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Abstract. We study the solutions of Toeplitz systems A,,z = b by the preconditioned con-
jugate gradient method. The n-by-n matrix A,, is of the form aol + H,, where ag is a real
number, [ is the identity matrix and H,, is a skew-Hermitian Toeplitz matrix. Such kind
of matrices appear in solving discretized hyperbolic differential equations. The precondi-
tioners we considered here are circulant matrix C,, and skew-circulant matrix S,, where
A, = %(Cn +.5,,). The convergence rate of the iterative method depends on the spectra of
the normalized preconditioned matrices (C, '4,)*(C,;1A,) and (S;'4,)* (S, 14,). For
Toeplitz matrices A,, with entries which are Fourier coefficients of functions in the Wiener
class, we show the invertibility of C,, and .S,, and prove that the spectra of the normalized
preconditioned matrices are clustered around one for large n. Hence, if the conjugate
gradient method is applied to solve the normalized preconditioned systems, we expect fast

convergence.
Abbreviated Title. Circulant and Skew-circulant Preconditioners
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§1 Introduction.

Let A, be a Toeplitz matrix of order n having the following form:

ao ax : Gp—2 0ap—1
—ay ap ap : Ap—2
An - —as . . . : ) (1)
. . a’l
—Qp_1 - —G2 —a Qg

where a is a real number. Obviously, A,, = agl + H,,, where [ is the identity matrix and
H,, is a skew-Hermitian Toeplitz matrix. We call A, the skew-Hermitian type Toeplitz
matrix. We are interested in solving the system A,z = b . This kind of problems often

appear in solving discretized hyperbolic differential equations.

The idea of using preconditioned conjugate gradient method with circulant precon-
ditioner for solving symmetric Toeplitz systems was first proposed by Strang [8]. Chan
and Strang [1] then proved that if A4, is a symmetric Toeplitz matrix with entries which
are Fourier coefficients of a positive function in the Wiener class, then the eigenvalues of
C’; 14, are clustered around 1. Here C,, is the symmetric circulant matrix which copies
the central diagonals of A,. These results are generalized to Hermitian positive defi-
nite Toeplitz systems in Chan [2]. However, only positive definite matrices are discussed
in these papers. In this paper, we use the preconditioned conjugate gradient method
with circulant preconditioner C,, or skew-circulant preconditioner S,, for solving the skew-
Hermitian type Toeplitz systems. We show in §2 that if the generating function f(0) is
of the form ag + ig(#), where g() is a real-valued function in the Wiener class, then the
spectra of (C;71A,)*(CtA,) and (S, 1A4,)*(S;1A,) are clustered around 1. In §3, we es-
tablish the superlinear convergence rate of the conjugate gradient method when applied to
these normalized preconditioned systems. Finally, numerical results and some applications

of the method to discretized hyperbolic systems are given in §4.
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§2 Spectrum of the Normalized Preconditioned System.

Let us begin by supposing that the entries a;; = a;—; of A,, are Fourier coefficients of

the complex generating function

(o) = i ape” ko

defined on [0, 27). Since 4,, is of the form given by (1), we see that a_; = —ay. It is clear

that f(6) also can be written as

where ¢(#) is a real-valued function. In fact,

g(0) = Z (—iag)e" ™0 = Z(_Z)(ake_iko + a_gei®®)
k=—o00 k=1
k40
= Z(—z)(ake—i’w _ W) -9 me(ake_iko) ’
k=1 bl

where I'm(x) denotes the imaginary part of the complex number z. We assume that g(6)

is a function in the Wiener class, i.e., its Fourier coefficients {—iay } is in ;. We then have

o0 o0
> lakl =laol + Y | —iar| = e < o0 (2)
- k=—o00
E#0
It is clear that the solution of the system A,z = b is the same as the solution

of the normalized preconditioned system (P 1A,)*(P;tA,)x = (P71A,)*P b for any
preconditioner P,,. When the conjugate gradient method is applied to solve the normalized
preconditioned system, the convergence rate of the method depends on the spectrum of

(P71A,)*(P71A,). The more clustered the eigenvalues are, the faster the convergence.

