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Abstract. We study the solutions of symmetric positive definite Toeplitz
systems Ax = b by the preconditioned conjugate gradient method. The
preconditioner is the circulant matrix C' that minimizes the Frobenius norm
||C' — Al|r, see T. Chan [5]. The convergence rate of these iterative methods
is known to depend on the distribution of the eigenvalues of C~tA. For
Toeplitz matrix A with entries which are Fourier coefficients of a positive
function in the Wiener class, we establish the invertiblity of C, find the
asymptotic behaviour of the eigenvalues of the preconditioned matrix C~'A
as the dimension increases and prove that they are clustered around one.
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1. Introduction

In this paper we discuss the solutions to a class of symmetric positive
definite Toeplitz systems Az = b by the preconditioned conjugate gradi-
ent method. Direct methods that are based on the Levinson recursion
formula are in constant use; see for instance, Levinson [7] and Trench [9].
For an n by n Toeplitz matrix A, these methods require O(n?) operations.
Faster algorithms that require O(nlog®n) operations have been developed,
see Bitmead-Anderson [1] and Brent-Gustavson-Yun [2]. The stability prop-
erties of these direct methods for symmetric positive definite matrices are
discussed in Bunch [3].

Strang [8] proposed using preconditioned conjugate gradient method with
circulant preconditioners for solving symmetric positive definite Toe-plitz
systems. The number of operations per iteration will be of order O(nlogn)
as circulant systems can be solved efficiently by the Fast Fourier Transform.
R. Chan-Strang [4] then considered using a circulant preconditioner S,, that
is obtained by copying the central diagonals of A,, and bringing them around
to complete the circulant. More precisely, if n = 2m, and the entries a;; of
A, are given by aj;_; for 0 <4, j < n, then the entries s;; = s,,_; of S, are
given by

(1)

We proved in that paper that if the underlying generating function f, the
Fourier coefficients of which give the entries of A,, is a positive function
in the Wiener class, then for n sufficiently large, S, and S ' are uniformly
bounded in the [, norm and the eigenvalues of the preconditioned matrix
S 1A, are clustered around 1. We remark that the assumptions on f also
imply that A, are positive definite.

T. Chan [5] recently proposed another circulant matrix C,, that is ob-
tained by averaging the corresponding diagonals of A, with the diagonals of
A, being extended to length n by a wrap-around. More precisely, the entries
cij = ¢i—j) of Cy, are given by

_ kan_p 4+ (n —k)ay

Cr , 0<k<n. (2)
n

o — ap 0<k<m,
Tl an s m<k<n.

He proved that such C, minimizes the Frobenius norm ||C' — A||r and his
experiments numerically showed that the spectrum of the preconditioned



matrix C, 1A, is also clustered around one with the condition number of
C, 1A, being often smaller than that of S, 'A,.

In this paper, we will prove that if the generating function f is a positive
function in the Wiener class, then the spectra of the preconditioners €', and
S, are equal asymptotically. In particular, we will show that for n sufficiently
large, C, and C ;! are uniformly bounded in the l; norm and the eigenvalues
of the preconditioned matrix C ' A, are clustered around one. Hence, if the
conjugate gradient method is applied to solve this preconditioned system, we
can expect the method to have fast convergence.

2. The Spectrum of the Preconditioned Matrix C,'A,

Let us first assume that the Toeplitz matrices A,, are finite sections of a
fixed singly infinite positive definite matrix A, see Chan-Strang [4]. Thus
the (i, j)-th entries of A, and A, are a;_;|. We associate to A, the gener-

ating function
o0

FO)=> " ape™,

—00

defined on [0, 27). We will assume that f is a positive function in the Wiener
class, i.e. the sequence {ax} is in [y. It follows easily that A, are symmetric
positive definite matrices for all n, see for instance, Grenander-Szego [6].
Moreover, if

0<fmin<f<fmax<ooa (3)

then the spectrum o(A,) of A,, will lie in [fmin, fmax)-
We now show that the spectra of €', and S,, are asymptotically the same.
More precisely, we have

Lemma 1. Let the generating function f be a positive function in the Wiener
class, then

lim p (S, —C,) =0,

n—o0

where p(-) denotes the spectral radius.



