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Abstract

In this paper, we propose a new type of preconditioners for Hermitian positive
definite Toeplitz systems A,z = b where A,, are assumed to be generated by func-
tions f that are positive and 27-periodic. Our approach is to precondition A, by
the Toeplitz matrix A, generated by 1/f. We prove that the resulting precondi-
tioned matrix A,A, will have clustered spectrum. When A,, cannot be formed
efficiently, we use quadrature rules and convolution products to construct nearby
approximations to A,. We show that the resulting approximations are Toeplitz
matrices which can be written as sums of {w}-circulant matrices. As a side result,
we will prove that any Toeplitz matrix can be written as a sum of {w}-circulant
matrices. We then show that our Toeplitz preconditioners 7T;, are generalization
of circulant preconditioners and the way they are constructed is similar to the ap-
proach used in additive Schwarz method for elliptic problems. We finally prove that
the preconditioned systems T), A,, will have clustered spectra around 1.
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1 Introduction

Toeplitz systems arise in a variety of practical applications in mathematics and engineer-
ing. For instance, in signal processing, solutions of Toeplitz systems are required in order
to obtain the filter coefficients in the design of recursive digital filters, see Chui and A.
Chan [10]. Time series analysis also involves solutions of Toeplitz systems for the unknown
parameters of stationary auto-regressive models, see King et. al. [17, p.368-379].

There are a number of specialized fast direct methods for solving Toeplitz systems,
see for instance Trench [23]. For an n-by-n Toeplitz system A,z = b, these algorithms
require O(n?) operations to solve it. Around 1980, superfast direct solvers of complexity
O(nlog®n) were developed, see for instance Brent, Gustavson and Yun [3]. However,
recent research on using preconditioned conjugate gradient method as an iterative method
for solving Toeplitz systems has brought much attention. The most important result of
this methodology is that the complexity of solving a large class of Toeplitz systems can
be reduced to O(nlogn).

The iterative approach is to use preconditioned conjugate gradient method with cir-
culant matrices as preconditioners for the solution of Toeplitz systems, see Strang [21].
Several successful circulant preconditioners have been proposed and analyzed, see for
instance Chan [4], T. Chan [8], Huckle [15], Ku and Kuo [18], Tismenetsky [22] and Tyr-
tyshnikov [24]. In these papers, the Toeplitz matrix A, is assumed to be generated by a
generating function f, i.e. the diagonals of A,, are given by the Fourier coefficients of f.
It has been shown that if f is a positive function in the Wiener class, then these circulant
preconditioned systems converge superlinearly.

A unifying approach of constructing circulant preconditioners is given in Chan and
Yeung [7] where it is shown that many of the above-mentioned circulant preconditioners
can be derived by using the convolution products of f with some well-known kernels. For
example, Strang’s and T. Chan’s circulant preconditioners are generated by using the
Dirichlet and Fejér kernels respectively. We remark that the convolution products of f
with these kernels are just smooth approximations of f. Chan and Yeung [7] proved that
if the convolution product converges to f uniformly, i.e. if the convolution product is a
good approximation of f, then the circulant preconditioned systems will converge fast.

As alternatives to circulant preconditioners, band-Toeplitz matrices have also been
proposed as preconditioners for Toeplitz systems when the generating function f is not
positive, but only nonnegative with countable zeros. In this case, most of the circulant
preconditioners will fail whereas the spectra of band-Toeplitz preconditioned matrices are
still uniformly bounded by constants independent of n, see Chan [5]. The motivation
behind using band-Toeplitz matrices is to approximate f by trigonometric polynomials of
fixed degree rather than by convolution products of f with some kernels. The advantage
here is that trigonometric polynomials can be chosen to match the zeros of f so that the



method still works when f has zeros. By using Remez’s algorithm to search for the best
trigonometric approximation of f, band-Toeplitz preconditioned systems can be made to
converge at about the same rate as those circulant preconditioned systems even when f
is positive, see Chan and Tang [6].

In this paper, we propose a new type of preconditioners for Hermitian positive definite
Toeplitz systems. Our approach is to use the Toeplitz matrix A, generated by 1 /f to
approximate the inverse of A,, i.e. the preconditioned matrix will be A, A,. We remark
that the inverse of A, is non-Toeplitz in general, but it is closely related to Toeplitz
matrices, see Friedlander et. al. [13]. Since A, is a Toeplitz matrix, the matrix-vector
product A, y, which is required in every iteration of the preconditioned conjugate gradient
method, can be performed in O(nlogn) operations by using Fast Fourier Transforms
(FFTs), see Strang [21]. Hence the cost per iteration is of O(nlogn).

As for the convergence rate, it is well-known that it depends on the spectrum of the
preconditioned matrix A,A,; the more cluster it is, the faster the convergence rate will
be, see Axelsson and Barker [2, p.26]. Presumably, we want A, A, =1, + L, + U, where
I,, is the n-by-n identity matrix, L,, is a low-rank matrix and U, is a small norm matrix.
We will first show that if f is a finite trigonometric series, then the rank of flnAn — 1,
is fixed independent of n. Then in the general case when f is a 27-periodic continuous
function, we show that AnAn — I, is indeed equal to a low rank matrix plus a small norm
matrix. Hence we can then conclude that the spectrum of the preconditioned matrix is
clustered around 1 and therefore if preconditioned conjugate gradient method is applied
to the preconditioned system, we expect fast convergence.

