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In ground-based astronomy, images of objects in outer space are acquired via

ground-based telescopes. However, the imaging system is generally interfered

by atmospheric turbulence and hence images so acquired are blurred with

unknown point spread function. To restore the observed images, the wavefront

of light at the telescope’s aperture is utilized to derive the point spread

function. A model with the Tikhonov regularization has been proposed to find

the high-resolution phase gradients by solving a least-squares system. Here

we propose the l1-lp (p = 1, 2) model for reconstructing the phase gradients.

This model can provide sharper edges in the gradients while removing noise.

The minimization models can easily be solved by the Douglas-Rachford

alternating direction method of multiplier, and the convergence rate is readily

established. Numerical results are given to illustrate that the model can give

better phase gradients and hence a more accurate point spread function. As

a result, the restored images are much more accurate when compared to

the traditional Tikhonov regularization model. c⃝ 2012 Optical Society of

America

OCIS codes: 100.1830, 100.3020, 100.5070, 110.4155

1. Introduction

In ground-based astronomy, images of objects in outer space are acquired via ground-based

telescopes. However, the imaging system is generally interfered by atmospheric turbulence
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and the resulting images are usually blurred. The mathematical model of the imaging system

in ground-based astronomy is

g(x, y) = k(x, y) ∗ f(x, y) + εg(x, y), (1)

where f(x, y) is the true object in outer space, g(x, y) is its observation by the ground-based

telescope, k(x, y) is the point spread function (PSF) related to the atmospheric turbulence,

‘*’ is the convolutional operator, and εg(x, y) is white noise. When k(x, y) is known, it is well

known that the problem of finding f(x, y) from g(x, y) is an ill-posed inverse problem (see

e.g., [1]). One can invert (1) with a suitable regularization technique to improve the quality

of the observed image g(x, y), see e.g., [1–3].

However, in ground-based astronomy, k(x, y) is usually unknown as it is generated by the

atmospheric turbulence. The problem thus becomes even more ill-posed. One may consider

using blind-decovolution [4,5] to simultaneously obtain k(x, y) and f(x, y). But that usually

requires some prior knowledge on k(x, y), e.g., smoothness, symmetry or sparsity; and they

usually do not hold for atmospheric blurring. The Fourier optics model [6,7] is an approach

to directly approximate k(x, y). It expresses k(x, y) as a function of the incoming wavefronts

of light:

k(x, y) =
∣∣F−1 {P(x, y) exp [ι(1− ω(x, y))]}

∣∣2 = ∣∣F−1 {P(x, y) exp [ιϕ(x, y)]}
∣∣2 , (2)

where F denotes the Fourier transform and F−1 is its inverse; P(x, y) is the mirror aperture

function of the telescope (= 1 inside the mirror aperture and 0 otherwise); ι =
√
−1; ω(x, y)

is the wavefront of incoming light at the telescope; ϕ(x, y) = 1 − ω(x, y) is the phase term

which measures the deviation from the planarity of the wavefront. Specially, if ϕ(x, y) = 0

at any (x, y), we have the so-called diffraction limited imaging, i.e.,

k(x, y) =
∣∣F−1{P(x, y)}

∣∣2 , (3)

which represents the case where the PSF is merely related to the mirror aperture P but is

independent of the phase ϕ. This is the ideal case where the imaging system has no distortion

from atmospheric turbulence, and is the goal of astronomers (see e.g., [6]).

However, for many applications, the incoming wavefronts are disturbed by atmospheric tur-

bulence which limits the performance of ground-based astronomy. Commonly, astronomers

quantify the deterioration in seeing condition by the ratio d/r0, where d is the diameter of

the telescope and r0 is the Fried parameter (see [7]). Generally, good seeing conditions corre-

spond to d/r0 with small magnitudes (e.g., d/r0 / 10) and poor seeing conditions correspond

to d/r0 with large magnitudes (e.g., d/r0 ' 20). When the wavefronts are disturbed, ϕ is no

longer zero, and one has to determined ϕ in order to get the PSF k(x, y) in (2). Wavefront
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sensor (WFS) is a device that measures wavefront aberrations caused by atmospheric tur-

bulence, i.e., the gradients of phase ϕ at the telescope, denoted by sx (horizontal direction)

and sy (vertical direction), can be derived by WSF. Once the gradients are obtained, then

the following linear inverse problem can be solved to obtain the phase ϕ (see [6, 8, 9]):[
sx

sy

]
=

[
Dx

Dy

]
ϕ+ εs. (4)

HereDx,Dy are the derivative operators in the horizontal and vertical directions respectively,

and εs is the perturbation in the gradient measurements where it is usually modeled as white

noise. Two categories of derivative operators can be used for Dx and Dy. One is the Fried

geometry [10] and the other is the Hudgin geometry [11]. To simplify the discussions, we will

concentrate on the Fried geometry though numerical examples in Section 4 will show that

our method works equally well for the Hudgin geometry.

