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Abstract
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1 Introduction

Wiener-Hopf integral equations arise in a variety of practical applications in mathematics
and engineering especially in the solutions of inverse problems. Typical examples are
linear prediction problems for stationary stochastic processes [10, pp.145-146], the diffu-
sion problems [10, pp.186-187], the scattering problems [10, pp.188-189], the distribution
of temperature in a stellar atmosphere in a radioactive equilibrium [12, p.195]. In [15,
pp.264-265], it has also been mentioned some important problems for Wiener-Hopf inte-
gral equations. In this paper, we consider the solutions of Wiener-Hopf integral equations
on the half-line [0, 00). Let a(t) € Li(—o0,00) be a conjugate symmetric complex-valued

function, i.e. a(t) = a(—t), and
(Az)(t) = /000 a(t — s)xz(s)ds, 0 <t < oo, (1.1)

be the associated convolution operator acting on the Hilbert space Ly[0, 00). The half-line
Wiener-Hopf equation concerned is given as follows:

ax(t) + Az(t) = g(t), 0<t< oo, (1.2)

where o > 0 and ¢(¢) is a given function in Ly [0, 00). In practical applications, the positive
constant « is served as a Tikhonov regularization parameter, see Kress [13, p.243] for
instance.

In contrast to the whole line Wiener-Hopf equation, we remark that the half-line
Wiener-Hopf equation cannot be solved explicitly by using Fourier transform. One nu-
merical method of approximating the solution z(t) is by the projection method [7, Chapter
3]. The solution z(t) of the Wiener-Hopf equation is approximated by Z(t):

- zr(t), 0<t<T,
x(t):{() " t>T.

Here z.(t) is the solution of the following finite section Wiener-Holf equation
ax,(t) + Az, (t) = g(t), 0<t<m, (1.3)
with A, given by
(Ar.) () = / "ot — s)ao(s)ds, 0<i<r (1.4)
0

It has been proved that the approximated solution Z(¢) converges to x(t) in the Ly-norm
of the Hilbert space L,[0,00) as 7 tends to infinity [7, Theorem 3.1].

Recently, Gohberg, Hanke and Koltracht [9] employed the conjugate gradient method
as an iterative method for solving the finite section of Wiener-Hopf equations. Although
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A, is a compact operator, the spectrum of A, becomes dense in the spectrum of A as
7 tends to infinity, see Gohberg et. al. [9]. Thus the convergence rate of the conjugate
gradient method will not be superlinear for sufficiently large 7. In order to speed up the
convergence rate of the method, they used circulant integral operators G, to precondition
A,. Circulant integral operators are operators of the form

(G,y)(1) = / (- s)y(s)ds, 0<t<r,

where ¢, is a T-periodic conjugate symmetric function in Li[—7, 7]. In this case, one solves
the preconditioned equation

[(6Z +G,) (0T + A}z, ](t) = [(6cT +G,)'g](t), 0<t<T,

where 7 is an identity operator. A unifying approach of constructing circulant integral
operators as preconditioners for solving Wiener-Hopf equations is given in Chan, Jin and
Ng [3]. It has been shown that the spectra of these circulant preconditioned operators
are clustered around 1. Hence the preconditioned conjugate gradient method converges
superlinearly even for sufficiently large 7.

In this paper, we propose a new type of operators as preconditioners for solving finite
section of Wiener-Hopf equations (1.3). Using the analog result in {w}-circulant matrices
[5, p.74], we define {w}-circulant integral operator in §2. Then we prove that for an
integer u > 1, the convolution operator A, can be written as a sum of {w,}-circulant

integral operators P with w, = 2%/ i.e.

1 u—1
_ = (u,w)
A== ;PT :

Therefore, aZ 4+ A, can be written as

—

u—

al +A; = (aZ + Pv) .

SRS

Il
o

v

For an integer u > 1, our proposed preconditioners are defined to be the operator B&“)
given by

—

u—

B = % (o +P&)

T

Il
o

v

if all the operators aZ + P are invertible. Instead of solving the original operator
equations (1.3), we solve the following preconditioned operator equations

(B (aT + Az, |(t) = [BWg](t), 0<t<T.