We note however that in general it may be difficult to compute the Fourier coefficients
of 1/f explicitly and hence A,, cannot be formed efficiently. In these cases, we derive
families of Toeplitz preconditioners T by using different kernel functions and different
levels of approximation in approximating the Fourier coefficients of 1/f. We will show
that for the first level of approximation, s = 1, our Toeplitz preconditioners TV reduce
to the well-known circulant preconditioners mentioned above, depending on the kernel
function we used. As an example, if the kernel function is the Fejér function, then T,gl) is
just the inverse of the T. Chan circulant preconditioner proposed in [8].

For integers s > 1, we will show that the Toeplitz preconditioner qus) thus constructed
can be written as a sum of so-called {w}-circulant matrices, (see Davis [11, p.84] or §4 for
definition). More precisely, we have

—27it/s

where V; are {w,}-circulant matrices with w, = e . As a side result, we will see that



given any Toeplitz matrix A, and integer s > 1, we have
1 s—1
A, = — Wi,
n s ; t

where W; are also {w;}-circulant matrices. We note that for s = 2, this formula is first
discovered by Pustylnikov [19]. We further show that for any 0 < t < s, W, ' =V,
provided that Dirichlet kernel is used and W, is invertible. In particular, if all W; are

invertible, we have
1 s—1
T ==y "W
s
t=0

In this aspect, our Toeplitz preconditioner is closely related to the additive Schwarz type
preconditioners proposed by Dryja and Widlund [12].

For the convergence rate, we will prove that the preconditioned system T,gs)An has
clustered spectrum around 1 and converges at the same rate as other well-known circulant
preconditioned systems. Numerical results show that our methods converges faster than
those preconditioned by circulant preconditioners or best band-Toeplitz preconditioners.

The outline of the paper is as follows. In §2, we study Toeplitz preconditioners gener-
ated by 1/f and prove some of their clustering properties. The preconditioners serve as
motivation of the general Toeplitz preconditioners T we construct in 63. Two ways of
constructing T\*) are given. In §4, we show that 7\’ and in fact any Toeplitz matrix can
be written as a sum of {w}-circulant matrices. In §5, we prove that Toeplitz precondition-
ers have clustering and superlinear convergence properties. Finally, numerical examples
and concluding remarks are given in §6 and §7.

2 Toeplitz Preconditioner Generated by 1/f

Let Cy, be the set of all 2r-periodic continuous real-valued functions. For all f € Cy,, let

1 2w

ap = — f(H)e_““adH, k=0,4+1,£2,---
2m Jo

be the Fourier coefficients of f, 7[f] be the semi-infinite Toeplitz matrix with the (7, k)th
entry given by a;_j and 7,[f] be the n-by-n principal submatrix of T[f]. Since f is
real-valued, we have

a,k:dk, kZO,:Izl,:IZQ,

It follows that 7[f] and 7,[f] are Hermitian. We note that the spectrum o(7,[f]) of T,[f]
satisfies

(Tl f]) € [fmins frmaxl, V1 > 1, (1)
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where fumin and fimax are the minimum and maximum of f respectively, see for instance,
Grenander and Szegd [14, p.63-65]. In particular, if f is positive, then T,[f] is positive
definite for all n.

For the Toeplitz systems A,x = b considered in this paper, we will assume that
A, = T,[f] for some functions f in Co,. The systems will be solved by using preconditioned
conjugate gradient method, see Axelsson and Barker [2, p.26]. Thus instead of solving
the original system, we solve P,A,x = P,b. In order to have fast convergence rate,
the preconditioner P, should be chosen such that the spectrum of P,A, is clustered.
Specifically, we want P, A, to be of the form I,, + L,, + U,, where I, is an n-by-n identity
matrix, L,, is a matrix of low rank and U, is a matrix of small /5 norm.

In this section, we will consider using the Toeplitz matrix 7,[1/f] generated by 1/f
as preconditioner for 7,[f]. Our motivation for choosing 7,[1/f] as preconditioner is
given by the following lemma by Widom [26, p.192]. We first note that a function f (not
necessarily real-valued) is said to be of analytic type (or respectively coanlytic type) if
ar = 0 for k < 0 (or respectively, ay = 0 for k& > 0).

Lemma 1 Let f be of analytic type (or respectively coanalytic type) and ag # 0. Then
T1f] is invertible if and only if 1/ f is bounded and of analytic type (or respectively coana-
lytic type). In either case, we have T[1/f|T[f] = Tf]T[1/f] =1 where I is the identity
operator.

As an immediate corollary, we have T,[1/f]T,[f] = I, for all n > 1, i.e. if T,[f] is an
upper or lower triangular Toeplitz matrix, then its inverse is the Toephtz matrix 7,[1/f]
generated by 1/f. In the remaining of this section, we assume that the Fourier coefficients
of 1/f are given explicitly or easily found and hence 7,[1/f] is readily available.

Lemma 2 Let f be a positive trigonometric polynomial of degree K in Cor, i.e.

K

(o) = Z ape™.

k=—K

Then for n > 2K, rank (T,[1/f]T.[f] — I,) < 2K.

Proof: Let

fL = kzoo Pke

We see that

i . (1 ifm=0,
—. kPm—k =\ 0 otherwise.



Hence for n > 2K, the entries of the matrix 7,[1/f]7,[f] — I, are all zeros except possibly
entries in its first and last K columns.

