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Abstract. When pricing American-style options by Tilley’s bundling algorithm, one has to store
the simulated asset prices at all time steps on all paths in order to determine when to exercise
the options. If N time steps and M paths are used, then the storage requirement is M · N . In
this paper, we improve the Tilley’s bundling algorithm [6] by applying our backward-path method,
which requires only O(M) storage. The only additional computational cost is that we have to
generate each random number twice instead of once. For machines with limited memory, we can
now use larger values of M and N to improve the accuracy in pricing the options.

1. Introduction

Monte Carlo method is one of the main methods for computing American-style options. The ap-
parent difficulties in using Monte Carlo methods to price American-style options come from the
backward nature of the early exercise feature. There is no way of knowing whether early exercise is
optimal when a particular asset price is reached at a given time. There are different optimal stop-
ping rules proposed to tackle the above difficulties, see for instance [6,1,5]. But, all these stopping
rules are computationally inefficient because they have to save every intermediate asset price along
every path.

One can look at this problem from another point of view. In usual Monte Carlo method, the
simulated paths are all generated in the time-increasing direction, i.e. they start from the initial
asset price S0 and march to the expiry date according to a given geometric Brownian motion. But
since the pricing of American options is a backward process starting from the expiry date back to
S0, these simulation algorithms require the storage of all asset prices at all simulation times for
all simulated paths. Thus the total storage requirement grows like MN where M is the number
of simulated paths and N is the number of time steps. The accuracy of the simulation is hence
severely limited by the storage requirement.

In [2], we proposed a backward-path method for computing American-style options that does not
require storing of all the intermediate asset prices. Our method can reduce the memory requirement
of the least-squares approach [5] from MN to O(M). Our main idea is to generate the paths twice:
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one in a forward sweep to establish the asset prices at the expiry date, and one in a backward
sweep that computes the intermediate asset prices only when they are needed. The only additional
cost in our method is that we have to generate each random number twice instead of once. The
resulting computational cost is less than twice of that of those methods where all the intermediate
asset prices are stored. In this paper, we apply our backward-path method in [2] to improve Tilley’s
bundling algorithm [6]. The storage requirement of the Tilley’s bundling algorithm will be reduced
from MN + 3M + O(1) to 4M + O(1) only, so that we can improve the accuracy in pricing the
options by using larger values of M and N .

The remainder of this paper is organized as follows. Section 2 recalls our backward-path method
in [2]. In Section 3, we show how to use our method to compute American options by adopting it to
the bundling algorithm proposed by Tilley [6]. Section 4 gives some numerical results to illustrate
the effectiveness of our method.

2. The Backward-Path Method

In this section, we recall our backward-path method in [2], which we do not need to store the
intermediate asset prices when computing the option prices. As usual, we let the asset price S
follow a geometric Brownian motion

dS

S
= rdt+ σdX, (1)

where r is the risk-free interest rate, σ is the volatility, and dX is a standard Brownian motion. In
the Monte Carlo simulation, we divide the time horizon into N time steps with each having the
length

∆t =
T − t0
N

,

where t0 is the current time and T is the expiry date of the option. Thus the time horizon is
discretized as t0 < t1 < · · · < tN = T where tj = t0 + j∆t.

Let the asset price at time t0 be S0. Given S0, if we are to simulate M paths, then the i-th path
can be defined by the recurrence:

Si
j = Si

j−1e
(r−σ2

2
)∆t+σ

√
∆tεij , 1 ≤ i ≤ M, 1 ≤ j ≤ N, (2)

where Si
j = Si(tj) is the asset price on the i-th path at tj with Si

0 = S0 for all i, and εij are
independent, identically distributed, standard normal random numbers; see for instance [4, p.225].

The straightforward approach, like those in [6,5], is to simulate the paths and then store all
intermediate asset prices Si

j up for later computation of the option prices. We will refer this approach
as the full-storage method. It requires the storage of M ·N standard normal random numbers.

In our backward-path method, each random number {ϵij} is generated twice, but the intermediate

asset prices Si
j are generated once only as in the full-storage method. To see how this is done, we

note from (2) that the intermediate asset prices are given by

Si
j = S0e

j(r−σ2

2
)∆t+σ

√
∆t(εi1+εi2+···+εij), 1 ≤ i ≤ M, 1 ≤ j ≤ N. (3)
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We generate the random numbers εij in the following manner. Given an arbitrary seed d:

set seed d −→ ε11 −→ ε21 −→ . . . −→ εM1
−→ ε12 −→ ε22 −→ . . . −→ εM2
−→ . . .