T
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We prove that the spectra of the preconditioned operators (B™)'/2(aZ + A,)(B™)'/2 are
clustered around 1. It follows that the conjugate gradient method, when applied to solving
these preconditioned operator equations, converges superlinearly. Finally, rectangular
rule are used to discretize the finite section of Wiener-Hopf and {w, }-circulant integral
operators. The discretization matrices are Toeplitz matrices and {w, }-circulant matrices
respectively. Numerical results show that our preconditioners perform better than those
of using circulant integral operators proposed by Gohberg et. al. [9].

The outline of the paper is as follows. In §2, we define {w}-circulant integral oper-
ators and decompose A, into these circulant integral operators. We then construct our
preconditioners. In §3, we prove that the spectra of these preconditioned operators are
clustered around 1. In §4, we use rectangular rule to discretize the integral operators and
some numerical examples are presented to illustrate the convergence performance of the
algorithm. Some concluding remarks are given in §5.

2 Decomposition of A, and Construction of Precon-
ditioners
In this section, we consider some properties of the convolution operator A,. These prop-

erties are useful in the construction of the preconditioners. Before we begin, let us first
recall that the Fourier transform of a function ¢(t) is defined by

q(t) E/ q(s)e™®'ds, VteR

o0

and the convolution product p * ¢ of p(t) with ¢(t) is defined by

(rd)(t) = / " pls)a(s)e ds, VieR,

—00

where p(t) and ¢(t) are the Fourier transforms of p(t) and ¢(t) respectively. In addition,
the inner product in the Hilbert space Ls[0, 7] is defined by

pg) = /0 ' p(t)q(t)dt.

In Grenander and Szegd [11, p.139], it has been shown that the eigenvalues of A, have
asymptotically the distribution of the values of a(t). In particular, we have the following
Lemma.

LEMMA 1 Let a(t) € Li(—o0,00). Then the spectrum of operator A, satisfies
o(A;) C[m, M|, V7>0,
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where m and M are the infimum and supremum of a(t) respectively.

It follows from Lemma 1 that the spectrum o(aZ + A;) of the finite section Wiener-
Hopf integral operator aZ + A, satisfies

oL+ A;) Cla+m,a+ M], Vr>0.

Thus if o +m > 0 then oZ + A is invertible.

We note that there is a close relationship between the Wiener-Hopf integral operators
and semi-infinite Toeplitz matrices, see [7, p.5]. In [4], Chan and Ng proved that given
any n-by-n Toeplitz matrices A, and integer v > 1, it can be written as a sum of {w,}-

circulant matrices O, i.e.

In Davis [5, p.74], it is shown that if c is an n-by-n {wy }-circulant matrix, then it has

the spectral decomposition
Cc" = D,F,\,FD>.

Here F), is the Fourier matrix with entries
F _ 1 2rwijk/n
[Fulk,j = NoE :

and D, is a diagonal matrix given by

D, = diag[l,w!/™ ... wir=1/m

()

and A, is a diagonal matrix holding the eigenvalues of C. Similar to the discrete case,
we show below that the convolution operator A, can be written as a sum of {w}-circulant
integral operators which are defined as follows:

DEFINITION Let w = ¢ with 6y € [0,27). An operator C, is a {w}-circulant integral
operator if it is of the form

(Coy) () = /0 et — s)y(s)ds, 0<t<r. (2.1)

where ¢; is a conjugate symmetric function in L, [—7, 7] with

cr(t) =e e (t+71), —1<t<0. (2.2)



We remark that {1}-circulant integral operators are just the circulant integral oper-
ators used by Gohberg et. al. [9] in solving the finite section of Wiener-Hopf integral
equations. The following Lemma is about the eigen-decomposition of the {w}-circulant
integral operator C..