The main obstacle in solving problem (4) is that the phase gradients sx and sy are generally

derived by WFS under the coarse grid. These low-resolution phase gradients so obtained

contain relatively less information, therefore it is difficult to reconstruct an accurate phase

ϕ. The inadequacies on the phase ϕ affect the accuracy in estimating the PSF k and hence

in reconstructing the image f .

In [12], under the frozen flow hypothesis (FFH) of the atmosphere, a method using multi-

ple frames for reconstructing high-resolution phase gradients was proposed. Briefly speaking,

some low-resolution frames of the phase gradients within a short time period are first col-

lected. In this way, we obtain the low-resolution phase gradients at different overlapping

locations. Then by aligning these low-resolution frames, the high-resolution phase gradients

are reconstructed at these locations. Using those reconstructed high-resolution phase gradi-

ents, an accurate phase ϕ can be obtained by solving model (4), and hence, the more precise

PSF k can be obtained by formula (2).

In [12], the movement of the atmospheric turbulence above the telescope are assumed to

be of linear velocity. Nagy et al. [13] have extended that to nonlinear velocity. They acquired

the high-resolution phase gradients by using the Tikhonov regularization model and solved it

as a least-squares problem. The relationship between the multiple frames of low-resolutions

phase gradients and the high-resolution phase gradients is given by the following equations:

six = RWAisx + ni
x and siy = RWAisy + ni

y, i = 1, 2, · · · ,m, (5)

where Ai ∈ Rn×n, i = 1, 2, · · · ,m, are motion matrices which describe the shift (linear con-

stant velocity or nonlinear velocity between the low-resolution frames) of the phase gradients

in the i-th frame; W ∈ Rn×n is an indicator matrix which represents the telescope aperture;

R ∈ Rl×n is a down-sampling matrix which transforms high-resolution phase gradients into
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low-resolutions ones; six and siy, i = 1, 2, · · · ,m, are the two sequences of low-resolution phase

gradients; and ni
x and ni

y are additive white noise in each low-resolution frame.

Problem (5) is similar to that of multi-frame super-resolution in the realm of image re-

construction, see e.g., [14–17]. The Tikhonov regularization model was considered in [13]

to derive the high-resolution phase gradients by solving the following linear least-squares

problems:

min
s

α∥s∥22 +
1

2

m∑
i=1

∥RWAis− di∥22 . (6)

where s ∈ Rn is the high-resolution phase gradient (either sx or sy); and di ∈ Rl, i =

1, 2, · · · ,m, are the sequence of low-resolution phase gradients (six or siy accordingly). Model

(6) uses the Tikhonov regularization to generate phase gradients in both horizontal and

vertical directions. It is well known that the Tikhonov regularization smoothes the edges in

the resulting images, see e.g., [1]. However, the phase gradients are not smooth in general

(see for example the phase gradients of a typical ϕ in Fig. 1). Thus in this paper, instead

of using model (6), we consider the l1-lp models (p = 1, 2) for reconstructing them. More

precisely, our mathematical model for finding the high-resolution phase gradients in (5) is

min
s

α∥s∥1 +
1

p

m∑
i=1

∥RWAis− di∥pp, p = 1, 2. (7)

The l1-regularization term (the first term) is known to be able to sharpen the edges in the

solution, see e.g., [1,2]. The p-norm in the fidelity term can cater for different possible noise

in the measurements. When collecting the low-resolution phase gradients di by the WFS,

the measurements inevitably possess readout noise which contaminates the phase gradients

measurements. It is well known in image denoising (see e.g., [2, 18, 19]) that the p-norm in

the fidelity term can handle impulsive or Laplacian noise when p = 1 or Gaussian noise when

p = 2. The numerical results in Section 4 show that the phase ϕ and the PSF k obtained by

model (7) are more accurate than those by model (6). Hence the deblurred images are 1 to

1.6 dB higher in signal-to-noise ratio (SNR) than those by model (6). The SNR is defined

as SNR := 20 log10(∥x∥2/∥x̄− x∥2), where x̄ is the restored image and x is the true image.

