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Abstract. Tight-frame, a generalization of orthogonal wavelets, has been used successfully in
various problems in image processing, including inpainting, impulse noise removal, super-resolution
image restoration, etc. Segmentation is the process of identifying object outlines within images.
There are quite a few efficient algorithms for segmentation such as the model based approaches,
pattern recognition techniques, tracking-based approaches, artificial intelligence-based approaches,
etc. In this paper, we propose to apply the tight-frame approach to automatically identify tube-like
structures in medical imaging, with the primary application of segmenting blood vessels in magnetic
resonance angiography images. Our method iteratively refines a region that encloses the potential
boundary of the vessels. At each iteration, we apply the tight-frame algorithm to denoise and smooth
the potential boundary and sharpen the region. The cost per iteration is proportional to the number
of pixels in the image. We prove that the iteration converges in a finite number of steps to a binary
image whereby the segmentation of the vessels can be done straightforwardly. Numerical experiments
on synthetic and real 2D/3D images demonstrate that our method is more accuracy when compared
with some representative segmentation methods, and it usually converges within a few iterations.
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1. Introduction. The segmentation problem of branching tubular objects in
2D and 3D images arises in many applications, for examples, extracting roads in
aerial photography, and anatomical surfaces of blood vessels in medical images. In
this paper, we are concerned with identifying tube-like structures in medical imag-
ing, with the primary application of segmenting blood vessels in magnetic resonance
angiography (MRA) images. Unlike classical segmentation problems, vessel segmen-
tation is characterized by different aims such as (a) detect correctly branches and
complex topologies, (b) detect vessels of very different thickness (from very thin to
very thick), (c) repair small occlusions (false disconnections), (d) remove noise in-
correctly segmented, and (e) control the minimum thickness of the vessels by a user
given precision. Moreover, when used in a real-time medical environment, automatic,
robust and efficient methods are essential. All these requirements make the vessel
segmentation problem very challenging.

Many different approaches for image segmentation and, in particular, vessel seg-
mentation have been proposed in literature, see for example [14, 15, 16, 21, 24, 29,
34, 35, 42, 44, 46] and the extended reviews [17, 33]. Below we give a brief account
of some of these methods.

Deformable model approaches, initially introduced for general image segmenta-
tion, have been applied to vessel segmentation as well [16, 24, 35, 44, 46]. They
start from an initial boundary estimate, and deform it iteratively so as to minimize a
functional depending on structures and regularity of the surface. Explicit deformable
models such as those discussed in [36] have some drawbacks like inaccurate calculation
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of the normals and curvature because of the discrete nature of the contour parame-
terization; costly computation to prevent self-intersections in the resulting contours,
etc. Therefore the level set technique which provides implicit representation of the
deformable model was introduced. Interested readers can refer to recent literature on
the level set segmentation strategy for tubular structures [29, 30, 38, 42]. However,
the level set segmentation approach is also computationally expensive as it needs to
cover the entire domain of interest, which is one dimension higher than the original
one.

A very successful deformable method for vessel segmentation in volume datasets
was proposed in [35]. The method is an extension of geodesic active contour and
minimal surfaces, with the distinction that its regularizing force is derived from an
underlying one-dimensional curve in three dimensions. The curve can be considered
intuitively as the center line of the tubular structures. This method has very good
performance and the software is public available. However, from our experiments,
we noticed that it still can not detect thin vessels in MRA images especially when
their intensities are close to the intensity of the background, see numerical results in
Section 4.

In [24], a geometric deformable model for the segmentation of tubular-like struc-
tures was proposed. It continuously deforms an initial distance function following the
Partial Differential Equation (PDE)-based diffusion model derived from a minimal
volume-like variational formulation. It uses a suitable diffusion tensor to control the
directionality of the tubular structures, and hence it possesses the ability to segment
twisted, convoluted and occluded structures. The authors in [24] have also applied a
variant of their PDE model to the challenging problem of composed segmentation in
[25]. However, their methods do not perform well for MRA images where there are
weak edges, and they are also sensitive to noise and blur in the images.

Besides the methods above, new approaches based on wavelets and tight-frames
have been proposed to classify texture and segmentation [1, 43]. The tight-frame
approach is a versatile and effective tool for many different applications in image
processing, see [2, 5, 12, 11, 40, 41, 45]. As proven in [5, 6], the approach is closely
related to variational approach. There are many kinds of tight-frame systems, such
as those from framelets [37], contourlets [20] and curvelets [9, 10], etc. Recently, the
authors in [21] proposed a minimization model which replaces the total variation norm
in model [13] by ℓ1 norm of framelets coefficients. Notice that model [13] is the convex
version of the Chan-Vese active contour model [14]. The Chan-Vese model has the
minimal partition property, i.e. it assumes that the segmentation result is a piecewise
constant image with two different constant values, and its partition effectiveness can
be accomplished after it is minimized. Therefore the tight-frame model in [21] has the
advantage of multi-resolution analysis of tight-frame systems, yet it also shares the
minimal partition property of the Chan-Vese model. It is shown in [21] that it can
segment complex structures in medical images very well. But from our experiments in
Section 4, we noticed that it also can not detect thin vessels well especially for those
with low intensities.

