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We study the simultaneous cartoon and texture reconstruction problem. We propose a new
model to approximate the cartoon and texture part by a sparse linear combination of some
bases. A bivariate function is employed as the cost function. One of the variables is the
decomposition image and the other is the sparse representation of the decomposition image.
An alternating minimization algorithm is used to solve the minimization problem. We prove
that the algorithm converges for both the l1-norm and the l0-norm. Numerical simulations
are given to illustrate the e�ciency of our method.
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1. Simultaneous Model

Image restoration is one of the major goals in image processing. The observed model
is given by

g = Mf + n, (1)

where g,f ,n are the observed image, the original image, and the Gaussian noise
respectively. The operator M will be the identity matrix in image decomposition
models, a mask matrix in inpainting problems, or a Toeplitz-like matrix for deblur-
ring problems. A classical approach is to decompose the original image f into two
components fu+fv. The cartoon component fu is well-structured and models the
homogeneous regions with sharp boundaries. The texture component fv contains
some repeated pattern in small scales.
There are two main approaches to cartoon and texture decomposition: total vari-

ational (TV) approach and sparse-representation based approach. The popular TV
model was proposed by Rudin, Osher and Fatemi (ROF) [42]. Meyer [37] proposed
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an improvement on the TV model. Using the G-norm

∥fv∥G = inf{
√

v2
1 + v2

2 : fv = ∂xv1 + ∂yv2},

he de�ned the G-space as the dual space of functions of bounded variation in the
G-norm. Then the texture component fv is represented by two subcomponents
v1 and v2 such that fv = ∂xv1 + ∂yv2 in the G-space. However in practice, this
model is di�cult to implement due to the de�nition of the G-norm. Vese and Osher
proposed to use Lp-norm to replace the G-norm [47]. Later, Osher, Sole, and Vese
[43] considered the case p = 2 which approximates the G-norm by the semi-norm
in H−1. Aujol et al. [1] proposed to approximately solve Meyer's original model by
adding extra regularization terms. In [18], Daubechies and Teschke represented the
cartoon component in a Besov space rather than in the bounded variational space
[1, 2, 37, 43, 47].
In [36], an image is treated as a superposition of coherent layers, each layers can

be sparsely represented using the wavelet packed transform. In [30], a primal sketch
model based on the matching pursuit [35] algorithm and an MRF modeling is pro-
posed. In the sense of morphological component analysis [26, 29, 46], the cartoon
part and the texture part can be represented by some sparse linear combinations of
basis such that fu = Duαu and fv = Dvαv for some dictionaries Du and Dv, and
αu and αv are expected to be sparse. The dictionaries are chosen such that each
leads to a sparse representation over the content part it is serving, while yielding
a non-sparse representation for the other content part. Examples of dictionaries
that can sparsely approximate piecewise smooth contents in images are curvelets
[9, 10], orthonormal wavelets [17], and wavelet tight frames constructed by the
unitary extension principle in [44]. Examples of dictionaries that can sparsely ap-
proximate textures are the local discrete cosine transform and the Gabor transform,
see [26, 34, 37]. Hence the task of image decomposition is to seek the sparsest rep-
resentations from the dictionaries which can sparsely approximate both piecewise
smooth contents and textures.
Under the assumption that Duαu is mostly piecewise smooth and Dvαv is mostly

texture, the image decomposition model can be expressed as

min
αu,αv

{
∥Λuαu∥0 + ∥Λvαv∥0 +

η

2
∥g −M(Duαu −Dvαv)∥22

}
. (2)

Here Λi, i = u, v are the diagonal matrices with the diagonal entries λi[s], ∥x∥0 is
the number of non-zero entries in x, and η is a regularization parameter. However,
the l0-norm is non-convex and therefore (2) becomes a combinatorial problem and
thus it is NP-complete [19, 38]. The convex relaxation of l1-norm often replaces the
l0-norm because the l1-norm is convex and leads to a linear programming.
Clearly, one hopes that the solutions for the l0-norm and the l1-norm coincide