As an example, consider the Kar-Murdock-Szegd matrices [16] whose generating func-

tion is given by
1+a?—ae? —qe ™
f(8) = 5

1l -«

for |a] < 1. Hence T,[f] is a tridiagonal Toeplitz matrix. Since
1 _ i k| gik0 _ 1-a
f( £ (1 — ae?)(1 — ae?)’

T.[1/f] is a dense Toeplitz matrix. However, by Lemma 2, the rank of the matrix
Tol1/ f1Ta]f] — I, is at most two, therefore the conjugate gradient method will converge in
at most three steps, see Axelsson and Barker [2, p.14]. We end this section by considering
general f in Co.

Lemma 3 Let f € Cy, be positive. Then for all € > 0, there exist positive integers M
and N such that for alln > N,

Tall/fTalf) = I + L+ U, o)
where rank (L,) < M and ||Uy||2 < €.
Proof: By Weierstrass Theorem, see Cheney [9, p.144], there exists a positive trigono-

metric polynomial
K
=Y pee®
k=K

with p_p = pr such that px(#) satisfies the following conditions:

%fmin S pK(H) S 2fmaxa ve € [07 27T]7 (3)
and Iy Iy
o [£(0) = pre(9)] < 5 (F1+ V146 min{ f::x’l}' (4)
Since f is positive, it follows from (1) and (3) that the matrices T,[1/f], Tnlpk] and
Tn[1/pK] are all positive definite for all n. erte
T/ATS] = Tl AT, 1/ ek Tall /o] Talpx] 7o K] Talf]
= (In + Va)(Ta[1/p&] Talpx]) (In + Wa) (5)
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where
Vo = (Tal1/f] = Tal1 /o)) T, (1 /]
and
W =T, 'pxl(Talf] = Talpx])-
Note that by (1), (3) and (4), we have

2
17, ]l < 7 (6)
17, 11/p]ll2 < 2 fuaxs (7)
-1 + 1 + min
ITalf) ~ Tolplle < VLI )
and
ITl1/ 1]~ Taltfoillle < mas | — |
" PR = leen F0) i (0)
2 (—14++vV1+¢)
From Lemma 2, we have when n > 2K,
Tall/pr] Talpr] = I + En
with rank(L,) < 2K. Therefore, (5) becomes
Tal1/ AITalf] = (In + Vi) (I + L) (In + W) = I + L + U, (10)
where
U,=V,+W,+V,W,
and

Ly = Lo(I, + W,) + VoL (I, + W,,).
It is clear that rank(L,) < 4K and from (6), (7), (8) and (9), we see that ||U,|l2 <e.

We now show that the spectrum of 7,[1/f]7,[f] is clustered around 1.
Theorem 1 Let f € Cyr be positive. Then for all € > 0, there exist positive integers M

and N > 0 such that for all n > N, at most M eigenvalues of Ty[1/f1Talf] — I have
absolute values greater than e.



Proof: First we note that since f is positive, it follows from (1) that 7,[1/f] is a Hermitian
positive definite matrix. Hence its square root ﬁl/z[l/f] is well-defined and is also a

Hermitian positive definite matrix. Moreover, the norms ||771_1/2[1/f] || and ||7;1/2[1/f] |2
are uniformly bounded independent of n. Next we note that the non-Hermitian matrix
Tol1/ f1T.]f] is similar to the Hermitian positive definite matrix

X, = T2 AT LT £,

therefore the eigenvalues of 7,[1/f]|7,[f] are the same as the singular values of X,,. In the
following, we will show that the singular values of X, are clustered.
By (2), we have

X, = I + T2 FIL TP ) + T V21 AULTY? [ 7).

Using the properties of L, and U, as stated in Lemma 3 and the uniform boundedness
of || “2[1/1]|]2 and ||T/?[1/f]||2, we see that the matrices T “/*[1/f]LaTn’*[1/f] and
T Y21/ £1U. T /?[1/ f] are matrices of low rank and small £5 norm respectively. Therefore,
we have

XX, =1I,+ L, +U,,

where fjn is of low rank, Un is of small ¢, norm and that both matrices are Hermitian.
Using Cauchy’s interlace theorem, see for instance, Wilkinson [27, p.103], we see that the
singular values of X, are clustered around 1.

Using Theorem 1, we can easily prove that if the conjugate gradient method is used
to solve the preconditioned system

To[1/f1Talflz = TalL/ f1b,
the method will converge superlinearly, see Chan [4]. Thus, we see that 7,[1/f] is a good
choice of preconditioner for 7,[f]. However, we remark that in order to construct 7,[1/f],
the first nth Fourier coefficients of 1/f should be generated easily and this may not be
true in general.

3 Construction of General Toeplitz Preconditioners

In this section, we construct our Toeplitz preconditioners for cases where the Fourier

coefficients of 1/f, i.e.
! /27r L it (11)
2m Jo  f(0)

cannot be evaluated efficiently. There are three different cases where this can happen:
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(a) f is given explicitly but the evaluation of the definite integral (11) cannot be done
efficiently.

(b) f is given but that the evaluations of 1/f are costly, e.g. f is given in series form,
(c) fis not given explicitly, e.g. only the Toeplitz matrix A, is given rather than f.

Our approach is to approximate the integral by rectangular rule and f by convolution
product of f with some kernel functions.

