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Abstract We consider the problem of restoring images corrupted by Poisson noise. Under the framework of

maximum a posteriori estimator, the problem can be converted into a minimization problem where the objective

function is composed of a Kullback-Leibler (KL)-divergence term for the Poisson noise and a total variation (TV)

regularization term. Due to the logarithm function in the KL-divergence term, the non-differentiability of TV

term and the positivity constraint on the images, it is not easy to design stable and efficiency algorithm for

the problem. Recently, many researchers proposed to solve the problem by Alternating Direction Method

of Multipliers (ADMM). Since the approach introduces some auxiliary variables and requires the solution of

some linear systems, the iterative procedure can be complicated. Here we formulate the problem as two new

constrained minimax problems and solved them by Chambolle-Pock’s first order primal-dual approach. The

convergence of our approach is guaranteed by their theory. Comparing with ADMM approaches, our approach

requires about half of the auxiliary variables and is matrix-inversion free. Numerical results show that our

proposed algorithms are efficient and outperform the ADMM approach.
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1 Introduction

Photon noise is a dominant source of image noise in photon-counting devices such as computed tomog-

raphy, magnetic resonance imaging, electronic microscopy, and astronomical imaging [28,30,39,42]. The

noise is directly dependent on the number of photons recorded in the observed image. Since the number

of photons depends on the scene brightness and is independent of the photon detections, the magnitude

of the photon noise is signal-dependent. The total number of photons collected by image sensors follows a

Poisson distribution, and therefore photon noise is also called Poisson noise [41]. In general, the acquired

digital images are also degraded due to the relative motion between the sensor and the original scene,
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defocusing of the sensor systems, and the nature of the sensors. The degradation process of a static scene

can be modeled with a spatially linear shift-invariant system, where the original image is convolved with

a spatially-invariant point spread function and corrupted by Poisson noise, see [1, 4, 30].

Mathematically, the discrete imaging model of the degradation process can be expressed as follows: an

ideal image f ∈ Rmn with size n×m is observed in the presence of a signal-dependent Poisson noise and

the observed image g ∈ Rmn is given by

g = Poisson(Hf + b1), (1.1)

where b is a fixed background which can take the value 0, 1 is a vector of all ones, and the matrix

H ∈ Rmn×nm may model a convolution or some other linear observation mechanism, such as emission

tomography, see [3,37]. We denote the (i+(j− 1)n)-th component of the vector f as fi,j . The value gi,j
of the (i+(j− 1)n)-th entry of the image g is the realization of a Poisson random variable with expected

value (Hf)i,j + b. In general, the detected value gi,j is an integer number. When the values (Hf)i,j are

not sufficiently large, some of the detected values can be zero [4, 44].

We assume that the noise in different pixels is statistically independent, and the joint probability of

all the pixels is the product of the probabilities of the individual pixels, i.e.,

Pr(g|f) =
∏
i,j

[(Hf + b)i,j ]
gi,j exp

(
− (Hf + b)i,j

)
(gi,j)!

.

The aim of Poisson noise removal is to recover the original image f from the degraded image g. The pop-

ular Richardson-Lucy (RL) algorithm [27,31] was derived from the maximum likelihood approach, where

the original image f is recovered from the degraded image g by maximizing the likelihood distribution

with respect to f . Maximizing the likelihood distribution is equivalent to minimizing the Kullback-Leibler

(KL) divergence DKL(Hf + b1, g), where the KL-divergence DKL(z, g) is defined by

DKL(z, g) =
⟨
g, ln

g

z

⟩
+ ⟨1, z − g⟩ , (1.2)

with 0 ln 0 = 0 and ln 0 = −∞. Here and for the remainder of the paper, the vector division notation is

to be interpreted as component-wise division. Since RL algorithm uses an iterative multiplicative form,

it ensures non-negativity if the initial value is nonnegative. However, it is known that the convergence

of the RL algorithm is slow. Also, the RL algorithm will amplify noise after a few iterations because

restoring the image f is a very ill-conditioned problem where small perturbations in the observed image

g can produce large perturbations in the restored image f [24].

To deal with the ill-conditioning problem, a regularization term should be added to control noise and

artifacts in the recovered images. The regularization term is designed to represent the prior of the original

image. From a statistical point of view, this approach can be derived by maximum a posterior estimation.

Instead of maximizing only the likelihood, a prior of the original image is considered and we maximize

the a posterior probability Pr(f |g). The total variation (TV) norm, proposed by Rudin, Osher and

Fatemi [34], has become very popular to represent the prior of images due to its ability to preserve edges

in images. The discrete TV of f is defined as

TV(f) =
∑
i,j

|(∇f)i,j | , (1.3)

where the discrete gradient operator ∇ is defined by (∇f)i,j = ((∇xf)i,j ,∇yf)i,j) with

(∇xf)i,j = fi+1,j − fi,j , (∇xf)i,j = fi,j+1 − fi,j , i = 1, . . . , n, j = 1, . . . ,m.

We can apply the circulant boundary condition or the reflective boundary condition to extend the values

of f . For the 2-tuple a = (a1,a2) ∈ R2, we define |a| =
√

a2
1 + a2

2.

Using the Bayesian rule, the Poisson image restoration problem can be represented as a minimization

problem

min
f∈S

Ψ(f) ≡ DKL(Hf + b, g) + λTV(f), (1.4)
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where b = b1, λ is a regularization parameter which measures the trade off between a good fit and a

regularized solution, and the set S is defined by

S = {f : 0 6 f 6M1} (1.5)

for some positive M . Since f represents the intensity of the unknown image, it is commonly assumed

that 0 6 f 6M1, i.e., f ∈ S.

