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Abstract. We study the solutions of Hermitian positive definite Toeplitz systems A,z = b
by the preconditioned conjugate gradient method. The preconditioner, called the “super-
optimal” preconditioner, is the circulant matrix 7T}, that minimizes || — C;; 1A, ||F over all
circulant matrices C,,. The convergence rate is known to be governed by the distribution
of the eigenvalues of 771 A,,. For n-by-n Toeplitz matrix A, with entries being Fourier
coefficients of a positive function in the Wiener class, we find the asymptotic behaviour of
the eigenvalues of the preconditioned matrix 771 A,, as n increases and prove that they

are clustered around one.
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§1 Introduction.

In this paper, we discuss the solutions to a class of Hermitian positive definite Toeplitz
systems A,z = b by the preconditioned conjugate gradient method. Strang in [7] proposed
using preconditioned conjugate gradient method with circulant preconditioners for solving
symmetric positive definite Toeplitz systems. For n-by-n Toeplitz matrix A,,, the number
of operations per iteration is of order O(nlogn), as circulant systems can be solved effi-
ciently by the Fast Fourier Transform. R. Chan and Strang [1] then considered using a
circulant preconditioner S,,, obtained by copying the central diagonals of A,, and bringing
them around to complete the circulant. In that paper, they proved that if the underly-
ing generating function f, the Fourier coefficients of which give the entries of A,, is a
positive function in the Wiener class, then for n sufficiently large, S,, and S;! are uni-
formly bounded in the £ norm and the eigenvalues of the preconditioned matrix S, 14,

are clustered around one.

T. Chan in [5] proposed another circulant matrix C,, that is obtained by averaging
the corresponding diagonals of A,, with the diagonals of A, being extended to length n
by a wrap-around. He proved that such C,, minimizes ||C,, — A,||F over all circulant
matrices, where || - || means the Frobenius norm. It was then shown in R. Chan [2] that
nll)ngo |Cr — Snllz = 0 and hence the spectrum of C;; 1 A,, is also clustered around one for
sufficiently large n. These results are generalized to Hermitian positive definite Toeplitz
systems in R. Chan [3] and a more precise convergence rate of these methods is given

there.

Recently, Tyrtyshnikov [8] proposed another circulant preconditioner 7,, that mini-
mizes ||I — T,;1A,||r over all non-singular circulant matrices. In that paper, C, and T},
are called optimal and super-optimal preconditioners respectively and it is proved that if

A,, is positive definite, then so are C,, and T,.

In this paper, we will prove that if the generating function f is a positive function in
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the Wiener class, i.e. its Fourier coefficients are absolutely summable, then T}, and T are
uniformly bounded in the /; norm. We also show that nll)ngo |7, — Cy|l2 = 0. Hence we can
conclude that the eigenvalues of the preconditioned matrix 7,7 A, are clustered around
one. Therefore, if the conjugate gradient method is applied to solve this preconditioned
system, we can expect the method to have the same convergence rate as the preconditioned
systems S 1A, and C;1A,. The outline of the paper is as follows. In §2, we discuss some
of the properties of the optimal preconditioner C,, that will be needed later. The spectral

results are given in §3 and numerical results are reported in §4.

§2 Properties of the Circulant Operator.

Let (Mpuxn, | -]l1) denote the Banach algebra of all n-by-n matrices over the complex
field equipped with the ¢; norm || - ||;. We now define an operator ¢ from M, «,, into the

subalgebra of all n-by-n circulant matrices. For any A,, = (a;;) in My, xp, let

() =3 G T ) 1)

p—g=j (mod n)

0 T 0]

We remark that the coefficients of 7 in (1) can also be written as

1 1 .

- - = —j

n Z Upq = tr (Q77A), (3)
p—q=j (mod n)

where tr (-) means the trace. From (3), it can be checked easily that if A, = (a;—;) is

a Toeplitz matrix in M,,x,, then ¢(A,) is the circulant preconditioner given in T. Chan

[5]. More precisely, the entries ¢;; = ¢;—; of ¢(A,,) are given by
1
cr = —{kag—n +(n—Fk)ax}, k=0,---n—1 (4)
n

We will call ¢ the circulant operator. In the following, we will investigate some of its

properties that will be needed later on.
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Theorem 1. The circulant operator c is a bounded linear operator in the Banach algebra

(Mpxn, || - l1). Moreover, for all n.> 0,

lel = sup [le(An)lls = 1.
IAnlli=1
Proof. 1t is clear from the definition (1) that c is linear. To prove that ||c[| = 1, we first

note that if A,, = I, the identity matrix, then ||c(A,)||1 = ||I|| = 1. For general A,,, we

have
n—1 1 1 n—1
le(Alhi =371~ D aw|[<-d D aw
§=0 p—q=j (mod n) j=0 p—g=j (mod n)
1 "il"il 1
== lap| < = n-[|Aullr = 1.
n 1=0 k=0 Z n "

Hence |lc|| =1 for alln.