In this paper, we derive a segmentation algorithm that also uses tight-frames.
However, instead of modeling the problem as a minimization problem with a data-
fitting term and a fidelity term as in [21], we use an iterative procedure that gradually
updates an interval that contains pixel values of potential boundary pixels. The major
advantage of this technique is the ability to segment twisted, convoluted and occluded
structures without user interactions; and it can follow the branching of different layers,
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from thinner to larger structures. Moreover, we can prove the convergence of our
method and it is robust in case of noisy and blurred images.

Comparison with methods in [14, 21, 24, 25, 35] on synthetic and real 2D and 3D
MRA images show that our method gives more accurate vessel segmentation. On the
synthetic images, see Figures 4.1 and 4.2, our method basically can recover all the
branches in the images while other methods do not perform as well. Moreover, for
all the images we tested, our methods converges within 10 iterations, where the cost
for each iteration is proportional to the number of pixels in the image. (In principle,
it can be further reduced to proportional to the number of pixels on the boundary of
the vessels though we did not pursue this in this paper.) This is an advantage when
doing real-time segmentation.

A preliminary version of our segmentation algorithm has been given in an SSVM
proceedings [8]. The main contributions in this paper are: (1) a simpler strategy to
initialize and refine the regions enclosing the potential boundary of the vessels, (2) the
new strategy leads to a simple proof of convergence and easier choice of parameters,
(3) a different tight-frame with better directionally selective property is used to obtain
more details in the image, (4) new synthetic, 2D, and 3D tests are added, also noise
in the data are considered.

The rest of the paper is organized as follows. In Section 2, we recall some basic
facts about tight-frame and generic tight-frame algorithms. Our segmentation algo-
rithm is given in Section 3. In Section 4 we test our algorithm on various synthetic
and real 2D/3D images and we provide the comparison with some representative
algorithms from different segmentation approaches: active contour models [14], tight-
frame [21], CURVES vessel segmentation method [35], and anisotropic deformable
approach [24, 25]. Conclusions are given in Section 5.

2. Tight-Frame Algorithm. In this section, we briefly introduce the tight-
frame algorithms used in [2, 3, 4, 5, 11] which are based on tight-frame transforms. All
tight-frame transforms A have a very important property, the “perfect reconstruction
property”: ATA = I, the identity transform, see [37]. Unlike the wavelets, in general,
AAT 6= I. For theories of framelets and tight-frame transforms, we refer the readers
to [18, 5, 6] for more details. In order to apply the tight-frame algorithm, one only
needs to know the filters corresponding to the framelets in the tight-frame. In the
followings, we give two examples of tight-frames: the piecewise linear B-spline tight-
frame [19] and the dual-tree complex wavelet tight-frame [39].

The filters in the piecewise linear B-spline tight-frame are:

h0 =
1

4
[1, 2, 1], h1 =

√
2

4
[1, 0, −1], h2 =

1

4
[−1, 2, −1], (2.1)

see [37]. The tight-frame coefficients of any given vector v corresponding to filter hi

can be obtained by convolving hi with v. In matrix terms, we can construct, for each
filter, its corresponding filter matrix which is just the circulant matrix with diagonals
given by the filter coefficients, e.g. H0 = 1

4 tridiag[1, 2, 1]. Then the 1D tight-frame
forward transform is given by

A =





H0

H1

H2



 . (2.2)

To apply the tight-frame transform onto v is equivalent to computing Av, and Hiv
gives the tight-frame coefficients corresponding to the filter hi, i = 1, 2, 3.
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The d-dimensional piecewise linear B-spline tight-frame is constructed by tensor
products from the 1D tight-frame above, see [22]. For example, in 2D, there are nine
filters given by hij ≡ hT

i ⊗ hj for i, j = 1, 2, 3, where hi is given in (2.1). For any 2D
image f , the tight-frame coefficients with respect to hij are obtained by convolving
hij with f . The corresponding forward transform A will be a stack of nine block-
circulant-circulant-block matrices (cf. (2.2)). The tight-frame coefficients are given
by the matrix-vector product Af , where f = vec(f) denotes the vector obtained by
concatenating the columns of f .

Dual-tree complex wavelet transform (DCWT) was firstly introduced by Kings-
bury [31, 32]. Apart from having the usual perfect reconstruction property, shift-
invariance property and linear complexity, it also has the nice directionally selective
property at ±15◦,±45◦,±75◦. The idea is to use two different sets of filters: one gives
the real part of the transform and the other gives the imaginary part. Let {g0, g1} and
{h0, h1} denote the two different sets of orthonormal filters, where g0 and h0 are the
low pass filters, and g1 and h1 are the high pass filters. Let the square matrix Agihj

denote the 2D separable wavelet transform implemented using gi along the rows and
hj along the columns, and define Ahihj

, Agigj , Ahigj similarly, where i, j = 1, 2. Then
the forward transform for the 2-dimensional DCWT is represented by

Af :=
1√
8









I −I 0 0
I I 0 0
0 0 I I

0 0 I −I

















Agigj

Ahihj

Ahigj

Agihj









f , i, j = 1, 2.

We see that the 2-dimensional DCWT requires four different wavelet transforms in
parallel. We refer the readers to [7, 18, 27, 39] and the references therein for more
details and for the implementation of 3-dimensional DCWT. In practice, the DCWT
are implemented by using one set of filters for the first level and another set of filters
for the remaining levels, see [39]. The filters and the Matlab code for DCWT can be
obtained from [7].

