Fast Iterative Solvers for Toeplitz-plus-Band
Systems

Raymond H. Chan and Kwok-Po Ng
Department of Mathematics
University of Hong Kong
Hong Kong

October 1991
Revised June 1992

Abstract. We consider the solutions of Hermitian Toeplitz-plus-band sys-
tems (A, + B,)x = b, where A, are n-by-n Toeplitz matrices and B, are
n-by-n band matrices with band-width independent of n. These systems ap-
pear in solving integro-differential equations and signal processing. However,
unlike the case of Toeplitz systems, no fast direct solvers have been developed
for solving them. In this paper, we employ preconditioned conjugate gradi-
ent method with band matrices as preconditioners. We prove that if A, is
generated by a non-negative piecewise continuous function and B,, is positive
semidefinite, then there exists a band matrix C,, with band-width indepen-
dent of n, such that the spectra of C-'(A, + B,) are uniformly bounded
by a constant independent of n. In particular, we show that the solution of
(A, + By)z = b can be obtained in O(nlogn) operations.
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1 Introduction

In this paper, we consider the solution of systems of the form (A, + B,)r =
b, where A, is an n-by-n Hermitian Toeplitz matrix (i.e. the entries of
A, are the same along its diagonals) and B, is an n-by-n Hermitian band
matrix with band-width independent of n. These systems appear in solving
Fredholm integro-differential equations of the form

B8
L{z(0)} + / K (6 — 0)x(6)d = b(0).

Here x(6) is the unknown function to be found, K (#) is a convolution kernel,
L is a differential operator and b(6) is a given function. After discretization,
K will lead to a Toeplitz matrix, L a band matrix and b(f) the right hand side
vector, see Delves and Mohamed [6, p.343]. Toeplitz-plus-band matrices also
appear in signal processing literature and have been referred to as periheral
innovation matrices, see Carayannis et. al. [2].

For Toeplitz systems A,z = b, fast and superfast direct solvers of com-
plexity O(n?) and O(nlog®n) respectively have been developed, see for in-
stance Trench [10] and Ammar and Gragg [1]. However, there exists no fast
direct solvers for solving Toeplitz-plus-band systems. It is mainly because
the displacement rank of the matrix A, + B, can take any value between 0
and n. Hence fast Toeplitz solvers that are based on small displacement rank
of matrices cannot be applied.

We note that given any vector z, the product (A4, + B,)z can be com-
puted in O(nlogn) operations. In fact, A,z can be obtained by Fast Fourier
Transform by first embedding A,, into a 2n-by-2n circulant matrix, see Strang
[9]. Thus iterative methods such as the conjugate gradient method can be
employed for solving these systems. The convergence rate of the conjugate
gradient method depends on the specturm of the matrix A, + B,,, see Golub
and van Loan [8]. However, in general, the specturm of A,, and hence of
A, +B,, is not clustered and the method will therefore converge slowly. Hence
a suitable preconditioner should be chosen to speed up the convergence.

For Toeplitz systems A,z = b, circulant preconditioners have been proved
to be successful choices under the assumption that the diagonals of A, are
Fourier coefficients of a positive 2m-periodic continuous function. In that
case, Chan and Yeung [3] proved that the convergence rate of the method



is superlinear. However, circulant preconditioners do not work for Toeplitz-
plus-band systems. In fact, Strang’s circulant preconditioner [9] is not even
defined for non-Toeplitz matrices. T. Chan’s circulant preconditioner, while
defined for A, + B,,, will not work well when the eigenvalues of B,, are not
clustered, see the numerical results in §4. Even if we approximate A, by
a circulant preconditioner M, the matrix M, + B, cannot be used as a
preconditioner since the system (M, + B,)z = y cannot be solved easily.

In this paper, we use band matrices C), as preconditioners. We will assume
that B, is an arbitrary Hermitian positive semidefinite band matrix with
band-width independent of n and the diagonals of A,, are Fourier coefficients
of a non-negative piecewise continuous function f. In that case, A, + B,
will be Hermitian positive definite. We prove that if the essential infimum
of f is attained by finitely many points in [—7, 7] and if f is sufficiently
smooth around these points, then there exists a Hermitian positive definite
band matrix C),, with band-width independent of n, such that the spectra of
C, '(A,+ B,) are uniformly bounded by a constant independent of n. Hence
for a given tolerance, the number of iterations required for convergence is
independent of n. Since the band matrix system C,x = b can be solved in
O(n) operations, the total complexity of the method is O(nlogn).