Let us begin with case (a). We subdivide the interval [0, 27| into sn — 1 subintervals
of equal length. Here s is a positive integer independent of n. Then we approximate (11)
by

sn—1
(s) i 1 —2mijk/sn _ . .
5 =— Z Tm)e . k=0,%1,---,+(n—1). (12)
7=0 sn
(s)

Our preconditioner is then defined to be the Toeplitz matrix 7,[gn '] generated by

n—1

g9 (0) = Z 2 ve e [0, 2x). (13)
k=

—(n-1)

We remark that we have defined a family of Toeplitz preconditioners indexed by s. Notice
that the first column of the Toeplitz matrix 7;[9,(18)] is given by the numbers {z,(cs) "o
In case (b), we further approximate f in (12) by using its (n — 1)th partial sum, i.e.

we replace f in (12) by

n—1
facr(0) = > ae™, VO € 0,27, (14)
k=—(n—1)
and the numbers {z,(j) 7y so obtained will again give the first column of the Toeplitz
preconditioner E[g,(f)]. In case (c), we associate the entries of the first column of A,, with
a generating function f,_1(f) given by (14). Then the numbers {z,(cs)}z;é can be obtained
similarily as in case (b).
We remark that we can unify the notations employed above by using convolution
products. Given a kernel function I and a positive integer s, we define our approximation
to the Fourier coefficients in (11) to be

sn—1
(s) _ 1 1 —2mijk/sn _
= 2N~ . k=0,+1,---,+(n—1). 15
= 2 T = 9)



Here K x f is the convolution product of K and f, see Walker [25, p.86]. In the first case
(12) above, we are just using the Dirac delta kernel L = § and in the second case (14),
IC = D,, 1, the Dirichlet kernel, see Walker [25, p.87 and p.45] respectively. We note that
there are other kernels that one can use such as the Fejér kernel F,,, see Walker [25, p.76].
We remark that in (15), we are assuming that the values of K x f at the sampled points
{2mj/sn}i"" are non-zero.

In all cases, the Toeplitz preconditioner 7;[97(5)] is the Toeplitz matrix with the first
column given by z,(j) in (15). The cost of obtaining the numbers z,(j) depends on the kernel

we used. For the Dirichlet and the Fejér kernels, or more generally, for kernels that can
be written as

(K Z b, re®?, V6 € [0,27], (16)

k=—(n-1)
the values {(K x f)(27j/sn) jnol can be obtained in O(snlog sn) operations by using a

sn-dimensional FF'T. After getting the values, the numbers {zk }—g in (15) can then be
obtained by using another sn-dimensional FFT in O(snlog(sn)) operations. For a list of
kernels that satisfy (16) and their corresponding by, s, see Chan and Yeung [7].

We note that another way of constructing the Toeplitz preconditioners is by embed-
ding. In fact, by (16), we have

n—1 sn—1

(IC * 277'] Z 27rijk/sn — Z En,k€27rijk/sn
k=0

=—(n-1)

where for s =1,
Bn,kzbn,k_kbn,kfm kzl,---,n—l,

and for s > 1,

bn,k 0<k<n,

lA)nykE 0 n<k<sn—n,

bpj—sn sn—n<k<sn.
Thus (K * f)(27j/sn), j = 0,---,sn — 1, are eigenvalues of a sn-by-sn circulant matrix
with the first column given by {b,;}i" 5!, see Davis [11, p.74]. Let us denote this circulant
matrix by Cy,. Clearly, the eigenvalues of C,! are given by 1/[(Kx f)(27j/sn)]. Therefore,
the first column of the circulant matrix C’sn will be given by

sn—1

- 1 1 —2mijk/sn
Collor =5 2 o pEm o Oskem

see also Davis [11, p.74]. By comparing this formula with (15), we see that our Toeplitz
matrix 7;[97(5)] is just the n-by-n principal submatrix of C!.
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Notice that if b, ;, are known, then the second method requires only one sn-dimensional
FFT and we don’t need to generate the values {(K x f)(27j/sn) ;’51 explicitly. For
example, if the Dirichlet kernel D,,_; is used, then b, = a;, for all n and k. Hence in this
case, we just embed A, into a sn-by-sn circulant matrix Cj, as defined by l;nk above and
our Toeplitz preconditioner is given by the n-by-n principal submatrix of C,!.

Let us end the section by considering the cost per iteration in applying the precondi-

tioned conjugate gradient method to the preconditioned system
Tolg{] Az = Talgl)]b.

We first recall that the multiplication of an n-vector to an n-by-n circulant matrix requires
only two n-dimensional FFTs. Since both matrices E[gﬁf)] and A, are Toeplitz, products
of the form 7}[97(5)]1) and A,v can be obtained by first embedding the matrices into 2n-by-
2n circulant matrices and using 2n-dimensional FFTs, see Strang [21]. Thus the cost per
iteration is about the same as the cost of applying four 2n-dimensional FFTs. For circulant
preconditioned systems, we still have to compute product of the form A, v in each iteration,
but the product 7;[97(15)]1) will be replaced by a circulant matrix-vector multiplication
which can be done by two n-dimensional FFTs. Thus the actual cost per iteration of
our method is roughly 4/3 times higher than that required by circulant preconditioned
systems on sequential machines. On parallel computers using Single Instruction stream,
Multiple Data stream (SIMD) architecture (see for instance Aki [1, p.5]), because the real
time required by 2n-dimensional FFT is of O(log(2n)), (see Aki [1, p.238]), which is about
the same as the cost of n-dimensional FFT, there will be no significant time difference
per iteration between our method and those that use circulant preconditioners.

