

∣∣∣(ρ1+θux

)
x
(x, t)

∣∣∣ dx ≤ ∫ 1

0
|ut(x, t)|dx+

∫ 1

0
|(ργ)x (x, t)| dx+ g

≤
∫ 1

0
u2

t (x, t)dx+ C +
γ

θ

∫ 1

0
ργ−θ

∣∣∣(ρθ
)

x

∣∣∣ dx+ g

≤ C(T ) + C(T )
∫ 1

0
x

2m−2
2m

∣∣∣(ρθ
)

x

∣∣∣x− 2m−2
2m dx

≤ C(T ) + C(T )
∫ 1

0
x2m−2

[(
ρθ
)

x

]2m
dx+ C(T )

∫ 1

0
x−

2m−2
2m−1dx

≤ C(T ),
(3.46)

which implies (3.44).
Similarly, we have by using Young’s inequality and Lemma 3.3, Corollary 3.6 that∫ 1

0
|ρx(x, t)|dx =

1
θ

∫ 1

0
x

2m−2
2m

∣∣∣(ρθ
)

x

∣∣∣x− 2m−2
2m ρ1−θdx

≤ 1
2mθ

∫ 1

0
x2m−2

[(
ρθ
)

x

]2m
dx+

2m− 1
2mθ

∫ 1

0
x−

2m−2
2m−1 ρ

2m(1−θ)
2m−1 dx

≤ C(T ) + C(T )
∫ 1

0
x−

2m−2
2m−1dx

≤ C(T ), (3.47)

which implies (3.42).
This proves Lemma 3.12.

Lemma 3.13. Under the conditions of Theorem 2.2, we have
∫ 1

0
|ux(x, t)|dx ≤ C(T ),

||u(x, t)||L∞([0,1]×[0,T ]) ≤ C(T ).

(3.48)

Proof. From (3.2), we have

ux(x, t) = ργ−1−θ(x, t) + ρ−1−θ
∫ x

0
ut(y, t)dy − gxρ−1−θ. (3.49)
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By Lemma 3.11 and Hölder’s inequality, we have∫ 1

0
|ux(x, t)|dx ≤

∫ 1

0
ργ−1−θdx+

∫ 1

0
ρ−1−θ

∫ x

0
|ut(y, t)|dydx+ g

∫ 1

0
xρ−1−θdx

≤
∫ 1

0
ργ−1−θdx+

∫ 1

0
ρ−1−θx

1
2dx

(∫ 1

0
u2

tdx

) 1
2

+ g

∫ 1

0
xρ−1−θdx

≤
∫ 1

0
ργ−1−θdx+ C(T )

∫ 1

0
x

1
2 ρ−1−θdx. (3.50)

The next we will prove (3.48)1.
Case 1. If γ − 1− θ < 0, then we have by Lemma 3.10∫ 1

0
ργ−1−θ(x, t)dx ≤ C(T )

∫ 1

0
x(γ−1−θ)(1+k3)dx.

Since
k3 ≤

1
2θ
− 1− 1

(2m− 1)θ
,

we have for γ > 1

(γ − 1− θ)(1 + k3) ≥ −1 + θ − γ

2θ
+

1 + θ − γ

(2m− 1)θ
> −1 + θ − γ

2θ
> −1.

Therefore ∫ 1

0
ργ−1−θ(x, t)dx ≤ C(T ). (3.51)

Case 2. If γ − 1− θ ≥ 0, we can also obtain (3.51).
On the other hand, by Corollary 3.9 and Lemma 3.10, we have∫ 1

0
x

1
2 ρ−1−θdx ≤ max

[0,1]

{
x

1
2
− 1

2m−1 ρ−θ
}∫ 1

0
x

1
2m−1 ρ−1dx

≤ C(T ) max
[0,1]

{
x

1
2
− 1

2m−1 ρ−θ
}

≤ C(T ) max
[0,1]

x
1
2
− 1

2m−1
−θ(1+k3). (3.52)

By k3 ≤ 1
2θ − 1− 1

(2m−1)θ , we have

1
2
− 1

2m− 1
− θ(1 + k3) ≥ 0.

