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We study the simultaneous cartoon and texture reconstruction problem. We propose a new
model to approximate the cartoon and texture part by a sparse linear combination of some
bases. A bivariate function is employed as the cost function. One of the variables is the
decomposition image and the other is the sparse representation of the decomposition image.
An alternating minimization algorithm is used to solve the minimization problem. We prove
that the algorithm converges for both the /1-norm and the lp-norm. Numerical simulations
are given to illustrate the efficiency of our method.
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1. Simultaneous Model

Image restoration is one of the major goals in image processing. The observed model
is given by

g=Mf+n, (1)

where g, f,n are the observed image, the original image, and the Gaussian noise
respectively. The operator M will be the identity matrix in image decomposition
models, a mask matrix in inpainting problems, or a Toeplitz-like matrix for deblur-
ring problems. A classical approach is to decompose the original image f into two
components f,+ f,. The cartoon component f, is well-structured and models the
homogeneous regions with sharp boundaries. The texture component f, contains
some repeated pattern in small scales.

There are two main approaches to cartoon and texture decomposition: total vari-
ational (T'V) approach and sparse-representation based approach. The popular TV
model was proposed by Rudin, Osher and Fatemi (ROF) [42]. Meyer [37| proposed
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an improvement on the TV model. Using the G-norm

va”G = inf{ IU% +U% : fv = 0;v1 + ayv2}7

he defined the G-space as the dual space of functions of bounded variation in the
G-norm. Then the texture component f, is represented by two subcomponents
v1 and v2 such that f, = 0,v1 + Jyv2 in the G-space. However in practice, this
model is difficult to implement due to the definition of the G-norm. Vese and Osher
proposed to use LP-norm to replace the G-norm [47]. Later, Osher, Sole, and Vese
[43] considered the case p = 2 which approximates the G-norm by the semi-norm
in H~1. Aujol et al. [1] proposed to approximately solve Meyer’s original model by
adding extra regularization terms. In [18], Daubechies and Teschke represented the
cartoon component in a Besov space rather than in the bounded variational space
[1, 2, 37, 43, 47].

In [36], an image is treated as a superposition of coherent layers, each layers can
be sparsely represented using the wavelet packed transform. In [30], a primal sketch
model based on the matching pursuit [35] algorithm and an MRF modeling is pro-
posed. In the sense of morphological component analysis |26, 29, 46|, the cartoon
part and the texture part can be represented by some sparse linear combinations of
basis such that f,, = Dy, and f, = Dy, for some dictionaries D,, and D, and
o, and «, are expected to be sparse. The dictionaries are chosen such that each
leads to a sparse representation over the content part it is serving, while yielding
a non-sparse representation for the other content part. Examples of dictionaries
that can sparsely approximate piecewise smooth contents in images are curvelets
[9, 10], orthonormal wavelets [17], and wavelet tight frames constructed by the
unitary extension principle in [44]. Examples of dictionaries that can sparsely ap-
proximate textures are the local discrete cosine transform and the Gabor transform,
see [26, 34, 37|. Hence the task of image decomposition is to seek the sparsest rep-
resentations from the dictionaries which can sparsely approximate both piecewise
smooth contents and textures.

Under the assumption that Dy, is mostly piecewise smooth and Dy, is mostly
texture, the image decomposition model can be expressed as

o{mg {HAuauHO + [ Averwlo + g”g = M(Dyovy, — Dvav)“%} . (2)

)

Here A;,i = u,v are the diagonal matrices with the diagonal entries A;[s], ||z||o is
the number of non-zero entries in @, and 7 is a regularization parameter. However,
the lp-norm is non-convex and therefore (2) becomes a combinatorial problem and
thus it is NP-complete [19, 38]. The convex relaxation of /;-norm often replaces the
lo-norm because the l1-norm is convex and leads to a linear programming.