Theorem 2. Let A, € M, «x, and C,, be any n-by-n circulant matriz in M, x,. Then

Proof. Let C,, = Y ¢;Q7 where Q is given by (2). We will prove that ¢(C,A,) =
j=0

Cy - ¢(Ay). Since ¢(CpA,) and C), - ¢(A,) are circulant, it suffices to show that their first
columns are the same. For £ =0,--- ,n —1, by (3), the (£,0)-th entry of ¢(C, A,) is given
by

n—1

[e(CnAp)]eo = % tr (C,A4,Q7") = % tr | > Q7 4,Q7"

j=0
1 n—1 ) 1 n—1 )
= D et (QTA,Q7F) = - D ejtr (QTA,)
=0 =0

To compute the first column of C,, - ¢(A,,), we first note that by (3),

n—1 n—1 n—1ln-—1
Co-elda) = [ Y @7 (Z % tr (Q"“An)Qk> = % DD et (QTFAL) Q.
j=0 k=0 =0 k=0
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Hence if e; denotes the i-th unit vector and * denotes the complex conjugate, then we
have

G (A = e 1C el A)er = L5 S, CRIBIN

[Cr - e(An)]eo = €;[C - € n]GO—E;;% r n)0¢,(j+k) (mod n)-
Since ¢ = j + k (mod n) implies that Q=% = Q7~*, we see that

[Cr - c(An)] —lnil tr (@770 AL) = [e(Cudn)]
n nlO—anOCJI' n) = [C\Un An )0,

for all 0 < ¢ < n. Thus C), - ¢(A,) = ¢(CrA,). By similar arguments, we can prove that

c(A,Ch) =c(Ay) - Cy. 0

Theorems 3 and 4 below are just generalization of Theorems 3.1 and 4.1 in Tyrtysh-
nikov [8] from the real scalar field to the complex field and their proofs are given in R.

Chan, Jin and Yeung [4].

Theorem 3. If A, is Hermitian and positive definite, then c(A,) is Hermitian and pos-

itive definite. Moreover we have,
0 < Amln(An) S Amln(c(An)) S Amax(C(An)) S Amax(An)a
where Amin(+) and Amax(-) denote the smallest and the largest eigenvalues respectively.

Theorem 4. Let A, € M, x, be such that x*A,x > 0 for all nonzero x. Let T, ' be the

super-optimal circulant preconditioner for A,, defined by
I - T Ayllp = min||I — C7 ' Au I

where the minimum is taken over all n-by-n nonsingular circulant matrices C,, in My xn.
Then

Tt = le(Andy)] " e(47) - (5)



THE SPECTRA OF SUPER-OPTIMAL CIRCULANT PRECONDITIONED TOEPLITZ SYSTEMS

§3 Spectra of the Preconditioned Systems.

Let us assume that the Hermitian Toeplitz matrices A,, are finite sections of a fixed
simply infinite matrix A, see R. Chan and Strang [1]. Thus the (4, 7)-th entries of A,
and A are a;_;, with a;, = a_;, for all k. We associate to A, the real-valued generating

function
(o) = Zake_ike

defined on [0,27). We will assume that f is a positive function in the Wiener class, i.e.

o

Z lag| = M < oo . (6)

k=—o00

It easily follows that, see Grenander and Szegé [6], A, are Hermitian positive definite

matrices for all n. Moreover, if 0 < fumin < f < fmax < 00, then
U(An) C [fminafmax] . (7)

For Hermitian A,,, we have, by (5),

Tt = [e(An A7) 7 e(47) = [e(A7)] ™ e(4y).

n

Hence

Tn_lAn =1 "'Tn_l[An —c(An)] + Tn_l[C(An) —T,]

= I+ T Ay = c(A)] + [e(A7)] 7 [e(An)? — e(A7)] - (8)

In the following, we will show that under the assumptions mentioned above, T}, ! and
[c(A2)]7! are uniformly bounded in the £ norm and that lim ||c(A,)? — c¢(A2)]2 = 0.
n— o0

By recalling that the spectrum of A,, — ¢(A,) is clustered around zero, see R. Chan [3],

we can then conclude that the spectrum of T, 1 A,, is clustered around one.