Therefore ∫ 1

0
x

1
2 ρ−1−θdx ≤ C(T ). (3.53)

Then (3.50), (3.51) and (3.53) show (3.48)1.
On the other hand, by using Sobolev’s embedding theorem W 1,1([0, 1]) ↪→ L∞([0, 1])

and Cauchy-Schwarz inequality, we have from (3.48)1 and Lemma 3.2

||u(x, t)||L∞([0,1]×[0,T ]) ≤
∫ 1

0
|u(x, t)|dx+

∫ 1

0
|ux(x, t)|dx ≤ C(T ).
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This completes the proof of Lemma 3.13.
Our last lemma in this section is about the L1-continuity of terms in the equations

(2.1) with respect to time.

Lemma 3.14. Under the conditions of Theorem 2.2, we have for 0 < s < t ≤ T that∫ 1

0
|ρ(x, t)− ρ(x, s)|2dx ≤ C(T )|t− s|, (3.54)∫ 1

0
|u(x, t)− u(x, s)|2dx ≤ C(T )|t− s|, (3.55)∫ 1

0

∣∣∣(ρ1+θux

)
(x, t)−

(
ρ1+θux

)
(x, s)

∣∣∣2 dx ≤ C(T )|t− s|. (3.56)

Proof. We first prove (3.54). To do this, using (2.1)1, Hölder’s inequality and Lemma
3.2, Lemma 3.3, we have∫ 1

0
|ρ(x, t)− ρ(x, s)|2dx =

∫ 1

0

∣∣∣∣∫ t

s
ρt(x, η)dη

∣∣∣∣2 dx
=
∫ 1

0

∣∣∣∣∫ t

s
(ρ2ux)(x, η)dη

∣∣∣∣2 dx
≤ |t− s|

∫ t

s

∫ 1

0

(
ρ4u2

x

)
(x, η)dxdη

≤ |t− s|
∫ t

0
max
[0,1]

(
ρ3+θ

) ∫ 1

0

(
ρ1+θu2

x

)
(x, η)dxdη

≤ C(T )|t− s|,

which implies (3.54).
Secondly, we have by Hölder’s inequality and Lemma 3.11 that∫ 1

0
|u(x, t)− u(x, s)|2dx =

∫ 1

0

∣∣∣∣∫ t

s
ut(x, η)dη

∣∣∣∣2 dx
≤ |t− s|

∫ t

s

∫ 1

0
u2

t (x, η)dxdη

≤ C(T )|t− s|.

So (3.55) follows.
Finally, we prove (3.56). For this, we first obtain from Hölder’s inequality that∫ 1

0

∣∣∣(ρ1+θux

)
(x, t)−

(
ρ1+θux

)
(x, s)

∣∣∣2 dx
=
∫ 1

0

∣∣∣∣∫ t

s

(
ρ1+θux

)
t
(x, η)dη

∣∣∣∣2 dx
≤ |t− s|

∫ t

s

∫ 1

0

[(
ρ1+θux

)
t
(x, η)

]2
dxdη. (3.57)
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On the other hand, from (2.1)1, we have(
ρ1+θux

)
t
(x, t) =

(
ρ1+θuxt

)
(x, t) + (1 + θ)

(
ρθρtux

)
(x, t)

=
(
ρ1+θuxt

)
(x, t)− (1 + θ)

(
ρ2+θu2

x

)
(x, t). (3.58)

Therefore, using Cauchy-Schwarz inequality, we have from Lemma 3.2, Lemma 3.3, Lemma
3.11 and Lemma 3.12 that∫ t

s

∫ 1

0

[(
ρ1+θux

)
t
(x, η)

]2
dxdη ≤ C

∫ t

0

∫ 1

0
ρ2+2θu2

xtdxdη + C

∫ t

0

∫ 1

0
ρ4+2θu4

xdxdη

≤ C

∫ t

0
max
[0,1]

(
ρ1+θ

) ∫ 1

0
ρ1+θu2

xtdxdη

+C
∫ t

0
max
[0,1]

(
ρ1+θux

)2
max
[0,1]

(
ρ1−θ

) ∫ 1

0
ρ1+θu2

xdxdη

≤ C(T ).

This and (3.57) implies (3.56). The proof of Lemma 3.14 is completed.