Clearly, one hopes that the solutions for the lp-norm and the l/;-norm coincide
[13, 24]. Since the dictionary (D, D,) is a redundant system, there may be other
sequences (al, al)T such that f = Dy, + Dy, Therefore, one can restrict
Dyo, to be piecewise smooth and add an edge-preserving regularization term ¢
with a regularization parameter v. Hence, In |26, 29, 46|, the authors proposed to
solve the cartoon and texture reconstruction problem by

{0} = argming, o, {[Auerals + [ Avexs

+21lg = M(Duer, = Doers) [+ 76(Ducra) } 3)
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We call this model Model 1. A modification of Model 1 can be found in [7]. An
advantage of changing the [g-norm to the [;-norm is that the [; sparsity penalty
term leads to a soft thresholding scheme. However, images can be decomposed
neatly into the cartoon and texture parts only when the chosen dictionaries are
appropriate; and this is not always true for arbitrary images. Therefore Model 1
may give a non-sparse pair {ay,, @, }. Moreover, if the [gp-norm is replaced by the ;-
norm, the separation of the cartoon and texture will fail since the matrix in Model
1, i.e., [MD, MD,| doesn’t satisfy the restrict isometry property (RIP) [8].

Our objective in this paper is to propose a new model for the cartoon and texture
image decomposition. In this model, the cartoon part and the texture part can be
approximately represented by some sparse linear combination of basis such that

Hfu*DuauH%SE, ||fviDUaU||%§€v and f:fu+fv

Then we solve the following optimization problem:

. 1 1
min J = HAuaunp + HAvav”p + §Hfu - DuO‘UH% =+ §Hffu - Dvav”%

a'u.7av7.fu7f1;

+llg = M(Fu + £)IE +76(F.). (4)

Here p =0 or p = 1. We call this model Model 2..
To simplify the discussions, we denote

A=T[I1], z:<(;:> and m=<}c:>

and hence the objective function (4) can be reformulated as
L n
A, 2) = [[Az]lp + S 1w — D23 + v@(2) + ; lg — MAz|S. (5)

Here

A:(%“f) D:(%&), and  B(x) = o(F,).

The minimization problem (5) is solved alternatively for  and z. We will see in
the next section that, if we fix &, the minimizer z can be obtained by using shrinkage
when D,, and D, are unitary transforms. If we fix z, the reduced nonlinear equation
in @ can be solved by a fixed point method. In this paper, we show that the sequence
obtained by the alternating minimization algorithm converges to a fixed point. We
also prove that the number of non-zero entries in the sequence zj does not change
when k is large enough.

The outline of the paper is as follows. In Section 2, we introduce our alternating
iterative method to find the minimizer of (5). In Section 3, we study the convergence
of the algorithm. In Section 4, numerical examples are given to demonstrate the
effectiveness of the proposed model. Finally, a summary is given in Section 5.

2. Iterative Algorithm

There are two variables in the objective function (5). One is the cartoon and texture
image @, and the other is the sparse representation z of the cartoon and texture
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image . We use an alternating minimization algorithm to find them. Starting from
an initial guess xg, this method computes z; and xj alternatively using

Si(xp_1) := z, = argmin Q(xg_1,2), k=1,2,---, (6)
z

Sn(z) := o = argmin Q(x, z), k=1,2,---. (7)
T
Note that we have
xp = Sp(Sa(xk-1)), k=1,2,---. (8)

In (6), we find zj of the cartoon and texture image with @x_; given. The dic-
tionaries D,, and D, in Q are usually built by taking the union of one or several
transforms. Generally each corresponds to an orthogonal basis or a tight frame.
For simplicity, one can assume that the dictionaries involved are unitary such that
DID; = I, i = u,v. Recall that D = diag(Dy, D), we have DTD = I. We de-
note B;,_; = DTx;_1. By using the unitary invariance property of the 2-norm, the
minimizer of the optimization problem (6) can be formulated as

min L ey — Dz} + Azl = mn Y {380l = 02+ DlelaP . 0

It is easy to see that each coefficient z[s| can be solved independently as a scalar
optimization problem. In particular, when p = 1, the solution of (9) is just the
popular soft thresholding scheme [23]:

Br—1ls] — Alsl, if B_1[s] = Als],
z[s] = {0, if |Br_1[s]] < Als], (10)
Br—1ls] + Alsl, if Bj_q[s] < —A[s].

When p = 0, if we define 0° = 0, then the solution in (9) is just the popular hard
thresholding scheme:

o] = {ﬁk—l[s], i 8y_y[s]] = \/2Ns] "
0, i 1Bylsll < VNS

Non-unitary or redundant representations is widely used because of its superiority
to non-redundant cases [5, 16, 20-22, 27, 28, 32, 45]. We remark that when the
dictionaries D; are non-unitary or redundant, thresholding is still practiced, see
[25]. We can apply block coordinate relaxation method [6] to generate a similar
result for the non-unitary case.