LEMMA 2 Let C, be a {w}-circulant integral operator defined as in (2.1) with w = %
Then C, is a compact self-adjoint operator on Ls[0, 7| and its complete set of eigenfunc-
tions is given by

1 ) .
{¢£Lgo)(t) | ¢(90)(t) — _627rmt/7 . 67,90t/7', n e Z},

! VT

where Z 1is the set of all integers. Furthermore, the eigenvalues \,,(C;) of the {w}-circulant
operator C, are given by

A(Cr) = / e (t)e 2T om0t Tqr — \fr (e, ¢%)), Yn € Z. (2.3)
0

PROOF: Since ¢, is a conjugate symmetric function in Li[—7, 7], C; is a self-adjoint
operator acting on Ly[0, 7]. Taking

¢(00)(t) — ie%rint/T . eigot/'r, Vn € Z

n \/7__
as orthonormal basis for Ly[0, 7], it follows from the periodicity of ¢, (¢) mentioned in (2.2)
and the definition of qﬁg(’)(t) that we obtain

o) = [ el =160 s = V7 ([ 1o =)ts) o0

= ([ o) o
0
By the definition of eigenvalues and eigenvectors of an operator (see [8, p.108] for instance),

the results of the lemma follow.

Then we have the following main theorem about the decomposition of the convolution
operator A.,.



THEOREM 1 For an integer u > 1, then we have

1 u—1
A, ==Y Pl (2.4)
u
v=0
where P are {w,}-circulant integral operators with w, = e*™/* and its eigenvalues are
given by
- 2 2
M(PUD) = (Dy x0)(22 + 52), V€ Z, (2.5)
T ut

where D, 1s the function given by

PROOF: Letting

oy = { Dr(0a(t) + D, (¢ ~7)alt —7), 0<t<T, (27)
y = 6—2m’v/uDT(t +7)a(t +7) + D, (t)a(t), —7 <t<0. .

As a(t) € Li(—o0,0), the kernel function p{™* is in Li[—7,7]. It is straightforward to

show that the convolution operator P with kernel function p{™*(¢) is an {w, }-circulant

u—1
integral operator with w, = e>™/* . Since 262””/“ = 0, we have
v=0
1 u—1
=N (t) = Do(t)a(t) = alt), —T<t<r.
u
v=0

Since both D, (t) and a(t) are conjugate symmetric, (2.4) follows. By (2.3), the eigenvalues
of the operator P“") are given by

)\n(P(u,v)) — / (u,v) (t)6727rint/7' . 6727rivt/7'udt, Vn € 7.
0

T T

By (2.7) and noting that the support of D, is contained in [—7, 7|, the eigenvalues of the
operator P, are given by

)\n(”Pﬁu’”)) _ /T DT(t)a(t)efwrint/r . efZWivt/Tudt — (ZA)T * d)(%_n + 27T_U), VYn e Z. 0

T uTt
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It follows from Theorem 1 that the operator aZ + A, can be decomposed into a sum
of integral operators, i.e.

u—1

> (az +PHV). (2.8)

v=0

al + A, =

SRS

We have the following lemma about the spectral property of each integral operator oZ +
P in the decomposition of aZ + A..

LEMMA 3 Let a(t) € Li(—00,00) and its Fourier transform a(t) be non-negative. For
any given € > 0, Then there exists a 7° > 0 such that for all 7 > 7, 0 < v < u,

5 < M(@Z +PU) < p, Vn € Z,

where p is a positive constant independent of T. In particular, the operators aZ + ’Pﬁu’v)
are invertible for 0 < v < u.

PROOF: Since

D, xa(s) — a(s)

= ‘/ a(t)e‘”sdt‘ < / la(t)|dt, VseR,
t]>7 t]>7

there exists an 7* > 0 such that for all 7 > 7%,

N 2mn  27v
(0 va- 2+ 2

T TU

< mln{ }, Vn € Z, (2.9)

where M is the supremum of a(t). Thus by (2.5) and (2.9), we have

- 2 2 2 2
M +PMY) = at (D xa—a)( =+ =) + (- + )
. 2 2
> a—(Dyxa—a)(2 7”’)>% VneZ.  (2.10)
T

Similarly, we can derive the upper bound of eigenvalues of aZ + P and set p =
3M/2+a. [

In the following discussion, we use the decomposition of the finite section Wiener-
Hopf integral operator 6Z + A, to construct a new type of preconditioners. The way the
preconditioners are constructed is followed from the approach used in the additive Schwarz
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method for elliptic problems, see Dryia and Widlund [6] for instance. We recall that in
the additive Schwarz method, a matrix A is first decomposed into a sum of individual

matrices,
A=pPY 4+ p@ 4. ...4 p)

and then the generalized inverses of these individual matrices are added back together to
form a preconditioner B of the original matrix A, i.e.

