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Abstract. In this paper, we apply the alternating direction method (ADM) to solve a constrained linear least-squares

problem where the objective function is a sum of two least-squares terms and the constraints are box constraints. Using ADM,

we decompose the original problem into two easier least-squares subproblems at each iteration. To speed up the inner iteration,

we linearize the subproblems whenever their closed-form solutions do not exist. We prove the convergence of the resulting

algorithm and apply it to solve some image deblurring problems. We show the efficiency of our algorithm by comparing it with

Newton-type methods.
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1. Introduction. In this paper, we consider the following constrained linear least-squares problem:

min
l≤x≤u

{1
2
‖Ax− c‖2 +

λ2

2
‖Bx− d‖2}, (1.1)

where A,B ∈ Rm×n with m ≥ n, c,d ∈ Rm, λ ∈ R, l ∈ (R ∪ −∞)n and u ∈ (R ∪ +∞)n are given; and
‖ · ‖ denotes the 2-norm. The constraints here are box constraints and are to be interpreted entry-wise, i.e.,
li ≤ xi ≤ ui for any i ∈ {1, 2, · · · , n}.

Clearly (1.1) can be written as minl≤x≤u
1
2‖Cx− e‖2 for some C ∈ R2m×n and e ∈ R2m, and there are

standard methods such as the Newton-type methods or interior point methods for solving it, see [22, 9, 28].
However, here our emphasis is on applications where A and B are two different types of operators and one
can design better algorithms to capture their properties. One typical example is in image deblurring, where
A is a blurring operator (integral operator) and B is a regularization operator (differential operator). When
d = 0, (1.1) is precisely the Tikhonov regularization with c being the observed image, λ2 the regularization
parameter, and x the image to be restored. The box constraints represent the dynamic range of the image
(e.g., li = 0 and ui = 255 for an 8-bit gray-scale image), see [36]. In the numerical experiments in Section
4, we will see that by imposing the box constraints, one can increase the peak signal-to-noise ratio of the
restored images by 0.2 to 2.2 decible. Hence it pays to solve the constrained problem. In addition, (1.1)
also serves as one of the two subproblems for the splitting algorithm in [21] which solves the deblurring
problem with the total-variational regularization [31]. In that case, B = I the identity matrix and d is an
approximation of x. We refer to [4, 10] for other applications of (1.1), such as contact problems, control
problems, and intensity modulated radiotherapy problems.

In this paper, we develop fast solvers for solving (1.1) that take advantage of the properties of A and
B. In the literature, algorithms for solving (1.1) are essentially Newton-type methods and are presented
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in the context of interior point methods. For example, for solving the nonnegative least-squares problem,
some interior point methods were proposed in [9, 28]. In [5, 30], interior point methods have been shown
to be particularly tailored for ill-posed problems arising in image reconstruction. In [3], by formulating the
Karush-Kuhn-Tucker conditions into a system of nonlinear equations, a Newton-like method was proposed for
solving the nonnegative least-squares problem. The authors of [3] applied the precondition technique to deal
with the resulting ill-conditioned inner linear system at each Newton iteration when the iterate approaches
a solution on the boundary of the feasible set. Their work inspired immediately the reduced Newton method
in [23], which solves a subsystem of the inner linear system corresponding only to components of the iterate
that are not close to the boundary. Since the resulting subsystem is smaller and less ill-conditioned compared
to that in [3], the reduced Newton method outperforms projection type methods and some interior point
type Newton methods for image deblurring problems. A most recent approach is the affine scaling method
in [7] which solves the Newton steps entry-wise by combining non-monotone line-search strategies and the
cyclic version of the classical Barzilai-Borwein stepsize rule [1].

In this paper, we apply the alternating direction method (ADM) proposed originally in [13] to solve the
model (1.1). Note that the objective function of (1.1) is a sum of two least-squares terms linked together by
a common variable x. By introducing an auxiliary variable, we can separate the two least-squares terms and
apply ADM directly. ADM decomposes (1.1) into two easier subproblems, each of which is a least-squares
problem with only one quadratic term in the objective function. Unless one of the matrices A and B is the
identity matrix, the resulting ADM subproblems will not have closed-form solutions and will still be difficult
to solve. The main contribution of this paper is to apply a linearization technique to solve them. The
linearized ADM subproblems are easy to handle as their closed-form solutions can be readily derived. For
image deblurring problem, the cost per ADM iteration is about O(n log n), where n is the number of pixels
in the image. We will show that our linearized ADM method converges to the minimizer of (1.1), and we
will illustrate the efficiency of the method by testing it on some image deblurring problems and comparing
it with existing methods.