The tight-frame algorithms used in [2, 3, 4, 5, 11] can be presented in the following
generic form:

f (i+
1
2 ) = U(f (i)), (2.3)

f (i+1) = ATTλ(Af (i+
1
2 )), i = 1, 2, . . . . (2.4)

Here f (i) is an approximate solution at the i-th iteration, U is a problem-dependent
operator, and Tλ(·) is the soft-thresholding operator defined as follows. Given vectors
v = [v1, · · · , vn]T and λ = [λ1, · · · , λn]

T , Tλ(v) ≡ [tλ1(v1), · · · , tλn
(vn)]

T , where

tλk
(vk) ≡

{

sgn(vk)(|vk| − λk), if |vk| > λk,

0, if |vk| ≤ λk.
(2.5)

We refer to [23] for possible choices of λk.

We remark that (2.4) realizes a tight-frame denoising and smoothing on the image
while (2.3) performs a data-fitting according to the specific problem at hand. For
high-resolution image reconstruction problem [11], astronomical infra-red imaging [3],
impulse noise removal [4], and inpainting problem [2], the tight-frame algorithm (2.3)–
(2.4) has been shown to be convergent to a functional with the regularization term
being the 1-norm of the tight-frame coefficients, see [5, 22].
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3. Tight-Frame Based Algorithm for Segmentation. The technology of
MRA imaging is based on detection of signals from flowing blood and suppression of
signals from other static tissues, so that the blood vessels appear as high intensity
regions in the image. The structures to be segmented in MRA images are vessels of
variable diameters which can be very close to each other. Speckle noise and weak edges
in the images make the detection of the structures an especially difficult task. One
intuitive way to segment the vessels is to use a 2-phase segmentation, i.e. transform
the image into a binary image of 0 and 1. Then the boundaries of the vessels are
just the boundary between pixel values 0 and 1. Because of the presence of noise and
weak edges, the naive way of simply thresholding the given image into 0 and 1 will not
be able to recover very small vessels or to repair occlusions in vessels which may not
appear connected in the volumetric image. Even sophisticated 2-phase segmentation
methods for general images such as the popular Chan-Vese model [14] will not work
for vessel segmentation, see the results in Section 4. Fortunately, these MRA images
contain some properties that we can exploit to derive a good 2-phase segmentation
algorithm. Namely, pixels near the vessel boundary have values in some gray-level
range, whereas pixels in the background are completely outside of this range, see
Figure 3.1(a). Thus the main idea behind our algorithm is to approximate this range
accurately.

We obtain the range iteratively by a tight-frame algorithm which has the same
generic form as in (2.3) and (2.4). For our algorithm, the operator U in (2.3) signifies
the process of making f (i) more binary in each iteration. The main steps for each
iteration are as follows. Suppose in the beginning of the ith iteration, we are given
an approximate image f (i) and a set Λ(i) that contains all potential boundary pixels,
i.e. pixels that are likely to be on the boundary. Then (1) we use Λ(i) to estimate an
appropriate range [αi, βi] that contains the pixel values of potential boundary pixels;
(2) we use the range to separate the image into three parts—those below the range
are classified as background pixels, those inside the range will form the new set Λ(i+1)

of potential boundary pixels, and those above the range are classified as pixels in the
vessels; (3) we denoise and smooth the image on Λ(i+1) by the tight-frame algorithm
to get a new image f (i+1). The algorithm is stopped when the image becomes binary.

We will prove that our algorithm converges in a finite number of steps. From
our experiments, this happens within 10 iterations for the synthetic as well as real
2D/3D MRA images we tested, see Tables 4.1 and 4.2 in Section 4. In the following,
we discuss in more details each of the steps. Without loss of generality, we assume
that the given image f assumes values in [0, 1].

Initialization. To start the algorithm at i = 0, we need to define f (0), the initial
guess, and Λ(0), the initial set of potential boundary pixels. We set f (0) = f , the
given image. For Λ(0), since we do not have any knowledge of where the boundary
pixels are located when the process starts, we identify them by using the gradient of
f , i.e. we locate them as pixels where the gradient is larger than a given threshold ǫ.
More precisely, let Ω be the index set of all the pixels in the image, then we define

Λ(0) ≡ {j ∈ Ω | ‖[∇f ]j‖1 ≥ ǫ}. (3.1)

Here [∇f ]j is the discrete gradient of f at the jth pixel. Once f (0) and Λ(0) are
defined, we start the iterative process. Let us describe the ith iteration in details
below.