[13, 24]. Since the dictionary (Du,Dv) is a redundant system, there may be other
sequences (αT

u ,α
T
v )

T such that f = Duαu + Dvαv. Therefore, one can restrict
Duαu to be piecewise smooth and add an edge-preserving regularization term ϕ
with a regularization parameter γ. Hence, In [26, 29, 46], the authors proposed to
solve the cartoon and texture reconstruction problem by

{αu,αv} = argminαu,αv
{∥Λuαu∥1 + ∥Λvαv∥1

+
η

2
∥g −M(Duαu −Dvαv)∥22 + γϕ(Duαu)

}
. (3)
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We call this model Model 1. A modi�cation of Model 1 can be found in [7]. An
advantage of changing the l0-norm to the l1-norm is that the l1 sparsity penalty
term leads to a soft thresholding scheme. However, images can be decomposed
neatly into the cartoon and texture parts only when the chosen dictionaries are
appropriate; and this is not always true for arbitrary images. Therefore Model 1
may give a non-sparse pair {αu,αv}. Moreover, if the l0-norm is replaced by the l1-
norm, the separation of the cartoon and texture will fail since the matrix in Model
1, i.e., [MDu MDv] doesn't satisfy the restrict isometry property (RIP) [8].
Our objective in this paper is to propose a new model for the cartoon and texture

image decomposition. In this model, the cartoon part and the texture part can be
approximately represented by some sparse linear combination of basis such that

∥fu −Duαu∥22 ≤ ϵ, ∥fv −Dvαv∥22 ≤ ϵ, and f = fu + fv.

Then we solve the following optimization problem:

min
αu,αv,fu,fv

J = ∥Λuαu∥p + ∥Λvαv∥p +
1

2
∥fu −Duαu∥22 +

1

2
∥fv −Dvαv∥22

+
η

2
∥g −M(fu + fv)∥22 + γϕ(fu). (4)

Here p = 0 or p = 1. We call this model Model 2..
To simplify the discussions, we denote

A =
[
I I

]
, z =

(
αu

αv

)
, and x =

(
fu

fv

)
,

and hence the objective function (4) can be reformulated as

Q(x, z) = ∥Λz∥p +
1

2
∥x−Dz∥22 + γΦ(x) +

η

2
∥g −MAx∥22. (5)

Here

Λ =

(
Λu 0
0 Λv

)
, D =

(
Du 0
0 Dv

)
, and Φ(x) = ϕ(fu).

The minimization problem (5) is solved alternatively for x and z. We will see in
the next section that, if we �x x, the minimizer z can be obtained by using shrinkage
when Du and Dv are unitary transforms. If we �x z, the reduced nonlinear equation
in x can be solved by a �xed point method. In this paper, we show that the sequence
obtained by the alternating minimization algorithm converges to a �xed point. We
also prove that the number of non-zero entries in the sequence zk does not change
when k is large enough.
The outline of the paper is as follows. In Section 2, we introduce our alternating

iterative method to �nd the minimizer of (5). In Section 3, we study the convergence
of the algorithm. In Section 4, numerical examples are given to demonstrate the
e�ectiveness of the proposed model. Finally, a summary is given in Section 5.

2. Iterative Algorithm

There are two variables in the objective function (5). One is the cartoon and texture
image x, and the other is the sparse representation z of the cartoon and texture
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image x. We use an alternating minimization algorithm to �nd them. Starting from
an initial guess x0, this method computes zk and xk alternatively using

Sd(xk−1) := zk = argmin
z

Q(xk−1, z), k = 1, 2, · · · , (6)

Sh(zk) := xk = argmin
x

Q(x,zk), k = 1, 2, · · · . (7)

Note that we have

xk = Sh(Sd(xk−1)), k = 1, 2, · · · . (8)