From the optimization point of view, model (7) is harder to solve than model (6) due to the

nonsmoothness of its l1-regularization term. We will show that the nonsmooth model (7) can

be tackled efficiently by the Douglas-Rachford alternating direction method of multipliers

(ADM for short) proposed in [20, 21]. In fact, by introducing additional variables, model

(7) can be reformulated as an optimization problem with separable structures (i.e., both

the objective function and linear constraint are separable, see problem (8) in Section 2),

and hence can be solved by ADM. When ADM is applied to solve (7), the computation

at each iteration is dominated by a shrinkage operation and solving a system of linear
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equations. Moreover, by invoking standard theory in [20–22], the convergence of ADM can be

easily proven; and by [23], a worst-case O(1/n) convergence rate of ADM can be established

straightforwardly.

The rest of the paper is organized as follows. In Section 2, we review briefly the background

of ADM. In Section 3, we elaborate on the details of solving model (7) by ADM, for both

p = 1 and p = 2. Then, in Section 4 we compare the Tikhonov regularization model (6) with

our l1-lp model (7). Numerical results show that the phase gradients obtained by our models

are better than those by model (6), and hence the images recovered are better too. Some

conclusions are given in Section 5.

2. Preliminaries

Our method of solving the model (7) is by ADM. In this section, we recall ADM in solving

structured optimization problem, specifically, when the objective function is a sum of two

convex functions. Consider the following optimization problem with special structure

min θ1(x) + θ2(y)

s.t. Bx+ Cy = b, x ∈ X , y ∈ Y ,
(8)

where θ1 : Rn1 → (−∞,+∞] and θ2 : Rn2 → (−∞,+∞] are proper convex functions;

B ∈ Rl×n1 and C ∈ Rl×n2 are given matrices; b ∈ Rl is a known vector; and X ⊆ Rn1 and

Y ⊆ Rn2 are nonempty closed convex sets. Then, the augmented Lagrangian function of

problem (8) on X × Y × Rl is

L(x, y, λ) = θ1(x) + θ2(y)− ⟨λ,Bx+ Cy − b⟩+ β

2
∥Bx+ Cy − b∥22,

where λ ∈ Rl is the Lagrange multiplier and β > 0 is a penalty parameter on the linear

constraint, see e.g., [24]. The iterative scheme of ADM proposed in [20,21] is summarized in

Algorithm 1 below.

Algorithm 1 : Douglas-Rachford alternating direction method of multipliers

Choose arbitrary β > 0, y0 ∈ Rn2 and λ0 ∈ Rl

for k = 1, 2, · · · do
• xk+1 = argmin

x
L(x, yk, λk)

• yk+1 = argmin
y

L(xk+1, y, λk)

• λk+1 = λk − β
(
Bxk+1 + Cyk+1 − b

)
In [20–22], it was guaranteed that the ADM converges under the condition that β > 0.

Recently, a worst-case O(1/n) convergence rate of ADM was established in [23]. We refer

to [25] and references therein for numerous practical applications of ADM in diversified areas.

In particular, we refer to [26–28] for some applications of ADM in image processing.
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3. Solving the l1-lp Model by ADM

We now elaborate on how to use ADM to reconstruct the high-resolution phase gradients us-

ing the l1-lp model (7). Let Im ∈ Rm×m be the identity matrix and “⊗” denote the Kronecker

product of matrices. Let R = Im ⊗ R and W = Im ⊗W . We stack the motion matrices Ai,

i = 1, 2, · · · ,m, in model (7) as A = [A1;A2; · · · ;Am] ∈ Rmn×n. The m frames of the low-

resolution phase gradients di, i = 1, 2, · · · ,m, are rearranged as d = [d1; d2; · · · ; dm] ∈ Rlm.