−→ ε1N−1 −→ ε2N−1 −→ . . . −→ εMN−1

−→ ε1N −→ ε2N −→ . . . −→ εMN (4)

More precisely, we generate the random numbers on every path i, 1 ≤ i ≤ M , for the time step
j = 1 first. Then we generate them on all paths for j = 2 etc.

According to (3), in order to compute Si
N , we only need the sum

∑N
j=1 ε

i
j . We assign a vector s

to hold this. Thus once εij is generated, we add it to s(i):

s(i) = s(i) + εij , 1 ≤ i ≤ M, (5)

and εij can then be discarded. When all the random numbers are generated, we compute Si
N on all

paths by (3):

Si
N = S0e

N(r−σ2

2
)∆t+σ

√
∆ts(i), 1 ≤ i ≤ M. (6)

After Si
N are computed, we define the ith path, 1 ≤ i ≤ M , to be:

Si
N = S0e

N(r− 1
2
σ2)∆t+σ

√
∆t(εiN+εiN−1+···+εi1),

...
...

Si
j = S0e

j(r− 1
2
σ2)∆t+σ

√
∆t(εiN+εiN−1+···+εiN−j+1), (7)

...
...

Si
1 = S0e

(r− 1
2
σ2)∆t+σ

√
∆tεiN .

Comparing (3) with (7), and noting that in both equations, εij are independent identically dis-

tributed standard normal random numbers, we see that the sequence S0, S
i
1, . . . , S

i
N defined in (7)

represents a path that follows the geometric Brownian motion (1) starting from S0. We will call
the paths in (7) the backward paths as they are generated in the time-decreasing direction. The
paths defined in (3) will be called the forward paths. We emphasize that the option prices obtained
by the full-storage and the backward-path method should be statistically the same, since both the
forward paths and the backward paths satisfy the same geometric Brownian motion (1). In Figure
1, we depict ten simulated forward paths and their corresponding backward paths.

When computing the option price, we have to move backward in time. From (7), we have

Si
j−1 = Si

je
−(r−σ2

2
)∆t−σ

√
∆tεiN−j+1 , 1 ≤ i ≤ M, 1 ≤ j ≤ N. (8)

Thus given {Si
j}Mi=1, to obtain {Si

j−1}Mi=1, we only need the random numbers {εiN−j+1}Mi=1. Since
we are moving backward in time, j here starts from N and decreases back to 1. In particular,
given {Si

T }Mi=1, to obtain {Si
T−1}Mi=1, we only need the random numbers ε11, ε

2
1, · · · , εM1 , and we can

generate them by resetting the seed to d. Therefore we need to generate the numbers {εiN−j+1}Mi=1

sequentially as in (4), and we can generate them by using the given seed d again. Repeating the
idea, we can generate the asset prices {Si

j}Mi=1 for all time steps j in the backward manner, and at

each time step, we require only one M -vector s for storing {Si
j}Mi=1 for that time step.

We end this section by pointing out that our backward-path method can be applied to most
pseudo random number generators that can generate a unique sequence of random numbers for a
fixed seed.
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Fig. 1. Simulations of forward paths (left) and backward paths (right).

3. The Bundling Algorithm

Our path generating technique can reduce the memory requirement of Tilley’s bundling algorithm
for pricing American-style options [6]. In this section, we recall the bundling algorithm and illustrate
our method by pricing an American put options.

At the final exercise date, the optimal exercise strategy for an American option is to exercise
the option if it is in the money. Prior to the final date, however, the optimal strategy is to compare
the immediate exercise value with the expected cash flow from continuing, and then exercise if
immediate exercise is more valuable. Thus the key to optimally exercising an American option is
to identify the early exercise boundary. In [6], the early exercise boundary between holding and
immediate exercising is determined by finding the leading 1 of the first string of 1’s such that
its length exceeds the length of every subsequent string of 0’s in the reordered sequence of the
simulated paths at each time step. And hence, one can estimate an optimal stopping rule for the
option.

According to the stopping rule, the cash flows generated by the option at each exercise time are
identified. The option price is then calculated by discounting all these cash flows back to time t0 at
the risk-free rate r. However, as in other Monte Carlo methods for computing American options,
the method has to save all the intermediate asset prices for the computation of the option price. It
therefore requires a storage of size MN , where M is the number of stimulated paths, and N is the
number of time steps. Here we apply our method in §2 to reduce the storage requirement to O(M).