Next we consider the iteration (7) where we have to find xj with 2z, given. Note
that

;mQ(a:, z) = (x — Dzy,) + nAT M (MAx — g) + yB(z)z = 0. (12)

Here B(x) is the Hessian matrix of ®(x). If ¢(f,) = || fullzv is used, (12) is no
longer linear with respect to @. Several numerical methods have been proposed for

solving (12) in this case: partial differential equation methods such as the explicit
[42], the semi-implicit [31], the operator splitting [33] and the lagged diffusivity
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fixed-point iterations [48]. Lagged diffusivity fixed-point iterations can be inter-
preted within the framework of generalized Weiszfeld’s methods or majorization
minimization algorithms [4]. As proved in [12], this method is monotonically con-
vergent, i.e. the values of the objective function in the iterations is monotonically
decreasing, and that the convergence rate is linear.

Here we solve (12) by a simple fixed-point iteration: given xj,_1, we get , by
solving

(zkp — Dzy) + nAT M (MAzy, ), — g) + ¥B(xgp1)Thp = 0.
Hence we have
Tpp = (I +nAT M MA+ yB(ayp-1)) " (A" MTg + Dzy), (13)

and the solution of (12) is given by ) = lim,_,o @} . Conjugate gradient methods
can be used to solve (13) at each iteration. Convergence rate can be improved
by using preconditioning techniques such as the transform-based preconditioning
techniques [11, 39].

If¢(f,) = 3| Lf,l|3 where L is a regularization matrix, then B(z) is independent
of . In this case, (12) becomes a linear equation that one can solve directly, see
(13) with B(xkp—1) = B. Conjugate gradient methods or other direct methods
can be used to solve the linear system. For instance, if M is a blurring matrix
generated by a symmetric point spread function, then M can be diagonalized by
a fast transform matrix, and (13) can be solved by using three fast transforms in
O(n?logn) operations for an n-by-n image, see for instance [40].

3. Convergence Analysis

In this section, we study the convergence of our alternating minimization algorithm
(8). We use the following Opial theorem to show that it converges to a minimizer
of the cost function Q given in (5).

Theorem 3.1: (Opial [{1]) Let the mapping T from R™ to R™ satisfy the fol-
lowing:

(1) T is asymptotically reqular;
(2) T is non-expansive;
(3) the set ¥ of the fized-points of T is not empty.

Then for any f € R, the sequence (T™f)nen converges to a fized-point in F.

We will show that the mapping 7 := Sj o Sy defined in (8) satisfies these as-
sumptions. For the first assumption, we need the following lemma.

Lemma 3.2: Assume that ®(x) is a conver function. Let xyp be the sequence
generated by (8). Then

o0
Dl =zl
§=0

18 bounded and convergent.
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Proof: Denote Qi(z,z;) = || — Dz |3 + Z|lg — MAx|3. Notice that
Qx, z) = Qi(®, z) + [[Azkllp + 72(z),

we have

Q(xp—1,2k) — Qxp, 21)
= Q1(®p—1,2k) — Q1(Tk, 21) + YP(TR—1) — YP(TH)- (14)

Since ®(x) is a convex function, we deduce that

Dargr) — D) > (@it — ) Bl (15)

Next we consider the lower bound of Q1 (xk_1, 2x) — Q1(xk, ). The Taylor expan-

sion of Q(x, zx) is

01, 24) = Qi(k, 20) + (2 — p) 5= Qs (w4, 20

82

+1($ — xk)

5 T@Qﬂmk,zk)(ﬂﬁ—wk)-

Since Qi(x, zx) is a quadratic function and

62

a2 1@ 2n) = ([ + nAT MT MA),

we have

Q1 (x, zi) — Q1 (xk, 2k)

1
=(x— a:k)T;mQI(cck, zE) + i(w —xp) (I + AT MT MA) (z — ).

0 1
> (x— mk)T%QKwk, zp) + 5““’ — xi 3.