Proof: By (1) and (2), it is clear that B, = S,, — C,, is circulant with entries

by = nﬁk

Here for simplicity, we are still assuming n = 2m. Using the fact that the

n—1
j-th eigenvalue \;(B,) of B, is given by Z bre? kM we have
k=0
m—1 k
Ai(By) =2 ﬁ(ak — a,_) cos(2mjk/n).
k=1

This implies
m—1 k n—1
p(Bn) < QZEMH +2 > .
k=1 k=m+1

Since f is in the Wiener class, hence for all € > 0, we can always find an
M; > 0 and an My > M, such that

00 M,y
1
E lak| < €/6 and A E klag| < €/6.
k=Mi+1 k=1

Thus for all m > M,

My m—1 o)
2
p(Bn)<ﬁZk|ak|+2 > al+2 > Jal<e O
2 h=1 k=M +1 k=m-+1

We remark that if f is positive and is in the Wiener class, then for n
sufficiently large, S, and S, ! are uniformly bounded in the Iy norm, see R.
Chan-Strang [4, Theorem 1]. Moreover, if (3) holds, then the spectrum o(S,)
lies in [fmin, fmax] t00. Using Lemma 1, we thus have,

Theorem 1. Let f be a positive function in the Wiener class, then for all n

sufficiently large, the circulant matrices C,, and C;' are uniformly bounded
in the ly norm. Moreover, o(Cy,) lies in | fuin, fmax)-
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To prove that the spectrum of C; 1A, is clustered around 1, we first recall
that the spectrum of A,, — S,, is clustered around zero:

Lemma 2 [4, Theorem 4]. Let f be a positive function in the Wiener
class, then for all € > 0, there exist N, M > 0, such that for alln > N, at
most M eigenvalues of A, — S, have absolute value larger than €.

Notice that since
ColA, =L, +C (A, — Sp) +CH(S, — Cn),

we have

Theorem 2. Let f be a positive function in the Wiener class, then for all
€ > 0, there exist N, M > 0, such that for alln > N, at most M eigenvalues
of C 1A, — I, have absolute value larger than €.

Thus the spectrum of C 1A, is clustered around 1 for sufficiently large
n. This is consistent with the numerical results obtained in T. Chan [5]. We
note that since the spectra of C7'A, and S 'A, are equal asymptotically,
we expect the convergence rates of the conjugate gradient method applied
to S, 1A, and C;'A, to be roughly the same for n sufficiently large. In
particular, both will converge superlinearly, at least in exact arithmetic, see
R. Chan-Strang [4] and the numerical results below.

3. Numerical Results and Concluding Remarks

For f in the Wiener class, the numerical results in T. Chan [5] show
that the spectrum of S;'A, is more clustered than that of C;'A,. This
phenomenon is more pronounced when a; decreases more rapidly with k.
However, he also observed that in these cases, C'-' A,, has a smaller condition
number than S A,

To test the convergence rates of both preconditioners, we apply the pre-
conditioned conjugate gradient method on A,z = b with ay = (1+k)" 1. We
note that the generating function of A, is in the Wiener class. The spectra
of A,, S71A, and C;'A, for n = 32 are given in Figure 1. Table 1 shows
the number of iterations required to make the [, norm of the residual vector



< 1077, The right hand side b is the vector of all ones and the zero vector
is our initial guess. We see that as n increases, the number of iterations
increases for the original matrix A,,, while it stays almost the same for the
preconditioned matrices. Moreover, both preconditioned systems converge
at the same rate for large n.

Lol An [ S5 A [ Gl A

8 4 4 4
16 8 Y 4
32 11 5 Y
64 14 5 Y

Table 1. Number of Iterations for Different Systems

We finally emphasize that since C), is defined in terms of averaging the
diagonals of A,, it can be used for general non-Toeplitz matrix A,. Thus if
A, is nearly Toeplitz, say a low rank perturbation of a Toeplitz matrix, then
we still expect C), to be a good preconditioner for A,.
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