4 Properties of Toeplitz Preconditioners

In this section, we give some interesting properties of the Toeplitz preconditioners which
will be useful in proving the convergence rate of the Toeplitz preconditioners in the next
section. We first show below that the Toeplitz preconditioner can always be written as a
sum of so-called {w}-circulant matrices, which are defined as follows (see also Davis [11,
p.84] for an equivalent definition):

Definition Let w = e with 0y € [0,27). A matriz W, is said to be a {w}-circulant
matriz if it has the spectral decomposition

W, = D,F,\,F,D,. (17)
Here F,, is the Fourier matriz with entries
1 g
[Fn]k,j = ﬁef%rz]k/n, (18)
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D, = diag[l,w'/™, ... =D/
and A\, is a diagonal matriz holding the eigenvalues of W,.

Notice that {w}-circulant matrices are Toeplitz matrices with the first entry of each
row obtained by multiplying the last entry of the preceding row by w. In particular, {1}-
circulant matrices are circulant matrices while {—1}-circulant matrices are skew-circulant
matrices. Also from the spectral decomposition in (17), we see that the entries in the first
column of W, and the eigenvalues \;(WV,,) of W, are related by the following formula

k/n n—1 3
(Woleo = d Z N (W )e 27k =0 - n—1. (19)
n
§j=0

Theorem 2 Let (K« f)(2mj/sn) # 0 for 0 < j < sn. Then the Toeplitz preconditioner
771[97(15)] can be expressed as

%[ ], (20)

—2mit/s

where %[ggs’t)], 0 <t <s, are {w}-circulant matrices with wy = e and eigenvalues

given by
1

(C DB +Z)

sn

0<j<n0<t<s. (21)

N(Talgio ")) =

In particular, if (KK % f)(2rj/sn) > 0 for 0 < j < sn, the Toeplitz preconditioner 7}[9,(18)]
15 positive definite.

Proof: We replace the index j in (15) by sj + ¢ where 0 < ¢t < s and 0 < j < n. Then
we have

—27rztk/sn n— s—1

1 —1 1
- Z { t e—27rijk/n} _ ZI(Cs,t)
I 2t - ’
j= K * f ] sn ) t=0

t=

w
®w | =

for k=0,41,---,4+(n —1). Here

k/n n—1
(i) _ Yt 1 —2mijk/n (
zp = — e , 22)
’ n ;{(Km(%ﬂ—;)
for 0 <t < s,0 <j < n. Correspondingly, we define
n—1
e 0<t<s, VHe0,2n]
=—(n-1)

12



and rewrite (13) as

—

§— n—1

1
S

s—1
1 )
gT(Ls)(g) —— E ggs,t)(g) = Z}(gs,t)ezke, s>1, VOelo,2n].
S
t=0 )

t

Il
o

k=—(n—1
By the linearity of the operator 7,[-], we see that (20) holds. Moreover, since E[gr(f’t)]
are Toeplitz matrices with their first columns given by {z,(cs’t)}zgé, by comparing (19) with
(22), we see that E[gff’t)] are {w;}-circulant matrices with eigenvalues given by (21). If
(K * f)(2mj/sn) > 0 for 0 < j < sn, then E[gﬁf’t)] will be positive definite for 0 <t < s.
Hence ’771[97(5)] is positive definite.

As an application, we note that our Toeplitz preconditioners are generalization of
circulant preconditioners. Indeed when s = 1, then by Theorem 2, ﬁ[gnl)] is a circulant
matrix. This can also be seen simply from (15) as

an_k:/g]gl), kzl,"',n_l.

Using the characterization of circulant preconditioners in Chan and Yeung [7], we can
further show that if in (15), we choose the kernel IC to be D|y/2|, D,y and F, respec-

tively, then the inverse of 771[97(})] equals to the Strang, Chan and T. Chan circulant
preconditioner respectively, see Chan and Yeung [7].

We next show that indeed any Toeplitz matrix can be written as a sum of {w;}-
circulant matrices. We first note that from the definition of {w;}-circulant matrix, the
inverse 7.1 [g5"] of To[g$™"] is still an {w;}-circulant matrix. Moreover, by (21), its
eigenvalues are given by

M(THg80) = (kw2 4 27

), 0<j<n, 0<t<s.
n SN

Therefore by (19), we see that

where .
h0(6) = ye, 0<t<s, voe0, 2],
k=—(n-1)
with b/ )
(s,it) _ Wt " K 2ﬂ 2t_7r —2mijk/n 23
% _nj:0{< e L BT e, (23
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for 0 <t < 5,0 <j < n. Clearly, we also have
T, WG] = Talot™),

and 9
I 0<j<n,

M(TalhS0]) = (K f) (==

Now let us add up the matrices 7y, [h%

s—1
)= 5 2

t= =—(n—

n sn

—_

n—1 1 1
RO

=0

We now show that for most kernels /C, K does give us back IC

0<t<s.

t)] together. More precisely, let

)

x f exactly.

Lemma 4 Let K be a kernel of the form given by (16). Then for all s > 1,

= (K= f)(0),

Proof: By comparing (16) and (26), it suffices to show that

Vo € [0, 27].