Difficulties on computational stability and efficiency for solving the minimization problem (1.4) arise

due to the following reasons. Firstly, the KL-divergence functional is non-quadratic and contains a

logarithm function (see (1.2)). Image restoration algorithms based on quadratic data fitting term can not

be readily extended to solve the problem. Secondly, the TV regularization term is non-differentiable and it

is difficult to solve the Euler-Lagrange equation associated with the minimization problem (1.4). Thirdly,

in order to obtain a physically-meaningful solution, a box-constraint (see (1.5)) has to be imposed in the

recovered image f . Recently several efficient methods were proposed to solve the constrained TV-DKL

problem (1.4). These methods include the gradient decent method [14, 26], the Poisson Bregman-EM-

TV approaches [9], alternating direction method of multipliers (ADMM) [21,36], primal-dual approaches

[10,13] etc. Bardsley and Goldes [2] proposed to approximate the KL divergence using a quadratic Taylor

series approximation.

It is well known that the convergence rate of the gradient descent method is very slow. The variable

splitting methods in [9, 21, 36] need to introduce some auxiliary variables where each variable is of the

same size as the given image. Some of these methods require the inversion of matrices involving H

and ∇. These make the algorithms less efficient. We remark that H is easily invertible only when it

is a spatially-invariant blur under circulant or reflective boundary condition assumption [29]. For some

applications such as magnetic resonance imaging, the matrices may be extremely difficult to invert, see

e.g. [19, 20].

In this paper, we focus on developing convergent numerical schemes to solve the constrained mini-

mization problem (1.4) that require less storage and no matrix inversion. Our idea is to reformulate

(1.4) as new constrained minimax problems and then apply the Chambolle-Pock first order primal-dual

approach [12] to compute the saddle points of the resulting problems. Comparing to existing ADMMs,

our approach is simpler since there is no matrix inversions and there are fewer auxiliary variables in our

algorithms. For example, the storage required for auxiliary variables for the ADMM in [35] and [21] are

O(8mn) and O(6mn) respectively. For the two algorithms we proposed in this paper, the storage for

auxiliary variables are O(4nm) and O(3mn) respectively.

The outline of this paper is as follows. In Section 2, we review ADMM on TV-based Poisson image

restoration problem (1.4). In Section 3, we transform (1.4) into two different equivalent minimax problems

and then apply Chambolle-Pock’s primal-dual scheme to solve them. In Section 4, numerical results are

given to show the efficiency of our proposed algorithms. Finally, some concluding remarks are given in

Section 5.

2 Alternating Direction Method for Multipliers

In this section, we review the alternating direction method for multiplier (ADMM) on TV-based Poisson

noise removal.

2.1 ADMM

ADMM can be viewed as an application of the Douglas-Rachford splitting algorithm [18]. We consider

the convex problem of the form

min
x

Φ1(x) + Φ2(Gx), (2.1)
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here Φi, i = 1, 2 are given closed proper convex functions and G is a given linear transform. The ADMM

introduces an auxiliary variable z = Gx, and consider solving the augmented Lagrangian L1

L1(x,z,β) = Φ1(x) + Φ2(z)−⟨β, Gx− z⟩+ 1

2α
∥Gx− z∥22

by alternating direction method. Here β is the Lagrangian multiplier associated with the equality con-

straint z = Gx, and α is the penalty parameter for the violation of the constraint. Let d = αβ, the

corresponding ADMM is then defined as
x(k+1) = argminx Φ1(x) +

1
2α

∥∥Gx− z(k) − d(k)
∥∥2
2
,

z(k+1) = argminz Φ2(z) +
1
2α

∥∥Gx(k+1) − z − d(k)
∥∥2
2
,

d(k+1) = d(k)−
(
Gx(k+1) − z(k+1)

)
.

(2.2)

Algorithm (2.2) consists in finding the saddle point of L1(x, z,d) by minimizing it in a consecutive

order with respective to the variables x and z, and then updating the multipliers d by a proximal

point approach [32,33]. It is discovered in [38,43] that Algorithm (2.2) coincides with the split-Bregman

algorithm [23] with the only difference that the iterates d(k+1) are scaled by α.

Notice that the variable x in (2.2) requires only (z(k),d(k)) to generate the iteration x(k+1), it can

therefore be regarded as an intermediate variable in algorithm (2.2), see [8]. Denote v(k) = (z(k),d(k)), He

and Yuan [25] showed that the sequence {
∥∥v(k+1) − v(k)

∥∥2
2
} is monotonically non-increasing and therefore

it can be used as the stopping criterion.

2.2 Poisson Image Restoration by Augmented Lagrangian

Notice that the objective function in the standard ADMM is the sum of two functions, see (2.1). However,

our problem (1.4) involves a box-constraint, a KL-divergence term and a TV regularization term. We

therefore need to find a way of mapping (1.4) into the standard form (2.1).

By introducing an indicator function, (1.4) can be reformulated as

Ψ1(f) = DKL(Hf + b, g) + λTV(f) + δS(f),

where δS(x) is the indicator function of S given in (1.5):

δS(x) =

{
0, x ∈ S,

∞, otherwise.
(2.3)

In [21], the authors introduced the variables u1 = Hf ,u2 = f ,u3 = f and grouped the variables into

two blocks: f ∈ Rmn and u = (uT
1 ,u

T
2 ,u

T
3 )

T ∈ R3mn. Setting G =
(
HT I I

)T
,

Φ1(f) = 0 and Φ2(u) = DKL(u1 + b, g) + λTV(u2) + δ(u3),

the multi-block problem is converted into a two-block problem

minΦ1(f) + Φ2(u), subject to u = Gf .