In (6), we �nd zk of the cartoon and texture image with xk−1 given. The dic-
tionaries Du and Dv in Q are usually built by taking the union of one or several
transforms. Generally each corresponds to an orthogonal basis or a tight frame.
For simplicity, one can assume that the dictionaries involved are unitary such that
DT

i Di = I, i = u, v. Recall that D = diag(Du,Dv), we have DTD = I. We de-
note βk−1 = DTxk−1. By using the unitary invariance property of the 2-norm, the
minimizer of the optimization problem (6) can be formulated as

min
z

1

2
∥xk−1 −Dz∥22 + ∥Λz∥p = min

z

∑
s

{
1

2
(βk−1[s]− z[s])2 + |λ[s]z[s]|p

}
. (9)

It is easy to see that each coe�cient z[s] can be solved independently as a scalar
optimization problem. In particular, when p = 1, the solution of (9) is just the
popular soft thresholding scheme [23]:

z[s] =


βk−1[s]− λ[s], if βk−1[s] ≥ λ[s],

0, if |βk−1[s]| < λ[s],

βk−1[s] + λ[s], if βk−1[s] ≤ −λ[s].

(10)

When p = 0, if we de�ne 00 = 0, then the solution in (9) is just the popular hard
thresholding scheme:

z[s] =

{
βk−1[s], if |βk−1[s]| ≥

√
2λ[s],

0, if |βk−1[s]| <
√

2λ[s].
(11)

Non-unitary or redundant representations is widely used because of its superiority
to non-redundant cases [5, 16, 20�22, 27, 28, 32, 45]. We remark that when the
dictionaries Di are non-unitary or redundant, thresholding is still practiced, see
[25]. We can apply block coordinate relaxation method [6] to generate a similar
result for the non-unitary case.
Next we consider the iteration (7) where we have to �nd xk with zk given. Note

that

∂

∂x
Q(x, zk) = (x−Dzk) + ηATMT (MAx− g) + γB(x)x = 0. (12)

Here B(x) is the Hessian matrix of Φ(x). If ϕ(fu) = ∥fu∥TV is used, (12) is no
longer linear with respect to x. Several numerical methods have been proposed for
solving (12) in this case: partial di�erential equation methods such as the explicit
[42], the semi-implicit [31], the operator splitting [33] and the lagged di�usivity
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�xed-point iterations [48]. Lagged di�usivity �xed-point iterations can be inter-
preted within the framework of generalized Weiszfeld's methods or majorization
minimization algorithms [4]. As proved in [12], this method is monotonically con-
vergent, i.e. the values of the objective function in the iterations is monotonically
decreasing, and that the convergence rate is linear.
Here we solve (12) by a simple �xed-point iteration: given xk,p−1, we get xp by

solving

(xk,p −Dzk) + ηATMT (MAxk,p − g) + γB(xk,p−1)xk,p = 0.

Hence we have

xk,p = (I + ηATMTMA+ γB(xk,p−1))
−1(ηATMTg +Dzk), (13)

and the solution of (12) is given by xk = limp→∞ xk,p. Conjugate gradient methods
can be used to solve (13) at each iteration. Convergence rate can be improved
by using preconditioning techniques such as the transform-based preconditioning
techniques [11, 39].
If ϕ(fu) =

1
2∥Lfu∥22, where L is a regularization matrix, thenB(x) is independent

of x. In this case, (12) becomes a linear equation that one can solve directly, see
(13) with B(xk,p−1) ≡ B. Conjugate gradient methods or other direct methods
can be used to solve the linear system. For instance, if M is a blurring matrix
generated by a symmetric point spread function, then M can be diagonalized by
a fast transform matrix, and (13) can be solved by using three fast transforms in
O(n2 log n) operations for an n-by-n image, see for instance [40].

3. Convergence Analysis

In this section, we study the convergence of our alternating minimization algorithm
(8). We use the following Opial theorem to show that it converges to a minimizer
of the cost function Q given in (5).

Theorem 3.1 : (Opial [41]) Let the mapping T from R
n2

to Rn2

satisfy the fol-
lowing:

(1) T is asymptotically regular;
(2) T is non-expansive;
(3) the set F of the �xed-points of T is not empty.