4. Construction of weak solution

To construct a weak solution to the initial boundary value problem (2.1)-(2.4), we apply
the line method as in [18], which can be described as follows. For any given positive integer
N , let h = 1

N . Discretizing the derivatives with respect to x in (2.1), we obtain the system
of 2N ordinary differential equations

d

dt
ρh
2n(t) +

(
ρh
2n(t)

)2 uh
2n+1(t)− uh

2n−1(t)
h

= 0,

d

dt
uh

2n−1(t) +
P (ρh

2n(t))− P (ρh
2n−2(t))

h

=
1
h2

{
G(ρh

2n(t))(uh
2n+1(t)− uh

2n−1(t))−G(ρh
2n−2(t))(u

h
2n−1(t)− uh

2n−3(t))
}

+ g,

(4.1)
with the boundary condition

ρh
0(t) = uh

2N+1(t) = 0, (4.2)

and the initial data 
ρh
2n(0) = ρ0

(
2n · h

2

)
,

uh
2n−1(0) = u0

(
(2n− 1) · h

2

)
,

(4.3)

where n = 1, 2, · · · , N and G(ρ) = µ(ρ)ρ. When n = 1, the second term in the right hand
of (4.1)2 is regarded as

G(ρh
0(t))

uh
1(t)− uh

−1(t)
h2

= 0.
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To the end, we will use (ρ2n, u2n−1) to replace (ρh
2n, u

h
2n−1) without any ambiguity.

By using the arguments in [19, 21], we can prove the following lemmas for obtaining the
uniform estimate of the approximate solutions to (4.1)-(4.3) with respect to h. Since they
are the same as or similar to those in [19, 21], we omit the proofs for brevity. Interested
readers please refer to [19, 21]. In the following, we consider the solutions to (4.1)-(4.3)
for 0 ≤ t ≤ T where T > 0 is any constant.

Lemma 4.1. Let (ρ2n(t), u2n−1(t)), n = 1, 2, · · · , N , be the solution to (4.1)-(4.3).
Then there exists C(T ) independent of h such that

N∑
n=1

(
1
2
u2

2n−1(t) +
1

γ − 1
ργ−1
2n (t) +

gnh

ρ2n(t)

)
h+

∫ t

0

N∑
n=1

G(ρ2n(s))
(
u2n+1(s)− u2n−1(s)

h

)2

hds

=
N∑

n=1

(
1
2
u2

2n−1(0) +
1

γ − 1
ργ−1
2n (0) +

gnh

ρ2n(0)

)
h ≤ C.

(4.4)
As a consequence of (4.4), the problem (4.1)-(4.3) has a unique global solution for any

given h.

Lemma 4.2. For the positive integer m defined by (2.5), we have

ρ2n(t) ≤ C(T ), (4.5)

and

N∑
n=1

u2m
2n−1(t)h+

∫ t

0

N∑
n=1

u2m−2
2n−1 (s)ρ1+θ

2n (s)
(
u2n−1(s)− u2n−3(s)

h

)2

hds ≤ C(T ). (4.6)

Lemma 4.3. For the positive integer m defined by (2.5), we have

N∑
n=1

(nh)2m−2

(
ρθ
2n(t)− ρθ

2n−2(t)
h

)2m

h ≤ C(T ), (4.7)

N∑
n=1

(nh)
1

2m−1 ρ−1
2n (t)h ≤ C(T ), (4.8)

N∑
n=1

[
d

dt
u2n−1(t)

]2
h+

∫ t

0

N∑
n=1

ρ1+θ
2n (s)

(
d
dtu2n−1(s)− d

dtu2n−3(s)
h

)2

hds ≤ C(T ), (4.9)

and
ρ2n(t) ≥ C(T )(nh)1+k3 , (4.10)

where k3 satisfies (2.11).
Based on Lemma 4.1, Lemma 4.2 and Lemma 4.3, similar to the arguments in [18,

19, 21] and those in the proof of Lemma 3.12, Lemma 3.13, Lemma 3.14, we can get the
following estimates.
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Lemma 4.4. There exists C(T ) such that the following estimates hold
N∑

n=1

|ρ2n(t)− ρ2n−2(t)| ≤ C(T ), (4.11)