The rest of this paper is organized as follows. In Section 2, we present the linearized ADM approach
for solving (1.1). In Section 3, we establish the convergence of the derived algorithms. Numerical tests on
the new algorithms, including their comparisons with some existing Newton-type methods, are reported in
Section 4. Finally, some conclusions are given in Section 5.

2. The linearized ADM approach. In this section, we present the linearized ADM approach and
derive the algorithms for solving (1.1). We first reformulate (1.1) so that ADM can be applied. Then, we
linearize the ADM subproblems so that closed-form solutions can be readily derived.

2.1. The ADM approach. Roughly speaking, ADM is an improved variant of the classical augmented
Lagrangian method [20, 29] for solving linearly constrained convex programming problems where the objec-
tive functions are in a separable form: a sum of individual functions without crossed variables. The efficiency
of ADM has been well-documented in the literature, in the particular context of convex programming and
variational inequalities, see e.g. [12, 15, 18, 37]. Very recently, ADM has successfully found many applica-
tions in the area of image processing [8, 11, 26, 27, 32, 33, 35, 38, 39]. In particular, we refer to [11, 32, 33]
for the relationship between ADM and the split Bregman method in [16].

To apply ADM, we first reformulate (1.1) into

minx∈Rn, y∈Ω

{
1
2‖Ax− c‖2 + λ2

2 ‖By − d‖2 : x− y = 0
}
, (2.1)

where Ω := {l ≤ x ≤ u | x ∈ Rn} and y is an artificial variable. Strictly speaking, (2.1) is a typical linearly-
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constrained convex programming problem. Thus, the classical augmented Lagrangian method (ALM) [20, 29]
is readily applicable. More specifically, let the augmented Lagrangian function of (2.1) be

LA(x,y, z, β) =
1
2
‖Ax− c‖2 +

λ2

2
‖By − d‖2 − 〈z,x− y〉+

β

2
‖x− y‖2, (2.2)

where z ∈ Rn is the Lagrange multiplier and β > 0 is a penalty parameter for the violation of the linear
constraints. Then, with the given (xk,yk, zk), the iterative scheme of ALM for (2.1) is

{
(xk+1,yk+1) ← arg minx∈Rn,y∈Ω LA(x,y, zk, β),
zk+1 ← zk − β(xk+1 − yk+1).

(2.3)

Note that the direct application of ALM (2.3) treats (2.1) as a generic linearly constrained convex program-
ming problem, without any consideration of its separable structure. Therefore, the variables xk+1 and yk+1

are required to be solved simultaneously in (2.3).
The ADM, in contrast, further decomposes the minimization in (2.3) into two subproblems related to x

and y, respectively, and solve them in a consecutive order:




xk+1 ← arg minx∈Rn LA(x,yk, zk),
yk+1 ← arg miny∈Ω LA(xk+1,y, zk),
zk+1 ← zk − β(xk+1 − yk+1).

(2.4)

Because of the decomposition, ADM belongs to the class of splitting methods. In fact, the decomposition
feature of ADM makes it possible to explore the separable structures of the objective function in (2.1). For
example, the x-subproblem in (2.4) has a closed-form solution (see (2.5) below).

Now, we delineate the solutions of the two subproblems in (2.4), from which our idea of linearizing
these subproblems will become obvious. For the x-subproblem in (2.4), it is a least-squares problem without
constraints. Hence, it amounts to solving the normal equation:

(A>A + βI)x = A>c + zk + βyk. (2.5)

For image deblurring problems, A is a spatially-invariant blurring operator. Under the periodic boundary
conditions for x, A>A will be a block circulant matrix with circulant blocks, see [6]. Hence it can be
diagonalized by the two-dimensional fast Fourier transform (FFT). As a result, (2.5) can be solved exactly
using two FFTs (including one inverse FFT), see e.g. [6, 25], and hence the cost is of O(n log n).