The outline of the rest of the paper is as follows. In §2, we introduce
our preconditioners C), and study the spectral properties of A, + B, and
Cp- In §3, we show that the spectra of C, (A, + B,) are uniformly bounded
by constants independent of n. Finally, numerical examples and concluding
remarks are given in §4.

2 Construction of the Preconditioner C),,

To begin with, let C* be the set of all non-negative piecewise continuous
functions defined on [—m, 7]. For all f € C*, let

1 /(" .
telf] = g/ f(@)e *ds, k=0,4+1,42, .-

be the Fourier coefficients of f. Since f is real-valued,

telf] = Glf]l, k=0,+1,£2, .-



Let A,[f] be the n-by-n Hermitian Toeplitz matrix with the (j,1)th entry
given by t;_;[f]. The function f is called the generating function of the
matrices A,[f]. We recall that a point 6y is said to be a zero of f with order
v if f(6y) = 0 and v is the smallest positive integer such that f®)(6y) # 0
and f**1(0) is continuous in a neighborhood of 6.

In the following, we denote the essential infimum and the essential supre-
mum of f by fiin and fra. respectively. We will assume that f attains fuin
at finitely many points in [—7, 7] and that f is smooth around these points.
More precisely, we assume that f(6) — fmi, has finitely many zeros in [—m, 7]
and that the orders of these zeros are finite and positive. Notice that the
matrix A,[f] is unchanged when f is redefined at finitely many points. Thus
we can always assume without loss of generality that f is continuous at those
minimum points.

From the assumptions, we see that fiax # fmin- Lhen by using the fact
that

1™ =
*A _ i(j—1)812 1
ol =g [ 132w o) )
for any g € C* and any n-vector u = (uy, -+, u,)*, Chan [4, Lemma 1] proved
that
)\mm(An[f]) > fmin- (2)

Here Apin(A,[f]) is the smallest eigenvalue of A,[f]. Since f is non-negative,
A, [f] is positive definite for all n. In the following, we will assume that the
band matrices B, are Hermitian positive semidefinite matrices with band-
width 2w + 1 and that w is independent of n. Clearly the matrix A,[f]+ B,
is positive definite for all n.

For all n > 0, our preconditioners C,, are defined as

Cn = Anlbu] + By + fmin - In- (3)
Here 0
b.(0) = (2—2cosh)* = (2 sin(g))Q“,

and it has a unique zero of order 2; at # = 0. We remark that A,[b,] is a
symmetric band Toeplitz matrix of band-width (24 1) and its diagonals are
given by the Pascal triangle, see Chan [4]. Clearly, C,, is a symmetric band
matrix of band-width

20+ 1=max{2u + 1,2w + 1}.
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Moreover, since the minimum of b, is 0, it follows from (2) and (3) that
)\min(on) 2 )\min(An[b/L]) + )\min(Bn) + fmin > fmin 2 0.

In particular, the preconditioner C), is positive definite for all n. We note
that in [4, Theorem 2|, we have shown that A,[0,(6)] + fmin - I, is a good
preconditioner for A,[f]. Thus intuitively, we expect C}, so defined to be a
good preconditioner for A,[f] + B,.

3 Condition Number of the Preconditioned
Matrix

In this section, we show that the spectra of C;'(A, + B,) are uniformly
bounded by constants independent of n. We first consider generating func-
tions f in C™ where f(0) — fmin has only one zero at 6y. Let the order of 6
be v. We note that f®)(6y) > 0 and v must be even. We remark also that
we can assume without loss of generality that 6, = 0. In fact the function
f(0+6) — fuin has a zero at § = 0 and

An[f (0 +60)] = Vi Al f (0)]Va,
where V,, = diag(1,e %, e=%% ... ¢=in=1)%) gee Chan [4, Lemma 2].