The model (7) therefore can be reformulated as

min
s

α∥s∥1 +
1

p
∥RWAs− d∥pp, p = 1, 2. (9)

3.A. The case of p = 2

When p = 2, the model (9) can be reformulated as a constrained optimization problem with

separable structure by introducing an additional variable v ∈ Rn:

min α∥s∥1 + 1
2
∥RWAv − d∥22

s.t. s = v.
(10)

By defining (x, y) := (s,v), θ1(x) := α∥s∥1, θ2(y) := 1
2
∥RWAv − d∥22, B := I, C := −I and

b := 0, we see that (10) is the same as the optimization problem (8). Consequently, ADM

can be used to solve it. More concretely, the augmented Lagrangian function of (10) is

L(s,v, λ) = α∥s∥1 +
1

2
∥RWAv − d∥22 − ⟨λ, s− v⟩+ β

2
∥s− v∥22,

where λ ∈ Rn is the Lagrange multiplier and β > 0 is the penalty parameter. According to

Algorithm 1, the s- and v-related subproblems can be re-written as follows:

• The s-related subproblem is

sk+1 = argmin
s

α∥s∥1 +
β

2

∥∥∥∥s− vk − λk

β

∥∥∥∥2
2

,

and its closed-form solution can be obtained by the well-known shrinkage (soft-

threshold) operator [29], i.e., sk+1 = shrinkα/β
(
vk + λk/β

)
.

• The v-related subproblem is

vk+1 = argmin
v

1

2
∥RWAv − d∥22 − ⟨λk, sk+1 − v⟩+ β

2
∥sk+1 − v∥22,

which is a least-squares problem. It is equivalent to solving the following linear system[
βI + (RWA)TRWA

]
vk+1 = (βsk+1 − λk) + (RWA)Td. (11)

Since the coefficient matrix of linear system (11) is positive definite, the linear system

can be solved by the conjugate gradient method, see, e.g., [30].
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3.B. The case of p = 1

When p = 1, model (9) can be reformulated as the following constrained optimization prob-

lem by introducing two additional variables u and v:

min α∥u∥1 + ∥v∥1
s.t. s− u = 0 and RWAs− v = d.

(12)

By defining (x, y) := (s, (u,v)), θ1(x) := 0 and θ2(y) := α∥u∥1 + ∥v∥1,

B :=

(
I

RWA

)
, C :=

(
−I 0

0 −I

)
and b :=

(
0

d

)
,

we see that (12) is of the form of (8). Consequently, we can still use ADM to solve it. The

augmented Lagrangian function of (12) is

L(s,u,v, λ1, λ2) = α∥u∥1 + ∥v∥1 +
β1

2

∥∥∥∥u− s− λ1

β1

∥∥∥∥2
2

+
β2

2

∥∥∥∥RWAs− v − d− λ2

β2

∥∥∥∥2
2

,

where (λ1, λ2) ∈ Rn × Rlm is the Lagrange multiplier and β1 > 0, β2 > 0 are the penalty

parameters. According to Algorithm 1, the s- and (u,v)-related subproblems are as follows:

• The s-related subproblem is

sk+1 = argmin
s

β1

∥∥∥∥s− uk +
λk
1

β1

∥∥∥∥2
2

+ β2

∥∥∥∥RWAs− vk − d− λk
2

β2

∥∥∥∥2
2

,

which is a least-squares problem. It is equivalent to the following linear system[
β1I + β2(RWA)TRWA

]
sk+1 = (β1u

k − λk
1) + (RWA)T [β2(v

k + d) + λk
2]. (13)

Since the coefficient matrix of the linear system (13) is positive definite, the linear

system can be solved easily as in (11) by using the conjugate gradient method.

• The (u,v)-related subproblem is

(uk+1,vk+1) = argmin
u,v

α∥u∥1 + ∥v∥1 +
β1

2

∥∥∥∥u− sk+1 − λk
1

β1

∥∥∥∥2
2

+
β2

2

∥∥∥∥v −RWAsk+1 + d+
λk
2

β2

∥∥∥∥2
2

,

and the u-, v-related subproblems can be solved parallelly as follows:

(i) The u-related subproblem is:

uk+1 = argmin
u

α∥u∥1 +
β1

2

∥∥∥∥u− sk+1 − λk
1

β1

∥∥∥∥2
2

.

Hence, its closed-form solution can be obtained by the shrinkage operator, i.e.,

uk+1 = shrinkα/β1

(
sk+1 + λk

1/β1

)
.
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(ii) The v-related subproblem is:

vk+1 = argmin
v

∥v∥1 +
β2

2

∥∥∥∥v −RWAsk+1 + d+
λk
2

β2

∥∥∥∥2
2

, (14)

which can also be solved by the shrinkage operator as

vk+1 = shrink 1
β2

(
RWAsk+1 − d− λk

2

β2

)
.

By the theory in [20–23], our ADM schemes for the l1-lp models, p = 1, 2, are convergent

and the convergent rate is at least O(1/n).