On the other hand, it is easy to show that the y-subproblem in (2.4) is equivalent to

min
y∈Ω

{
λ2

2
‖By − d‖2 +

β

2
‖y − xk+1 +

zk

β
‖2

}
. (2.6)

Its solution is given by the following projection equation:

y = PΩ

{
y − [(λ2B>B + βI)y − (λ2B>d + βxk+1 − zk)]

}
, (2.7)

where PΩ denotes the projection operator onto Ω under the Euclidean norm. Obviously, for deblurring
problems with the Tikhonov regularization (see e.g. [17]), B = I in (2.1). Then, the closed-form solution of
(2.7) can be easily obtained by:

y = PΩ

[
1

λ2 + β
(λ2B>d + βxk+1 − zk)

]
. (2.8)

However, when B 6= I, the closed-form solution of (2.7) is not available, and we will use linearization to
obtain an approximate solution for y.
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2.2. The linearized ADM approach for (2.1). The lack of closed-form solution of (2.6) renders
the ADM approach (2.4) not readily applicable. To solve the y-subproblem (2.6) efficiently, we propose to
linearize the quadratic term λ2

2 ‖By − d‖2 and use the linearized subproblem as a surrogate of (2.6). Our
reason for linearizing the first term in (2.6) is that the closed-form solution of the linearized subproblem can
be derived easily and hence the computation cost of the inner iteration in (2.4) can be reduced.

By linearizing the first quadratic term in (2.6), we have the following problem:

yk+1 = arg min
y∈Ω

{
λ2[〈B>(Byk − d),y − yk〉+

τ

2
‖y − yk‖2] +

β

2
‖y − xk+1 +

zk

β
‖2}, (2.9)

where τ is the parameter of the proximal term and it should be chosen judiciously (to be specified later).
The optimality condition of (2.9) leads to the following variational inequality:

(y′ − yk+1)>{λ2B>(Byk − d) + [zk − β(xk+1 − yk+1)] + λ2τ(yk+1 − yk)} ≥ 0, ∀ y′ ∈ Ω. (2.10)

from which the solution is given explicitly by:

yk+1 = PΩ

{ 1
λ2τ + β

· [−λ2B>(Byk − d) + λ2τyk − zk + βxk+1]
}
. (2.11)

Note that the computation for obtaining yk+1 via (2.11) is dominated by the matrix-vector multiplication
of B>Byk. For image deblurring problems, B is a discretized differential operator (e.g. the discrete gradient
operator). Hence it is sparse and the cost of matrix-vector multiplication is only of O(n), see [34].

Combining (2.11) with the formula for xk+1 in (2.5), we get our linearized ADM method. We note that
since closed-form solutions exist for both x- and y-subproblems, the computation cost at each inner iteration
in (2.4) is low (O(n log n) for image deblurring problems).

2.3. Numerical algorithms based on the linearized ADM approach. In this section, we derive
two algorithms for solving (1.1) based on our discussions in §§2.1–2.2. These two different algorithms stem
from two different formulations of (1.1). Let ρ(·) denote the spectral radius. Our first algorithm is based on
the formulation (2.1):

Algorithm 1: The first linearized ADM algorithm for (1.1)
Input A, B, c, d, λ > 0, β > 0 and τ > ρ(B>B). Initialize (y, z) = (y0, z0), k = 0.

While not converged, Do

1) Generate xk+1 by solving (2.5):
(A>A + βI)xk+1 = A>c + zk + βyk.

2) Generate yk+1 by (2.11):
yk+1 = PΩ

{
1

λ2τ+β · [−λ2B>(Byk − d) + λ2τyk − zk + βxk+1]
}
.

3) Update zk via zk+1 = zk − β(xk+1 − yk+1).
End Do

In addition to (2.1), we can reformulate (1.1) into other forms for which ADM is applicable. For instance,
(1.1) can be reformulated as:

min
x∈Ω, y∈Rn

{1
2
‖Ax− c‖2 +

λ2

2
‖By − d‖2 : x− y = 0

}
. (2.12)

Then, with the analogous analysis as in §§2.1–2.2, we can easily derive another linearized ADM algorithm
based on the reformulation (2.12). Note that the quadratic term 1

2‖Ax−c‖2 should be linearized when (2.12)
is considered.
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Algorithm 2: The second linearized ADM algorithm for (1.1)
Input A, B, c, d λ > 0, β > 0 and τ > ρ(A>A). Initialize (y, z) = (y0, z0), k = 0.

While not converged, Do

1) Generate yk+1 by solving (λ2B>B + βI)yk+1 = λ2B>d− zk + βxk.

2) Generate xk+1 by xk+1 = PΩ

{
1

τ+β [τxk + zk + βyk+1 −A>(Axk − c)]
}
.

