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Abstract In ground-based astronomy, images of objects in outer space are acquired via ground-based tele-

scopes. However, the imaging system is generally interfered by atmospheric turbulence and hence images so

acquired are blurred with unknown point spread function (PSF). To restore the observed images, the abbrevia-

tion of wavefront at the telescope’s aperture, i.e., the phase, is utilized to derive the PSF. However, the phase

is not readily available. Instead its gradients can be collected by wavefront sensors. Thus the usual approach is

to use regularization methods to reconstruct high-resolution phase gradients and then use them to recover the

phase in high accuracy. Here, we develop a model that reconstructs the phase directly. The proposed model

uses the tight frame regularization and it can be solved efficiently by the Douglas-Rachford alternating direction

method of multiplier whose convergence has been well established. Numerical results illustrate that our new

model is efficient and give more accurate estimation for the PSF.
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1 Introduction

In ground-based astronomy, images of objects in outer space are acquired via ground-based telescopes.

However, the imaging system is generally interfered by atmospheric turbulence and the resulting images

are usually blurred. The mathematical model of the imaging system in ground-based astronomy is

g(x, y) = k(x, y) ∗ f(x, y) + ε(x, y), (1.1)

where f(x, y) is the true object in outer space; g(x, y) is its observation by the ground-based telescope;

k(x, y) is the point spread function (PSF) caused by the atmospheric turbulence; ‘*’ is the convolutional

operator; and ε(x, y) is zero mean white noise. When the PSF k is known, the problem (1.1), i.e.,

finding the true f from the observation g, is an ill-posed inverse problem arising from the area of image

processing and it has been well investigated during the past decades. There are many efficient algorithms

for acquiring high quality approximations to the true f (see e.g., [4, 23] and references therein).
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However, in ground-based astronomy, the PSF k is usually unknown as it is influenced by the fickle

and irregular atmospheric turbulence. Blind-decovolution [5, 20] by simultaneously obtaining k and f

should be a plausible way for this problem. Nevertheless, it usually requires some prior knowledge on

k, e.g., smoothness, symmetry or sparsity, which commonly can not hold for atmospheric blurring. The

Fourier optics model [1, 15] is an approach to directly approximate k. It expresses k as a function of the

incoming wavefronts of light

k(x, y) =
∣

∣F−1 {P(x, y) exp [ιφ(x, y)]}
∣

∣

2
, (1.2)

where F denotes the Fourier transform and F−1 is its inverse; P(x, y) is the mirror aperture function

of the telescope (= 1 inside the mirror aperture and 0 otherwise); ι =
√
−1; φ(x, y) is the phase which

measures the deviation from the planarity of the wavefront. Typically, the phase φ is disturbed (and

thus obliquely affects the accuracy of PSF k) by atmospheric turbulence which is quantified by seeing

condition, see [15]. Specifically, the seeing condition is measured by the ratio d/r0, where d is the diameter

of the telescope and r0 is the Fried parameter. Generally, good seeing condition corresponds to d/r0 with

small magnitude (e.g., d/r0 / 10) while poor seeing condition corresponds to d/r0 with large magnitude

(e.g., d/r0 ' 20).

Practically, the phase φ is not readily available, but its horizontal and vertical direction gradients,

denoted respectively by sx and sy, can be collected by the wavefront sensor (WFS). The WFS is a device

that measures the phase variation caused by atmospheric turbulence. With the phase gradients being

collected, the phase φ can be derived by solving the following linear inverse problem (see [1, 19, 21])

[

sx
sy

]

=

[

Dx

Dy

]

φ, (1.3)

where Dx, Dy are the derivative operators in the horizontal and vertical directions, respectively. Fried

geometry [10] and Hudgin geometry [17] are commonly used for defining Dx and Dy. The main obstacle

in solving (1.3) is that the phase gradients sx and sy are generally collected by WFS under the coarse

grid. These low-resolution phase gradients so obtained contain relatively less information, therefore it is

difficult to derive an accurate phase φ. The inadequacies on the phase φ affect the accuracy in estimating

the PSF k and hence in restoring the image f .

In [18], under the frozen flow hypothesis over the atmospheric turbulence, a technique for reconstructing

the high-resolution phase gradients by the multiple frames of low-resolution phase gradients was proposed.