3.C. The choice of parameters

For all the three models we consider here, i.e. the l2-l2 model in (6) and the l1-lp, p = 1, 2

models in (7), there is a regularization parameter α balancing the data-fidelity term and the

regularization term. For the l2-l2 model, which is equivalent to a least-squares problem, there

are well-known methods for choosing a reasonable α, e.g. the generalized cross validation

method [31] and the discrepancy principle [32]. For the l1-lp models, how to choose a good

α is still an on-going research, e.g. the recent paper [33] can give a good α for l1-l2 model

provided that the level of the white noise can be estimated. Note that models (6) and (7) are

models for solving the phase gradients, and hence the best α obtained for one set of phase

gradients under one environment should be a good estimate of α for another set of phase

gradients under a similar environment. Our experience shows that the choice of α is less

relevant to the objects in outer space and the seeing conditions of atmospheric turbulence.

For our l1-lp models, we have the additional penalty parameters β’s from ADM. Theoret-

ically any positive values ensure the convergence of ADM, and we usually have two ways

to determine them. One is to try some values first and pick up a value with satisfactory

performance, and then use it throughout the iterations. The other is to apply some self-

adaptive adjustment rules (e.g., [34, 35]) with an arbitrary initial guess. The latter strategy

requires no tuning but may require expensive computation for imaging applications. We

recommend therefore the former strategy. Our experience is that using well-tuned constant

values performs almost the same as using the self-adaptive strategy.

4. Numerical Experiments

In this section, we test the accuracy of the three models: the l2-l2 model (6) proposed in [13],

and our l1-l2, l1-l1 model in (7). We also test the robustness of our models with respect to

the seeing conditions [7] and the choice of parameters α and β’s. We first generate a 256-by-

256 true phase ϕ by the method proposed in [6], and as in [36] we set the seeing condition

d/r0 = 50 where d is the diameter of the telescope and r0 is the Fried parameter. Then its x-
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phase ϕ phase gradient sx phase gradient sy

Fig. 1. True phase and its gradients.
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Fig. 2. The first frame high-resolution (256-by-256) and low-resolution (32-by-

32) phase gradients within the telescope aperture.

and y-direction gradients sx and sy are derived by formula (4) using the Fried geometry [10].

White noise εs with noise variance 0.05 is then added to both phase gradients. The true

phase ϕ and its x- and y-direction gradients are given in Fig. 1.

In the next two subsections, we separate the tests into two parts according to the velocity

of the moving frames: linear constant velocity and nonlinear velocity. We downsample the

phase gradients by a factor of 8 to generate the low-resolution phase gradients, i.e., six and

siy, i = 1, 2, · · · ,m, are of size 32-by-32. The number of frames m of low-resolution phase

gradients is set to 16. Furthermore, these frames are restricted by mirror aperture of the

telescope. Figure 2 depicts one such frame for the high- and also for the low-resolution phase

gradients.
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4.A. Linear constant velocity

We first consider the scenario that the low-resolution frames move under linear constant

velocity. As aforementioned, we generate sixteen 32-by-32 frames of the low-resolution phase

gradients in both horizontal and vertical directions. The diameter of the mirror aperture

of the telescope is set to 0.4. By solving model (7), we aim at reconstructing the high-

resolution phase gradient sx and sy based on the information of the sixteen low-resolution

frames. We choose the regularization parameter α and the penalty parameter β manually

so as to maximize the SNR of the respective models. The values are α = 5× 10−4 in model

(6), α = 10−4 in model (7); and β = 10−3 for the l1-l2 model and β1 = 10−4, β2 = 0.1

for the l1-l1 model. We employ “pcg” in Matlab with the tolerance 10−4 to solve the

model (6) and the subproblems (11) and (13) in ADM. The stopping rules for ADM is

∥sk+1− sk∥/(1+ ∥sk∥) < 5× 10−2. The reconstructed phase gradients sx and sy by the three

models are given in Fig. 3.

In order to illustrate the accuracy of the reconstructed phase gradients, we also compute

the corresponding PSF’s from them and compare them with the true PSF. The process is

as follows: for each frame i, 1 ≤ i ≤ m, we first compute the high-resolution phase gradients

corresponding to this frame by applying the mirror aperture W and motion operator Ai (see

formula (5)) onto sx and sy. For example, the horizontal phase gradient on frame i is given

by six = WAisx. Then we solve the inverse problem (4) by the algorithm in [6] to obtain

the reconstructed phase ϕ corresponding to this frame. Finally, by substituting the ϕ into

(2), we get the PSF corresponding to the i-th frame. The reconstructed PSF’s from the 8-th

frame for the three models and the true PSF are given in the bottom row of Fig. 3. In Fig.