1
bn,k——Zy,(f’t), k:(),i—l,...i_(n_l)_
5 =0
However, by (23)
144 1 &2 e 2mith/sn 2 27r] 2tm
+ (s:it) _ 2 K % —27ijk/n
Y = iy {20
t=0 t=0 7=0
1= 27l ,
- K 20N —2milk/sn E=0. 41+ 4+(n—1
D ]

(24)

(25)

(27)

where the last equality is obtained by setting the index sj + ¢ to be £. Using (16) again,

we have, for any s > 1 and k =0,+1,---,+(n — 1),
1 s—1 1 sn—1
- (s,t) - b 2migl/sn
S 2 D S b
t=0 =0 j=—(n-1)
n—1 1 sn—1
— ) - 2mil(j—k)/sn
— b { p” Z } .
j=—(n—-1 =0



Since
sn—1

1 2627ril(jk)/sn:{ 1 j:k,k:tsn,k:l:QSn,---,

sn 0 otherwise,

(27) follows by noting that s > 1.

We can now show that any Toeplitz matrix can be written as the sum of {w, }-circulant
matrices where 0 <t < s, s > 1.
Theorem 3 Given any Toeplitz matriz A,, and s > 1, we have

s—1

==Y Wi

t=0

tnl»—t

where W are {w}-circulant matrices with w, = e 2™*/5. Moreover, if all WD are

invertible, then the Toeplitz preconditioner 7;[97(13)] corresponding to the Dirichlet kernel
D, _1 is given by

1 s—1
Tolo?) =+ S
=0
Proof: Given A, with the first column entries {a;}}_j, we can write it as A, = T,[fn 1]
where )
fn1(0) = ape™”.
k=—(n—1)
Since
n—1
(Dp—1 * fu-1)(0) = frn-1(0)
k=—(n—1)

we have by Lemma 4 and (25),
- 7;L[fn—l] - %[Dn—l * fn—l] — %[hgs)]

where %[h,&s’t)] are {w;}-circulant matrix corresponding to the Dirichlet kernel D,,_;.
Moreover, by (20) and (24),
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provided that 7,[h$"] are invertible.

When s=2, the theorem gives
1
A, = §(W7§2:°> + W)

where WT(LQ’O) is a circulant matrix and WTEQ’I) is a skew-circulant matrix. We remark that
this formula was first discovered by Pustylnikov [19]. Also from the theorem, we see that
any Toeplitz matrix can be decomposed as a sum of {w;}-circulant matrices and that our
Toeplitz preconditioner is just the sum of the inverses of these {w;}-circulant matrices.

We recall that in additive Schwarz method, a matrix A is first decomposed into sum

of individual matrices,
A=AD 4 A@ 4.4 AG)

and then the generalized inverses of these individual matrices are added back together to
form a preconditioner P of the original matrix A, i.e.

P = ALY 4 ADF 4o A+

see Dryja and Widlund [12]. Thus, the construction of our Toeplitz preconditioner is very
similar to the approach used in additive Schwarz method.

5 Analysis of Convergence Rate

In this section, we discuss the convergence rate of the preconditioned systems E[gr(f)]An.
Before we start, we recall the following two lemmas which are useful in the following
analysis. The proof can be found in Chan [5] and Chan and Yeung [7] respectively.

Lemma 5 Let f € Cor and f(0) = f(0 + 6y) where 0, € [0,27). Then for all n > 0,
Tulf] = DTl f1Dn,

where o _
D, = diag(1, €%, ¢ ... ein=1)

Lemma 6 Let f € Cor and K be a kernel such that IC x f converges to f uniformly on

[0,27]. Define A, to be the diagonal matriz with diagonal entries

Ay = (K )

Then for all e > 0, there exist positive integers N and M such that for alln > N, at most
M eigenvalues of T,[f] — Ful\n F)f have absolute value greater than e.

—)7 0§]<n
n
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We note that the matrix F), in Lemma 6 is the Fourier matrix defined in (18) and hence
F, A, F} is an n-by-n circulant matrix and by (25), it is equal to E[h,(f’o)]. The lemma
thus state that the matrix 7,[f] — E[h,(f’o)] has clustered spectrum around zero. Using

Lemmas 5 and 6, we now show that the spectrum of 7,[f] — %[h,&s’t)] is also clustered
around zero for 0 <t < s.

Theorem 4 Let f € Cor and s > 1. Let K be a kernel such that IC x f converges to f
uniformly on [0, 2] and
W = D, F, A FD;,

be {w;}-circulant matrices with w, = e~>™/* and
2r) 2t
ACOL = (K )L + 25, 0<j<n0<t<s. (28)
n  sn

Then for all e > 0, there exist positive integers N and M such that for alln > N, at most
M eigenvalues of Tp[f] — W have absolute value greater than e.

Proof: For all 0 <t < s, define

ft(e) = f(9 R)
Then we have
[Ags,t)]]]:(’C*f)(Qﬂ_F@):(IC*ﬁ)(Qﬂ), =0,1, ,n—1

n SN

Since by Lemma 5, we have

it follows that .
Talf] — Wit = Dy, (Tal ft] — FnAgf’t)F;:)D;.

n

As K x f converges uniformly to f on [0,27], I * f, also converges to f, uniformly on
[0, 27] for all 0 < ¢ < s. Hence the theorem follows by applying Lemma 6 and noting that
1Dull2=1. o

An an immediate corollary, we can show that each ﬁ[gﬁs’t)], 0 <t < s, is already a
good approximation to T,[f].