Lemma 1. Let the generating function f of A, be a positive function in the Wiener class.
Then for n sufficiently large, c(A,), c(A2) , T, and their inverses are all Hermitian,

positive definite and uniformly bounded in the £5 norm.
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Proof. Since f is positive and in the Weiner class, A,, is Hermitian and positive definite

for all n and (7) holds. Hence o (A2) C [f2. »f2ax)- By Theorem 3, therefore c(4,,),

c(A2) and T, are all Hermitian and positive definite. Moreover, we also have o (c(4,)) C

[fmin, fmax] and o (c(A2)) C [f2 friax]. Finally, we have

min

fma.x

f12nin ’

177 12 = lle(A7) ™ e(An)ll2 < lle(A7) " Hlalle(An) 2 <

and

2
Il = le(4) (42l < () " alle(AD) s < 222

min

In the following, instead of proving ||c(4,,)% —c(A2)]| tends to zero, we will prove the
stronger result that ||c(4,)? — c¢(A2)]|; tends to zero. For simplicity, we will assume that
n = 2m + 1 is odd. The case for even n can be proved similarly. Let S, be the circulant
preconditioner defined in R. Chan and Strang [1]. More precisely, the entries s;; = s;_;
of S,, are given by

(9)

ak 0<k<m,
Sk —
Gk—n, m <k <n.

Then by Theorem 3 and the fact that S, is circulant, we have

le(An)? = e(AR)Il = lle(An)® = ¢(A7) = c(An)Sn + c(An)Salls

< lle(An) (e(An) = Su)llx + le(AnSn) — c(A7) 1,

for all n. Hence by Theorem 1,

lle(An)? = e(AD) 1 < lle(An) 1 e(An) = Salls + le(AnSa — A7) 1

< [Anll1 lle(An) = Sally + lle(An(Sn — An)) 1 (10)
The following Lemma shows that the first term in (10) tends to zero as n tends to infinity.

Lemma 2. Let the generating function f of A, be a real-valued function in the Wiener

class. Let S, be the circulant preconditioner defined by (9), then

nll)rgo IS — c(Ap)|l1 =0 .
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Proof. By (4) and (9), it is clear that B,, = S,, —c(A,,) is circulant and its entries b;; = b;_;

are given by

—(ax — ax—np) 0<k<m,
b, =
k n—=k
(ag—pn — ay) m<k<n
Since B,, is circulant,
n—1 m k n—1
1Bl = [bkl <2 lak] +2 > -
k=0 k=1 k=m+1

Now all for ¢ > 0, we can always find an N; > 0 and an Ny > 2Ny, such that

o) 1 N,
Z lax| < e and E2k|ak|<5.
k=N, k=1

Thus for all n > N»,

Ny m 0o
2
IIBnH1<—N2§ Klag+2 Y ap|+2 Y el <6c.
k=1 E=Ni+1 k=m+1

Clearly (6) implies that ||A, |1 < M for all n > 0. Hence Lemma 2 implies that the
first term of (10) tends to zero as n tends to infinity. The following Lemma shows that

the second term in (10) also tends to zero as n tends to infinity.

Lemma 3. Let the generating function f of A, be a real-valued function in the Wiener

class. Then

Tim[le(An (S — An))ll = 0.

Proof. For all € > 0, by (6), we see that there exists an N > 0 such that

Z lag| < €.
|k|>N
For all n > max (7N, N2 /¢), we partition A,, = A%N) + A%n_N) as follows. Let the matrix

A%N) be the matrix obtained by copying the 2N — 1 central diagonals of A,, and setting

other entries to zero. In block form, A%N) is given by

Ay By 0 0 0

By Ax t 0 0

AM=10 + + t 0|, (11)
0 0 + Ax By
0 0 0 By Ay
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where T denotes nonzero block, Ay is the N-by-N principal submatrix of A,, and By is

an N-by-N upper triangular Toeplitz matrix given by

[0 an—1 an—2 --- a1 ]
0
By = aN—_o (12)
0 aGN-—1
L 0

Define A%n_N) =A,— A%N). Correspondingly, we partition S,, — A,, as follows. Let X,(LN)

be the matrix obtained by setting the n — 2N — 1 central diagonals of S,, — A,, to zero.

More precisely, X,(LN) has the following block form:

oy 0 0 0 Z%
0 Oy 0 0 O

xXM=10 0o 0 0 0], (13)
0 0 0 Oy O
Zy 0 0 0 Oy

where Oy is the N-by-N zero matrix and Zy is an N-by-N lower triangular Toeplitz
matrix given by

G_N — Qp_N 0

a_l_an_l .o .o a’—N_a’TL—N

Let Y,V =5, — 4, — X™. Then by Theorem 1,

le(An(Sn = An)) Il = le(An (X + YN I < lle(An XY+ le(A YN
< Je(AXM) I+ (AT XN 1y + [ Anll ¥,

< (A XN 1 + AL X+ [ An 1 1Y, .
15

Clearly by (6), ||A,|1 and HXT(ZN)H;L both are bounded above by M. Moreover,

n—N-1 n—N-1
VNN = Y aren —al < Y ek <e,
k=m+1 k=N+1

and

AP < D Jarl <e .
k| >N
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Thus (15) becomes
le(An(Sn — 411 < le(API XY |y + 2Me. (16)
It remains to estimate ||c(A$LN)X,SN)) Il1-