4, we plot the relative error of the reconstructed PSF’s (measured in 2-norm) for all sixteen

frames by the three models. We see that our models give more accurate PSF’s than the l2-l2

model. Notice that the errors from the l2-l2 model vary from 16% to 43% whereas the errors

in our models hover around 10% to 14%. It shows that our models can give more accurate

PSF and is more robust to the motion of atmospheric turbulence.

To see whether these PSF’s lead to more accurate restored images, we use them in deblur-

ring an observed “Satellite” image. The observed “Satellite” image is obtained as follows:

first we blur the 256-by-256 clean “Satellite” image by the true PSF in Fig. 3 (bottom right

column). Then we add to the blurred image a zero-mean Gaussian noise with variance 0.003.

The degraded image with SNR 3.84dB is depicted in Fig. 5 (leftmost one). We restored the

degraded image by Algorithm 4 in [37] using the reconstructed PSF’s in Fig. 3. The restora-

tions are given in Fig. 5. It shows that the images obtained by our l1-lp model has a gain of

0.9dB in SNR over the image from the l2-l2 model. It indicates that our models are better

in reconstructing the high-resolution phase gradients.
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l2-l2 model l1-l2 model l1-l1 model truth

Fig. 3. Reconstructed horizontal (top row), vertical (center row) direction

phase gradients and the PSF from the 8th frame (bottom row).

4.B. Nonlinear velocity

We repeat the test for the scenario that the low-resolution phase gradients is moving under

nonlinear velocity. Similarly, we generate sixteen 32-by-32 frames of the low-resolution phase

gradients. The diameter of the mirror aperture of the telescope is set to 0.28. Again, we

choose the regularization parameter and the penalty parameters manually to maximize the

SNR. In particular, we choose α = 5×10−4 in model (6) and α = 10−4 in model (7); β = 10−4

for the l1-l2 model and β1 = 10−3, β2 = 10−1 for the l1-l1 model. We solve the models as in

Section 4.A. The reconstructed phase gradients by the three models are given in Fig. 6. We

also reconstruct the PSF’s by using the 8-th frame of the reconstructed phase and they are

given in the bottom row of Fig. 6. Figure 7 plots the relative error of the reconstructed PSF’s

by the three models. Again, we see that our models give smaller errors. As in Section 4.A,

the reconstructed PSF’s are used for deblurring the observed “Satellite” image. The restored

11



0 2 4 6 8 10 12 14 16
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Frame

P
S

F
  
 r

e
la

ti
v
e
  
 e

rr
o
r

 

 

l2−l2 regularization

l1−l2 regularization

l1−l1 regularization

Fig. 4. The relative errors for all reconstructed PSF’s.
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Fig. 5. Image restoration using PSF reconstructed by different models.

images are given in Fig. 8. Here we see that the PSF’s from our models are also better than

the l2-l2 model and the restored images are 1.6 dB higher in SNR than that from the l2-l2

model.

4.C. Hudgin geometry

Though the discussions so far have been on Fried geometry [10], we emphasize that the

proposed models and algorithms are also valid to wavefront reconstruction under the Hudgin

geometry [11]. We illustrate this by using numerical results for the scenario under linear

constant velocity. Figure 9 gives the reconstructed phase gradients and the 8-th frame PSF’s

under the Hudgin geometry. The best parameters chosen manually are α = 3×10−3 in model

(6) and α = 10−4 in model (7); β = 10−4 for the l1-l2 model and β1 = 10−4, β2 = 10−1 for

the l1-l1 model. The reconstructed PSF’s in Fig. 9 are again used in an image deblurring

problem. Specifically, the observed “Moon” image is obtained as follows: the clean image

is first blurred by the true PSF and is then contaminated by a zero-mean Gaussian noise

with noise variance 0.003. The observed image and the restored images by the respective
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l2-l2 model l1-l2 model l1-l1 model truth

Fig. 6. Reconstructed horizontal (top row), vertical (center row) direction

phase gradients and the PSF (bottom row).

reconstructed PSF’s are given in Fig. 10. We see that we have about 1.6dB improvement in

this case.