Let & = xj_1 in the above inequality, then with the use of (14) and (15), we obtain

Qxp_1,2k) — Qxk, 21)

0 0 1
> (w1 — wk)T%Qﬂwk,Zk) + y(Th-1 — wk)T%‘I’(wk) + §Ha:k,1 — a|f3-

Since

0 0 0
a—wQ(CI}k, Zk) = %Ql(wkv zk) + Vaiwq)(wk)

and xj, is the minimizer of the cost function Q(x, zj), we have %Q(mk, zi) = 0.
Therefore we obtain

1
Q(h—1,zk) — Qxp, 28) > §H<L‘k—1 — af3-
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Notice that zp = argmin,Q(xx_1,2), we deduce Q(xg_1,2r_1) > Q(xp_1, 2k),
and hence

Qxp—1,2k-1) — Qxk, 21K) > Q@)K—1, 28) — QXK 21)

\Y

1
= §||$k—1 - xk”%-

Summing the inequalities from k£ =1 to p, we obtain

p—1
Q(mOa ZO) - Q(mpa Zp) = (Q(mjv Zj) - Q(mj+17 Zj+1))
=0
151
Z5 ) — 2413
=0

Let p — oo, then we see that > 22 [lz; — x 113 is bounded and convergent. [
We have following lemma immediately.

Lemma 3.3: For a given xg, the sequence xy, generated by (8) satisfies

im ||z — @p_1lla = lim ||T%(z0) — 75 (o)||2 = 0,

k—oo k—o00
where T (x) := Sp(Sq(x)). Therefore the operator T (-) = Sp(S4(+)) is asymptotically
reqular.

Next we consider the non-expansiveness of the operator Sp(-).

Definition 3.4: [14] An operator F : R"" — R™ is called non-ezpansive if for any
x1, o € R we have || F(x1) — F(x2)|]2 < ||&1 — x2||2. If there exists a number
% € (0,1) and a non-expansive operator € : R” — R such that F = (1 — k)T + k&
is non-expansive, then F is called k-averaged. In particular, when x = 1/2, F is
called a firmly non-expansive operator.

We remark that an equivalent definition of firmly non-expansive operator is:
1F(@1) = F@a)ll3 < [Fa1) — Faa)]” (21 — @2), (16)

see for instance [15].

Lemma 3.5: [15, Lemma 2.4] Let ¢ be convex and semi-continuous, o > 0 and
~ 1 2
T := argmin §Hy—w||2+oz<p(a:). (17)

Then the operator S defined by S(y) = & is %—avemged non-exrpansive.

For the operator Sp(z) , we have
1
Si(z) = argmin - @ — Dz|3 +1@(2) + 7llg — MHAz|3.

Since y®(x) +1||g — MH Az||3 is convex and semi-continuous, we know that Sy (z)
is also %—averaged non-expansive.
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Next, we consider the non-expansiveness of the operator Syz(x). When the [y
penalty is used, Sg(x) is just the soft thresholding operator given in (10) which is
known to be non-expansive. When the [y penalty is used, Sz(x) becomes the hard
thresholding operator in (11). Hard thresholding operators are not non-expansive in
general. We however will show that the hard thresholding operator in our alternat-
ing minimization approach is equivalent to a projection under some assumptions,
and therefore is non-expansive. We consider the /; penalty and the [y penalty sep-
arately.

3.1. Thely Penalty

When the [; penalty is used, as > |A[s|z[s]| is convex and semi-continuous, we
know that the operator Sy(-) is non-expansive. The product of two averaged
non-expansive operators is again averaged non-expansive, and hence the opera-
tor Sp(Sa(+)) is averaged non-expansive. According to the Opial theorem (Theorem
3.1), the sequence {xy} with r1 = Sp(Sa(xr)) converges should it satisfy the
three conditions mentioned there. We have already shown that Sp,(Sg(+)) is asymp-
totically regular and non-expansive. Hence we only need to show that the set of
fixed-points of S,(S4(+)) is not empty. To do this, we first prove that the minimizer
of the cost function Q(x, 2z) is a fixed-point of the operator S;(S4(-)), and then we
show that the cost function Q(x, z) is coercive. It then guarantees that the set of
minimizers (x, z) of Q(x, z) is non-empty.

Definition 3.6: A function ¢ : R — R is proper over a set X C R™ if ¢() < oo
for at least one & € X and ¢(x) > —oo for all z € X. A function ¢ : R" — R is
coercive over a set X C R™ if for every sequence {a;} C X such that |||z — oo,
we have limg_, ¢(x)) = o0.