For skew-Hermitian type Toeplitz matrix A,, given by (1), we note that it can always

be partitioned as
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where _ _ _
agp a1 —Ap—-1 - Gp—2 — A2 Gp—1 — O1
—a1 + ap_q ag .
Cn = : )
—Qp—2 + a2 . . ag a1 — Gp—1
—Qp_1 +aq . - —a1 t+a,_1 agp
and _ _ _
ag a1+ Gp-1 - Op—2 + a2 Op—1+ a1
—(ap_1+a1) ao
S, =
—(az + En_z) . . ao a1+ a,_1
—(a1 + @p-1) : - —(ap—1 +a1) ap

Clearly C,, is circulant and S, is skew-circulant. We will use C), and S,, as preconditioners
for A,,. We show in the following that if the generating function f(0) = ag + ig(6), where

g(0) is a real-valued function in the Wiener class, then
1. C,, S, and their inverses are uniformly bounded in the Zs—norm,;

II. C;1A, and S 1A, can be partitioned into the sum of I + L,, + M,,, where L, is a

low rank matrix and M,, is a matrix with small /,—norm;

IT1. the spectra of (C;1A,)*(C,1A,) and (S, 1A,)* (S 1A,) are clustered around one.

n

For claim I, we have

Theorem 1. Let f(0) = ag + ig(0), where g(0) is a real-valued function in the Wiener
class and aqg is a nonzero real number. Then for all n, the circulant matriz C,,, the

skew-circulant matriz S, and their inverses are uniformly bounded in the f3—-norm.

Proof. We first prove the theorem for the skew-circulant matrix S,,. We note that S,, =
aol + f]n, where I:Tn is a skew-Hermitian Toeplitz matrix. Therefore, the eigenvalues of

Sp can be expressed as \;(S,) = ag + bji, where b; are real. Hence
IX;(Sp)] > lag) >0, for j=0,---,n—1. 3)

In particular, we see that S, is invertible. We also notice that the eigenvalues X;(.S,,) of

Sy also can be expressed as

n—1
(2j+1) i

)\j(Sn):a0+Z(ap+En_p)e n P ofor j=0,---,m—1.
p=1
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see Davis [3]. Hence we have by (2)

n—1 )
N (Sl < laol + > lap + Byl <2 ) lap| =2c, for j=0,--- ,n—1.
p=1 p=—00

Since 5, is a normal matrix, we have

1Sallz = Amax(Sn)l < 2¢0, 1187 2 = P (Sn)l < (4)

1
min |a0| :
Here A\max(Syn) and Amin(S,) denote respectively the largest and the smallest eigenvalues
in absolute value for S,,.

For circulant matrix C,,, the proof is similar. We only have to note that the eigenvalues

of C, are given by

|>‘J(Cn)|2|a‘0|>07 for j:(),---,n—l,

and

_ _ 1
[Calle = Panax(Ca)] < 260, 10 2 = NGh(Ca) S 7

We remark that when ag = 0, the matrix A,, is skew-Hermitian and the generating function
f(0) = ig(#). Then if we assume that g(6) > gmin > 0 for all € [0,27), then instead of
getting (3), we can get |A;(Cy)l,]|A;j(Sn)| > gmin > 0, for j =0,--- ,n — 1, see Chan and

Strang [1]. Thus we have

Theorem 1°. Let f(6) = ig(0), where g(0) is a real positive function in the Wiener class.
Then for all n sufficiently large, the circulant matriz C.,, the skew-circulant matriz S,

and their inverses are uniformly bounded in the fa—norm.

For claim II, we first show that the matrix C,, — A,, can be expressed as the sum of

a low rank matrix and a matrix with small /,—norm.
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Lemma 1. Let f(0) = ag+ig(0), where g(0) is a real-valued function in the Wiener class.
Then for all e > 0, there exists an N > 0, such that for alln > N, C,—A,, = Wr(LN)—)—UT(LN),

where ||W,(LN)||2 < e and rank( ,(LN)) < 2N.

Proof. Define B,, = C,, — A,,. It can be easily checked that B,, is skew-Hermitian Toeplitz

matrix with entries b;; = b;_; given by

0 =0,
bp=< ai—, 0<l<n,
b, 0<—-l<n.

Since ¢ is in the Wiener class, by (2) for all given € > 0, there exists an N > 0, such that
o0

Z la| < e.

I=N+1

Let U™ be the n-by-n matrix obtained from B,, by replacing the (n — N)-by-(n — N)
leading principal submatrix of B,, by the zero matrix. Then rank ( éN)) < 2N. Let
M = B, —U™. The leading (n — N)-by-(n — N) block of W) is the leading

(n—N)-by-(n— N) principal submatrix of B,,, hence this block is a Toeplitz matrix. Thus

n—N-—1 n—N-—1
WMl <2 Z |bi] =2 Z |a1—n| =2 Z la_i]
I=N+1
=2 Z la] < 2 Z |ag| < 2¢ . (5)
I=N+1 I=N+1

Since W, is skew-Hermitian, we have HWT(LN)HOO = ||WTSN)||1. Thus
WM 2 < (W - (WY o) < e

Hence the spectrum of W™ lies in (—e,e). 0

Since C,, — A, = A,, — S,,, we have by Lemma 1,

ST Ap =T+ S (Ap — Sn) =T+ S7Y(Cp — Ay)

=I+S; WM +UN)y=1+M,+L,, (6)
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where M, = S, 1W,(LN) and L, = S,; 1UT(LN). Similarly, for the circulant matrix C,,, we
have

CrlA, =1+ C YA, - C,) =1—C WM +UM).