4.D. Wavefront reconstruction under different seeing conditions

As mentioned in the introduction, distortions of wavefront are related to seeing conditions,

i.e., the ratio of d/r0. In this subsection, we test wavefront reconstructions with different

seeing conditions for the models under consideration. The low-resolution phase gradients are

generated as in Subsection 4.A but with d/r0 ∈ {5, 40, 80, 120}. The models are then solved

with values of the parameters taken to be the same as those in Subsection 4.A. We compare

the performance of these three models by using the reconstructed PSF in the “Satellite”

image deblurring problem in Section 4.A.

In Table 1 we list the numbers of iterations (“Iter”), computing times in seconds (“CPU”)

and SNR values (“SNR”) of the restored “Satellite” images for these three models. For the
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Fig. 7. The relative errors for all reconstructed PSF’s.

observed image l2-l2(11.33dB) l1-l2(12.94dB) l1-l1(12.92dB) true PSF(14.93dB)

Fig. 8. Image restoration using PSF reconstructed by different models.

“Iter” column of l1-l2 (respectively l1-l1), the numbers in parentheses denote the iteration

numbers for solving the subproblem (11) (respectively (13)). Note that the l2-l2 model is

equivalent to a linear system while the l1-l2 and l1-l1 models are tricky to minimize because

of the non-smooth l1 term. The l1-l2 and l1-l1 models in principle require more computing

time to solve than the l2-l2 model, but we see from the table that using ADM, our two

models can also be solved very fast. In addition, the SNR values of the restored images by

either l1-l2 or l1-l1 model are much higher than those by the l2-l2 model.

4.E. Sensitivity of parameters

In order to compare which model gives the best reconstructed PSF’s and restored images, in

our tests in the previous subsections, we have used the best choices of parameters α and β’s

which are obtained manually. In this section, we report the robustness of our algorithms with

respect to these parameters. We take the l1-l2 model as an example. The seeing condition

d/r0 is set as 50, and the phase ϕ is generated as in Subsection 4.A. In Figure 11, we compare
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l2-l2 model l1-l2 model l1-l1 model truth

Fig. 9. Reconstructed horizontal (top row), vertical (center row) direction

phase gradients and the PSF (bottom row).

the relative errors of PSF’s reconstructed by the model with different values of α and β. For

the left figure, β is fixed as 10−3; and for the right figure, α is fixed as 10−4. We see that

values of α in the order of 10−3 to 10−6 and β in the order of 10−2 to 10−3 are good for the

l1-l2 model being tested. Hence the ranges for good choice of parameters are not small. We

also notice that once a parameter is chosen correctly, the relative errors are very stable with

respect to the other parameter.

5. Conclusion

In this paper, we discuss the problem of reconstructing the point spread function, or rather,

the phase gradients under the frozen flow hypothesis in ground-based astronomy. We pro-

pose the l1-lp (p = 1, 2) model for solving the problem instead of the traditional Tikhonov

regularization model. Our model can be solved effectively by the Douglas-Rachford alter-
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observed image l2-l2(20.93dB) l1-l2(22.57dB) l1-l1(22.41dB) true PSF(23.01dB)

Fig. 10. Image restoration using PSF reconstructed by different models.

Table 1. Wavefront reconstruction with different seeing conditions.

l2-l2 model l1-l2 model l1-l1 model

d/r0 Iter CPU SNR Iter CPU SNR Iter CPU SNR

5 50 0.94 15.46 11(147) 2.02 16.14 10(144) 2.50 16.03

40 51 0.89 13.47 11(163) 2.31 14.77 12(153) 2.64 14.71

80 51 0.87 11.04 13(180) 2.24 12.82 11(156) 2.72 12.83

120 51 0.90 9.69 12(177) 2.29 10.74 11(167) 2.87 10.72

nating direction method of multiplier. Experimental results showed that when compared to

the Tikhonov regularization model, the new model can render more accurate phase gradi-

ents, and hence more accurate point spread functions. Therefore the images so deblurred are

more accurate, with 1 to 1.6 dB higher in SNR. We also notice that the performance of the

l1-l2 and l1-l1 models are about the same. Since the l1-l2 model is easier to solve than the

l1-l1 model and has one less penalty parameter, it is the model that we recommend for this

application.

In this paper, we consider only single-layer atmospheric turbulence. The models can be

extended to multi-layer atmospheric turbulence [38] too, and it will be our future research

direction.
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