Briefly speaking, some frames of low-resolution phase gradients within a short time period are first

collected as follows
{

six = RWAisx + ni
x,

siy = RWAisy + ni
y,

i = 1, 2, · · · ,m, (1.4)

where six and siy are the two sequences of low-resolution phase gradients in horizontal and vertical direc-

tions, respectively; R ∈ R
l×n is a down-sampling matrix which transforms high-resolution phase gradi-

ents into low-resolution ones; W ∈ R
n×n is an indicator matrix which represents the telescope aperture;

Ai ∈ R
n×n is a motion matrix which describes the shift (linear constant velocity or nonlinear velocity) of

the phase gradients in the i-th frame; and ni
x and ni

y are additive white noise. With the low-resolution

phase gradients six and siy at different overlapping locations, the high-resolution phase gradients sx and

sy can be reconstructed by some fusing techniques. Accordingly, an accurate phase φ can be obtained

by solving model (1.3), and hence, a more precise PSF k can be obtained by (1.2). We summarize this

procedure of obtaining the PSF k and restoring f by the dashed line in Figure 1. We will call this

approach phase-gradient approach.

Recent work on this topic mainly followed this phase-gradient approach. For example, Jefferies and

Hart [18] investigated the linear constant velocity shift on the atmospheric turbulence. Nagy et al. [8,22]

extended that to the case of nonlinear velocity by using the Tikhonov regularization. Since the phase

gradients are generally not smooth, Chan et al. [6] employed the l1-regularization for both linear constant
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obtain sx,

sy in (1.4)

derive φ

by (1.3)

collect six,

siy by WFS

compute k

by (1.2)

restore f

in (1.1)

derive φ

in (1.5)

Figure 1. The procedures of imaging system in ground-based astronomy. Dashed line: the phase-gradient approach. Solid

line: the phase model.

Figure 2. The 3-dimensional surface of 128-by-128 phase. Left: seeing condition d/r0 = 5. Right: seeing condition

d/r0 = 100.

velocity and nonlinear velocity. Numerical results reported therein show that the l1-regularization can

provide phase gradients with sharper edges and it can be more robust for different possible noises in the

measurements.

In this paper, we combine the stages in (1.3)–(1.4), and design a model that computes φ directly.

Concretely, from (1.3)–(1.4), the low-resolution phase gradients six, s
i
y and the phase φ are related by

{

six = RWAiDxφ+ ni
x,

siy = RWAiDyφ+ ni
y,

i = 1, 2, · · · ,m. (1.5)

It indicates that the phase φ can be obtained by solving an ill-posed inverse problem. In view of the

piecewise smooth property of φ (see Figure 2), we propose the following model for the phase reconstruction

problem

min
φ

α‖Cφ‖1 +
1

2

m
∑

i=1

∥

∥

∥

∥

[

RWAiDx

RWAiDy

]

φ−
[

six
siy

]∥

∥

∥

∥

2

2

, (1.6)

where α > 0 is a trade-off constant and C ∈ R
l×n (l > n) is a tight frame satisfying the orthogonality

condition CTC = I (see e.g., the monographs [7, 23]). As emphasized in the literature, the tight frame

regularization in (1.6) could reconstruct finer details and repeated oscillating patterns of the phase. In

essence, the proposed model (1.6) combines the procedures (1.3) and (1.4), and hence saves the additional

computation for computing the phase gradients sx and sy (see numerical results reported in Section 4).

As we shall show, the model (1.6) can be solved efficiently by the Douglas-Rachford alternating direction

method of multipliers (ADMM for short) in [13]. In the following, we will call (1.6) the phase model (see

the solid line in Figure 1).

The rest of the paper is organized as follows. In Section 2, we review briefly ADMM. In Section 3, we

elaborate on the details of solving the model (1.6) by ADMM. In Section 4, we compare numerically our
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proposed phase model with the method in [6] which follows the phase-gradient approach. Finally, some

conclusions are drawn in Section 5.