Theorem 1 Let f € CT. Suppose that f(0) — fuin has a unique zero at
6 = 0 with order equal to 2p. Let C,, = Ap[by] + By + fuin - I. Then
k(CHARf] + By)) is uniformly bounded for all n > 0.

n

Proof: By assumption, there exists a neighborhood N of 0 such that f is
continuous in N. Define

f(6)

F(6) = (2 —2cos ) + fuin

Clearly F'is continuous and positive for § € N \ {0}. Since

1 fmin>07
fim F(0) = § f0)

0—0




is positive, F' is a continuous positive function in N. Since f is piecewise
continuous and positive almost everywhere in [—7, 7] \ NV, we see that F is
a piecewise continuous function with a positive essential infimum in [—7, 7].
Hence there exist constants by,by, > 0, such that by < F() < by almost
everywhere in [—m, ]. Without loss of generality, we assume that by > 1 >
bi. By using (1), we then have

u* Ay flu
by < <b
b U*(An[bu] + fmin * Ln)u ’

for any n-vector u. Recall that B, is positive semidefinite and C,, = A, [b,]+
By + fmin + I, we then have

u*(A,[f] + Bp)u

u*Chu

b1 S S b?)
for any n-vector u. Hence k(C;'(A,[f]+ Bn)) < by/by, which is independent
ofn. O

We remark that the results can be readily generalized to the case where f,
is attained at finitely many points, cf. Chan [4, Theorem 3|. The band-width
of €, will be given by

20+ 1 =max{) v;+1,2w+1},
J

where v; are the orders of the zeros of f(#) — fuin and the summation is over
all such zeros.

Next we consider the computational cost and storage requirement of our
method. The number of operations per iteration in the preconditioned conju-
gate gradient method depends mainly on the work of computing the matrix-
vector multiplication C ' (A, [f]+ B,)y, see for instance Golub and van Loan
[8]. In this case, the matrix-vector multiplication B,y requires only (2w+1)n
operations and the product A,[f]y can be done in O(nlogn) operations by
the Fast Fourier Transform. The system C),y = z can be solved by using any
band matrix solver. The cost of factorizing C), is about %Ezn operations and
then each subsequent solve requires an extra (2¢+ 1)n operations. Hence the
total operations per iteration is of order O(nlogn) as £ and w are indepen-
dent of n. It is well-known that the number of iterations required to attain



a given tolerance € is bounded by

V(G (A, + B log(4) + 1.
Since the condition number is uniformly bounded in this case, the overall
work required to attain the given tolerance is of O(nlogn) operations.

As for the storage, we need five n-vectors in the conjugate gradient
method. The diagonals of A, and the bands of B,, require extra (w + 2) n-
vectors, and finally, we need an n-by-(¢+ 1) matrix to hold the factors of the
preconditoner C,,. Thus the overall storage requirement is about (8+/¢+w)n,
which is significantly less than the O(n?) storage required by Gaussian elim-
ination method.

4 Numerical Results and Concluding Remarks

To test the convergence rate of the preconditioner, we considered two different
band matrices. The first one is the diagonal matrix

| =

. 2 n—1
Dn:fmax'dlag[oa 757"'7 n ]

S

whose eigenvalues are distributed uniformly in the interval [0, fiax]. The
second one is a symmetric tridiagonal matrix given by

2T

B(“):(n+1)“-n+1

n

Notice that Bg) is the discretization matrix of the operator

d%{(eﬂ)d%}

in [—m,m]. Clearly, the matrices B are irreducibly diagonally dominant,

hence they are positive definite.



In our tests, the vector of all ones is the right hand side vector, the zero
vector is the initial guess and the stopping citerion is ||r,||2/||roll2 < 1077,
where 7, is the residual vector after ¢ iterations. The computation are done
with 8-byte arithmetic on a Vax 6420. Three different generating functions
were tested. They are 0%, cosh § and

_ [ 0* 19| < 7/2,
'](9):{ 1 10| >n/2.

The corresponding band-widths of C), are 5, 3 and 3 respectively.

For comparison, we also solved the problems with two other precondition-
ers. The first one is the T. Chan circulant preconditioner 7,, corresponding
to the matrix A, [f]+ B,,. The second preconditioner FE,,, which has the same
band-width as C),, is obtained by just copying the diagonals of A,[f] + B,.
We note that some of the E,, may be indefinite. In contrast, C), and T,, are
always positive definite. Tables 1 to 4 show the number of iterations required
for convergence (** means more than 1000 iterations). We see that as n in-
creases, the number of iterations stays almost the same when C,, is used as
the preconditioner while it increases if others are used.