Hence (1.4) completely fits into the framework of (2.1). The iterative scheme can be written as

f (k+1) = argminf

∥∥∥Hf − u
(k)
1 − d

(k)
1

∥∥∥2
2
+
∥∥∥f − u

(k)
2 − d

(k)
2

∥∥∥2
2
+
∥∥∥f − u

(k)
3 − d

(k)
3

∥∥∥2
2
,

u
(k+1)
1 = argminu1

DKL(u1 + b, g) + 1
2α

∥∥∥Hf (k+1) − u1 − d
(k)
1

∥∥∥2
2
,

u
(k+1)
2 = argminu2

λTV(u2) +
1
2α

∥∥∥f (k+1) − u2 − d
(k)
2

∥∥∥2
2
,

u
(k+1)
3 = argminu3

δ(u3) +
1
2α

∥∥∥f (k+1) − u3 − d
(k)
3

∥∥∥2
2
,

d
(k+1)
1 = d

(k)
1 − (Hf (k+1) − u

(k+1)
1 ),

d
(k+1)
2 = d

(k)
2 − (f (k+1) − u

(k+1)
2 ),

d
(k+1)
3 = d

(k)
3 − (f (k+1) − u

(k+1)
3 ).

(2.4)



Y. WEN, R. Chan, and T. Zeng Sci China Math 5

We note that for the subproblem of the variable u, the variables {ui}3i=1 are separable and can be solved

separately as in (2.4). The subproblem for the variable f is equivalent to a least squares problem. The

minimization for u1 and u3 are the Moreau proximity operator for the KL-divergence function and the

indicator function respectively. The minimization for the variable u2 can be expressed as a TV-denoising

problem, where the Chambolle projection method [11] can be applied to obtain an approximate solution.

Besides the storage required for the matrix H, the observed image g and the restored image f , the

algorithm requires additionally O(6mn) storage for the auxiliary variables {ui}3i=1 and {di}3i=1.

The authors in [35] applied another way to map (1.4) into (2.1). They introduced the variables: u1 =

Hf ,u2 = ∇f ,u3 = f , and defined the linear operator G as G =
(
HT ∇T I

)T
. Correspondingly, the

function Φ2(u) was defined as

Φ2(u) = DKL(u1 + b, g) + λ ∥u2∥1 + δ(u3).

The corresponding iterative scheme can be written as

f (k+1) = argminf

∥∥∥Hf − u
(k)
1 − d

(k)
1

∥∥∥2
2
+
∥∥∥∇f − u

(k)
2 − d

(k)
2

∥∥∥2
2
+
∥∥∥f − u

(k)
3 − d

(k)
3

∥∥∥2
2

u
(k+1)
1 = argminu1

DKL(u1 + b, g) + 1
2α

∥∥∥Hf (k+1) − u1 − d
(k)
1

∥∥∥2
2
,

u
(k+1)
2 = argminu2

λ ∥u2∥1 +
1
2α

∥∥∥∇f (k+1) − u2 − d
(k)
2

∥∥∥2
2
,

u
(k+1)
3 = argminu3

δ(u3) +
1
2α

∥∥∥f (k+1) − u3 − d
(k)
3

∥∥∥2
2
,

d
(k+1)
1 = d

(k)
1 − (Hf (k+1) − u

(k+1)
1 ),

d
(k+1)
2 = d

(k)
2 − (∇f (k+1) − u

(k+1)
2 ),

d
(k+1)
3 = d

(k)
3 − (f (k+1) − u

(k+1)
3 ).

(2.5)

Note that u2 ∈ R2mn and d2 ∈ R2mn. Hence the storage required for auxiliary variables is O(8mn).

However, each variable in (2.5) has a closed-form solution.

3 Primal-Dual Approach

In this section, we find the minimizer of the Poisson image restoration problem (1.4) by transforming it

into two different minimax problems and then solve them by a primal-dual method. Primal-dual methods

[12,15–18,32,33,40,46,47], where the primal variable and the dual variable are solved alternatively, were

widely applied to compute the saddle point of minimax problems. In [46,47], a gradient descent method

is employed to find the primal and the dual variables alternatively. In [15], a predictor-corrector scheme is

used in the alternating direction iterations for finding the dual variable. The Chambolle-Pock first order

primal-dual algorithm [12] resembles in some way the dual method in [22] which uses a predictor-corrector

scheme [15] in the alternating direction iterations for the dual variable. We will apply the algorithm in [12]

to seek the saddle point of our minimax problems. We therefore give a brief introduction of the method

here.

3.1 Chambolle-Pock’s first-order primal-dual algorithm

In [12], Chambolle and Pock considered solving the minimax problem:

min
x∈X

max
z∈Z

ϕ(x) + ⟨Kx,z⟩ − ψ(z). (3.1)

Here X,Z ⊆ Rnm, ϕ, ψ are propoer, convex and lower semi-continuous functions, and K is a linear

operator with induced norm ∥K∥. They proposed to solve the problem by a first-order primal-dual
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algorithm as follows:
x(k+1) = argminx∈X ϕ(x) + ⟨Kx, z⟩+ 1

2s

∥∥x− x(k)
∥∥2
2
,

x̂(k+1) = x(k+1) + θ(x(k+1) − x(k)),

z(k+1) = argmaxz∈Z

⟨
Kx̂(k+1),z

⟩
− ψ(z)− 1

2t

∥∥z − z(k)
∥∥2
2
.

(3.2)

The parameters s, t > 0 are step sizes of the primal and dual variables respectively, and θ is the combina-

tion parameter. In the iterative procedure, proximal-point iterations are applied to the sub-differentials

of the x and z subproblems in (3.2) alternately with the primal variable and the dual variable fixed. The

iterative scheme can also be equivalently interpreted as a first-order primal–dual relaxed Arrow-Hurwitz

algorithm.

This primal-dual algorithm has several advantages. First of all, it enjoys convergence with rate O(1/k)

when θ = 1 and the step sizes satisfy st < 1/
∥∥KTK

∥∥. Secondly, the algorithm is matrix inversion-free

if the functions ϕ(x) and ψ(z) are separable for the variables x and z respectively. This is very useful

when the matrix is huge and difficult to invert, e.g. in magnetic resonance imaging [19,20].

We will transform the Poisson image restoartion problem (1.4) into two different minimax problems

and apply (3.2) to solve them.