By (11) and (13), we have

O 0 0 0 AxZL
0 Oy 0 0 ByZi
AN XN) — 0 0 0 0 0 . (17)
ByZy 0 0 Oy 0
AyZy 0 0 0 Oy

We note that the absolute values of all the elements in AgLN)X,SN) are bounded by M 2. In

fact, since

ANl < Z laj| < M,

l7l<N-1
N-1
1Byl <> lag| < M,
j=1
n—1
12l < 3 Jag] < M,
j=1
we see that for any 0 < 4,5 < N,
N-1
(AN Z3)i5) < D 1AN)#(Z3)ks] < AN 111 Znll < M2
k=0

Similar arguments show that for any 0 <1i,5 <n,
(A X)) < M2 (18)
From (17), it is clear that if n > 7N, the first column of the circulant matrix
c(A%N)X,(LN)) is of the form
(0,dv, - ,d3n—2,0,-,0,dp_3N42, - dn1)".

By (18), the absolute values of dy,--- ,dsy_2 and d,,_3n 42, - ,d,—1 are all bounded by

NM?/n. Therefore,

(AN XM, < 2(3N —2) < 6M%

NM? < 6N2M?
n - n
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for all n > N?2/e. Thus by (16), we see that
le(An(Sn — An))ll1 < (6M? +2M)e
for all n > max(7N,N?/e).

By using (10), Lemmas 2 and 3 and the fact that for Hermitian matrices, ||-||2 < ||-]|1,

we have the following immediate corollary.

Corollary. Let the generating function f of A, be a real-valued function in the Wiener

class. Then

limle(An)? — e(A42)]l1 = lim_[le(A,)? — e(42)]l> =0.

n—o0

Now we state our main theorem.

Theorem 5. Let the generating function f of A, be a positive function in the Wiener
class, then the spectrum of T, 1A, — I is clustered around zero. More precisely, for all
e > 0, there exist Ny, No > 0, such that, for all n > Ny, at most Ny eigenvalues of

T, YA, — I have absolute value larger than e.

Proof. By Lemma 1 and the fact that any two circulant matrices commute, we see that

_1
T, ? is well-defined and is given by

T ? = [e(A2)] 7% [e(An)]?.

M

(19)
Clearly the spectra of T,7 1A, and Tn_%AnTn_% are the same. By (8) and (19), we have
Ty AT, P — 1 =T (A — o(A) T + [e(A2)] 7 (c(4n)? = e(42))[e(42)] 7% (20)

By Lemma 1 and the above Corollary, the £ norm of the last term in (20) tends to zero as
n tends to infinity. Thus the Theorem follows by noting that the spectrum of A,, —c¢(A,,)

is clustered around zero, see R. Chan [3].
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Hence, if the conjugate gradient method is applied to solve the preconditioned system
T, 1A, we can expect the convergence rate to be the same as the preconditioned systems
S-1A, and C;'A,. This is consistent with the numerical results we have in the next
section. We note that a more precise bound on the convergence rate of these systems can
be found in R. Chan [3]. The bound depends on the differentiablity of the generating

function f.

We remark that although these preconditioned systems converge at the same rate
for large n, the costs of generating the corresponding preconditioners are not the same.
Clearly S,, defined by (9) can be generated at no cost, C,, defined by (4) can be computed
in about 3n/2 operations and Tyrtyshnikov in [8] proposed an algorithm of finding 7, in
9nlogn + O(n) operations. An algorithm of finding 7}, in 6nlogn + O(n) operations can

be found in R. Chan, Jin and Yeung [4].

84 Numerical Results.

To test the convergence rates of the preconditioners, we have applied the precondi-

tioned conjugate gradient method to A,z = b with

14++v-1

TV k>0
) arm PO
%= 2 k=0,

a_yg k <0.

The underlying generating function f is given by

i sin(k@) + cos (k)
= (+k)H

Clearly f is in the Wiener class. The spectra of A,, S;'4,, C,'A, and T, A, for
n = 32 are represented in Figure 1. Table 1 shows the number of iterations required to
make ||ry]|2/||7oll2 < 1077, where 7, is the residual vector after g iterations. The right
hand side b is the vector of all ones and the zero vector is our initial guess. We see that as n

increases, the number of iterations increases like O(logn) for the original matrix A,,, while
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it stays almost the same for the preconditioned matrices. Moreover, all preconditioned

systems converge at the same rate for large n.

TABLE 1

Number of iterations for different systems.

n A, S-LA, CrA, | T, 'A,
16 13 8 7 7
32 15 8 6 7
64 18 7 7 7
128 19 7 7 7
256 21 7 7 7
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