3) Update zk via zk+1 = zk − β(xk+1 − yk+1).
End Do

Remark 1. To ensure convergence, we require the proximal parameter τ to be sufficiently large in the
sense that τ > ρ(B>B) for Algorithm 1 and τ > ρ(A>A) for Algorithm 2. For some applications such as
image deblurring problems, the estimation of ρ(A>A) and ρ(B>B) is not hard. In fact, when A is a blurring
operator, we usually normalize ‖A‖∞ = 1 to ensure that the blurred image is still within the given dynamic
range. Hence ρ(A>A) = ‖A‖2 ≤ ‖A‖∞‖A‖1 = 1 for symmetric blur A. For discrete gradient operator B, we
have that B>B being the discrete Laplacian operator and hence by the Gerschgorin theorem, ρ(B>B) ≤ 8,
see [34]. Even for generic operators, if we assume periodic boundary condition, then the operators can
be diagonalized by Fast Fourier Transform, see e.g. [6, 25], and hence their spectral radius can easily be
computed. One can also employ some backtracking techniques to identify an appropriate τ , see e.g. [2].

Remark 2. For clearer exposure of the main idea, we fix the value of the penalty parameter β as a
positive constant in our proposed algorithms. For strategies adjusting this parameter dynamically, we refer
to, e.g. [19].

3. Convergence. In this section, we establish the convergence of our proposed algorithms. Because
of the similarity, we only prove the convergence of Algorithm 1 and omit the proof for Algorithm 2. Here
we assume that a minimizer of (1.1) exists. This is true if ker(A>A) ∩ ker(B>B) = ∅. In that case,
A>A+λ2B>B is positive definite, and (1.1) is strictly convex and admits a unique solution x∗ for arbitrarily
given c and d, see e.g. [4]. We note that for image deblurring problems, A and B represent a blurring
operator and a regularization operator respectively. Since a blurring operator is an integral operator (a
low-pass filter) while a regularization operator is a differential operator (a high-pass filter), we generally
have ker(A>A) ∩ ker(B>B) = ∅.

We first notice that (2.1) is equivalent to finding (x∗,y∗, z∗) ∈ Rn × Ω× Rn := Υ such that





AT (Ax∗ − c)− z∗ = 0,

(y′ − y∗)T (λ2B>(By∗ − d) + z∗) ≥ 0, ∀ y′ ∈ Ω,

x∗ − y∗ = 0.

(3.1)

For notational convenience, we denote w> = (x>,y>, z>) and v> = (y>, z>). We let Υ∗ denote the
solution set of (3.1). For w∗ = (x∗,y∗, z∗) ∈ Υ∗, we write v∗ = (y∗, z∗). Since (1.1) admits a solution, Υ∗

is nonempty. In fact, Υ∗ is convex due to the monotonicity of (3.1). Let

G =

(
(β + λ2τ)I − λ2B>B 0

0 1
β I

)
. (3.2)

Obviously, for Algorithm 1 with the requirement τ > ρ(B>B), G is positive definite.
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We first present several lemmas which are helpful in establishing the convergence of Algorithm 1.

Lemma 3.1. Let

F(w) =




A>(Ax− c)− z

λ2B>(By − d) + z

x− y


 .

Then F is monotone, i.e., (w′ −w)>(F(w′)−F(w)) ≥ 0, for all w′, w ∈ Υ.

Proof. It is elementary, and thus omitted.

The following two lemmas present some contractive properties of the sequence generated by Algorithm
1, and they constitute the essential part of our convergence proof.

Lemma 3.2. Let {wk} be the sequence generated by Algorithm 1. Then, for all w′ ∈ Υ, we have

(w′ −wk+1)>




F(wk+1) +




β(yk+1 − yk)
−β(yk+1 − yk)

0


−




0 0 0
0 (β + λ2τ)I − λ2B>B 0
0 0 1

β I


 (wk −wk+1)




≥ 0.

(3.3)

Proof. Putting (2.5), (2.10) and the fact zk+1 = zk − β(xk+1 − yk+1) together, we have the following
variational inequalities:





(x′ − xk+1)>{A>(Axk+1 − c)− [zk − β(xk+1 − yk)]} ≥ 0,

(y′ − yk+1)>{λ2B>(Byk+1 − d) + [zk − β(xk+1 − yk+1)] + λ2τ(yk+1 − yk) + λ2B>B(yk − yk+1)} ≥ 0,

(z′ − zk+1)>{xk+1 − yk+1 − 1
β (zk − zk+1)} ≥ 0,

for all w′ ∈ λ. Recalling the definition of F , the above inequality can be rewritten as

(w′ −wk+1)>




F(wk+1) +




β(yk+1 − yk)
−β(yk+1 − yk)

0


−




0

(β + λ2τ)(yk − yk+1)− λ2B>B(yk − yk+1)
1
β (zk − zk+1)







≥ 0,

(3.4)

for all w′ ∈ Υ, and it implies (3.3) immediately.