3.2 First Minimax Problem

Let us describe the notations that we will be using in the followings. For p ∈ Rnm × Rnm, pi,j =

(pi,j,1,pi,j,2) ∈ R2 denotes the (i + (j − 1)n)-th component of p. Define the inner product ⟨f , g⟩ =∑
i,j fi,jgi,j for f , g ∈ Rnm, ⟨p, q⟩ =

∑
i,j pi,jqi,j for p, q ∈ Rnm × Rnm. Define ∥p∥2 = maxi,j |pi,j |

and div = −∇T as the discrete version of the divergence operator, where ∇T is the adjoint of ∇. We

represent the TV norm using the dual form, i.e.,

TV(f) = max
p∈A

⟨f , divp⟩ ,

where the set A is given by

A ≡ {p ∈ Rnm × Rnm : ∥p∥∞ 6 1} . (3.3)

Introducing the auxiliary varible u = Hf + b, problem (1.4) can be written as the following minimax

problem

min
u=Hf+b

max
p∈A

γDKL(u, g) + ⟨f , divp⟩+ δA(f), (3.4)

where γ = 1/λ and δA(·) is defined in (2.3). The regularization parameter λ (or γ) is chosen to satisfy

the discrepancy principle. According to (1.4), we have Ψ(f) = λ (γDKL(Hf + b, g) + TV(f)). By

the implicit function theorem, the minimizer f is a continuous function with respective to γ (or λ).

The discrepancy principle is a method to select the regularization parameter. The idea behind the

discrepancy principle for Poisson noise removal is to choose a γ such that the minimizer f satisfies

DKL(Hf(γ), g) = nm/2, see [44]. In this sense, the parameter γ in (3.4) can be regarded as a Lagrange

multiplier of the constraint DKL(Hf(γ), g) = mn/2.

We define the Lagrangian function,

L(u,f ,y,p) = γDKL(u, g) + ⟨y,u−Hf − b⟩+ ⟨f , divp⟩+ δ(f), (3.5)

where y is the Lagrangian multiplier associated with the equality constraint u = Hf + b. The next

theorem states that the Poisson image restoration problem (1.4) can be written as

min
f ,u

max
p∈A,y

L(u,f ,y,p) (3.6)

Theorem 3.1. Define the function q(u,f) : Rnm → (−∞,∞],

q(u,f) =

{
maxp∈A,y L(u,f ,y,p), if f ∈ S,

∞, otherswise.
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Then we have

min
f∈S

Ψ(f) = min
f∈S,u

λq(u,f).

Proof. It is easy to check that if u = Hf + b and f ∈ S, we have q(u,f) = γDKL(u, g) + TV(f),

otherwise we have q(u,f) = ∞. Therefore,

min
f∈S,u

q(u,f) = min
u=Hf+b,f∈S

(γDKL(u, g) + TV(f)) = min
f∈S

γΨ(f).

For the function L, we will show that there exists a point (u∗,f∗,y∗,p∗) that satisfies the following

inequalities

L(u∗,f∗,y,p) 6 L(u∗,f∗,y∗,p∗) 6 L(u,f ,y∗,p∗), ∀f ,u,y and p ∈ A,

i.e. (u∗,f∗,y∗,p∗) is a saddle point of L. We first need the following two lemmas.

Lemma 3.2. Assume that the entries of the matrix H are nonnegative and H1 = 1. Then the function

Ψ(f) is proper.

Proof. We recall that a function ϕ(f) : F 7→ [−∞,∞] is called proper if ϕ(f) <∞ for at least one f ∈ F

and ϕ(f) > −∞ for all f ∈ F . Since the entries of H are nonnegative, it is easy to see that for any

given f > 0, we have DKL(Hf , g) < ∞ and for any f , DKL(Hf , g) > −∞. Therefore the function

DKL(Hf , g) is proper. Also, according to the definition of the TV norm, the function TV(f) is also

proper. Therefore the sum of DKL(Hf , g) and TV(f) is proper.

Because of the physics underlying the image formation process, the point spread function takes on

nonnegative values only. Also since there is no energy absorbed and generated in the process, the sum

of all entries of the point spread function is equal to 1, see [7]. Consequently, the entries of H are

nonnegative and H1 = 1. Hence the assumption in Lemma 3.2 is reasonable.

Notice that the function DKL(f , g) is coercive, i.e., DKL(f1, g) → ∞ if ∥f∥2 → ∞; therefore the

functions Ψ(f) and q(u,f) are coercive. By the coercivity of q(u,f), it is obvious that its nonempty

lower level sets are bounded. Hence the level sets {(f ;u) | q(u,f) 6 ρ} are compacts. Thus we have the

following lemma.

Lemma 3.3. The functions Ψ(f) is coercive, i.e., Ψ(f) → ∞ if ∥f∥2 → ∞. Moreover, q(u,f) is also

coercive and the level sets {(f ;u) | q(u,f) 6 ρ} are compacts.

According to [5, Proposition 5.5.4], we know that the minimum and the maximum in (3.6) can be

swapped and there exists a saddle point of L. Thus we have the following theorem.

Theorem 3.4. Assume that the entries of the matrix H are nonnegative and H1 = 1. We have

min
f ,u

max
p∈A,y

L(u,f ,y,p) = max
p∈A,y

min
f ,u

L(u,f ,y,p)

and the minimum in the left-hand side above is attained at a set of points that is nonempty and compact.

In order to apply Chambolle-Pock’s algorithm to (3.6), we need to formulate (3.6) in the form of (3.1).

Denote

x =

(
u

f

)
, z =

(
y

p

)
, K =

(
I −H
0 −∇

)
ϕ(x) = γDKL(u, g), and ψ(y) = ⟨y, b⟩. We see that (3.6) completely fits into the framework of (3.1).

Hence (3.2) can readily be used to solve (3.6). We note that in (3.5), u can be separable from f and y

can be separable from p. Therefore (3.2) can be rewritten as follows.