Step (1): computing the range [αi, βi]. Given Λ(i), we first compute the mean
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pixel value on Λ(i):

µ(i) =
1

|Λ(i)|
∑

j∈Λ(i)

f
(i)
j , (3.2)

where | · | denotes the cardinality of the set and f
(i)
j is the pixel value of pixel j in

image f (i). Then we compute the mean pixel values of the two sets separated by µ(i):

µ
(i)
− =

1

|{j ∈ Λ(i) : f
(i)
j ≤ µ(i)}|

∑

{j∈Λ(i):f
(i)
j

≤µ(i)}

f
(i)
j , (3.3)

and

µ
(i)
+ =

1

|{j ∈ Λ(i) : f
(i)
j ≥ µ(i)}|

∑

{j∈Λ(i):f
(i)
j

≥µ(i)}

f
(i)
j . (3.4)

While µ(i) reflects the mean energy of the set of potential boundary pixels, µ
(i)
− and

µ
(i)
+ reflect the mean energies of the pixels on the boundary closer to the background

and closer to the vessels respectively. We define

αi ≡ max

{

µ(i) + µ
(i)
−

2
, 0

}

, βi ≡ min

{

µ(i) + µ
(i)
+

2
, 1

}

. (3.5)

Step (2): thresholding the image into three parts. Using the range [αi, βi] ⊆
[0, 1], we can separate the image f (i) into three parts—those below, inside, and above
the range, see Fig. 3.1(b) for i = 0. Since our aim is to create a binary image, we
threshold those pixel values that are smaller than αi to 0, those larger than βi to 1,
and those in between, we stretch them between 0 and 1 using a simple linear contrast
stretch, see [28]. If there are no pixels in between αi and βi, then the threshold image
is binary and the algorithm stops. More precisely, let

Mi = max{f (i)
j | αi ≤ f

(i)
j ≤ βi, j ∈ Λ(i)},

mi = min{f (i)
j | αi ≤ f

(i)
j ≤ βi, j ∈ Λ(i)},

(3.6)

then we linear stretch the contrast of f
(i)
j to (0,1):

f
(i+ 1

2 )
j =















0, if f
(i)
j ≤ αi,

f
(i)
j

−mi

Mi−mi
, αi ≤ f

(i)
j ≤ βi, for all j ∈ Ω.

1, if βi ≤ f
(i)
j ,

(3.7)

Fig. 3.1(c) shows the threshold and stretched image from Fig. 3.1(b), where

the yellow pixels are pixels we have classified not on the boundary, i.e. f
(i+ 1

2 )
j = 0

(signifying pixel j is in the background) or f
(i+ 1

2 )
j = 1 (signifying pixel j is inside the

vessel). The set of the remaining pixels that have to be classified is denoted by:

Λ(i+1) = {j | 0 < f
(i+ 1

2 )
j < 1, j ∈ Ω}. (3.8)
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(a) Given MRA image (b) Thresholded image (c) Result from Step 2

Fig. 3.1. (a) Given MRA image. (b) thresholding the image into three parts: green–below,
red–in between, and yellow–above the range [α, β]. (c) Result from step (2): yellow pixels have value
either 0 or 1.

Note that pixels with values mi and Mi are mapped to 0 and 1 respectively and hence
they are not in Λ(i+1). Next, we denoise and smooth f (i+ 1

2 ) on Λ(i+1).

Step (3): tight-frame iteration. To denoise and smooth the image f (i+ 1
2 ) on

Λ(i+1), we apply the tight-frame iteration (2.4) on Λ(i+1). More precisely, if j 6∈ Λ(i+1),

then we set f
(i+1)
j = f

(i+ 1
2 )

j ; otherwise, we use (2.4) to get f
(i+1)
j . To write it out

clearly, let f (i+
1
2 ) = vec(f (i+ 1

2 )), and P (i+1) be the diagonal matrix where the diagonal
entry is 1 if the corresponding index is in Λ(i+1), and 0 otherwise. Then

f (i+1) ≡ (I − P (i+1))f (i+
1
2 ) + P (i+1)ATTλ(Af (i+

1
2 )). (3.9)

By reordering the entries of the vector f (i+1) into columns, we obtain the image f (i+1).
We remark that the effect of (3.9) is to denoise and smooth the image on Λ(i+1), see [5].
Note that the main cost of (3.9) is the forward and backward tight-frame transforms
and hence the cost is proportional to the number of pixels. Since the values of all
pixels outside Λ(i+1) are either 0 or 1, the cost can be reduced significantly by applying
the transforms on pixels around Λ(i+1) only.

Stopping criterion. The iteration is terminated as soon as all the pixels of f (i+ 1
2 )

are either of value 0 or 1, or equivalently when Λ(i) = ∅. Then for the binary image
f (i+ 1

2 ), all the pixels with value 0 are considered as background pixels and pixels with
value 1 constitute the tubular structures.

Below we summarize the steps required to segment an image f by our tight-frame
method. We refer to our method as TFA.

Tight-Frame Algorithm (TFA)

1. Input: given image f .
2. Set f (0) = f and Λ(0) by (3.1)
3. Do i = 0, 1, . . . , until convergence

(a) Compute [αi, βi] by (3.5).

(b) Compute f (i+ 1
2 ) by (3.7).

(c) Stop if f (i+ 1
2 ) is a binary image.

(d) Compute Λ(i+1) by (3.8).

(e) Update f (i+ 1
2 ) to f (i+1) by (3.9).

4. Output: binary image f (i+ 1
2 ).
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Our TFA always converges to a binary image, as is shown in the following result.

Theorem 3.1. TFA converges to a binary image within a finite number of steps.