Lemma 3.3. Let {vk := (yk, zk)} be generated by Algorithm 1, w∗ = (x∗,v∗) ∈ Υ∗, and G be defined
in (3.2). Then, we have

(vk − v∗)>G(vk − vk+1) ≥ ‖vk − vk+1‖2G + (zk − zk+1)>(yk+1 − yk). (3.5)

Proof. By setting w′ = w∗ in (3.3), we get

(w∗ −wk+1)>





F (wk+1) +




β(yk+1 − yk)
−β(yk+1 − yk)

0


−G(vk − vk+1)




≥ 0.
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Since x∗ − y∗ = 0 and xk+1 − yk+1 = 1
β (zk − zk+1), we have

(vk+1 − v∗)>G(vk − vk+1) ≥ (wk+1 −w∗)>F (wk+1) + (wk+1 −w∗)>




β(yk+1 − yk)
−β(yk+1 − yk)

0




≥ (wk+1 −w∗)>F (w∗) + β[(xk+1 − x∗)− (yk+1 − y∗)]>(yk+1 − yk)

≥ (zk − zk+1)>(yk+1 − yk).

Combining this with the fact that vk+1 − v∗ = vk − v∗ − (vk − vk+1), we get (3.5).

Based on the preceding lemmas, we are able to show some important properties of {vk} which ensure
the convergence of Algorithm 1 immediately. We summarize these properties in the following lemma.

Lemma 3.4. Let {vk := (yk, zk)} be generated by Algorithm 1 and w∗ = (x∗,v∗) ∈ Υ∗. Then, we have:
(i) limk→∞ ‖vk − vk+1‖G = 0;

(ii) {vk} is a bounded sequence;
(iii) ‖vk − v∗‖2G is non-increasing and thus converges.

Proof. From vk+1 = vk − (vk − vk+1) and (3.5), we get

‖vk − v∗‖2G − ‖vk+1 − v∗‖2G
= 2(vk − v∗)>G(vk − vk+1)− ‖vk − vk+1‖2G
≥ 2‖vk − vk+1‖2G + 2(zk − zk+1)>(yk+1 − yk)− ‖vk − vk+1‖2G
= (β + λ2τ)‖yk − yk+1‖2 − λ2‖B(yk − yk+1)‖2 +

1
β
‖zk − zk+1‖2 + 2(zk − zk+1)>(yk+1 − yk). (3.6)

We denote

δ =
λ2(τ − ρ(B>B))

β
> 0 and γ =

δ +
√

δ2 + 4
2

.

Then, it is easy to show that 1 < γ < 1 + δ and 1 + δ − γ = 1 − 1/γ. It follows from the Cauchy-Schwartz
inequality that

2(zk − zk+1)>(yk+1 − yk) ≥ −γβ‖yk − yk+1‖2 − 1
γβ
‖zk − zk+1‖2.

Substituting the above inequality into (3.6), we get

‖vk − v∗‖2G − ‖vk+1 − v∗‖2G ≥ β(1 + δ − γ)‖yk − yk+1‖2 +
(

1− 1
γ

)
1
β
‖zk − zk+1‖2

≥ ν‖vk − vk+1‖2G, (3.7)

where

ν := min
{

β(1 + δ − η)
β + τ

, 1− 1
γ

}
=

β

β + τ

(
1− 1

γ

)
> 0.

From that, it is trivial to derive the statements of the lemma based on (3.7).

Now, we are ready to present the convergence of Algorithm 1 in the following theorem.

Theorem 3.5. The sequence {vk := (yk, zk)} generated by Algorithm 1 converges to (x∗,y∗, z∗), where
{(x∗,y∗)} is a solution of (2.1).
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Proof. It follows from (i) of Lemma 3.4 that

lim
k→∞

‖yk − yk+1‖ = 0, lim
k→∞

‖zk − zk+1‖ = 0. (3.8)

From (ii) of Lemma 3.4, {vk} has at least one accumulation point and we denote it by v∞ = (y∞, z∞).
There also exists a subsequence {vkj} converging to v∞, i.e., ykj → y∞ and zkj → z∞. Furthermore, from
(2.5), we get

xk+1 = (A>A + βI)−1(A>c + βyk + zk).