Algorithm 1. Starting from an initial guess (u(0),f (0),y(0),p(0)), compute:

u(k+1) = argmin
u

L(u,f ,y(k),p(k)) +
1

2s

∥∥∥u− u(k)
∥∥∥2
2
, (3.7)
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f (k+1) = argmin
f

L(u,f ,y(k),p(k)) +
1

2s

∥∥∥f − f (k)
∥∥∥2
2
, (3.8)

û(k+1) = u(k+1) + θ(u(k+1) − u(k)), (3.9)

f̂ (k+1) = f (k+1) + θ(f (k+1) − f (k)), (3.10)

y(k+1) = argmax
y

L(û(k+1), f̂ (k+1),y,p)− 1

2t

∥∥∥y − y(k)
∥∥∥2
2
, (3.11)

p(k+1) = argmax
p∈A

L(û(k+1), f̂ (k+1),y,p)− 1

2t

∥∥∥p− p(k)
∥∥∥2
2
. (3.12)

Note that besides the storage for H, f and g, we need storage for the auxiliary variables u ∈ Rmn,

y ∈ Rmn and p ∈ R2mn. We need not store û and f̂ , as we can use the right hand side of (3.9) and (3.10)

to generate them every time they are required. Thus the storage for auxiliary variables is O(4mn). We

now discuss how each minimization problem in (3.7)–(3.12) is solved.

3.2.1 Subproblem for u

The problem in (3.7) can be written as

u(k+1) = argmin
u

γDKL(u, g) +
⟨
y(k),u

⟩
+

1

2s

∥∥∥u− u(k)
∥∥∥2
2

= argmin
u

γ(⟨1,u⟩ − ⟨g, lnu⟩) + 1

2s

∥∥∥u− ζ(k)
∥∥∥2
2
,

where ζ(k) = u(k) − sy(k). Its optimality condition is

γ
(
1− g

u

)
+

1

s

(
u− ζ(k)

)
= 0.

It can be turned into

u2 −
(
ζ(k) − sγ

)
u− sγg = 0.

Notice that u should be positive, thus we have

u(k+1) =
1

2

((
ζ(k) − sγ

)
+

√(
ζ(k) − sγ

)2
+ 4sγg

)
. (3.13)

3.2.2 Subproblem for f

We see that the objective function in (3.8) for f is quadratic and is restricted onto the constrained set

S. Hence, f (k+1) can be easily computed by

f (k+1) = PS

(
f (k) + s

(
HTy(k) − divp(k)

))
.

The projection of a vector x onto S can be conveniently expressed as PS(u) = argminx∈S ∥x− u∥22.
From the definition of S in (1.5), it is easy to check that

(PS(u))i,j =


ui,j , if 0 6 ui,j 6M,

0, if ui,j < 0,

M, if ui,j > M.

3.2.3 Subproblem for y

The maximization of (3.11) reduces to

max
y

⟨
y, û(k+1) −Hf̂ (k+1) − b

⟩
− 1

2t

∥∥∥y − y(k)
∥∥∥2
2
.

Hence

y(k+1) = y(k) + t
(
û(k+1) −Hf̂ (k+1) − b

)
.
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3.2.4 Subproblem for the dual variable p

We change the maximization problem for p in (3.12) to a minimization one and obtain:

p(k+1) = argmin
p∈A

{⟨
p,∇f̂ (k+1)

⟩
Y
+

1

2t

∥∥p− p(k)
∥∥2
2

}
= argmin

p∈A

∥∥p−
(
p(k) − t∇f̂ (k+1)

)∥∥2
2
.

Thus p(k+1) = PA(p
(k)− t∇f̂ (k+1)), the projection of

(
p(k)− t∇f̂ (k+1)

)
onto the set A. In the following,

we derive a formula for the projection operator PA(q) ≡ argminp∈A ∥p− q∥22 for any vector q. By the

definition of A in (3.3), its Lagrangian function is

∥p− q∥22 +
∑
i,j

βi,j
(
|pi,j |2 − 1

)
,

where βi,j > 0 are the Lagrangian multipliers associated with the constraints |pi,j |2 6 1. Its complemen-

tarity condition implies that for the optimal βi,j , either βi,j = 0 with |pi,j |, |qi,j | < 1, or βi,j > 0 with

|pi,j | = 1 and |qi,j | > 1. In the former case, we have pi,j = qi,j . In the latter case, the KKT condition

yields

pi,j − qi,j + βi,jpi,j = 0, ∀i, j.

Therefore, we have βi,j = |qi,j | − 1, and thus pi,j = qi,j/|qi,j |. Hence, we obtain(
PA(q)

)
i,j

=
qi,j

max(1, |qi,j |)
, ∀i, j.

3.3 Second Minimax Problem

Here we convert the Poisson image restoration problem (1.4) into another minimax problem. Then we

apply Chambolle-Pock’s algorithm (3.2) to solve it. According to Theorem 3.4, the minimum and the

maximum can be swapped in (3.6). If we define

L2(f ,y,p) = min
u

L(u,f ,y,p).

By ∂L
∂u = 0, we obtain u = g

1+y . We can easily check that

L2(f ,y,p) = ⟨g, ln (1 + y)⟩ − ⟨y,Hf + b⟩+ λ ⟨f , divp⟩+ δ(f) + C.

Here C is a constant which is independent to the variables f ,y,p. We note that L2(f , ·, ·) and L2(·, ·,p)
are linear functions with respect to the variable f and p respectively. Hence they are both convex and

concave. Next, we show that the function L2(·,y, ·) is concave with respect to y. Note that L2(·,y, ·) is
separable, which implies that the Hessian matrix of L2(·,y, ·) is diagonal. We have

∂L2

∂yi
=

gi
1 + yi

− (Hf + b)i

and
∂2L2

∂y2
i

= − gi
(1 + yi)2

.