Proof. From (3.8), we need to prove that |Λ(i)| = 0 at some finite step i > 0. By

(3.6), if f (i+ 1
2 ) is not yet a binary image, then there will be at least one j ∈ Λ(i) such

that f
(i)
j = Mi. By (3.7), f

(i+ 1
2 )

j will be set to 1 and hence by (3.8), j 6∈ Λ(i+1). Hence

|Λ(i+1)| < |Λ(i)|. Since |Λ(0)| is finite, there must exist some i such that |Λ(i)| = 0.

We emphasize that the algorithm numerically converges within 10 iterations for
all the synthetic and real 2D/3D images we have tested, see Section 4.

Finally, let us estimate the computation cost of our method for a given image

with n pixels. Since the costs of computing µ(i), µ
(i)
− , µ

(i)
+ , and [αi, βi] are all of O(n)

operations, see (3.2)–(3.5), and the cost of a tight-frame transform is also linear in n

(see e.g. (2.2) where Hi are all tri-diagonal matrices), the complexity of our algorithm
is O(n) per iteration. Moreover, the computation can be further speed up by applying
the algorithm only to pixels around Λ(i) instead of applying them on the entire image
domain Ω. To understand how much we can gain by restricting the domain, we report
in Tables 4.1 and 4.2, the cardinality of Λ(i) after each iteration of TFA. We see that
after just 3 iterations, Λ(3) only has 0.3% (respectively 0.04%) of the number of pixels
in Ω for 2D (respectively 3D) images. That is, more than 99% (respectively 99.9%) of
the pixels in Ω are classified either in or outside of the boundary just after 3 iterations.

Since we have not optimized the code yet, in the numerical tests we carried out
the computations in Ω instead of in a neighborhood of Λ(i).

4. Numerical Examples. In this section, we test our tight-frame segmentation
algorithm (TFA) on seven different synthetic and real medical images. The thresh-
olding parameters λk used in (2.5) are all chosen to be λk ≡ 0.1. The tight-frame
used is the DCWT downloaded from [7] where all parameters in the code are chosen
to be the default values. In particular, the number of wavelet levels used is 4.

We compare our method with the following methods from different approaches:
Chan-Vese active contour model [14] (CV), mixed tight-frame and Chan-Vese ap-
proach [21] (CVTF), extended geodesic active contour method [35] (CURVES), and
anisotropic deformable approach [24, 25] (ADA). CV, though designed for generic
image segmentation, is included here as it is one of the most popular segmentation
models. We will like to show that vessel segmentation is a difficult problem that
successful generic segmentation algorithms do not work well for it. CVTF is a tight-
frame method that is based on the Chan-Vese active contour approach but using the
tight-frame coefficients as the regularization term. CURVES follows from geodesic
active contour approach and ADA is a geometric deformable model; and they are
both specifically designed for vessel segmentation. All the results in the tests were
obtained by tuning the respective parameters to the best. We remark that CURVES is
designed only for 3D segmentation. The programs for CV, CVTF, CURVES and ADA
are either provided by the authors or publicly available. The 2D images are tested in
a MacBook with 2.4 GHz processor and 4GB RAM, while the 3D images, because of
their sizes, are tested on a node with 120GB RAM in a PC-cluster. All computations
are carried out in MATLAB except the CURVES which is computed in the software
ITK. The curve boundaries and the iso-surfaces of the results of all methods are ex-
tracted and visualized by the Matlab commands “contour” and “isosurface” for
2D and 3D images respectively.

We will start with two synthetic images where we have the ground truths that can
be used to quantitatively compare the different methods. For the real 2D/3D medical
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images, we can only compare the results qualitatively, as there are no ground truth
segmentations for those images. Even manually segmentation could not be considered
as ground truth since many thin vessels are hard to detect and many faulty detections
can be included due to the high noise presented in the data set.

4.1. Synthetic vessel segmentation. Here we tested on two synthetic images.
Example 1: Annuluses and stripes segmentation. The ground truth 256 × 256

image, given in Fig. 4.1(a), is composed of four annuluses and four straight stripes
with widths ranging from 2 to 21 pixels. To simulate blood flowing in the vessels, which
has higher intensity near the center line of the vessels and less towards the boundary,
we generated the synthetic clean image as follows. We assign different values to
the center line and then gradually decreases the values when moving towards the
boundary. The resulting clean image is shown in Fig. 4.1(b). The corrupted image,
given in Fig. 4.1(c), is obtained by applying Gaussian blur and additive Gaussian
noise to the clean image. The Gaussian blur filter is represented by a 3 × 3 window
with standard deviation 0.5, and the Gaussian noise used has mean 0.01 and variance
0.001. The small intensities at the thin structures and the weak boundaries at the
thick structures, together with the added noise and blur, will make the segmentation
problem difficult.

To evaluate the performance of the different methods applied to this synthetic
example, we provide in the second row of Fig. 4.1 the resulting images, and in the
third row of Fig. 4.1 their difference from the ground truth image. The four columns
there represent respectively results from CV, CVTF, ADA, and our TFA. For our
TFA, we used ǫ = 0.003 in (3.1). The number of the wrongly-detected pixels are
given there too. They are 4402, 4571, 1072 and 860, respectively. From the numbers
and also the figures, we see that our TFA is the best method. In particular, almost all
the pixels on the thin and the thick structures are detected correctly except for a few
pixels located on the boundaries. We notice that the pixels on the outermost annulus
and on the thinnest stripe are detected only by ADA and TFA algorithms, and only
our method give smooth boundaries. This is because of the built-in denoising property
of tight-frames in formula (2.4) which regularizes and smoothes the boundaries. We
highlight the differences between ADA and TFA by the rectangular boxes in Fig.
4.1(j) and (k). Our method converges in 7 iterations and requires 0.98 seconds. The
first column of Table 4.1 gives the numbers of possible boundary pixels |Λ(i)| at each
iteration of TFA. We see that just after 2 iterations more than 99% of the pixels are
classified already either on the vessels or outside the vessels.