Lemma 3.7: [3, Proposition 2.1.1] Let ¢ : R™ — R be a closed, proper, and coer-
cive function. Then the set of minimizers of ¢ over R™ is nonempty and compact.

Note that for any (2, 27)7 — oo, we have ||[Az|: + ||z — Dz||3 — co. There-
fore the cost function Q(x, z) is coercive and the set of minimizers for Q(x, z) is
nonempty.

We now relate the set of minimizers of Q(x, z) to the set of fixed-points of the
operator S, (S4(+)). Assume that (x, z) is a minimizer of Q(x, ), i.e.,

() - (6):
Tt implies that

{z = argminQ(x, -)

x = argminQ(-, z)

If (x, z) is a minimizer of Q(x, z), we deduce that x is the fixed-point of Sp,(S4(+)).
Hence the set of fixed-points of S;(S4(+)) is non-empty. On the other hand, if (z, z)
is a fixed-point of S, (S4(-)), we have z = Sy(x) and © = Sp,(2z). This means that
(z, z) is a minimizer of Q(x, z).

Since the set of minimizers (x, z) of Q(x, z) is non-empty, the set of fixed-points of
x = Sp(S4(x)) is also non-empty. Moreover the operator Sp,(S4(+)) is non-expansive
and asymptotically regular. Hence we have the following theorem.
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Theorem 3.8: The sequence {x} with k11 = Sp(Sq(xk)) converges to a fized-
point x, and the corresponding point (x,Sy(x)) is a minimizer of Q(x, z).

3.2. Thelg Penalty
To show the convergence when the [p-norm is used, we need the following lemma.

Lemma 3.9:  Let ¢(f) = |[Lf||3. Then for any given ¢ > 0, there exists a constant
M such that for all k > M, we have ||z_1 — 21|53 < €.

Proof: Since ¢(f) = |Lf||3, the Hessian matrix of ¢(f) is independent on f.
Hence B is independent on x. Assume that the minimum eigenvalue of the matrix
(I4+nATMTMA+~B)~!is p. From Lemma 3.3, we know that given € > 0, there
exists a constant M such that for any k > M, we have ||z — zx11]|3 < p®e. Since

xp = (I +nATMITMA +~vB) T (AT M g + Dz;_1)
We obtain

@, — @i 3 = I +nATMTMA +7B) "Dzt — 21) 3

> [|pD(zk-1 — 2zi)|15 = p*ll 281 — 24[3-

Therefore, the result holds. O

The following lemma states that the number of non-zero entries in the vector zy
does not change when k is large enough.

Lemma 3.10: Let ¢(f) = ||Lf||3. Give any € such that 0 < € < ming 2)\[s], then
there exists a constant M such that for all k > M, we have |zi[s]| > /2A[s] if

|zk—1[s]| > +/2A[s] and zi[s] = 0 if zx_1[s] = 0.

Proof: Assume |zg_1[s]| > \/2A[s] while zi[s] = 0, or zx_1[s] = 0 while |zg[s]| >
\/2X[s]. Then we have |zj[s] — z_1[s]|* > 2A[s]. Hence

lzx — zk,lH% = E |zk[s] — zk,l[s]\Q > min2A[s] > e.
S
S

This contradicts Lemma 3.9. Therefore the result holds. O

Lemma 3.11: Let ¢(f) = |[Lf|% and assume the operator Sy(S4(+)) has a fized
point. Then the sequence xg+1 = Sp(Sq(xk)) converges.

Proof: There exists a constant M such that for all k > M, ||z — zx_1]|3 < €. Let
I'={s:|zuml[s]| > v/2A[s]} and define the projection P(x) such that P(x)[s] = x[s]
if sl and P(x)[s] =0if s ¢ I'. Immediately we see that P(-) is non-expansive.
Now we show that P(xx_1) = S(xk—1) if £ > M. For any k > M and the vector
Bi_1 = DTxy_1, we consider two cases: 1) |B,_1[s]| > /2A[s] and 2) |B,_4[s]| <

V/2A[s].

(1) |Br_1[s]| = v/2A[s]: By (11), we have |zg[s]| = |Br_1[s]] = /2A[s]. Assume
that s ¢ I, i.e., |za][s]| < \/2A[s]. Then according to Lemma 3.10, we have
|zr[s]| < \/2A[s] for all & > M. This leads to a contradiction. Therefore,
s eI and P(x)[s] = z[s] = S(x)]s].