Since ykj → y∞ and zkj → z∞, we have ykj − ykj−1 → 0 and zkj − zkj−1 → 0. Thus, we conclude that

xkj → x∞ := (A>A + βI)−1(A>c + βy∞ + z∞). (3.9)

Therefore, (x∞, y∞, z∞) is also an accumulation point of the sequence {wk = (xk, yk, zk)}.
Next, we show that (x∞,y∞, z∞) satisfies the optimality condition for (2.1). First, substituting (3.8)

into (3.4), we have

lim
k→∞

(w −wk+1)>F (wk+1) ≥ 0, ∀ w ∈ Υ. (3.10)

Thus, any accumulation point of {wk} is a solution point of (3.1). So, (x∞,y∞, z∞) is a solution point of
(3.1). Since the inequality (3.7) is true for all solution points of (3.1), we have that

‖vk+1 − v∞‖ ≤ ‖vk − v∞‖, ∀ k ≥ 0. (3.11)

Thus, v∞ is the only accumulation point of the sequence {vk}, and so {vk} converges to v∞. Accordingly,
{wk} converges to (x∞,y∞, z∞) which is a solution of (3.1) and therefore also of (2.1).

4. Numerical experiments. In this section, we test the proposed linearized ADM algorithms on
image deblurring problems

min
l≤x≤u

{1
2
‖Ax− c‖2 +

λ2

2
‖Bx‖2}, (4.1)

where A is a blurring operator, B is a regularization operator and c is the observed image. Obviously, (4.1)
is a special case of (1.1) with d = 0. We compare the proposed Algorithms 1 and 2 with the reduced Newton
method in [23] (denoted by RN) and the affine scaling method in [7] (denoted by AS). It has been shown
numerically that RN and AS are better than the projection-type methods and some existing Newton-like
methods. All the codes were written with MATLAB 7.8 (R2009a) and were run on a T6500 notebook with
the Intel Core 2 Duo CPU at 2.1 GHz and 2GB of memory.

For the purpose of comparison, we test the same 256 × 256 images as in [23], i.e., the Eagle, Church,
Satellite and Bridge images, see Figure 4.1. Accordingly, m = n = 65, 536 in model (1.1) for these images. As
in [23], the blurring matrix A is chosen to be the out-of-focus blur and the matrix B is taken to be the gradient
matrix. Under the periodic boundary conditions for x, both B>B and A>A are block circulant matrices
with circulant blocks. Thus they are diagonalizable by the 2D discrete Fourier transforms, see [6], and hence
our Algorithms 1 and 2 are of O(n log n) operations per iteration. The observed image c is expressed as
c = Ax̄+ηr, where x̄ is the true image, r is a random vector with entries distributed as standard normal, and
η is the level of noise. The bound constraints are set to li = 0 and ui = 255 for all i = 1, · · · , n. We employ
the MATLAB scripts: A = fspecial(’average’,alpha) and C = imfilter(X,A,’circular’,’conv’) +
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Fig. 4.1. Original images

η*randn(m,n) to produce the blurred images corrupted by the averaging kernel of different sizes. Here,
alpha is the size of the kernel, X denotes the original image, and C represents the observed image.

We stop Algorithms 1 and 2 when the relative change ‖xk − xk−1‖/‖xk−1‖ ≤ 10−4. We measured the
quality of restoration by the peak signal-to-noise ratio (PSNR), which is measured in decible (dB) and is
defined by:

PSNR(x) = 20 log10

xmax√
Var(x, x̄)

with Var(x, x̄) =

∑n−1
j=0 [x̄(j)− x(j)]2

n
,

where x̄ is the original image and xmax is the maximum possible pixel value of the image x.
In our experiments, we set β = 0.1 for Algorithms 1 and 2. In our proof of convergence, we show that

the convergence of Algorithm 1 (Algorithm 2, respectively) is ensured when τ > ρ(B>B) (τ > ρ(A>A),
respectively). Hence we set τ = 1.05 · ρ(B>B) (τ = 1.05 · ρ(A>A), respectively) in the implementation of
Algorithm 1 (Algorithm 2, respectively). Note that since B>B and A>A can be diagonalized by Fast Fourier
Transform, their spectral radius can easily be obtained.