Since gi > 0, the Hessian matrix of L2(·,y, ·) with respect to y is negative definite. Hence L2(·,y, ·) is

concave with respect to y. Hence (1.4) can be reformulated as the following maximin problem:

max
p∈A,y

min
f

L2(f ,y,p). (3.14)

We state this clearly in the next theorem.
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Theorem 3.5. Assume that the entries of the matrix H are nonnegative and H1 = 1. We have

min
f

Ψ(f) = min
f

max
p∈A,y

L2(f ,y,p) = max
p∈A,y

min
f

L2(f ,y,p).

and the minimum in the left-hand side above is attained at a set of points that is nonempty and compact.

Proof. It is easy to check that

min
f

max
p∈A,y

L2(f ,y,p) = min
f∈S

Ψ(f).

Applying [5, Proposition 5.5.4], we know the theorem holds.

According to the above Theorem, we can apply Chambolle-Pock’s first-order primal-dual method (3.2)

to solve the minimax version of (3.14) and get the following algorithm.

Algorithm 2: Starting from an initial guess (f (0),y(0),p(0)), compute:

f (k+1) = argmin
f

L2(f ,y
(k),p(k)) +

1

2s

∥∥∥f − f (k)
∥∥∥2
2
, (3.15)

f̂ (k+1) = f (k+1) + θ(f (k+1) − f (k)), (3.16)

y(k+1) = argmax
y

L2(f̂
(k+1),y,p)− 1

2t

∥∥∥y − y(k)
∥∥∥2
2
, (3.17)

p(k+1) = argmax
p∈A

L2(f̂
(k+1),y,p)− 1

2t

∥∥∥p− p(k)
∥∥∥2
2
. (3.18)

Clear the algorithm requires O(3mn) storage for the auxiliary variables y ∈ Rmn and p ∈ R2mn (the

variable f̂ can be generated by the right hand side of (3.16) every time it is needed). It is easy to see

that the minimization subproblem for the primal variable f in (3.15) and the maximization subproblem

for the dual variable p in (3.18) are exactly the ones in (3.8) and (3.12), respectively. Thus we only need

to consider the solution of the subproblem for the variable y in (3.17). Its optimality condition is given

by
g

1 + y
− (Hf̂ (k+1) + b)− 1

t

(
y − y(k)

)
= 0.

Denote β(k) = y(k) − t(Hf̂ (k+1) + b). The above equation can be rewritten as

y2 −
(
β(k) − 1

)
y − β(k) − tg = 0.

We thus obtain the solution

y(k+1) =
1

2

(
β(k) − 1 +

√(
β(k) − 1

)2
+ 4

(
β(k) + tg

))
.

We close the section by remarking that both Algorithms 1 and 2 are realizations of Chambolle-Pock’s

algorithm for different minimax problems. Thus they enjoy the advantages of Chambolle-Pock’s algo-

rithm. Namely, they will converge with rate O(1/k) when θ = 1 and the step sizes satisfy st < 1/
∥∥KTK

∥∥;
and they are matrix inversion-free. Besides needing less storage than ADMM-type methods, we will see

in the next section that they require less CPU time than ADMM-type methods too.

4 Numerical Results

We now illustrate the performance of our proposed algorithms for image restoration problem with Poisson

noise. We compare our algorithms with ADMM-type methods in [21] and [35], see (2.4) and (2.5)

respectively. For simplicity, we call them “ADMM-1” and “ADMM-2” respectively. Our codes are

written in Matlab R2013a. The experiments were performed under Mac OS X10.9.4 on an iMac with a

3.4GHz Intel Core i5 processor and 8GB of RAM. The Signal-to-Noise Ratio (SNR) is used to measure
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the quality of the restoration and is defined as: SNR = 10 log10
(
∥f∗∥22/∥f − f∗∥22

)
, where f∗ and f are

the original image and the restored image, respectively. We use the observed image g as initial image for

the algorithms.

The Matlab command fspecial(’gaussian’,9,2) is used to generate the Gaussian blur used in

the experiment. We also tested other point spread functions such as uniform blurs and similar results

are obtained; therefore they will not be reported here. Since Poisson noise is a data-dependent noise,

the noise level of the observed images depends on the pixel intensity. To test different noise levels, we

consider different peak intensities of the images with M = 15, 30, 45, 60, see (1.5) for the definition of

M . To obtain the degraded image g, we follow the model in (1.1). More precisely, the original image

f∗ is first scaled with the peak intensities. Then the scaled image is convolved with the blur kernel H

and then background value is added. Three background values with b = 1, 5, 10 are tested. Finally, the

Poisson noise is generated to the blurred image by using the Matlab command poissrnd. In all tests, the

regularization parameter γ = 1/λ is chosen to satisfy the constraint DKL(Hf(γ), g) = nm/2, see [44].

In theory and in practice, the difference between successive iterates of the variable f , i.e.,
∥∥f (k+1) − f (k)

∥∥2
2

is widely used to measure the convergence, see [25]. In our experiments, we apply the Relative Difference

RD =

∥∥f (k+1) − f (k)
∥∥2
2∥∥f (k+1)

∥∥2
2

(4.1)

as the measurement of convergence. We set the stopping criterion as RD 6 10−4 or when the iteration

has reached 1000 iterations.

4.1 Gray-scale Images

We begin with gray-scale images. The test images are the cameraman image, the satellite image, and the

MRI image, all with size 256× 256. The original images and the observed images with M = 15, b = 1 are

shown in the left and middle columns of Figure 1 respectively.

As suggested in [21, 35], the parameter α in the ADMM is set to 50/λ, and Chambolle’s projection

algorithm [11] is applied to solve the TV-denoising subproblem in ADMM-1. The number of iterations

of Chambolle’s algorithm is set to 20 and the final values for the dual variable of an inner iteration loop

is used as the initial values for the next loop. We used the circulant boundary condition for H and ∇,

hence the matrix-inversions in ADMM can be done easily be fast fourier transform.