Then for any f ∈ R
n2

, the sequence (T nf)n∈N converges to a �xed-point in F.

We will show that the mapping T := Sh ◦ Sd de�ned in (8) satis�es these as-
sumptions. For the �rst assumption, we need the following lemma.

Lemma 3.2: Assume that Φ(x) is a convex function. Let xk be the sequence
generated by (8). Then

∞∑
j=0

∥xj − xj+1∥22

is bounded and convergent.
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Proof : Denote Q1(x, zk) =
1
2∥x−Dzk∥22 +

η
2∥g −MAx∥22. Notice that

Q(x, zk) = Q1(x, zk) + ∥Λzk∥p + γΦ(x),

we have

Q(xk−1,zk)−Q(xk,zk)

= Q1(xk−1, zk)−Q1(xk, zk) + γΦ(xk−1)− γΦ(xk). (14)

Since Φ(x) is a convex function, we deduce that

Φ(xk−1)− Φ(xk) ≥ (xk−1 − xk)
T ∂

∂x
Φ(xk). (15)

Next we consider the lower bound of Q1(xk−1, zk)−Q1(xk, zk). The Taylor expan-
sion of Q1(x,zk) is

Q1(x, zk) = Q1(xk, zk) + (x− xk)
T ∂

∂x
Q1(xk, zk)

+
1

2
(x− xk)

T ∂2

∂x2
Q1(xk, zk)(x− xk).

Since Q1(x,zk) is a quadratic function and

∂2

∂x2
Q1(x, zk) = (I + ηATMTMA),

we have

Q1(x, zk)−Q1(xk, zk)

= (x− xk)
T ∂

∂x
Q1(xk, zk) +

1

2
(x− xk)

T (I + ηATMTMA)(x− xk).

≥ (x− xk)
T ∂

∂x
Q1(xk, zk) +

1

2
∥x− xk∥22.

Let x = xk−1 in the above inequality, then with the use of (14) and (15), we obtain

Q(xk−1,zk)−Q(xk,zk)

≥ (xk−1 − xk)
T ∂

∂x
Q1(xk, zk) + γ(xk−1 − xk)

T ∂

∂x
Φ(xk) +

1

2
∥xk−1 − xk∥22.

Since

∂

∂x
Q(xk, zk) =

∂

∂x
Q1(xk, zk) + γ

∂

∂x
Φ(xk)

and xk is the minimizer of the cost function Q(x,zk), we have ∂
∂xQ(xk,zk) = 0.

Therefore we obtain

Q(xk−1, zk)−Q(xk, zk) ≥
1

2
∥xk−1 − xk∥22.
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Notice that zk = argminzQ(xk−1, z), we deduce Q(xk−1, zk−1) ≥ Q(xk−1, zk),
and hence

Q(xk−1, zk−1)−Q(xk, zk) ≥ Q(xk−1, zk)−Q(xk, zk)

≥ 1

2
∥xk−1 − xk∥22.

Summing the inequalities from k = 1 to p, we obtain

Q(x0,z0)−Q(xp, zp) =

p−1∑
j=0

(Q(xj , zj)−Q(xj+1, zj+1))

≥ 1

2

p−1∑
j=0

∥xj − xj+1∥22.

Let p → ∞, then we see that
∑∞

j=0 ∥xj − xj+1∥22 is bounded and convergent. �

We have following lemma immediately.

Lemma 3.3: For a given x0, the sequence xk generated by (8) satis�es

lim
k→∞

∥xk − xk−1∥2 = lim
k→∞

∥T k(x0)− T k−1(x0)∥2 = 0,

where T (x) := Sh(Sd(x)). Therefore the operator T (·) = Sh(Sd(·)) is asymptotically
regular.

Next we consider the non-expansiveness of the operator Sh(·).