N∑
n=1

|u2n+1(t)− u2n−1(t)| ≤ C(T ), (4.12)

|u2n+1(t)| ≤ C(T ), (4.13)∣∣∣∣ρ1+θ
2n (t)

u2n+1(t)− u2n−1(t)
h

∣∣∣∣ ≤ C(T ), (4.14)

N∑
n=1

∣∣∣∣G(ρ2n+2(t))
u2n+1(t)− u2n−1(t)

h
−G(ρ2n(t))

u2n−1(t)− u2n−3(t)
h

∣∣∣∣ ≤ C(T ), (4.15)

N∑
n=1

|ρ2n(t)− ρ2n(s)|2 h ≤ C(T )|t− s|, (4.16)

N∑
n=1

|u2n−1(t)− u2n−1(s)|2 h ≤ C(T )|t− s|, (4.17)

and
N∑

n=1

∣∣∣∣G(ρ2n(t))
u2n−1(t)− u2n−3(t)

h
−G(ρ2n(s))

u2n−1(s)− u2n−3(s)
h

∣∣∣∣2 h ≤ C(T )|t− s|.

(4.18)

Now we can define the sequence of approximate solutions (ρh(x, t), uh(x, t)) for (x, t) ∈
[0, 1]× [0, T ] as follows:

ρh(x, t) = ρ2n(t),

uh(x, t) =
1
h

{(
x−

(
n− 1

2

)
h

)
u2n+1(t) +

((
n+

1
2

)
h− x

)
u2n−1(t)

}
,

(4.19)

for
(
n− 1

2

)
h < x <

(
n+

1
2

)
h. Then we have for

(
n− 1

2

)
h < x <

(
n+

1
2

)
h

∂xuh(x, t) =
1
h

(u2n+1(t)− u2n−1(t)) , (4.20)

and 

C(T )x1+k3 ≤ ρh(x, t) ≤ C(T ),

|uh(x, t)| ≤ C(T ),
∫ 1

0
|∂xuh(x, t)| dx ≤ C(T ),

|G(ρh(x, t))∂xuh(x, t)| ≤ C(T ),

∫ 1

0
|∂x (G(ρh(x, t))∂xuh(x, t))| dx ≤ C(T ).

(4.21)

By using Helly’s theorem and arguments in one of the references [18, 19, 21, 28], we
complete the proof of Theorem 2.2.
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5. Uniqueness of weak solution

In this section, we will prove the uniqueness of the weak solution constructed in Section
4. To do this, we first give two lemmas.

Lemma 5.1. For 0 < θ < 1
2 , let

l1 = 1 + θ − 1
2(1 + k3)

(≤ 1), (5.1)

where k3 is defined by (2.11). Then there exists some constant C(T ) such that

||(ρl1ux)(x, t)||L∞([0,1]×[0,T ]) ≤ C(T ). (5.2)

Proof. We first notice from (2.11)

−1
2
< l1 − 1− θ < −θ < 0.

Then from (3.2), Lemma 3.3, Lemma 3.10 and Lemma 3.11, we have by Hölder’s inequality
that

|(ρl1ux)(x, t)| ≤ ργ+l1−1−θ + ρl1−1−θ
∫ x

0
|ut(y, t)|dy + gxρl1−1−θ

≤ C(T ) + ρl1−1−θ
(∫ x

0
u2

t (y, t)dx
) 1

2

x
1
2 + gxρl1−1−θ

≤ C(T ) + C(T )x
1
2
+(1+k3)(l1−1−θ) + Cx1+(1+k3)(l1−1−θ). (5.3)

From (5.1), we have

1
2

+ (1 + k3)(l1 − 1− θ) = 0, 1 + (1 + k3)(l1 − 1− θ) =
1
2
> 0.

This and (5.3) show (5.2). The proof of Lemma 5.1 is completed.

Since

0 ≤ ρ0(x) ≤ Cxα, 0 < α < 1, 0 ≤ x ≤ 1, (5.4)

therefore, similar to the proof in [30], we have the following result.

Lemma 5.2. Under conditions (A1)′-(A3)′, we have

ρ(x, t) ≤ C(T )xα, (5.5)

for 0 < x < 1, 0 < t ≤ T .