7] 04 | cosh | J(0) |
[ n [ No[Cu|En[Tw[No[Cp|En[T[[No[Cu|En]|T,
6 ]| 1608|1615 8|58 |15]14a|12] 9 |14
32 |26 11| 9 |23 21| 9 | 9 |18 18 | 14|12 |16
61 |36 |12 | 11 |31 25 | 9 |10 |21 | 23 | 14| 15 | 19
193 | 50 | 14 | 16 |40 | 20 | 10 | 11 | 23 | 30 | 15 | 18 | 24
256 || 68 | 15 | 21 |53 | 32 | 10 | 12 | 25 | 39 | 15 | 23 | 30
512 | 91 | 15 | 32 | 70 | 34 | 10 | 14 | 27 | 50 | 15 | 28 | 38
1024 | 122 | 16 | 64 | 91 | 36 | 10 | 16 | 27 | 63 | 15 | 35 | 47

Table 1: Number of Iterations for B, = D,,.




L7 6 | cosh | J(0) |
| n [ No |G| By [Ty [No[Cy|Ey [Ty [ No|Cy|Ey [T, |
16 17 |12 | 15 | 16 || 16 | 7 9 |14 16 | 9 9 |16
32 42 |15 35 | 23 |31 | 8 | 13 |16 | 35 | 10 | 14 | 27
64 10717 1 98 | 32 (|38 | 9 | 18 | 17| 75 | 12| 23 | 35
128 (1268 | 19 | 372 | 45 || 42 | 9 | 30 | 17| 162 | 14 | 40 | 42
256 || 652 | 21 | ** | 63 | 43| 9 | 48 | 17| 329 |16 | 75 | 51
512 || ** | 22 | ** | 90 | 43 | 10 | 82 | 17 || 670 | 17 | 146 | 61
1024 || ** | 23 | ** | 127 || 43 | 10 | 146 | 16 | ** | 18 | 293 | 74
Table 2: Number of Iterations for B,, = BY(LO)

/] ' | cosh 6 | J(0) |
[ n [ No |Co|En| To [No[Co|Bn| To [ No[Ch[En| Ty |
16 16 | 8 8 | 16 16 | 5 6 | 16 16 | 5 5 | 16
32 37 | 8 |10 | 31 36 | 5 7 | 31 36 | 5 6 | 32
64 82 | 8 |13 | 47 || 82 | 5 8 | 46 || 83 | 5 8 | bl
128 || 188 | 8 | 18 | 70 || 184 | 5 9 | 65 || 189 | 5 9 | 77
256 || 415 | 8 | 23 | 104|408 | 5 | 12 | 91 || 418 | 5 | 11 | 112
512 || 893 | 8 | 31 | 152|826 | 5 | 13 | 130|896 | 5 | 14 | 164
1024 || ** | 8 |40 {220 ** | 5 |16 | 183 | ** | 5 | 17 | 238
Table 3: Number of Iterations for B, = Bg)

7] 6! | cosh @ | J(0) |
| n [ No |Gy [Ey [Ty [No |Gy |Ey [T, [No|[Cy|Ew][T, |
16 16 | 4 5 | 17 || 16 | 3 | 4 | 16 16 | 3 3 | 16
32 37 | 4 5132 || 373 | 4|32 37| 3 4 | 32
64 83 | 4 5152 || 8 | 3 | 4 |52 | 8 | 3 4 | 52
128 || 189 | 3 5 | 77 ||190 | 3 | 4 | 77 || 190 | 3 4 | 77
256 || 418 | 3 5 | 113 || 417 3 | 4 | 114 | 418 | 3 4 | 113
512 || 897 | 3 5 | 166 || 897 | 2 4 | 165 || 898 | 2 4 | 166
1024 | ** | 3 5 241 | ** | 2 4 1240 | ** | 2 4 | 241

Table 4: Number of Iterations for B,, = Bff)
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We conclude that our algorithm solves the system (A, + B,)r = b in
O(nlogn) operations for a certain class of Toeplitz matrices A,. The cost
is significantly less than the O(n3) cost required by Gaussian elimination
method. We note that the spectra of C-'(A,[f] + B,) in general will not be
clustered around 1 although they are uniformly bounded. We finally remark
that our results in this paper extend those obtained in Chan [4]. More
precisely, in [4], we proved that x(C, ' A,[f]) is uniformly bounded whenever
f is 2w-periodic continuous. However, using Theorem 1 with B, equal to a
zero matrix, we see that the same conclusion holds whenever f is 2r-periodic

piecewise continuous.
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