In the first set of experiments, we set λ = 0.1 as in [23]. In Table 4.1, we report the performance of
RN, AS, Algorithm 1 (Alg1) and Algorithm 2 (Alg2) for different levels of noise η and blur size alpha. We
report the computing time in seconds (denoted by “Time(s)”), PSNR of the recovered images (denoted by
“PSNR(dB)”) and the function value of the model (4.1) (denoted by “Objfn-end”) when the iteration is
terminated. Note that the Newton-type methods RN and AS both require an interior point inside [0, 255]n

as the initial iterate. We here apply the method as in [23] to generate their initial iterate, i.e., we solve the
unconstrained version of (4.1):

min
x∈Rn

{1
2
‖Ax− c‖2 +

λ2

2
‖Bx‖2}, (4.2)

and project the solution onto the box [1, 254]n to obtain the initial iterate for RN and AS. Note that solving
(4.2) amounts to solving its normal equation (A>A + λ2B>B)x = A>c. On the contrary, the proposed
Algorithms 1 and 2 can use any arbitrary image as the initial iterate. In our experiment we simply start
the iterations of Algorithms 1 and 2 from the blurred image c. In the last column of Table 4.1, the “PJ”
column, we also report the PSNR of the projected solution of (4.2). More precisely, we solve (4.2) by the
least squares method, and then we project the solution onto the box [0, 255]n. For each test case, we repeat
the experiment three times and report the average performance.

The efficiency of our Algorithms 1 and 2 are shown clearly in Table 4.1 where the best results are marked
by boldface. First we emphasize that the PSNR obtained by any of the four algorithms for the constrained
model (4.1) is higher than that obtained by the projected solution of the unconstrained model (4.2) by 0.2
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Table 4.1

Numerical comparison of RN, AS, Algorithm 1 and Algorithm 2

Image η Time (s) PSNR (dB) Objfn-end (×105) PJ
alpha RN AS Alg1 Alg2 RN AS Alg1 Alg2 RN AS Alg1 Alg2 (dB)

Eagle 3 4.49 1.44 0.52 1.70 32.80 32.78 32.83 32.96 2.885 2.885 2.879 2.886 32.26

3 5 5.24 1.53 0.58 1.98 29.36 29.37 29.37 29.50 6.312 6.311 6.301 6.313 28.87

7 5.41 1.77 0.61 2.08 26.83 26.84 26.84 26.94 11.32 11.32 11.30 11.32 26.38

Church 3 5.28 1.78 0.48 1.69 30.92 30.90 30.94 30.94 3.895 3.894 3.887 3.896 30.08

3 5 6.19 1.60 0.58 1.86 28.57 28.56 28.58 28.66 7.442 7.442 7.425 7.443 27.83

7 6.21 1.67 0.63 2.17 26.51 26.51 26.52 26.60 12.57 12.57 12.54 12.57 25.82

Satellite 3 6.15 2.29 0.97 3.59 28.97 28.88 28.97 28.93 3.463 3.464 3.461 3.463 27.91

5 5 15.76 2.27 0.92 3.89 28.53 28.47 28.54 28.52 8.369 8.370 8.365 8.368 26.86

7 11.24 2.46 1.03 4.03 27.90 27.87 27.91 27.91 15.72 15.72 15.71 15.71 25.65

Bridge 3 6.08 2.39 0.88 2.94 24.38 24.33 24.38 24.26 4.588 4.589 4.587 4.592 24.06

5 5 6.11 2.19 0.89 3.31 23.71 23.66 23.71 23.67 8.831 8.833 8.830 8.835 23.34

7 10.09 2.39 0.98 3.78 22.90 22.88 22.91 22.92 15.25 15.25 15.24 15.25 22.50

Table 4.2

Numerical comparison of Algorithm 1 and Algorithm 2 with best λ∗

Image η λ∗ PSNR (dB) Time (s) λ∗ PJ
alpha Alg1 Alg2 Alg1 Alg2 Alg1 Alg2 (dB)