Navier-Stokes Equations with Vacuum 23

Proof of Theorem 2.4. Let (ρ1, u1)(x, t) and (ρ2, u2)(x, t) be two solutions to
the initial boundary value problem (2.1)-(2.4) as described in Definition 2.1. Then from
Lemma 5.1 and Lemma 5.2, we have for i = 1, 2 ||(ρl1

i ∂xui)(x, t)||L∞([0,1]×[0,T ]) ≤ C(T ),

0 ≤ ρi(x, t) ≤ C(T )xα.
(5.6)

Let 
φ(x, t) = (ρ1 − ρ2)(x, t),

ψ(x, t) =
∫ x

0
(u1 − u2)(y, t)dy,

(5.7)

for 0 ≤ x ≤ 1 and 0 ≤ t ≤ T .
By the boundary condition (2.2), we have

φ(0, t) = ψ(0, t) = ψt(0, t) = ψx(1, t) = 0 (5.8)

for 0 ≤ t ≤ T .
In the following, we may assume that (ρ1, u1)(x, t) and (ρ2, u2)(x, t) are suitably smooth

since the following estimates are valid for the solutions with the regularity indicated in
Theorem 2.2 by using the Friedrichs mollifier.

It follows from (2.1) and (5.7) (
φ

ρ1ρ2

)
t

+ ψxx = 0, (5.9)

and

ψt +
ργ
1 − ργ

2

ρ1 − ρ2
φ = ρ1+θ

1 ψxx +
ρ1+θ
1 − ρ1+θ

2

ρ1 − ρ2
φu2x. (5.10)

Multiplying (5.9) by 2ρl2
1 ρ

−1
2 φ, we have

(ρ−1+l2
1 ρ−2

2 φ2)t + (1 + l2)ρl2
1 ρ

−2
2 φ2u1x + 2ρl2

1 ρ
−1
2 φψxx = 0, (5.11)

where
θ ≤ l2 ≤

(
1

1 + k3
− 2θ

)
α

1 + k3
− θ. (5.12)

The proof of the existence of l2 is given by Remark 5.3.
Integrating (5.11) with respect to x over [0, 1] and using Cauchy-Schwarz inequality,

we have

d

dt

∫ 1

0
ρ−1+l2
1 ρ−2

2 φ2dx

≤ C

∫ 1

0
ρl2−l1
1 ρ−2

2 φ2|ρl1
1 u1x|dx+

1
4

∫ 1

0
ρ1+θ
1 ψ2

xxdx+ C

∫ 1

0
ρ2l2−1−θ
1 ρ−2

2 φ2dx

≤ C(T )
∫ 1

0
ρl2−l1
1 ρ−2

2 φ2dx+
1
4

∫ 1

0
ρ1+θ
1 ψ2

xxdx+ C

∫ 1

0
ρ2l2−1−θ
1 ρ−2

2 φ2dx. (5.13)
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From (5.1) and (5.12), we have
l2 − l1 ≥ −1 + l2

and
2l2 − 1− θ ≥ −1 + l2.

Therefore

d

dt

∫ 1

0
ρ−1+l2
1 ρ−2

2 φ2dx ≤ C(T )
∫ 1

0
ρ−1+l2
1 ρ−2

2 φ2dx+
1
4

∫ 1

0
ρ1+θ
1 ψ2

xxdx. (5.14)

Multiplying (5.10) by ψxx, we have(
1
2
ψ2

x

)
t
+ ρ1+θ

1 ψ2
xx =

ργ
1 − ργ

2

ρ1 − ρ2
φψxx −

ρ1+θ
1 − ρ1+θ

2

ρ1 − ρ2
φu2xψxx + (ψtψx)x. (5.15)

Integrating (5.15) with respect to x over [0, 1] and using Cauchy-Schwarz inequality, we
have from (5.6), (5.8), Lemma 3.10 and noticing l1 > 0

1
2
d

dt

∫ 1

0
ψ2

xdx+
∫ 1

0
ρ1+θ
1 ψ2

xxdx

=
∫ 1

0

ργ
1 − ργ

2

ρ1 − ρ2
φψxxdx−

∫ 1

0

ρ1+θ
1 − ρ1+θ

2

ρ1 − ρ2
φu2xψxxdx

≤ 1
4

∫ 1

0
ρ1+θ
1 ψ2

xxdx+ C(T )
∫ 1

0
ρ−1−θ
1 φ2dx+ C(T )