Lemma 7 Let f € Cor be positive and s > 1. Let KC be a kernel such that K x f converges
to f uniformly on [0,27]. Then for all € > 0 and 0 < t < s, there exist positive integers

N and M such that for all n > N, at most M eigenvalues of I,, — ﬁ[gff’t)]ﬁl[f] have
absolute value greater than e.
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Proof: For any fixed 0 < ¢t < s, by comparing (25) and (28) and recalling E[hgf’t)] are
{wy }-circulant matrices, we see that the spectrum of 7,[f] — Ta[hn i) | is clustered around
zero. Since Kx f converges to f uniformly and f,;, > 0, it follows that for sufﬁc'lently large
n, K = f will be positive. Therefore by (25) and (21), T [h9] and its inverse T,[g\"] are
positive definite and uniformly invertible for large n. The lemma then follows by noting
that

L = Tolg$NTolf] = L — T, BSOITLLf) = T RSN (TalhEY] = Talf)- o

Now we can prove the mam theorem of this section, namely that the spectrum of the
preconditioned system T, [g5”]T,[f] is clustered around 1.

Theorem 5 Let f € Co; be positive and s > 1. Let KC be a kernel such that Kx f converges
to f uniformly on [0, 27| and T, [gns | be the Toeplitz preconditioner defined in (20). Then
for all e > 0, there exzst %Josztwe integers N and M such that for all n > N, at most M
eigenvalues of I,, — have absolute value greater than €.

Proof: Since the spectrum of 7, [ ]'T[ | is clustered around 1 for 0 < ¢ < s, we have

Talow 1 Tal ] = In + L0 + U
where L%s’t) is a matrix with rank independent of n and Ur(f’t) is a matrix with /5 norm
less than e. We note that by (20)

1 s—1 1 s—1
Tlo VTl f) = = D (Tlai 1Tl f) = = D (I + LG + UPD) = I+ LY + U

S
t=0 t=0

where L) = 1 DI & and US = IS U, As s is independent of n, the rank of

LY is also 1ndependent of n and ||US||> < e. The remaining part of the proof is similar
to that in Theorem 1.

It follows easily by Theorem 5 that the conjugate gradient method, when applied to the
preconditioned system 7, [gn ]An, converges superlinearly. Recall that in each iteration,
the work is of order O(nlogn), therefore, the work of solving equation A,z = b to a given
accuracy is also of order O(nlogn).
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6 Numerical Examples

In this section, we compare our Toeplitz preconditioners with band-Toeplitz precondi-
tioners and circulant preconditioners. We test their performances on six continuous
functions defined on [—m,7]. They are (i) 0* + 1, (i) Y pe_ (1 + [k])~"e™, (iii)
(1 —0.1¢?)/(1 —0.8¢”) + (1 — 0.1e ) /(1 — 0.8¢7%), (iv) 1 + (6 + )%, (v) 6* and (vi)
(0—1)%(6+1)%. We note that the first two functions are 27-periodic continuous, the third
one is a positive rational function and it can be written as

2.16 — 1.8 cos(0)
1.64 — 1.6 cos(6)’

the fourth one has a jump at § = +m, and the last two are functions with zeros. The
matrices A, are formed by evaluating the Fourier coefficients of the test functions.

In the test, we used the vector of all ones as the right hand side vector and the
zero vector as the initial guess. The stopping criterion is ||ry||2/||rollz < 1077, where
r, is the residual vector after ¢ iterations. All computations are done on a Vax 6420
with double precision arithmetic. Tables 1-6 show the numbers of iterations required
for convergence with different choices of preconditioners. In the tables, I denotes no
preconditioner was used, T(s(s), Tl()s) and T}s ) are the Toeplitz preconditioners based on
the Dirac delta function, the Dirichlet kernel D,,_; and the Fejér kernel F,, respectively.
For comparison, we also used Strang’s circulant preconditioner Cg, see Strang [21], and
the best band-Toeplitz preconditioner B; with half-bandwidth 5, see Chan and Tang [6].
We emphasize that for the circulant and band-Toeplitz preconditioners, the inverse of the
matrix is used as the preconditioner. In particular, TDI) and T}l ) are the inverse of the
circulant preconditioners proposed by Chan [4], and T. Chan [8] respectively, whereas Cs
is the inverse of the Toeplitz preconditioner corresponding to the Dirichlet kernel Dy, ;|
with s = 1.

In Table 2, since the generating function is not known explicitly, Bs and Té(s) are
not available. In Table 4, the Remez’s algorithm fails to give the best trigonometric
approximation to the discontinuous generating function. Hence Bj is also not available
in that case. In Tables 5 and 6, since f has zeros, the kernel functions may be zero at
some of the mesh points 27j/sn and hence some of the matrices ﬁ[gff’t)] are undefined,
see (21). In that case, we just replace those eigenvalues of E[gr(f’t)] by zeros. We note
that although ﬁ[gff’t)] may be singular, the preconditioners

1 s—1
Tolo) =~ > Taloy”]
t=0

are non-singular in all the cases we tested, except in Table 4, T(s(l) is singular as f(0) = 0.
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From the numerical results, we see that in all tests, the Toeplitz preconditioner T(5(4)
performs better than the other preconditioners and the differences are more profound
when f is either discontinuous or nonnegative. For other Toeplitz preconditioners, the
number of iterations in most cases decreases as s is increased. We note that the larger
the s is, the better the rectangular rule (12) will be in approximating the definite integral

(11).