Example 2: Tree-like segmentation. The ground truth 512× 512 image, given in
Fig. 4.2(a), is composed by synthetic vessels with different widths. The synthetic
clean image and the corrupted image, shown in Fig. 4.2(b) and (c), are generated
similarly as in Example 1. Again the second row of Fig. 4.2 gives the resulting
images from the methods, and the third row gives their differences from the ground
truth image. The number of wrongly-detected pixels are 2785, 7038, 2834 and 402,
respectively. We used ǫ = 0.3 in (3.1) for our TFA, and it converges in 6 iterations
and requires 3.68 seconds. Clearly from the numbers of wrongly-detected pixels and
also from the figures, we see that TFA gives the best result. In particular, almost all
the pixels on the thin and the thick structures are detected correctly by our method
except for a few pixels located on the boundaries.

4.2. 2D vessel segmentation. Here we tested on two 2D real images.
Example 3: Carotid vascular system segmentation. The test image is a 182× 182

MRA image of a carotid vascular system, see Fig. 4.3(a). The blood vessels contain
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(a) Ground truth (b) clean image (c) noise and blur image

(d) CV [14] (e) CVTF [21] (f) ADA [24] (g) Our TFA method

(h) CV (4402) (i) CVTF (4571) (j) ADA (1072) (k) TFA (860)

Fig. 4.1. Example 1. (a) Ground truth image; (b) Clean image; (c) Noisy and blurred image;
(d)–(g) Results of methods CV [14], CVTF [21], ADA [24] and our TFA method, respectively; (h)–
(k) Differences between the ground truth image (a) and the results of methods. Numbers in braces
are the numbers of wrongly-detected pixels.

regions with high and low intensities, including some very thin vessels in the middle
with intensities as low as the intensity of the background. Intersections of partial
structures even increase the difficulty of the segmentation. The segmentation results
by CV, CVTF, ADA and TFA are shown in Fig. 4.3(b)–(e) respectively, where the
given image is overlaid so that we can compare the accuracy of the methods. The
TFA uses ǫ = 0.003 in (3.1) and converges in 5 iterations with a computational time
of 0.64 seconds.

Similar to the conclusion we have in Section 4.1, the results by CV and CVTF are
not satisfactory since the vessels obtained by CV are disconnected and CVTF cannot
detect a large part of the vessels. By comparing the parts inside the rectangular boxes
in Fig. 4.3(d) with those in Fig. 4.3(e), we notice that our method is able to extract
smoother boundaries than ADA method and, in particular, it avoids some artifacts
near the boundary.

Example 4: Kidney vascular system segmentation. The test image shown in Fig.
4.4(a) is a 256×256MRA image of a kidney vascular system. The segmentation results
from CV, CVTF, ADA, TFA are given in Fig. 4.4(b)–(e). For our TFA, we used ǫ =
0.003 in (3.1), and it converges in 6 iterations with 0.78 seconds. The segmented vessels
by CV and CVTF give unsatisfactory results since they are unable to recover the small
occlusions along the coherence direction, while ADA and TFA both performed well.
To compare ADA and TFA more closely, we enlarge the rectangular boxes in Fig.
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(a) Ground truth (b) clean image (c) noise and blur image

(d) CV [14] (e) CVTF [21] (f) ADA [24] (g) Our TFA method

(h) CV (2785) (i) CVTF (7038) (j) ADA (2834) (k) Our TFA (402)

Fig. 4.2. Example 2. (a) Ground truth image; (b) Clean image; (c) Noisy and blurred image;
(d)–(g) Results of methods CV [14], CVTF [21], ADA [24] and our TFA method, respectively; (h)–
(k) Differences between the ground truth image (a) and the results of methods. Numbers in braces
are the numbers of wrongly-detected pixels.

(a) Given MRA image (b) CV [14] (c) CVTF [21] (d) ADA [24] (e) Our TFA

Fig. 4.3. Example 3. Carotid vascular system segmentation. (a) Given MRA image; (b) CV;
(c) CVTF; (d) ADA; (e) TFA.

4.4(d) and (e) and depict them in Fig. 4.4(f)–(k). They show the smoothness of the
detected boundaries using TFA and that ADA exhibits many artifacts which are well
removed by TFA.