B =pWh+ L p@+ .. 4 plut

In our case, for any integer u > 1, our preconditioners Bg“) are defined to be the operators
given by

u—1

1 —1
(u) - (u,v)
B = » E (aZ + P (2.11)

v=0

if all the operators aZ + P{"”) are invertible. We recall that P are {w,}-circulant
integral operators with w, = €>™/* defined as in Theorem 1. In the following, we give
the representation of the preconditioners B™.

LEMMA 4 Let a(t) € Li(—00,00) [ La(—00,00). If the operators oZ + P are in-
vertible for 0 < v < u and their inverses are given by
- 1
(aZ+P) =T - Q") 0<v<u,
o

where Q(Tu’v) are {w, }-circulant integral operators given by operators given by

An(PE)
= ala+ M\, (P

N T S O] (2.12)

n n

[(QM)y)(t) =

In particular, if for 0 < v < u, a+ )\n(Pﬁu’v)) > 0 for alln € Z, then the eigenvalues of
the operator (1/a)T — Q™) are positive.

PROOF: We note from the theorem in [8, Theorem 8.1] that

(u0)
ez ey y 0 = B3 R e
neZ n\"T7

- |(3z-2)s @



As a(t) € Li(—00,00) () La(—00,00), the kernel function p{"* of P{*” in (2.7) is in
Ly|—7,7]. Using the theorem in [8, Theorem 1.2], we have

ST P (PE) < .

nez

It follows that the kernel functions ¢ of Q") given by

(u,v)
qS_U,U) (t) — Z An (PT ) 627ri(nu+v)t/7—u
ez ola + )\n(p‘gu,v))]

are also in Ly[—7, 7]. Then it is straightforward to check that q&u’v) is conjugate symmetric

with ,
qS—u,u) (t) _ 6—2mu/vq7(_u,v) (t + 7_), —7<t< 0.

Therefore, Q") are {w, }-circulant integral operators. By noting the following equality,

1 = l — )\n(pgu’”)) Vn € Z

a4 MPMYa afa+ A (P

if o+ A (P > 0 for all n € Z, then all the eigenvalues of the operator (1/a)T — Q™"
are positive.

As an application of Lemma 4, we see that the preconditioner B™ is just equal to

1 u—1 ) 1 1 u—1
it () A N (u,v)
- (eT+PM) =1 UZQT .
v=0 =0
u—1
. (u,v) : 1 () ;
Since Q; " are themselves convolution operators, the operator UZQT is also convo-
v=0

lution operator. Thus, we see that B™ are Wiener-Hopf integral operators in general.

3 Spectra of Preconditioned Operators

In this section, we study the spectra of the preconditioned Wiener-Hopf operators. We
will prove that the preconditioned operators will have clustered spectra. The result is
stated as the following Theorem 2.
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THEOREM 2 Let a(t) € Li(—o0,00) and its Fourier transform a(t) > 0. Then for all
€ > 0, there exist a positive integer N and 7* > 0 such that for all T > 7, the spectrum of
(BMN)2(aZ + A;)(BM)Y/2 has at most N eigenvalues outside the interval (1 —¢,1+ ).

Before we prove Theorem 2, we state the following lemma 5 which is useful in the
analysis of the spectra of the preconditioned operators.

LEMMA 5 Let a(t) € Li(—o0,00) and its Fourier transform a(t) > 0. Then for all
€ > 0, there exist a positive integer N and a 7 > 0 such that for all T > 7*, there exists

a decomposition
AT . 737(.%0) — R’(ru,[]) + g‘gu,O)

with self-adjoint operators R™" and ™ satisfying
rank R0 < N
and
189}y <e.

Here || - ||2 is the operator norm on the Hilbert space Ly|0,7]. In particular, the spectrum
of (aT + PM)12(aT + A.) (o + PUY)=Y2 has at most N eigenvalues outside the
interval (1 —e€,1 + €).