2 Preliminaries

In this section, we review the ADMM which will be used to solve the proposed model (1.6). Consider

the following convex minimization model with linear constraints and an objective function in separable

form:

min θ1(x1) + θ2(x2)
s.t. B1x1 +B2x2 = b, xi ∈ Xi, i = 1, 2,

(2.1)

where θi : Rni → (−∞,+∞] (i = 1, 2) are proper convex functions; Bi ∈ R
m×ni are given matrices;

Xi ∈ R
ni are nonempty convex sets; b ∈ R

m is a known vector. Among methods for solving this structured

model (2.1), ADMM proposed originally in [13] is a benchmark. Let the augmented Lagrangian function

of (2.1) be

L(x1, x2, λ) = θ1(x1) + θ2(x2) + λT (B1x1 +B2x2 − b) +
β

2
‖B1x1 +B2x2 − b‖22, (2.2)

with λ ∈ R
m the Lagrange multiplier and β > 0 a penalty parameter. Then, the iterative scheme of

ADMM can be specified as Algorithm 1 below. For the convergence proof of ADMM for arbitrarily fixed

β > 0, we refer to [11–13] for some earlier references; and [16] for its worst-case O(1/n) convergence rate.

We also refer to [3] and references therein for some efficient applications of ADMM in different areas.

Algorithm 1: Douglas-Rachford alternating direction method of multipliers

Input: Number of iteration N , arbitrary β > 0, x0
2 ∈ R

n2 and λ0 ∈ R
m.

for k = 1, 2, · · · , N, do

xk+1
1 = arg min

x1∈X1

L(x1, x
k
2 , λ

k)

xk+1
2 = arg min

x2∈X2

L(xk+1
1 , x2, λ

k)

λk+1 = λk − β
(

B1x
k+1
1 +B2x

k+1
2 − b

)

end

Output: (xN
1 , xN

2 ) as an approximate solution of (2.1) when certain stopping criterion is satisfied.

3 Implementation of ADMM to the model (1.6)

In this section, we elaborate on how to apply ADMM to solve the model (1.6). For notational convenience,

let

Mi :=

[

RWAiDx

RWAiDy

]

and si :=

[

six
siy

]

,

where the operators R, W , Ai, Dx, Dy and the variables six, s
i
y are as delineated in (1.3)–(1.4). As a

result, the model (1.6) reduces to

min
φ

α‖Cφ‖1 +
1

2

m
∑

i=1

‖Miφ− si‖22. (3.1)

By further introducing an auxiliary variable u ∈ R
n × R

n, the model (3.1) can be reformulated as

min α‖u‖1 + 1
2

m
∑

i=1

‖Miφ− si‖22
s.t. Cφ = u.

(3.2)

Essentially, the optimization problem (3.2) falls into the form of (2.1) with the following specifications
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• x1 := φ, x2 := u, X1 := R
n and X2 := R

l;

• θ1(x1) := α‖u‖1 and θ2(x2) :=
1
2

m
∑

i=1

‖Miφ− si‖22.

• B1 := C, B2 := −I and b := 0.

Consequently, ADMM, i.e., Algorithm 1, can be applied to solve the optimization problem (3.2). We now

discuss the resulting subproblems. First, the augmented Lagrangian function of (3.2) can be written as

L(φ, u, λ) = α‖u‖1 +
1

2

m
∑

i=1

‖Miφ− si‖22 + λT (Cφ − u) +
β

2
‖Cφ− u‖22,

where λ ∈ R
l is the Lagrange multiplier and β > 0 is a penalty parameter. Then, we list the φ- and

u-subproblem at each iteration of Algorithm 1 for solving (3.2).

• The φ-subproblem is

φk+1 = arg min
φ∈Rn

L(φ, uk, λk)

= arg min
φ∈Rn

{

β

2

∥

∥

∥

∥

Cφ− uk − λk

β

∥

∥

∥

∥

2

2

+
1

2

m
∑

i=1

‖Miφ− si‖22

}

.

The minimizer is given by solving the linear system:
(

βCTC +
m
∑

i=1

MT
i Mi

)

φk+1 = CT (βuk + λk) +
m
∑

i=1

MT
i si.

Since the tight frame matrix C satisfies the orthogonality condition CTC = I, the φ-subproblem

reduces to the following positive definite linear system
(

βI +

m
∑

i=1

MT
i Mi

)

φk+1 = CT (βuk + λk) +

m
∑

i=1

MT
i si. (3.3)

By taking advantage of the sparse structure of matrix Mi (see [8,22] for details), the linear system

(3.3) can be solved by standard subroutines in numerical algebra. In our numerical tests, we use

the conjugate gradient method (see, e.g., [14] for details) to solve this linear system.