N
~

n |1 |0 @ [0 ) oS [ [ 1D [ 1P [ 19 | ¢y | Bs
16 8 5 [ 4465 4 8][8][8]6]7
2219 5 | 4 | 4 [ 5 | 44|78 8 57
64 |36 5 | 4 | 4 | 5 | 4 |4 |7 |7 |7 |57
12854 5 [ 4 [ 4 |5 [ 4 4666 |57
256 |66 | 5 | 4 | 4 | 5 | 4 | 4 | 6 |5 |5 |5 |7
51270 5 | 4 | 4 | 5 | 4|4 |65 |5 |57
Table 1. Numbers of Iterations for f(6) = 0* + 1.
n [ 1|t 1 [ [ | 1D [P | | ¢ | B
6 8 [ | |5 [ 3[4 | 4445/
e | | [ 533533 5]
64 [[14] — | | 4345|445
2817 — | | [ 5 [ 4 [ 45 [ 445/
256 |20 — |~ |~ |5 | 4 |4 |5 | 4 |4 |5 [
si2 |22 — | | [ 5 |4 |4 |5 | 4|4 5]
Table 2. Numbers of Iterations for f(0) =Y ,2__ (1 + |k]) 1le™?.
n [0 |70 T2 [0 ) [ ) | [ |1 | ¢l | Bs
6 |6 22254433 [3][5]7
o 222 5|44 3]2]2]5]s8
64 |11 2 [ 225 |5 |5 | 22239
2815 2 [ 2 [ 25 [ 4[4 22229
256 |18 2 | 2 | 2 | 4 | 4 |4 | 22229
si2 18 2 [ 2 [ 2 [ 4| 4|4 | 22229

Table 3. Numbers of Iterations for f(6) = }:8:};223 + tg:;i:iz.
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n [0 |20 T2 [ 1) [ ) | [P |1 | ¢l | Bs
16 16] 7 [ 6 6 | 8|7 [ 7 [ 99910

32 33 7 [ 6 [ 6 [ 9| 8| 8 [[10]10]10[14

64 [[45] 8 | 7 | 7 |9 [ 10| 9 |11 |11 |11 |17
2849 10 [ 7 [ 7 [0 [10 [10 |12 [ 12 [ 12 |19

256 |50 | 10 | 8 | 8 | 10 | 11 | 10 | 12 | 12 | 12 | 20
51251 11 | 8 | 8 |11 | 11 |10 | 12 |13 | 13 | 21

Table 4. Numbers of Iterations for f(#) = (0 + 7)? + 1.
n 1 |t 2 O P P | [ P | 8 | ¢ | Bs
16 | 9 -6 [ 7] 886 s[s8s]8]9]s
32 28 |~ [ 6 | 7 |1t |11 [ 10|16 | 17 | 17 |10 |11
64 || 103 | — [ 7 | 7 |16 |18 [ 14 |25 | 25 | 25 |13 |11
128 420 | — [ 13 | 10 |27 [ 30 | 20 | 38 | 40 | 40 | 16 | 12
256 || >1000 | — [ 13 [ 12 | 45 | 70 | 30 [ 109 [ 102 | 102 | 19 | 12
512 | >1000 | — | 14 | 13 | 119 [ 179 | 66 | 340 | 305 | 305 | 27 | 13
Table 5. Numbers of Tterations for f(6) = 6*.

n [ @ e 9 [ D | P [ 1P | e | Bs
16 | 8 5 | 5 | 4 129 w088 [ 877
322 24 |5 [ 5 | 4 | 87 |6 | 14a]13]13]8]38
64 || 67 | 5 | 5 | 4 | 8 | 8 [ 6 |17 | 18] 18 |9 |38
128 185 || 6 | 6 | 4 |10 8 | 7 [[22 21|21 |[6]38
256 | 450 || 8 | 4 | 6 |10 | 7 | 7 |27 [ 28| 28| 88
512 [>1000] 8 [ 6 | 6 [ 10| 9 [ 10 |36 |35 |35 | 838

Table 6. Numbers of Iterations for f(#) = (0 — 1)2(6 + 1)2.

7 Concluding Remarks

In this paper, we have proposed and analyzed new types of preconditioners for Hermitian

positive definite Toeplitz systems.

The preconditioners are Toeplitz matrices and can
be considered as generalization of circulant preconditioners proposed previously in other
literature. In this preliminary report, we have only considered using rectangular rule to
approximate the definite integral (11). We note that other Newton-Cotes formula can
also be employed (see Stoer and Bulirsch [20, p.119-120]). The definite integral (11) will
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then be approximated by

sn—1
s 1 . ..
g =—>" Dkl = 0,1, (- 1),

where (3 are the weights used in the approximating formula. For example, for Simpson’s
rule, (11) will be approximated by

() 1 1 4 —2mik/sn 2 —4mik/sn 1 —2mi(sn—1)k/sn
4 = + e e e ,
’ {f(O) FG) ey f (Rt

for k = 0,41,---,+(n — 1). Presumably, such higher order quadrature rules will yield
better preconditioners.

Acknowledgements: We would like to thank Professors M. Pourahmadi and G. Ammar of
Northern Illinois University for their valuable discussions.
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