PROOF: The main point is that D, = a converges to a uniformly on R. Then the proof
of this Lemma can be followed from Theorems 1 and 3 in Chan et. al. [3].

LEMMA 6 Let a(t) € Li(—oo,00). Let K, and H, be two self-adjoint convolution
operators with kernel functions given by

kr(t) = D.(t)a(t), —-T<t<T,

and

hT(t):{ D.(t—71)a(t—71), 0<t<T,

D;(t+71)a(t+7), —17<t<0,

respectively. Then for all € > 0 there exists a positive integer N such that

H, =RW 4+ £W (3.1)
and
K,— A, =£? (3.2)
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where R is a self-adjoint operator with rank RW < N and ST(i)(i = 1,2) are self-adjoint
operators satisfying ||87(Z)|| <e€, fori=1,2.

PROOF: Noting that lim ||D; % & — || = 0, we can get (3.2) by using the argument
T—00

in Theorem 1. In addition, as we have
H, =P — K,
it follows by using Lemma 6 that (3.1) holds.

As an immediate corollary, we can show that each aZ + Pﬁu’v), 0 <wv<u,isalsoa
good approximation for aZ + A, .

COROLLARY 1 Let a(t) € Li(—o0,00) and its Fourier transform a(t) > 0. Then for
all e > 0 and 0 < v < u, there exist a positive integer N and a 7% > 0 such that for
all 7 > 7, the spectrum of (o + P™M") V2(aT + A, ) (oL + PO) V2 has at most N
eigenvalues outside (1 —¢€,1 + €).

PROOF: It is obvious that the function a(t) given by

. e?miv/ug (), 0<t<r
a(t) - { 6727ri'u/ua(t), —r<t< 0,

is conjugate symmetric in L;(—00,00). By (2.7), we have
,P'Su’v) - ICT + /7{[7'7

where 7, is a self-adjoint convolution operator with its kernel function given by

By (3.1) and (3.2) in Lemma 6, it is straightforward to prove that for all € > 0, there exist
a positive integer N and a 7* > 0 such that for all 7 > 7%, there exists a decomposition

AT _ 737(_'“71}) — Rs_uvv) + 57(_1"7”)

with self-adjoint operators R{"") and £"" satisfying rank R\ < N and |||}, < e.
As all the eigenvalues of the operator aZ + P are positive and uniformly bounded (c.f.
Lemma 1), The result follows.
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PROOF OF THEOREM 2: For 0 < v < u, the spectra of both operators
(aZ +PI) V2 (L + Ay ) (o + PM) Y2

and
(aZ + AWNY2(aZ + P~ (oI + AWW)1/2

are the same. By Corollary 1, we deduce that for 0 < v < wu, the spectra of (aZ +
ALYz (o + Pﬁu’v))’l(al + A.)? is clustered around 1, i.e.

(0T + A,)2 (o + PN 4+ A;)? =T 4 L0 4 Pr),

where £8) is a self-adjoint operator of rank independent of 7 and V™" is a self-adjoint
operator with norm less than e. We note that by (2.11)

—

u—

1
(OéZ—FAT)%Bg“)(OzZ-FAT)% — (Z—l— ﬁsu,v) _|_V£u,v)) :I+£(Tu) + Vﬁu), (3‘3)
u
v=0
u—1 u—1
where £ = Zﬁg“’”) and V" = ZV&“’”). As u is independent of 7, the rank of
v=0 v=0

£ s also independent, of 7 and ||V£u)||2 < ¢. Finally, we just note that the operators
(o + A.): T (T + A,)2 and (B™)2 (o + A,)(B™)2 have same spectra, the theorem
follows.

It follows easily from Theorem 2 that the conjugate gradient method, when applied
to solving preconditioned operator equations

[B(0T + Ar)z:)(t) = (Bg)(t), 0<t<m,

T T

converges superlinearly, see Axelsson [2, pp.24-28|.