• The u-subproblem is

uk+1 = arg min
u∈Rl

L(φk+1, u, λk)

= arg min
u∈Rl

{

α‖u‖1 +
β

2

∥

∥

∥

∥

Cφk+1 − u− λk

β

∥

∥

∥

∥

2

2

}

= shrinkα
β

(

Cφk+1 − λk

β

)

,

where shrinkc(·) denotes the well-known shrinkage operator (see [9]). Specifically, the shrinkage

operator is defined by

shrinkc(x) := sign(x) ◦max{|x| − c, 0}, ∀c > 0, x ∈ R
l,

where “sign” is signum function and “◦” represents the product in componentwise.

Recall the convergence of ADMM has been well established in the literature, see e.g. [11–13, 16].

Therefore, the sequence {φk, uk, vk} generated by the above iterative scheme can converge to a solution

point of the model (3.2); and consequently the sequence {φk} converges to a solution point of the proposed

phase model (1.6).
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4 Numerical experiments

In this section, we test the performance of the phase model (1.6) and compare it numerically with the

phase-gradient model in [6] for the PSF estimation in ground-based astronomy. As indicated by the

flowchart in Figure 1, the phase model (1.6) can provide the phase φ directly by solving (1.6), while the

phase-gradient model first obtains the phase gradients sx and sy by solving an l1-l2 model and then solves

the linear least squares problem (1.3) by the algorithm in [2] to get the phase φ (see [6] for details).

To start the numerical simulation, we first generate the ground truth. Specifically, based on the formula

(1.5), we generate the m frames of low-resolution phase gradients, i.e., six and siy (i = 1, 2, · · · ,m), by

the following processes

1. Firstly, we generate an n-by-n true phase φ under a certain seeing condition by the method in [1].

Recall that (see Section 1) the seeing condition is generally measured by the ratio d/r0, where d is

the diameter of the telescope and r0 is the Fried parameter.

2. Secondly, the phase gradients, i.e., sx and sy, are derived from (1.3) by exploiting either Fried

geometry [10] or Hudgin geometry [17] to the derivative operators Dx and Dy. To simplify the

discussion, we only use the Fried geometry [10] in our experiments. As can be seen in [6], both

phase and phase-gradient models are applicable to the Hudgin geometry too. Additionally, the

zeros mean white noise with a variance σ is further added to both phase gradients. The default

setting is σ = 0.01 for 128-by-128 phase and σ = 0.05 for 256-by-256 phase.

3. Thirdly, by designing a trajectory for the movement of atmospheric turbulence (either linear con-

stant velocity or nonlinear velocity), we can obtain the shift on the phase gradients. That is, we

get the motion matrix Ai.

4. Finally, by confining the phase gradients within the telescope aperture and down-sampling them

by a factor of ̺, we eventually acquire a sequence of low-resolution phase gradients with m frames,

i.e., six and siy, (i = 1, 2, · · · ,m).

Our primary task is to reconstruct the phase φ by the sequence of low-resolution phase gradients six
and siy, i = 1, 2, · · · ,m. For the parameters in both models and the penalty parameter β of Algorithm

1, they are tuned manually so as to minimize the relative error (see (4.2)) of the estimated PSF. All

the codes for implementing the numerical experiments were written by Matlab 7.1 and were run on a

personal Lenovo laptop computer with Intel(R) Core (TM) 2.30GHZ and 8G memory.

In the following numerical simulations, we separate the tests into two cases in terms of the velocity of

moving atmospheric turbulence: linear constant velocity and nonlinear velocity. The parameters for the

cases are chosen as follows

• Linear constant velocity: α = 10−4 and β = 10−3 for the l1-l2 model in phase-gradient model;

α = 10−4 and β = 10−4 for the model (1.6) in phase model.

• Nonlinear velocity: α = 10−4 and β = 10−4 for the l1-l2 model in phase-gradient model; α = 10−4

and β = 10−4 for the model (1.6) in phase model.