∫ 1

0
ρ−1−θ
1 φ2u2

2xdx

≤ 1
4

∫ 1

0
ρ1+θ
1 ψ2

xxdx+ C(T ) max
[0,1]

(
ρ−θ−l2
1 ρ2

2

) ∫ 1

0
ρ−1+l2
1 ρ−2

2 φ2dx

+C(T ) max
[0,1]

(
ρ−θ−l2
1 ρ2

2u
2
2x

) ∫ 1

0
ρ−1+l2
1 ρ−2

2 φ2dx

≤ 1
4

∫ 1

0
ρ1+θ
1 ψ2

xxdx+ C(T ) max
[0,1]

(
ρ−θ−l2
1 ρ2

2

) ∫ 1

0
ρ−1+l2
1 ρ−2

2 φ2dx

+C(T ) max
[0,1]

(
ρ−θ−l2
1 ρ2−2l1

2

)
max
[0,1]

(
ρl1
2 u2x

)2
∫ 1

0
ρ−1+l2
1 ρ−2

2 φ2dx

≤ 1
4

∫ 1

0
ρ1+θ
1 ψ2

xxdx+ C(T ) max
[0,1]

(
x(2−2l1)α−(θ+l2)(1+k3)

) ∫ 1

0
ρ−1+l2
1 ρ−2

2 φ2dx. (5.16)

From (5.1) and (5.12), we have

(2− 2l1)α− (θ + l2)(1 + k3) ≥ 0.

Therefore
1
2
d

dt

∫ 1

0
ψ2

xdx+
∫ 1

0
ρ1+θ
1 ψ2

xxdx

≤ 1
4

∫ 1

0
ρ1+θ
1 ψ2

xxdx+ C(T )
∫ 1

0
ρ−1+l2
1 ρ−2

2 φ2dx. (5.17)
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Thus (5.14) and (5.17) show

d

dt

(∫ 1

0
ρ−1+l2
1 ρ−2

2 φ2dx+
1
2

∫ 1

0
ψ2

xdx

)
+

1
2

∫ 1

0
ρ1+θ
1 ψ2

xxdx

≤ C(T )
∫ 1

0
ρ−1+l2
1 ρ−2

2 φ2dx. (5.18)

By using Gronwall’s inequality, we have for any t > 0∫ 1

0
ρ−1+l2
1 ρ−2

2 φ2dx = 0 (5.19)

and ∫ 1

0
ψ2

xdx = 0. (5.20)

This proves Theorem 2.4.

Remark 5.3. There exists some constant l2 which satisfies (5.12).
In fact, (5.12) is equivalent to

(1 + k3)2 + (1 + k3)α−
α

2θ
≤ 0, (5.21)

which implies

1 + k3 ≤ −α
2

+
1
2

√
α2 +

2α
θ
. (5.22)

From (2.11) and (5.22), we have

2m− 1
2m− 2mθ − 1

+
α

2
≤ 1

2

√
α2 +

2α
θ
, (5.23)

i.e.,

α ≥ 2(2m− 1)2θ
(2m− 2mθ − 1)(2m− 6mθ + 2θ − 1)

. (5.24)

Furthermore, (5.24) can be rewritten as

4(3αθ2 − (4α+ 2)θ + α)m2 − 4(αθ2 − (3α+ 2)θ + α)m+ α− (2α+ 2)θ ≥ 0. (5.25)

When 0 < θ <
α

1 + 2α+
√

1 + 4α+ α2
, we have

3αθ2 − (4α+ 2)θ + α > 0. (5.26)

From the assumption (A3)′ and (5.26), we see (5.25) holds. Now let

2mθ
2m(1− θ)− 1

≤ k3 ≤ min

{
1
2θ
− 1− 1

(2m− 1)θ
, −α

2
− 1 +

1
2

√
α2 +

2α
θ

}
, (5.27)

that is to say, we may choose m so large that (2.14) is satisfied. Then (5.22) holds. So
there exists some constant l2 such that (5.12) hold.
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Remark 5.4. When α is sufficiently close to 1, then θ may be sufficiently close to
1−

√
6

3 .