We now illustrate our method by a numerical example. Consider an American put option on a
non-dividend paying stock with strike price E equals to $10. The current stock price S0 is $6, the
risk-free rate r is 0.1, the volatility σ is 0.4, and the time to maturity T is 0.5 years. We assume
that the option is exercisable at time j = 0, 1, 2, 3, 4 and 5 (i.e. N = 5). We illustrate the algorithm
by using 12 simulated paths, i.e. M = 12.

Algorithm

1. Initialization:
(a) Set the seed to d which is chosen arbitrarily. Using (4)–(6), compute Si

5 and save it in s(i)
for each path i. Then reset the seed to d.

(b) For each path i, compute the present value of the payoff at the expiry date T , which is equal
to e−5r∆tmax{E − Si

5, 0}, and save them in a vector p. The value is the cash flow realized
by the option holder conditional on not exercising the option before the expiry date j = 5.
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Path i Si
5 p(i) = e−5r∆tmax{E − Si

5, 0}
1 6.158435 3.654209
2 6.764154 3.078031
3 5.359064 4.414594
4 3.506414 6.176889
5 6.744713 3.096524
6 8.726923 1.210988
7 4.175771 5.540177
8 7.026605 2.828380
9 8.236295 1.677687
10 8.175020 1.735974
11 5.143846 4.619315
12 7.641987 2.243010

2. Backward time-marching to j = 4:
(a) Use (4) to generate the random numbers {εi1}Mi=1. Then compute Si

4 for all paths by (8) and
store them in s(i), i.e. the memory location of Si

5 will be overwritten by Si
4.

(b) Reorder the simulated paths in the descending order (or ascending order for the call option).
Reindex the paths, denoted by k, according to the reordering and store the corresponding
location in w. Then, group them into Q bundles. In this example, we choose Q = 3 and each
bundle has 4 paths.

Bundle q Path k w(k) = i Sk
4 p(k)

1 2 9.834040 3.078031
1 2 9 8.746178 1.677687

3 10 7.936682 1.735974
4 6 7.610601 1.210988
5 12 6.683837 2.243010

2 6 5 6.418780 3.096524
7 11 6.223718 4.619315
8 3 5.952373 4.414594
9 8 5.895387 2.828380

3 10 1 5.023360 3.654209
11 7 3.909715 5.540177
12 4 3.277212 6.176889

(c) For each bundle, we estimate the expected payoff from continuing by averaging p(k) over all
paths in the same bundle q for q = 1, 2, 3, i.e.

h(k) =
1

4

∑
all l

in bundle
containing k

p(l) (9)

Then, compare them with the present value of immediate exercising to see if we should
“tentatively” exercise (see the table below). Then we define an indicator variable c by:

c(k) =

{
1, if e−4r∆tmax{E − Sk

4 , 0} ≥ h(k),

0, otherwise.
(10)
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Exercising Continuation Indicator

Bundle q Path k Sk
4 e−4r∆tmax{E − Sk

4 , 0} h(k) c
1 9.834040 0.159452 0

1 2 8.746178 1.204658 1.925670 0
3 7.936682 1.982413 1
4 7.610601 2.295708 1
5 6.683837 3.186133 0

2 6 6.418780 3.440797 3.593361 0
7 6.223718 3.628210 1
8 5.952373 3.888916 1
9 5.895387 3.943668 0

3 10 5.023360 4.781502 4.549914 1
11 3.909715 5.851480 1
12 3.277212 6.459182 1

(d) Examining the sequence c, we determine a “sharp boundary” k∗ between holding and imme-
diate exercising by finding the leading 1 of the first string of 1’s such that its length exceeds
the length of every subsequent string of 0’s. Here, the “sharp boundary” k∗ is 7. Then, for
those paths where we should exercise (i.e. for all k ≥ k∗), we update the payoff vector p by
the exercising value, and otherwise by expected payoff from continuing, i.e.

p(k) =

{
e−4r∆tmax{E − Sk

4 , 0}, for all k ≥ k∗,

h(k), otherwise.

Path k Should we exercise? p(k)
1 NO 1.925670
2 NO 1.925670
3 NO 1.925670
4 NO 1.925670
5 NO 3.593361
6 NO 3.593361
7 YES 3.628210
8 YES 3.888916
9 YES 3.943668
10 YES 4.781502
11 YES 5.851480
12 YES 6.459182

(e) Go back to Step 2(a) and backward time-marching to j = 3 etc.