(2) 1Br_1[s]l < v/2A[s]: By (11), we have zi[s] = 0. Assume that s € T, i.e.
|zap[s]| > /2A[s]. Using Lemma 3.10, we have |zg[s]| > /2A[s] for all
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k > M. This also leads to a contradiction. Therefore, s ¢ I' and P(x)[s] =
0=8(x)[s].

Therefore, when k > M, we have xp11 = Sp(Sa(xr)) = Sh(P(xk)). Since P and
Sy, are non-expansive and the sequence xj is asymptotically regular, by applying
Opial’s theorem (Theorem 3.1), we know that xj converges. O

4. Numerical Results

In this section, we test the performance of our proposed algorithm. Peak Signal-to-
Noise Ratio (PSNR) is used to measure the quality of the restoration, it is defined
as follows:

2552
1 — fl12°

PSNR = 101log

Here f, and f, are the restored cartoon and texture parts respectively and f is
the m x n original image. The stopping criterion of both Model 1 (see (3)) and our
proposed Model 2 (see (4)) is when the relative difference between the successive
iterates satisfies:

|Zr1 — zill2

<1074,
[EAlp

where ), = (f“k> . The initial guess is f, o = g with g being the recorded image

v,k
and f, = 0.

The first example is depicted in Fig. 1 where the Barbara image was superimposed
by a textual mask covering 20% of its original area. The dictionaries used are the
fast curvelet transform and the local DCT with block size 32 x 32. Here we give the
results for the [;-norm only as the results for the lyj-norm are similar. The cartoon
part and texture part restored by using Model 1 and Model 2 are shown in middle
row and bottom row of Fig. 1 respectively. We see that our method not only restores
the corrupted image, but also separates it nicely into the cartoon part and texture
part.

We note that it is an open problem for choosing optimal parameters. Comparing
with Model 1, our Model 2 introduces an additional parameter 7. To illustrate that
the parameter 7 is not difficult to tune, we fixed the other parameters and only
changed the parameter 1. The relationship between PSNR and 7 is shown in Fig.
2. We notice that only for extremely small values of 7 would the reconstruction
of the cartoon and texture parts fail. In our experiments, we found that when the
values of 7 is large enough, for example n > 100, PSNR is not sensitive to the
change of 7. The other parameters are determined by fixing all but one parameter
and adjusting it to give the best restoration measured in PSNR. All the adjusted
parameters are tuned one by one.

The second test is a zooming problem, see Fig. 3, where the image of Barbara was
regularly down-sampled with 75% missing values. Again the curvelet transform and
the local DCT are used. The result obtained by our Model 2 outperforms Model 1.

In the last example, we used a random mask. Fig. 4 shows the Barbara image
with 50% pixels randomly filled in. 5 presents the results obtained by using the fast
curvelet transform and the local DCT. We notice that in both cases, the results by
our model are better than those from Model 1.
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Figure 1. Example with textual mask. Top: Observed image. Middle: the cartoon part, the texture part
and the restored image (PSNR=30.44) by using Model 1. Bottom: the cartoon part, the texture part and
the restored image (PSNR=30.64) by using Model 2.

35 T T T T T

30 B

251 B

PSNR

15 B

10 10" 10 10 10 10

Figure 2. The parameter n versus PSNR (with v = 0.05).

5. Conclusion

We proposed a new model for simultaneous cartoon and texture reconstruction. In
the new model, we assume that the cartoon part and the texture part can be ap-
proximately represented by some sparse linear combination of basis. An alternating
minimization algorithm is used to find the minimum of the cost function. We give
the convergence analysis for the proposed algorithm. Our experiments show that
our restored images are better than the model 1.
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Restored Image, SNR: 18.14d8
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Cartoon Restored Image, SNR: 19.360B

Figure 3. Zooming. The reconstruction image for Model 1 (top row) and Model 2 (bottom row).

Observed Image, noise:50%

Figure 4. The corrupted image with 50% pixels randomly filled in.

Cartoon Texture Restored, SNR:24.39
- T —

50 100 150 200 250 300 350 400 450 500 50 100 150 200 250 300 350 400
Texture Restored, SNR:25.46
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Figure 5. Curvelet transform and local DCT for Model 1 (top row) and Model 2 (bottom row).
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