Eagle 3 0.16 0.16 37.65 37.64 0.47 0.92 0.17 33.20

3 5 0.23 0.23 32.03 32.03 0.50 0.77 0.24 31.80

7 0.30 0.30 31.02 31.02 0.63 0.81 0.32 30.86

Church 3 0.10 0.10 30.96 30.96 0.42 1.70 0.11 30.11

3 5 0.15 0.15 29.25 29.25 0.44 1.17 0.16 28.69

7 0.19 0.19 28.18 28.18 0.53 0.91 0.21 27.80

Satellite 3 0.05 0.04 29.66 29.66 1.56 9.27 0.10 27.92

5 5 0.08 0.08 28.52 28.51 1.02 5.22 0.15 27.26

7 0.12 0.12 27.84 27.83 0.86 3.31 0.21 26.85

Bridge 3 0.06 0.06 24.96 24.88 1.22 5.13 0.06 24.48

5 5 0.09 0.09 23.73 23.71 0.89 3.83 0.10 23.33

7 0.12 0.12 22.97 22.96 0.77 2.95 0.13 22.64

to 2.2 dB (see the “PJ” column in the table). Thus, it pays to solve the constrained model (4.1). Secondly,
we see that Algorithm 1 gives the smallest objective function values amongst all four methods and is the
fastest one amongst them. We note that Algorithm 1 involves matrix-vector multiplication of B>B which
can be done in O(n) whereas Algorithm 2 involves matrix-vector multiplication of A>A which is done in
O(n log n). Thus the cost of iteration is cheaper for Algorithm 1.

In terms of PSNR, Algorithm 1 is either the best one or within 0.15 dB from the best one. This difference
is actually due to the fact that we here fixed λ = 0.1 for all cases. The regularization parameter λ should
be chosen according to the noise level. In Table 4.2, we repeat the experiments for Algorithms 1 and 2 with
the best λ chosen by trial and error. We see from the table that with the best λ, Algorithms 1 can actually
attain slightly better PSNR than Algorithm 2 does. Again, Algorithm 1 is much faster than Algorithm 2.
Note also that the PSNR of the constrained model can be 4.4dB higher than that of the projected solution.

To further verify the efficiency and robustness of our proposed algorithms, we use the MATLAB script
fspecial to generate four more different blurred images and compare their restoration results. We add the
’average’ blur to the satellite image with alpha = 3 and noise level η = 4, and to the church image with
alpha = 5 and η = 2. For the eagle image, we adopted the ’motion’ blur kernel with len = 5, and theta = 15
and noise level η = 2. For the bridge image, we applied the ’Gaussian’ blur kernel with hsize = 5, σ = 4
and noise level η = 4. The restored images are shown in Figure 4.2 with timing and accuracy given. Again
we see that our Algorithm 1 outperforms other methods in terms of timing and the PSNR is either the best
one or differs from the best one by 0.01dB.
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RN, T: 10.9s, PSNR: 31.03dB AS, T:  1.9s, PSNR: 31.03dB Algo.1, T:  0.5s, PSNR: 31.04dB Algo.2, T:  1.9s, PSNR: 31.04dB

RN, T:  6.1s, PSNR: 28.73dB AS, T:  2.4s, PSNR: 28.60dB Algo.1, T:  0.5s, PSNR: 28.72dB Algo.2, T:  2.2s, PSNR: 28.67dB

RN, T:  4.8s, PSNR: 33.98dB AS, T:  1.7s, PSNR: 33.88dB Algo.1, T:  0.6s, PSNR: 34.02dB Algo.2, T:  1.7s, PSNR: 34.02dB

RN, T:  6.0s, PSNR: 24.01dB AS, T:  2.4s, PSNR: 23.97dB Algo.1, T:  0.5s, PSNR: 24.01dB Algo.2, T:  2.3s, PSNR: 23.99dB

Fig. 4.2. From left to right: Results recovered by RN, AS, Algos. 1 and 2, respectively.“T” represents running time.

5. Concluding remarks. This paper provides a novel approach for solving constrained linear least-
squares problems by combining linearization techniques with the alternating direction method (ADM). The
approach belongs to the category of inexact ADMs where inexact solutions of ADM subproblems are obtained
via linearizing some quadratic terms involved. Since ADM is a first-order method which in general requires
more outer iterations compared to second-order type methods, a major concern of making ADM efficient is to
alleviate the difficulty of obtaining approximate solutions in the inner iterations. The proposed linearization
technique realizes this philosophy well, as all the linearized inner subproblems have closed-form solutions.

We have proved the convergence of the proposed linearized ADM approach and applied it to solve some
image deblurring problems. Comparing to Newton-type methods, the linearized ADM approach is more
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efficient both in terms of speed and the quality of the restored images. Moreover, the linearized ADM
approach does not require a good initial guess to start its iteration, while Newton-type methods are usually
sensitive to the choice of the initial iterant.

One extension of this research is to develop inexact ADMs for more complex problems in image process-
ing, such as the multiframe deblurring problem where the objective function takes the form

K∑

i=1

1
2
‖Aix− ci‖2 +

λ2

2
‖Bx‖2.
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