In essence, given Si
j+1 and p, the algorithm first computes Si

j using (4) and (8). Then it sorts

{Si
j}Mi=1 in the descending order (or ascending order for the call option) and groups them into

Q bundles. For each bundle, it computes the expected payoff from continuing using (9), and then
determine the indicator variable c by (10). With the sequence c, it determines the “sharp boundary”
k∗ by finding the leading 1 of the first string of 1’s such that its length exceeds the length of every
subsequent string of 0’s. Finally, it updates the corresponding entries of the payoff vector p by the
exercising value in case we should exercise, and otherwise by the expected payoff from continuing.

To complete the example, we backward time-march to j = 0 and get

p = [4.663828, 3.220023, 4.430495, 5.112066, 4.455488, 2.727368,

4.956490, 4.088685, 3.166220, 3.575709, 5.440687, 4.640325]T .
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The option can now be valued by averaging all the entries of p at time j = 0. For this example, it
will be $4.2064.

From the example, we see that for the backward-path method, we only need to store s, p, w and
c. We summarize the memory requirement in Table 1. For completeness, we also list in the table
the additional computational cost required by our method as compared to the full-storage method.
From the algorithm, we notice that the additional costs are precisely the costs of generating the
paths in the backward sweep. We will see in the numerical example in §4 that the total cost of our
method is less than twice of that of the full-storage method.

4. Numerical Examples

In this section, we test our method on an example given in [7, p.176]. It is an American put option
with strike price E equals to $10, the riskless rate r is 0.1, the volatility σ is 0.4, and the expiry date
T is 0.5 years. We emphasize that the option prices obtained by the full-storage and the backward-
path method should be statistically the same, since both the forward paths and the backward paths
satisfy the same geometric Brownian motion (1). This is verified by our numerical results below. In
our experiment, all our computations were done by matlab on an Intel Pentium 800 MHz processor
with 512 Megabyte RAM. Again we use M and N to denote the number of paths and the number
of time steps respectively.

Tables 2 and 3 show the effect on the errors by increasing M from 5, 040 to 504, 000 while N is
fixed. In the tables, the data under the column “CNM” are results computed by the Crank-Nicolson
method and are given in [7, p.176]. The results under the “Mean” and “STD” are the means and
standard deviations obtained after 10 trials. The final column “Error” is the difference between
“CNM” and the “Mean”. From the tables, we see that the error decreases by one decimal point
when M is increased 100 times. This is consistent with the error estimate O(1/

√
M) of the Monte

Carlo method, see for instance [3].
Table 4 gives the CPU time for one run of the methods when S0 = 10. The symbol “†” signifies

that memory is not enough to run the problem of that size. From the table, we observe that the time
increases roughly like linear with respect to M and N . Moreover, as expected, the time required
by our backward-path method is always less than twice of that of the full-storage method.
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Method Memory Additional Computational Cost

Full-Storage MN + 3M +O(1) —

Backward-Path 4M +O(1) MN additions to find s in (5)
MN calls to generate {εij} in (4)

Table 1. Memory and Cost Comparison.

S0 CNM Mean STD Error

2 8.0000 8.0000 0.0000 0.0000
4 6.0000 6.0000 0.0000 0.0000
6 4.0000 4.0000 0.0000 0.0000
8 2.0951 2.0847 0.0042 −0.0104
10 0.9211 0.9094 0.0042 −0.0117
12 0.3622 0.3769 0.0030 0.0147
14 0.1320 0.1486 0.0019 0.0166
16 0.0460 0.0572 0.0006 0.0112

Table 2. Backward-Path Method with M = 5, 040 and N = 10.

S0 CNM Mean STD Error

2 8.0000 8.0000 0.0000 0.0000
4 6.0000 6.0000 0.0000 0.0000
6 4.0000 4.0000 0.0000 0.0000
8 2.0951 2.0858 0.0003 −0.0093
10 0.9211 0.9168 0.0004 −0.0043
12 0.3622 0.3612 0.0002 −0.0010
14 0.1320 0.1315 0.0002 −0.0005
16 0.0460 0.0463 0.0001 0.0003

Table 3. Backward-Path Method with M = 504, 000 and N = 10.

M 504, 000 104 4 · 104 25 · 104 106

N 10 20 50 100 100

Full-storage 93.555 196.793 504.896 1025.234 19.258 78.693 502.662 †
Backward-path 94.486 198.625 511.886 1035.769 19.538 79.795 509.432 2065.550

Table 4. CPU time in seconds for different methods.