Note that, we employ pcg in Matlab with the tolerance 10−8 to solve the subproblems (3.3). The

stopping rule for ADMM implementation in solving both models is set as

min

{

‖sk+1
x − skx‖
1 + ‖skx‖

,
‖sk+1

y − sky‖
1 + ‖skx‖

}

< 10−2. (4.1)

The initial points required by ADMM are all taken as zeros. Figures 3–4 illustrate the reconstructed

phases, denoted by φ̃, by the phase-gradient and phase models when the stopping rule (4.1) is reached.

Visually, compared to the phase model, the reconstructed phases φ̃’s by the phase-gradient model are

over-smoothed and contain fuzzy edges.
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Example true φ φ̃phase−gradient φ̃phase

E.g. 1:

n = 128

m = 16
d
r0

= 5

̺ = 4

E.g. 2:

n = 128

m = 16
d
r0

= 50

̺ = 4

E.g. 3:

n = 256

m = 16
d
r0

= 5

̺ = 4

E.g. 4:

n = 256

m = 16
d
r0

= 50

̺ = 8

Figure 3. Numerical results of phase reconstruction with the atmospheric turbulence moving in linear constant velocity

(n: size of φ; m: the number of low-resolution frames; d/r0: seeing condition; ̺: down-sampling factor).

In order to illustrate the accuracy of the reconstructed phases φ̃, we also compute the PSF at each

frame and compare them with the true PSF. Specifically, with a reconstructed phase φ̃ at hand, we first

compute the corresponding phase at the i-th frame, i.e.,

φ̃i = WAiφ̃, i = 1, 2, · · · ,m.

Then, by substituting each φ̃i into (1.2), we get the estimation of PSF at the i-th frame. We denote the

relative error of an estimated PSF by

Relative error =
‖k̃i(x, y)− ki(x, y)‖2

‖ki(x, y)‖2
, i = 1, 2, · · · ,m. (4.2)

where ki(x, y) is the true PSF at the i-th frame and k̃i(x, y) is the corresponding estimated PSF. In

Figures 5–6, we plot the relative error of the estimated PSF for all frames reconstructed by both models.

We see that the relative error of PSF estimated by the phase model is lower than that by the phase-

gradient model. Meanwhile, the accuracy of estimated PSF is little affected by the location of frame, i.e.,

the evolution of relative error with respect to the number of frame has little fluctuation.

In Tables 1–2, we list the number of iterations (“It”) and the computing time in seconds (“cpu”)

at each stage of both models. Again, note that the phase-gradient model first reconstructs the phase

gradients sx and sy, and then solves the linear inverse problem (1.3) to get the phase φ̃. We see that
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Example true φ φ̃phase−gradient φ̃phase

E.g. 1:

n = 128

m = 16
d
r0

= 5

̺ = 4

E.g. 2:

n = 128

m = 16
d
r0

= 50

̺ = 4

E.g. 3:

n = 256

m = 16
d
r0

= 5

̺ = 4

E.g. 4:

n = 256

m = 16
d
r0

= 50

̺ = 8

Figure 4. Numerical results of phase reconstruction with the atmospheric turbulence moving in nonlinear velocity (n: size

of φ; m: the number of low-resolution frames; d/r0: seeing condition; ̺: down-sampling factor).

the phase model is more efficient than the phase-gradient model. Moreover, we can draw the following

conclusions from these tables:

a) The computational cost of both models grows with respect to the size of phase;

b) The computational cost is little affected by either the seeing conditions or the movement pattern

of atmospheric turbulence;

c) Given the same phase, the degree of down-sampling affects the computational cost for both models.

5 Conclusions

In this paper, we develop a new model for estimating the point spread function (PSF) in ground-based

astronomy. Different from phase-gradient models in the literature, the new model reconstructs the phase

directly. We use the tight frame as regularization functional and the Douglas-Rachford alternating direc-

tion method of multipliers to solve the new model. Numerical results are reported to show the effective-

ness of the new model. For future work, we shall investigate how to estimate PSF engendered by several

dominant layers of atmosphere turbulence.
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Figure 5 Relative errors of estimated PSF for Examples 2 (left) and 4 (right) in Figure 3.
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Figure 6 Relative errors of estimated PSF for Examples 2 (left) and 4 (right) in Figure 4.
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