The SNR (in dB) and the CPU times (in seconds) of the algorithms are listed in Table 1, 3, 5. In theory,

the SNR obtained by the algorithms should be the same since they are solving the same minimization

problem. However, we find that there are slight differences due to the stopping criterion or computational

errors. The analysis for the computation errors for different algorithms is still an open problem and is

beyond the scope of this paper. Since there are only slight differences in the SNR of the restored images,

we show only the restored images by Algorithm 1 in the right column of Figure 1. From the tables, we

note however that our proposed algorithms out-perform the ADMM methods significantly in CPU times.

We also list the structure similarity (SSIM) [45] of the algorithms in Table 2, 4, 6. The SSIM values are

very similar.

Next we compare the convergence of the algorithms. The plots of RD (defined in (4.1)) versus CPU

times are shown in Figure 2. The green solid line, the black dash-dot line, the blue dotted line, and the

red dashed line represent Algorithm 1, Algorithm 2, ADMM-1 and ADMM-2 respectively. Note that the

green solid line and the black dash-dot lines are almost indistinguishable from one another, indicating

that the convergence of Algorithms 1 and 2 are almost the same. We observe that Algorithms 1 and 2

converge much faster than the two ADMM methods, and their convergence are very stable.

Finally, in Figure 3, we plot the SNR versus CPU times for the algorithms. We observe that the SNR

obtained by the ADMM methods may stagnate after 2 seconds for the three images. Hence in the figure,

we only show the results of the first 5 seconds. We observe that our proposed algorithms converge to a

better SNR faster than the ADMM methods.
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M b λ = 1/γ
SNR (dB) CPU Time (s)

Alg.1 Alg.2 ADMM-1 ADMM-2 Alg.1 Alg.2 ADMM-1 ADMM-2

15

1

1.53e-01 16.64 16.64 16.62 16.59 3.02 2.89 18.12 13.24

30 1.25e-01 16.96 16.96 16.97 16.93 3.21 2.95 14.65 8.43

45 1.01e-01 17.25 17.25 17.29 17.23 3.32 3.11 13.43 7.58

60 7.16e-02 17.36 17.37 17.53 17.51 3.54 3.42 8.46 6.37

15

5

9.71e-02 16.24 16.23 16.13 16.20 3.34 3.12 12.47 13.71

30 1.00e-01 16.96 16.96 16.92 16.84 3.76 3.24 9.15 8.91

45 1.07e-01 17.07 17.05 17.15 17.11 4.06 3.16 7.20 6.60

60 7.68e-02 17.26 17.25 17.37 17.35 4.35 3.49 6.82 5.85

15

10

9.98e-02 15.90 15.91 15.87 15.85 3.99 3.29 11.01 12.98

30 6.75e-02 16.67 16.65 16.64 16.64 4.62 3.42 9.76 8.82

45 7.12e-02 17.09 17.07 17.11 17.07 5.12 3.59 7.70 6.78

60 6.23e-02 17.18 17.19 17.32 17.30 5.36 3.90 6.63 5.55

Average 16.88 16.88 16.91 16.88 3.97 3.30 10.45 8.73

Table 1. SNR and CPU time results for the cameraman image under Gaussian blur. The SNR values

are similar. The best CPU times are in black.

M b Alg.1 Alg.2 ADMM-1 ADMM-2

15 0.9793 0.9793 0.9790 0.9792

30 1 0.9510 0.9510 0.9507 0.9509

45 0.9243 0.9244 0.9244 0.9252

60 0.9002 0.9005 0.9027 0.9026

15 0.9762 0.9762 0.9757 0.9760

30 5 0.9482 0.9482 0.9481 0.9483

45 0.9212 0.9211 0.9219 0.9222

60 0.8972 0.8970 0.8994 0.9000

15 0.9743 0.9744 0.9741 0.9743

30 10 0.9468 0.9466 0.9467 0.9468

45 0.9191 0.9187 0.9200 0.9203

60 0.8966 0.8959 0.8989 0.8989

Average 0.9362 0.9361 0.9368 0.9371

Table 2 SSIM results for the cameraman image under Gaussian blur.
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M b λ = 1/γ
SNR (dB) CPU Time (s)

Alg.1 Alg.2 ADMM-1 ADMM-2 Alg.1 Alg.2 ADMM-1 ADMM-2

15

1

1.65e-01 12.52 12.52 12.46 12.52 3.09 3.11 32.74 23.88

30 1.43e-01 12.96 12.96 12.88 12.90 3.55 3.39 32.09 15.00

45 1.32e-01 13.08 13.08 13.04 13.05 3.93 3.78 14.71 7.11

60 1.23e-01 13.24 13.24 13.20 13.21 4.11 4.25 12.32 5.13

15

5

9.51e-02 12.33 12.33 12.24 12.31 3.97 3.86 31.75 20.01

30 8.98e-02 12.88 12.88 12.83 12.84 3.94 3.71 22.31 13.80

45 7.81e-02 13.12 13.12 13.08 13.12 4.38 3.97 18.52 11.21

60 7.31e-02 13.27 13.28 13.26 13.27 4.49 4.19 10.93 8.49

15

10

7.33e-02 11.86 11.87 11.77 11.84 4.97 4.20 30.18 18.32

30 5.93e-02 12.73 12.75 12.63 12.67 4.83 4.35 19.23 12.36

45 5.39e-02 13.07 13.06 12.99 13.00 4.99 4.20 17.22 11.07

60 5.53e-02 13.23 13.22 13.25 13.28 5.70 4.41 15.55 8.68

Average 12.86 12.86 12.80 12.83 4.33 3.95 21.46 12.92

Table 3. SNR and CPU time results for the satellite image under Gaussian blur. The SNR values are

similar. The best CPU times are in black.