4 Numerical Examples

In this section, we use the rectangular rule to discretize the finite section Wiener-Hopf
integral operators and {w, }-circulant integral operators when the kernel functions a(t) are
continuous. Numerical integration with rectangular quadrature formula using n points
yields n-by-n Toeplitz matrices I,, + A, ,, and n-by-n {w, }-circulant matrices I,, + PT(,un’”)
for the finite section Wiener-Hopf integral operators and {w, }-circulant integral operators
respectively. Besides, the following are the properties of the discretization matrices A,

and PT(,“n’”).
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1. As a(t) is conjugate symmetric, al, + A,, is an Hermitian Toeplitz matrix. The
matrix-vector multiplications A, ,y, can be obtained by first embedding A, ,, into
2n-by-2n circulant matrices and using 2n-dimensional fast Fourier transforms (FFTs),
see Strang [14].

2. The matrix-vector multiplication (a, + P%")~y, can be computed in O(nlogn)

by using n-dimensional FFTs. We let B be the sum of the matrices (1/u) S (al,+
P =1 Thus, B are the discretization matrices of our preconditioners. We note
that the matrix-vector product B%yn can be computed in O(unlogn) operations.
When u is chosen to be independent of 7 and n, the cost per iteration of the pre-

conditioned conjugate gradient method is O(nlogn) operations.

3. On parallel machines using Single Instruction stream, Multiple Data stream (SIMD)
architecture (see for instance Aki [1, p.238]), the real time required by n-dimensional
FFT is of O(logn) operations. Therefore, the cost per iteration is reduced to
O(logn) operations.

In the following, we test the performance of our preconditioners in solving Wiener-
Hopf equations. Three problems are used and their kernel functions a(t) and the right
hand side functions g(t) are

(i)
a(t)y=e7 ", VteR,

and e7te? —1) t >
TORE S S S
(i)
a(t) :{ i_—t|,|t|, |;|1>§1t, <1,
and
(e '(e7 — 1), t>y+1,
0.5—7+e*1—t+(t_77)2—e*t, y<t<y+1,
g(t) = 7+O.5+7+e‘1—t—(t_77)2—e‘t, y=1<t<n,
’y+0.5+6_1+t—%—6t_7, 1<t<~y—1,
\”y+61+0.5—|—t—%—et7, 0<t<1;
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(iii)

1
— <t<l1
a(t) 105’ =r=0
eIt lt] > 1,
and
(e '(e7 — 1), t>y+1,
1—(t— 0.5
671—|—[ (2 7) ]—eft, ,),St<f)/_|_1,
— 1—(t— 0.5
g(t) ’Y+6_1+[ (2 f}/) ]_e—t, "}/—1§t<"}/,
y+2e 44— el —et, 1<t<y—1,
[ y+elt+4—e, 0<t<1.

For these a(t) and g(t), the solutions of their corresponding Wiener-Hopf equations are

all
1, 0<t<y,

x(t):{o, t> .

The discretization matrices al,, + A, , and of, + PT(,“n’”) of o + A, and oZ + P are
formed respectively by using the rectangular rule on these testing kernel functions. We
note that the kernel functions in (ii) and (iii) has a jump ¢ = 1, we use a simple average
as the values of a(1). Moreover, the kernel function a(t) in (iii) is undefined at ¢t = 0 (i.e.
a(t) has at singularity at ¢ = 0). In this case, we just replace the value of a(0) by zero.
Moreover, 7 is set to be 8 in the following numerical tests.

In the tests, random vectors are used to be our initial guesses. The stopping criterion is
||rk]]2/]Irol|2 < 1077, where ry is the residual vector of preconditioned conjugate gradient
method after k iterations. The parameters « are chosen such that the discretization
matrices of the finite section Wiener-Hopf integral operators are positive definite. All
computations are done on Matlab. Tables 1a-3b show the numbers of iterations required
for convergence with different choices of preconditioners. In the tables, Z denotes no
preconditioner is used, Bg“) are the proposed preconditioners. We remark that Bgl) are
in fact the circulant integral operators. As for the comparison, the “optimal” circulant
integral operators proposed by Gohberg et. al. [9]. are also used in our numerical tests.
We denote it by G,.