Acknowledgement: The research of the second author was supported by Hong Kong
RGC Competitive Earmarked Research Grant CityU 102703 and the National Natural
Science Foundation of China #10329101, respectively. The research of the third author
was supported by Program for New Century Excellent Talents in University #NCET-04-
0745, the Key Project of the National Natural Science Foundation of China #10431060
and the Key Project of Chinese Ministry of Education #104128.

References

[1] R. Balian, From microphysics to macrophysics, Texts and monographs in physics,
Springer, 1982.

[2] G.Q. Chen, D. Hoff and K. Trivisa, Global solutions of the compressible Navier-Stokes
equations with large discontinuous initial data, Comm. Partial Differential Equations,
25(2000), 2233-2257.

[3] G.Q. Chen and M. Kratka, Global solutions to the Navier-Stokes equations for com-
pressible heat-conducting flow with symmetry and free boundary, Comm. Partial
Differential Equations, 27(2002), 907-943.

[4] D.Y. Fang, T. Zhang, A note on compressible Navier-Stokes equations with vacuum
state in one dimension, Nonlinear Anal., TMA, 58(2004), 719-731.

[5] H. Grad, Asymptotic theory of the Boltzmann equation II. In: Rarefied gas dynamics,
1(ed. J. Laurmann), New York Academic Press(1963), 26-59.

[6] D. Hoff, Strong convergence to global solutions for multidimensional flows of com-
pressible, viscous fluids with polytropic equations of state and discontinuous initial
data, Arch. Rat. Mech. Anal., 132(1995), 1-14.

[7] D. Hoff and T.-P. Liu, The inviscid limit for the Navier-Stokes equations of compress-
ible isentropic flow with shock data, Indiana Univ. Math. J., 38(1989), 861-915.

[8] D. Hoff and D. Serre, The failure of continuous dependence on initial data for the
Navier-Stokes equations of compressible flow, SIAM J. Appl. Math., 51(1991), 887-
898.

[9] D. Hoff and J. Smoller, Non-formation of vacuum states for compressible Navier-
Stokes equations, Comm. Math. Phys., 216(2001), 255–276.

[10] S. Jiang, Global smooth solutions of the equations of a viscous, heat-conducting, one-
dimensional gas with density-dependent viscosity, Math. Nachr., 190(1998), 169-183.



Navier-Stokes Equations with Vacuum 27

[11] S. Jiang, Z.P. Xin and P. Zhang, Global weak solutions to 1D compressible isentropic
Navier-Stokes equations with density-dependent viscosity, preprint 1999.

[12] S. Kawashima and T. Nishida , The initial-value problems for the equations of viscous
compressible and perfect compressible fluids, RIMS, Kokyuroku 428, Kyoto Univer-
sity, Nonlinear Functional Analysis, June 1981, 34-59.

[13] P.L. Lions, Mathematical Topics in Fluid Mechanics, Vol. 1, 2, (1998), Clarendon
Press-Oxford.

[14] T.-P. Liu, Z. Xin and T. Yang, Vacuum states of compressible flow, Discrete and
Continuous Dynamical Systems, 4(1998), 1-32.

[15] T. Luo, Z. Xin and T. Yang, Interface behavior of compressible Navier-Stokes equa-
tions with vacuum, SIAM J. Math. Anal., 31(2000), 1175-1191.

[16] T. Makino, On a local existence theorem for the evolution equations of gaseous stars,
“Patterns and wave-qualitative analysis of nonlinear differential equations”, Ed. T.
Nishida, M. Mimura and H. Fujii, North-Holland, 1986, 459-479.

[17] T. Nishida, Equations of fluid dynamics-free surface problems, Comm. Pure Appl.
Math., XXXIX(1986), 221-238.

[18] T. Nishida, Equations of motion of compressible viscous fluids, Patterns and Waves–
Qualitative Analysis of Nonlinear Differential Equations, (1986), 97-128.

[19] M. Okada, Free boundary value problems for the equation of one-dimensional motion
of viscous gas, Japan J. Appl. Math., 6(1989), 161-177.

[20] M. Okada and T. Makino, Free boundary problem for the equations of spherically
symmetrical motion of viscous gas, Japan J. Indust. Appl. Math., 10(1993), 219-235.
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