Definition 3.4: [14] An operator F : Rn2 → R
n2

is called non-expansive if for any
x1,x2 ∈ R

n2

, we have ∥F(x1) − F(x2)∥2 ≤ ∥x1 − x2∥2. If there exists a number
κ ∈ (0, 1) and a non-expansive operator E : Rn2 → R

n2

such that F = (1−κ)I+κE
is non-expansive, then F is called κ-averaged. In particular, when κ = 1/2, F is
called a �rmly non-expansive operator.

We remark that an equivalent de�nition of �rmly non-expansive operator is:

∥F(x1)−F(x2)∥22 ≤ [F(x1)−F(x2)]
T (x1 − x2), (16)

see for instance [15].

Lemma 3.5: [15, Lemma 2.4] Let φ be convex and semi-continuous, α > 0 and

x̂ := argmin
x

1

2
∥y − x∥22 + αφ(x). (17)

Then the operator S de�ned by S(y) = x̂ is 1
2 -averaged non-expansive.

For the operator Sh(z) , we have

Sh(z) = argmin
x

1

2
∥x−Dz∥22 + γΦ(x) +

η

2
∥g −MHAx∥22.

Since γΦ(x)+η∥g−MHAx∥22 is convex and semi-continuous, we know that Sh(z)
is also 1

2 -averaged non-expansive.
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Next, we consider the non-expansiveness of the operator Sd(x). When the l1
penalty is used, Sd(x) is just the soft thresholding operator given in (10) which is
known to be non-expansive. When the l0 penalty is used, Sd(x) becomes the hard
thresholding operator in (11). Hard thresholding operators are not non-expansive in
general. We however will show that the hard thresholding operator in our alternat-
ing minimization approach is equivalent to a projection under some assumptions,
and therefore is non-expansive. We consider the l1 penalty and the l0 penalty sep-
arately.

3.1. The l1 Penalty

When the l1 penalty is used, as
∑

s |λ[s]z[s]| is convex and semi-continuous, we
know that the operator Sd(·) is non-expansive. The product of two averaged
non-expansive operators is again averaged non-expansive, and hence the opera-
tor Sh(Sd(·)) is averaged non-expansive. According to the Opial theorem (Theorem
3.1), the sequence {xk} with xk+1 = Sh(Sd(xk)) converges should it satisfy the
three conditions mentioned there. We have already shown that Sh(Sd(·)) is asymp-
totically regular and non-expansive. Hence we only need to show that the set of
�xed-points of Sh(Sd(·)) is not empty. To do this, we �rst prove that the minimizer
of the cost function Q(x, z) is a �xed-point of the operator Sh(Sd(·)), and then we
show that the cost function Q(x, z) is coercive. It then guarantees that the set of
minimizers (x, z) of Q(x, z) is non-empty.

Definition 3.6: A function ϕ : Rn2 → R is proper over a setX ⊂ R
n2

if ϕ(x) < ∞
for at least one x ∈ X and ϕ(x) > −∞ for all x ∈ X. A function ϕ : Rn2 → R is
coercive over a set X ⊆ R

n2

if for every sequence {xk} ⊂ X such that ∥xk∥2 → ∞,
we have limk→∞ ϕ(xk) = ∞.

Lemma 3.7: [3, Proposition 2.1.1] Let ϕ : Rn2 → R be a closed, proper, and coer-
cive function. Then the set of minimizers of ϕ over Rn2

is nonempty and compact.

Note that for any (xT , zT )T → ∞, we have ∥Λz∥1 + 1
2∥x − Dz∥22 → ∞. There-

fore the cost function Q(x, z) is coercive and the set of minimizers for Q(x, z) is
nonempty.
We now relate the set of minimizers of Q(x, z) to the set of �xed-points of the

operator Sh(Sd(·)). Assume that (x, z) is a minimizer of Q(x, z), i.e.,

(
∂Q
∂x (x, z)
∂Q
∂z (x, z)

)
=

(
0
0

)
.