We see in the tables that when 7 is fixed, as n increases, the number of iterations of
the preconditioned systems are almost kept constant while that of the non-preconditioned
systems increases. When the factor 7/n is fixed as 7 increases, we see that the number
of iterations of the preconditioned systems are almost kept constant and less than that
of non-preconditioned systems. This observation is consistent with our theoretical result.
We recall in Theorem 2 that the spectra of the preconditioned systems are clustered
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around 1 and then it leads the fast convergence rate of the method. We also note that
the preconditioners Bg) performs better than the other preconditioners using circulant
integral operators. Finally, we observe in all tests that the discrete Ls[0, 7] norm error

> Jor () — ato ()

n

decreases like O(1/n) where 2™ is kth iterant of the preconditioned conjugate gradient

method.

=

16 32 64
n | 187|876 | 18787 ]6 | 1|B7|B"[¢,
16 12 2 3 6 %k %k %k %k %ok %k %ok %ok
32 |17 2 3 6 || 14| 2 3 G || FR R | kR ] kR
64 || 26| 2 3 6 || 23| 2 3 6 || 14| 2 3 5
128 || 35| 2 3 7 33] 2 3 6 || 25] 2 3 5
256 || 40| 2 3 6 || 46| 2 3 6 || 40| 2 3 6
012 |1 43| 2 3 6 || 53| 2 3 6 || 55| 2 3 5
1024 || 43| 2 3 6 || 55| 2 3 6 || 64| 2 3 5
2048 || 43| 2 3 6 || 57| 2 3 6 || 68] 2 3 5

Table 1a. Number of Iterations for (i) with o = 0.01

T
128 256 012

n |1 B2 B g | 1[8BY|8Y]g | 1|82]BY]|g,

16 *k *k *k ok ok ok ok ok *k ok *k *k

32 *k *k *k ok ok ok ok ok *k ok *k *k

64 *k *k *k ok ok ok ok ok *k ok *k *k

128 14 2 3 5 *k | k% ¥k | Rk || k% | Rk Xk | k%
256 || 25 2 3 5 14 2 3 5) ROl B RO o
512 || 43 2 3 5 25 2 3 5 14 2 3 4
1024 || 61 2 3 5 43 2 3 5) 25 2 3 5)
2048 || 72 2 3 5) 62 2 3 5) 43 2 3 5)

Table 1b. Number of Iterations for (i) with o = 0.01
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16 32 64
n |1 1BP[BY g || 11828D .| 1]82[BY]g.
32 [19] 4 | 7 | 710 3 | 5 | 6 | *=| = | *= [**
64 |27 5 | 8 |923] 4 | 6 [ 7|10 3|5 |5
12835 6 | 10 |10]33] 5 [ 9 |9]26] 4 | 7 |7
256 |38 | 7 | 11 |10]42] 6 | 10 |10][38] 5 | 9 |9
512 (38| 7 | 11 |11]48] 6 | 11 |10 48] 5 | 10 |10
1024 |39 7 | 11 |11 48| 6 | 11 |11 53] 6 | 10 |10
2048 [ 38| 7 | 11 |11]47] 6 | 11 |11]|53] 6 | 10 |11

Table 2a. Number of Iterations for (ii) with o = 0.08

T

128 256 512
n |1 ]B82 8 g | 1878V g | 1]|8?]BY]|g,
].6 ok ok ok %ok %ok %ok %ok %ok ok %ok ok ok
32 ok ok ok %ok %ok %ok %ok %ok ok %ok ok ok
64 ok ok ok %ok %ok %ok %ok %ok ok %ok ok ok
256 27| 4 | 7 | 7 |10 3 | 5 | 5 || =] *F | = | **
512 40| 5 | 8 | 8|27 4 | 7 [7[10] 315 |5
102453 5 | 9 |10(40| 5 | 8 | 8|27 4 | 6 |7
204860 6 | 10 [10]54] 5 | 10 | 9[40] 5 | 8 |8