M b Alg.1 Alg.2 ADMM-1 ADMM-2

15 0.9810 0.9810 0.9810 0.9811

30 1 0.9563 0.9563 0.9562 0.9567

45 0.9360 0.9360 0.9370 0.9368

60 0.9198 0.9198 0.9204 0.9207

15 0.9769 0.9769 0.9763 0.9764

30 5 0.9518 0.9519 0.9511 0.9516

45 0.9324 0.9325 0.9327 0.9327

60 0.9169 0.9171 0.9202 0.9180

15 0.9727 0.9728 0.9722 0.9722

30 19 0.9462 0.9463 0.9458 0.9461

45 0.9269 0.9269 0.9269 0.9270

60 0.9121 0.9122 0.9134 0.9131

Average 0.9441 0.9441 0.9444 0.9444

Table 4 SSIM results for the satellite image under Gaussian blur.
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M b λ = 1/γ
SNR (dB) CPU Time (s)

Alg.1 Alg.2 ADMM-1 ADMM-2 Alg.1 Alg.2 ADMM-1 ADMM-2

15

1

1.57e-01 13.11 13.11 13.10 13.10 2.71 2.56 30.83 23.05

30 1.42e-01 13.60 13.59 13.56 13.53 2.98 2.82 14.06 14.92

45 1.25e-01 13.87 13.86 13.74 13.75 3.40 3.29 12.30 6.54

60 1.19e-01 14.03 14.02 13.87 13.87 3.55 3.42 10.33 5.79

15

5

8.87e-02 12.75 12.76 12.71 12.75 3.38 3.13 30.69 21.90

30 9.00e-02 13.60 13.60 13.49 13.49 3.74 3.39 19.75 14.23

45 7.74e-02 13.94 13.94 13.81 13.78 4.22 3.83 15.55 10.76

60 6.94e-02 14.26 14.26 14.07 14.05 4.21 3.77 9.11 8.52

15

10

8.15e-02 12.33 12.34 12.30 12.35 4.06 3.54 31.80 17.32

30 5.94e-02 13.45 13.48 13.36 13.35 4.75 4.10 18.17 12.61

45 5.48e-02 13.93 13.95 13.82 13.80 5.07 4.14 15.80 9.93

60 5.08e-02 14.23 14.25 14.05 14.05 5.44 4.29 13.22 8.93

Average 13.59 13.60 13.49 13.49 3.96 3.52 18.47 12.88

Table 5. SNR and CPU time results for the MRI image under Gaussian blur. The SNR values are

similar. The best CPU times are in black.

M b Alg.1 Alg.2 ADMM-1 ADMM-2

15 0.9830 0.9830 0.9831 0.9831

30 1 0.9580 0.9580 0.9585 0.9578

45 0.9354 0.9353 0.9353 0.9352

60 0.9114 0.9113 0.9103 0.9102

15 0.9788 0.9788 0.9784 0.9786

30 5 0.9546 0.9547 0.9536 0.9538

45 0.9324 0.9325 0.9334 0.9311

60 0.9120 0.9121 0.9119 0.9102

15 0.9750 0.9751 0.9747 0.9748

30 10 0.9517 0.9519 0.9505 0.9508

45 0.9270 0.9273 0.9255 0.9255

60 0.9084 0.9087 0.9073 0.9061

Average 0.9440 0.9441 0.9435 0.9431

Table 6 SSIM results for the MRI image under Gaussian blur.
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Figure 1. Original images (left), the degraded images with M = 15, b = 1 (middle), and the restored images by Algorithm

1 (right).

0 5 10 15 20

10
−4

10
−3

10
−2

10
−1

10
0

CPU Time

R
el

at
iv

e 
D

iff
er

en
ce

 

 

Algorithm 1
Algorithm 2
ADMM−1
ADMM−2

0 5 10 15 20 25 30 35

10
−4

10
−3

10
−2

10
−1

10
0

CPU Time

R
el

at
iv

e 
D

iff
er

en
ce

 

 

Algorithm 1
Algorithm 2
ADMM−1
ADMM−2

0 5 10 15 20 25 30

10
−4

10
−3

10
−2

10
−1

10
0

CPU Time

R
el

at
iv

e 
D

iff
er

en
ce

 

 

Algorithm 1
Algorithm 2
ADMM−1
ADMM−2

Figure 2. Relative difference (RD) versus CPU time for the cameraman image, the satellite image and the MRI image

(from left to right) with M = 15, b = 1.

4.2 Color Images

Next we extend our proposed algorithms to color images. The extension can easily be performed to each

color component independently when no cross-channel degradation is presented. However, such a process

produces false colors in the restored images since the signals in different channels are often correlated and

there exist spaces of perceptual redundancy in color images. One solution to overcome this is to replace

the gray-scale TV defined in (1.3) by the color TV proposed by Blomgren and Chan [6]. We tested this

extension of color TV with the onion image of size 135× 198 and the cells image of size 512× 512. The

original images, the degraded images with M = 30, b = 1 and the restored images by Algorithm 1 are

shown in Figure 4.
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Figure 3. SNR versus CPU time for the cameraman image, the satellite image and the MRI image (from left to right)

with M = 15, b = 1.

Figure 4. Original images (left), degraded images with M = 30, b = 1 (middle) and the restored images by Algorithm 1

(right).

The SNR and CPU times of the algorithms for three background values (b = 1, 5, 10) are listed in Table

7 and 9. The SSIM values are listed in Table 8 and 10. The convergence history (RD versus CPU time)

for difference algorithms are shown in Figure 5. Once again, we observe that our proposed algorithms

out-perform the ADMM methods significantly in CPU times and the convergence is very stable.

5 Conclusion

We have proposed two algorithms for solving image restoration problem with Poisson noise. We reformu-

lated the problem into two minimax problems and then applied Chambolle-Pock’s first-order primal-dual

algorithm to compute the saddle point of the minimax problems. Compared to existing ADMM algo-

rithms, our algorithms require less memory and no need to solve any linear systems. Numerical results

show that our algorithms are stable and fast.
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Figure 5. Relative difference (RD) versus CPU time the onion image (left) and the cells image (right) with M = 15, b = 1.
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