It implies that {
z = argminQ(x, ·)
x = argminQ(·, z)

If (x, z) is a minimizer of Q(x, z), we deduce that x is the �xed-point of Sh(Sd(·)).
Hence the set of �xed-points of Sh(Sd(·)) is non-empty. On the other hand, if (x, z)
is a �xed-point of Sh(Sd(·)), we have z = Sd(x) and x = Sh(z). This means that
(x, z) is a minimizer of Q(x, z).
Since the set of minimizers (x, z) ofQ(x, z) is non-empty, the set of �xed-points of

x = Sh(Sd(x)) is also non-empty. Moreover the operator Sh(Sd(·)) is non-expansive
and asymptotically regular. Hence we have the following theorem.
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Theorem 3.8 : The sequence {xk} with xk+1 = Sh(Sd(xk)) converges to a �xed-
point x, and the corresponding point (x,Sd(x)) is a minimizer of Q(x, z).

3.2. The l0 Penalty

To show the convergence when the l0-norm is used, we need the following lemma.

Lemma 3.9: Let ϕ(f) = ∥Lf∥22. Then for any given ϵ > 0, there exists a constant
M such that for all k > M , we have ∥zk−1 − zk∥22 < ϵ.

Proof : Since ϕ(f) = ∥Lf∥22, the Hessian matrix of ϕ(f) is independent on f .
Hence B is independent on x. Assume that the minimum eigenvalue of the matrix
(I + ηATMTMA+ γB)−1 is ρ. From Lemma 3.3, we know that given ϵ > 0, there
exists a constant M such that for any k > M , we have ∥xk − xk+1∥22 < ρ2ϵ. Since

xk = (I + ηATMTMA+ γB)−1(ηATMTg +Dzk−1)

We obtain

∥xk − xk+1∥22 = ∥(I + ηATMTMA+ γB)−1D(zk−1 − zk)∥22
≥ ∥ρD(zk−1 − zk)∥22 = ρ2∥zk−1 − zk∥22.

Therefore, the result holds. �

The following lemma states that the number of non-zero entries in the vector zk

does not change when k is large enough.

Lemma 3.10: Let ϕ(f) = ∥Lf∥22. Give any ϵ such that 0 < ϵ < mins 2λ[s], then

there exists a constant M such that for all k > M , we have |zk[s]| ≥
√

2λ[s] if

|zk−1[s]| ≥
√

2λ[s] and zk[s] = 0 if zk−1[s] = 0.

Proof : Assume |zk−1[s]| ≥
√

2λ[s] while zk[s] = 0, or zk−1[s] = 0 while |zk[s]| ≥√
2λ[s]. Then we have |zk[s]− zk−1[s]|2 ≥ 2λ[s]. Hence

∥zk − zk−1∥22 =
∑
s

|zk[s]− zk−1[s]|2 ≥ min
s

2λ[s] > ϵ.

This contradicts Lemma 3.9. Therefore the result holds. �

Lemma 3.11: Let ϕ(f) = ∥Lf∥22 and assume the operator Sh(Sd(·)) has a �xed
point. Then the sequence xk+1 = Sh(Sd(xk)) converges.

Proof : There exists a constant M such that for all k > M , ∥zk − zk−1∥22 < ϵ. Let

Γ = {s : |zM [s]| ≥
√

2λ[s]} and de�ne the projection P(x) such that P(x)[s] = x[s]
if s ∈ Γ and P(x)[s] = 0 if s /∈ Γ. Immediately we see that P(·) is non-expansive.
Now we show that P(xk−1) = S(xk−1) if k > M . For any k > M and the vector

βk−1 = DTxk−1, we consider two cases: 1) |βk−1[s]| ≥
√

2λ[s] and 2) |βk−1[s]| <√
2λ[s].

(1) |βk−1[s]| ≥
√

2λ[s]: By (11), we have |zk[s]| = |βk−1[s]| ≥
√

2λ[s]. Assume

that s /∈ Γ, i.e., |zM [s]| <
√

2λ[s]. Then according to Lemma 3.10, we have

|zk[s]| <
√

2λ[s] for all k > M . This leads to a contradiction. Therefore,
s ∈ Γ and P(x)[s] = x[s] = S(x)[s].