Table 2b. Number of Iterations for (ii) with ax = 0.08

T

16 32 64
n | 11828 g | 1878V g | 1]|8?]BY]|g,
32 |31] 5 | 7 | 9 ||35] 4 | 5 |12 ** ]| = | %% | **
64 || 21| 4 | 7 | 7 |46] 4 | 7 | 8 |[76] 5 | 5 |12
128 [19] 4 | 7 |7 24| 4 | 7 [ 751 4 | 7 |38
256 || 18| 4 | 6 | 7] 21| 4 | 6 |7 25] 4 | 6 |7
512 | 18| 4 | 6 | 61 20| 4 | 6 |6]21] 4] 6 |6
1024 |17 4 | 6 | 619 4 | 6 | 620 4 | 6 |6
204819 4 | 6 |6 18] 3 | 6 | 619 3 | 6 |6

Table 3a. Number of Iterations for (iii) with oo = 1.0
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T
128 256 012
n | 1 [828M g | 1 [B2]89]g | 1 [B”]BY]g,
16 *k *k *k *k *% *% *k *k *k *% *% *%
39 *k *k *k *k *% *% *k *k *k *% *% *%
64 *k *k *k *k *% *% *k *k *k *% *% *%
128 161 4 5 12 %k %k %ok %ok %ok %k %k %k
256 || 51 4 7 70332 5 5 | 12| kx| kX O Nl
012 || 25 4 7 7| 90 4 7 76781 5 o |13
1024 || 21 4 6 6 24 4 6 7 49 4 7 7
2048 || 19 3 6 6 | 21 3 6 6 24 4 6 6

Table 3b. Number of Iterations for (iii) with o = 1.0

5 Concluding Remarks

In this paper, the Dirichlet kernel D, is used in constructing the {w}-circulant integral
operators Pﬁu’v), see Theorem 1. We remark that we can use other kernel functions W,
instead as long as W, *a converges to a uniformly, for example the Fejér function. We
just replace D, by W in (2.7). Then (2.9) in Lemma 3 holds and therefore the spectra of
these preconditioned operators are clustered around 1 and the preconditioned conjugate
gradient method converges sufficiently fast.

18



References

1]

2]

3]

4]

(6]

7]

[10]
[11]

[12]
[13]
[14]

[15]

S. Aki, The Design and Analysis of Parallel Algorithms, Prentice-Hall International
Inc., London, 1989.

O. Axelsson and V. Barker, Finite Element Solution of Boundary Value Problems,
Theory and Computation, Academic Press, New York, 1984.

R. Chan, X. Jin and M. Ng, Circulant Integral Operators as Preconditioners for
Wiener-Hopf Equations, To appear in Operator Theory and Integral Equations.

R. Chan and M. Ng, Toeplitz Preconditioners for Hermitian Toeplitz Systems, Lin.
Alg. and Appl., V190 (1993), pp.181-208.

P. Davis, Circulant Matrices, John Wiley & Sons, Inc., New York, 1979.

M. Dryja and O. Widlund, Some Domain Decomposition Algorithms for Elliptic
Problems, Proceedings of the Conference on Iterative Methods for Large Linear Sys-
tems, Austin, Texas, October, 1989, Academic Press.

I. Gohberg and 1. Fel(iman, Convolution Fquations and Projection Methods for Their
Solution, Transl. Math. Monographs, V41 (1974), Amer. Math. Soc. Providence, RI.

I. Gohberg and S. Goldberg, Basic Operator Theory, Birkhduser, Boston, Basel,
Stuttgart, 1981.

[. Gohberg, M. Hanke and I. Koltracht, Fast Preconditioned Conjugate Gradient
Algorithms for Wiener-Hopf Integral Equations, To appear in SIAM J. Numer. Anal.

C. Green, Integral Equation Method, London, Nelson, 1969.

U. Grenander and G. Szego, Toeplitz Forms and Their Applications, 2nd. ed.,
Chelsea, New York, 1984.

H. Hochstadt, Integral Equations, John Wiley & Sons, Inc., New York, 1989.
R. Kress, Linear Integral Equations, Springer-Verlag, New York, 1980.

G. Strang, A Proposal for Toeplitz Matriz Calculations, Stud. Appl. MAth., V74
(1986), pp.171-176.

P. Zabreyko, A. Koshelev, M. Krasnosel’skii, S. Mikhlin, [.. Rakovshchik and V. Ya,
Integral Equations — a Reference Text, Noordhoff International Publishing, Leyden,
1975.

19