This example also shows the ability of our TFA to reconstruct structures which
present small occlusions along the coherence direction. In Fig. 4.5, we report the
first three and the final results obtained by the iterations of TFA. From i = 0, . . . , 3,
the results show that the pixels on the tip of the vessels are detected step by step
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(a) Given MRA image (b) CV [14] (c) CVTF [21]

(d) ADA [24] (e) Our TFA

(f) ADA (g) ADA (h) ADA

(i) TFA (k) TFA (k) TFA

Fig. 4.4. Example 4. Kidney vascular system segmentation. (a) Given MRA image; (b) CV;
(c) CVTF; (d) ADA; (e) TFA; (f)–(h) zoomed-in details from rectangular boxes in (d); (i)–(k)
zoomed-in details from rectangular boxes in (e).

by our method, and they are used to connect the broken branches in the vessels.
This demonstrates the ability of TFA to repair small occlusions and detect vessels
effectively.

From these four 2D examples, we conclude that CV (the Chan-Vese active contour
method [14]) and CVTF (the mixed tight-frame and Chan-Vese approach [21]) are
not good. Thus in the next section where we consider 3D images, we will not compare
with these two methods.

To illustrate how fast our TFA converges, we give in Table 4.1 the cardinality of
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given i = 0 i = 1

i = 2 i = 3 final

Fig. 4.5. Example 4. Some iterations of the TFA applied to the kidney image. The white color
represents the detected pixels on the vessels, and the red color represents the newly detected pixels
on the vessels in step i for i = 1, 2, 3.

Λ(i) at each iteration of TFA, i.e. the number of pixels that are unclassified yet in
the ith iteration. The total number of pixels in the image is given by |Ω| on the top
row. We see that our method converges very fast (within 6 iterations) and after 3
iterations, there are less than 200 pixels to be classified.

Table 4.1

Cardinality of Λ(i) at each iteration of TFA applied to the 2D examples

Example 1 Example 2 Example 3 Example 4
|Λ(i)| |Ω| = 65536 |Ω| = 262144 |Ω| = 33124 |Ω| = 65536
i = 0 9282 8472 1721 9444
i = 1 1848 1035 354 1943
i = 2 532 291 82 464
i = 3 162 84 26 133
i = 4 51 22 4 32
i = 5 12 5 0 8
i = 6 1 0 - 0
i = 7 0 - - -

4.3. 3D vessel segmentation. Here we tested on three 3D real images.
Example 5: Human head vessel segmentation. Figure 4.6 is a Magnetic Resonance

Tomography Angiography (MRTA) image of a human head with skull removed, and
viewed from three different orthogonal viewpoints. The volume data set has size of
256× 320× 128 voxels and is provided by the Institute for Neuroradiology, Frankfurt,
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Germany [47]. The three columns in Figure 4.6 represent the three different view-
points; and for each viewpoint, the maximum intensity projection of the raw data
is shown in the first row, followed by the segmentation obtained by CURVES [35]
(second row), ADA [24] (third row), and by TFA (fourth row). For our TFA, we
used ǫ = 0.2 in (3.1) and it converges in 8 iterations. The first column in Table 4.2
gives the cardinality |Λ(i)| at each iteration, which also shows how fast our method
converges.

The volume data set presents a considerable number of thin vessels distributed
around the thick vessels, and they are very hard to detect because of the weak contrast
and the underlying noise. The visual comparison between corresponding viewpoints
in the second, third and fourth rows highlights that CURVES fails to detect most of
the thin vessels which are, instead, well captured by ADA and TFA. The differences
between the results of ADA and TFA are highlighted by the ellipses in Fig. 4.6(g) –
(l), moreover, Fig. 4.7 gives the zoomed-in results of these ellipses. Obviously, our
TFA can detect thin vessels much better when compared with ADA which just detects
some fragments belonging to the thin vessels in these ellipses. Our TFA is able to
capture almost all the thin vessels correctly with much more details on them.

To assess the quality of the 3D results better, in the first row of Fig. 4.8, we
show the axial, sagittal and coronal slices of the given volume data. The coordinate
used to get the three directional slices is (100, 200, 100). Because of the extremely
low intensity of most of the pixels in the images, it is difficult to see the boundary
pixels clearly. To circumvent this, in Fig. 4.8 we show the figures by linearly inverting
the intensity, i.e. mapping pixel value 0 to 1 and pixel value 1 to 0. The potential
boundary pixels are those pixels with very small intensities (nearly black to completely
black) in the figures. The segmentation results by CURVES, ADA and TFA are shown
in the second, third and fourth rows of Fig. 4.8 respectively. We see that some thin
vessels are not detected by CURVES and ADA whereas TFA has segmented the images
with better accuracy.

Example 6: Kidney segmentation. The given data set is a Computed Tomographic
Angiography (CTA) image of the kidney vascular system. It is of size 201× 201× 201
voxels and is shown in Fig. 4.9(a). The image is severely corrupted by noise and
blur, and exhibits vessels of different curvatures, diameters, as well as many complex
bifurcations. We provide a comparison of TFA with CURVES and ADA, see Figs.
4.9(b), (c) and (d) respectively. The TFA is applied with ǫ = 0.06 in (3.1) and
converges in 9 iterations. From the parts in the Figs. 4.9(b) and (c) highlighted by
the ellipses, we can see the improvement of ADA when comparing with CURVES.
Comparisons between the images in Fig. 4.9 indicate that TFA is much less sensitive
to blur and noise in the images than CURVES and ADA which fail to detect many
thin vessels.