(2) |βk−1[s]| <
√

2λ[s]: By (11), we have zk[s] = 0. Assume that s ∈ Γ, i.e.

|zM [s]| ≥
√

2λ[s]. Using Lemma 3.10, we have |zk[s]| ≥
√

2λ[s] for all
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k > M . This also leads to a contradiction. Therefore, s /∈ Γ and P(x)[s] =
0 = S(x)[s].

Therefore, when k > M , we have xk+1 = Sh(Sd(xk)) = Sh(P(xk)). Since P and
Sh are non-expansive and the sequence xk is asymptotically regular, by applying
Opial's theorem (Theorem 3.1), we know that xk converges. �

4. Numerical Results

In this section, we test the performance of our proposed algorithm. Peak Signal-to-
Noise Ratio (PSNR) is used to measure the quality of the restoration, it is de�ned
as follows:

PSNR = 10 log
2552

1
mn∥fu + fv − f∥22

.

Here fu and fv are the restored cartoon and texture parts respectively and f is
the m×n original image. The stopping criterion of both Model 1 (see (3)) and our
proposed Model 2 (see (4)) is when the relative di�erence between the successive
iterates satis�es:

∥xk+1 − xk∥2
∥xk∥2

< 10−4,

where xk =

(
fu,k

fv,k

)
. The initial guess is fu,0 = g with g being the recorded image

and fv = 0.
The �rst example is depicted in Fig. 1 where the Barbara image was superimposed

by a textual mask covering 20% of its original area. The dictionaries used are the
fast curvelet transform and the local DCT with block size 32×32. Here we give the
results for the l1-norm only as the results for the l0-norm are similar. The cartoon
part and texture part restored by using Model 1 and Model 2 are shown in middle
row and bottom row of Fig. 1 respectively. We see that our method not only restores
the corrupted image, but also separates it nicely into the cartoon part and texture
part.
We note that it is an open problem for choosing optimal parameters. Comparing

with Model 1, our Model 2 introduces an additional parameter η. To illustrate that
the parameter η is not di�cult to tune, we �xed the other parameters and only
changed the parameter η. The relationship between PSNR and η is shown in Fig.
2. We notice that only for extremely small values of η would the reconstruction
of the cartoon and texture parts fail. In our experiments, we found that when the
values of η is large enough, for example η > 100, PSNR is not sensitive to the
change of η. The other parameters are determined by �xing all but one parameter
and adjusting it to give the best restoration measured in PSNR. All the adjusted
parameters are tuned one by one.
The second test is a zooming problem, see Fig. 3, where the image of Barbara was

regularly down-sampled with 75% missing values. Again the curvelet transform and
the local DCT are used. The result obtained by our Model 2 outperforms Model 1.
In the last example, we used a random mask. Fig. 4 shows the Barbara image

with 50% pixels randomly �lled in. 5 presents the results obtained by using the fast
curvelet transform and the local DCT. We notice that in both cases, the results by
our model are better than those from Model 1.
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Figure 1. Example with textual mask. Top: Observed image. Middle: the cartoon part, the texture part
and the restored image (PSNR=30.44) by using Model 1. Bottom: the cartoon part, the texture part and
the restored image (PSNR=30.64) by using Model 2.
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Figure 2. The parameter η versus PSNR (with γ = 0.05).

5. Conclusion

We proposed a new model for simultaneous cartoon and texture reconstruction. In
the new model, we assume that the cartoon part and the texture part can be ap-
proximately represented by some sparse linear combination of basis. An alternating
minimization algorithm is used to �nd the minimum of the cost function. We give
the convergence analysis for the proposed algorithm. Our experiments show that
our restored images are better than the model 1.
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Figure 3. Zooming. The reconstruction image for Model 1 (top row) and Model 2 (bottom row).

Observed Image, noise:50%
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Figure 4. The corrupted image with 50% pixels randomly �lled in.
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Figure 5. Curvelet transform and local DCT for Model 1 (top row) and Model 2 (bottom row).
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