Example 7: Brain-neck vasculature segmentation. The given data set is an MRA
image of the brain-neck vasculature system with aneurysms. It is of size 120×250×200
voxels and is shown in Fig. 4.10(a). The data set is corrupted by strong noise which
makes the thin vessels hard to see even by the naked eyes, and it has vessels of various
diameters, curvatures and bifurcations. The segmentation results by CURVES, ADA
and TFA are given in Figs. 4.10(b), (c) and (d) respectively. For TFA, we used
ǫ = 0.06 in (3.1), and it converges in 9 iterations only. The results clearly show that
TFA can get more features out from the image. In Fig. 4.10(d), one may argue that
there are some small isolated points in the image and the surface of the vessels is
not smooth. This can easily be improved by smoothing our final binary image using
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(a) view from z-axis (b) view from x-axis (c) view from y-axis

(d) CURVES [35] (e) CURVES [35] (f) CURVES [35]

(g) ADA [24] (h) ADA [24] (i) ADA [24]

(j) our TFA (k) our TFA (l) our TFA

Fig. 4.6. Example 5. MRTA image of a human head volume data set. Row one: the maximum
intensity projection of the volume dataset from three orthogonal viewpoints; Row two: CURVES
segmentation; Row three: ADA segmentation; Row four: TFA segmentation.
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Fig. 4.7. Example 5. Rows one and two: zoomed-in the ellipses of ADA and TFA results in
Fig. 4.6 respectively.

Fig. 4.8. Example 5. Row one: the axial, sagittal and coronal slices of the MRTA image of a
human head volume dataset used in Fig. 4.6; Row two: slices results by CURVES; Row three: slices
results by ADA; Row four: slices results by TFA.

the tight-frame formula (2.4). Fig. 4.10(e) shows the denoised-and-smoothed image
after one iteration of (2.4) on the final image from TFA. We finally remark that our
segmentation technique can be used to compute useful clinically measurements such
as vessel radii in aneurysms.

16



(a) Given CTA image

(b) CURVES [35] (c) ADA [25] (d) our TFA

Fig. 4.9. Example 6. Segmentation of the kidney volume data set. (a) Given CTA image; (b)
CURVES segmentation; (c) ADA segmentation; (d) TFA segmentation.

Again to assess the quality of the 3D results better, in the first row of Fig. 4.11,
we show the axial, sagittal and coronal slices of the given volume data. The coordinate
used to get the three directional slices is (80, 100, 100). Because of the extremely
low intensity of most of the pixels in the images, we have again linearly inverted the
intensity, i.e. mapping 0 to 1 and 1 to 0. The potential boundary pixels are those
pixels with very small intensities (nearly black to completely black) in the figures.
The segmentation results by CURVES, ADA and TFA are shown in the second, third
and fourth rows of Fig. 4.11 respectively. We see that CURVES and ADA methods
cannot detect many pixels that should be on the boundary of the vessels, especially
those on the tips of the thin vessels. In contrast, TFA detects much more details of
the thin vessels and with higher accuracy.

To illustrate how fast our TFA converges, we give in Table 4.2 the cardinality
of Λ(i) at each iteration of TFA for the 3D test images. We see that our method
converges within 9 iterations for all three images. Notice that the number of pixels
in the images are large (more than 6 millions) and yet just after 4 iterations, there
are just less than one thousand pixels not yet classified. This will be one important
advantage of our algorithm when real-time processing is needed.

5. Conclusion and Future Work. In this paper, we introduced a new and
efficient segmentation method based on the tight-frame approach. The numerical re-
sults demonstrate the ability of our method in segmenting tubular structures. The
method can be implemented fast and give very accurate, smooth boundaries or sur-
faces. In addition, since the pixel values of more and more pixels will be set to either
0 or 1 during the iterations, by taking advantage of this, one can construct a sparse
data structure to accelerate the method. Moreover, one can use different tight-frame
systems such as those from contourlets, curvelets or steerable-wavelet [20, 10, 26] to
capture more directions along the boundary. Though we have proved that our al-
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(a) Given MRA image

(b) CURVES [35] (c) ADA [24]

(c) our TFA (e) Result of TFA after smoothing

Fig. 4.10. Example 7. Segmentation of the brain volume data set. (a) Given MRA image;
(b) CURVES segmentation; (c) ADA segmentation; (d) TFA segmentation; (e) Result of TFA after
smoothing by (2.4) once.

gorithm will always converge to a binary image, it will be interesting to see what
functional the binary image is minimizing. The framework for proving convergence
for tight-frame algorithms, as developed in [5], may be useful here. These are the
directions we will explore in the future.
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Fig. 4.11. Example 7. Row one: the axial, sagittal and coronal slices of the brain volume
dataset used in Fig. 4.10; Row two: slices results by CURVES; Row three: slices results by ADA;
Row four: slices results by TFA.

Table 4.2

Cardinality of Λ(i) at each iteration of TFA applied to the 3D examples

Example 5 Example 6 Example 7
|Λ(i)| |Ω| = 10485760 |Ω| = 8120601 |Ω| = 6000000
i = 0 80686 137330 152898
i = 1 12938 32760 32064
i = 2 2981 8795 8565
i = 3 819 2475 2391
i = 4 227 689 650
i = 5 63 189 187
i = 6 16 56 59
i = 7 2 15 12
i = 8 0 3 2
i = 9 - 0 0
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