By Theorem 1, we thus have our main result.

Theorem 2. Let f(0) = ag + ig(0), where g(0) is a real-valued function in the Wiener
class and agy is a nonzero real number. Then for all € > 0, there exists an N > 0, such
that for all n > N, C; A, and S;'A, can be written in the form I + M, + L,,, where

| M., ||2 < e and rank(L,,) < 2N.
Claim IIT now is an immediate Corollary of Theorem 2.

Corollary 1. Let f(0) = ag + ig(0), where g(0) is a real-valued function in the Wiener
class and ag is a nonzero real number. Then for all n sufficiently large, the spectra of
(C7LAN (CTLAL) and (S;1AL)* (S AL) are clustered around one. More precisely, for
all e > 0, there exists an N > 0 such that for all n > N, at most 4N eigenvalues
of (CrA)*(CrA,) — I and also of (S AR)*(S; AL) — I can have absolute values

exceeding €.

Proof. We prove the Corollary for the case of skew-circulant matrix S,. The proof for
C), is similar and we therefore omit it. By Theorem 2, we have for all € > 0, there exists
an N > 0, such that for all n > N, S-'A, = I + M, + L,, where ||[M,||> < € and

rank(L,) < 2N. Hence

(STYA) (STPA)) —T=(I+M +L)I+M,+L,)—1I
=M, +L,+M'+ MM, + ML, +L* + LM, + L L,

—

:Mn'i_ina

where M, = M, + M} + MM, and L, = L:(I + L, + M,) + (I + M})L,. Thus

H]/M\n||2 < 2¢ 4 €2 and rank(fn) < 4N. Since both ]/\J\n and En are Hermitian, by Cauchy
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Interlace Theorem, see Wilkinson [9], at most 4N eigenvalues of (S, 1A,)*(S,14,) — I

have absolute values exceeding 2 + 2. n

Similar to Theorem 1’, when ag = 0 but g(0) is positive, we have

Theorem 2°. Let f(6) = ig(0), where g(0) is a real positive function in the Wiener class.
Then for all € > 0, there exists an N > 0, such that for alln > N, C;1A, and S;*A,

can be written in the form I + M,, + L,,, where |M, |2 < ¢ and rank(L,) < 2N.

Corollary 1°. Let f(0) = ig(0), where g(0) is a real positive function in the Wiener class.
Then for all n sufficiently large, the spectra of the normalized preconditioned matrices

(CLAN(CTLAL) and (S;1AL)*(S;1AL) are clustered around one.

Hence if the conjugate gradient method is applied to solve the normalized precondi-

tioned system

(CL AL (C T A )z = (C P AR)*C M,

or

(S5 A4n)" (S An)z = (877 An)" S0,
we can expect a fast convergence rate.

83 Superlinear Convergence Rate.

It follows easily from Corollary 1 or Corollary 1’ that the conjugate gradient method
converges superlinearly when applied to solve the normalized preconditioned systems, see
Chan and Strang [1] for details. We note that if extra smoothness conditions are imposed

on g, we can obtain a more precise bound on the convergence rate.

Theorem 3. Let f(0) = ag + ig(0), where g(0) is a (£ + 1)-times differentiable function

in the Wiener class with its (¢ + 1)-th derivative in L'[0,2r), £ > 0, and ag is a nonzero
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real number. Then for large n,

lesqll <

mneou , (7)

for some constant c that depends on f and ¢ only. Here e, denotes the error vector at
the q-th iteration, when the conjugate gradient method is applied to solve the normalized

preconditioned system
(Co 4n)" (C An)z = (C M An)"C b

or

(STYA) (ST A = (S71AL) S M

n

and ||z]|? = 2% (C;7 A" (Cr ARz or ||z||? = (S, AL)* (S, LAz accordingly.

Proof. Again for simplicity, we only give the proof for the skew-circulant case. The proof
for the circulant case is similar. We recall that from the standard error analysis of the

conjugate gradient method, we have

legll .
< minmax |P, ()], 8
“60“ — P, Y | q( )| ( )

where the minimum is taken over polynomials of degree g with constant term 1 and the
maximum is taken over the spectrum of (S, 1A4,)*(S,*A,), see for instance, Golub and

van Loan [4]. In the following, we try to estimate that minimum.

We first recall that the Fourier coefficients of g are given by —ia;. Hence the assump-

tions on g imply that

C1

|_iaj|§|j|ﬁa

Vi>0,

where ¢; = ||g*V||11, see for instance, Katznelson [6]. Therefore we have

€1 .
|aj|§Wa Vji>0.
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Hence for W,*) and U defined as in Lemma 1, we have rank ( ( )) < 2k and also by
(5),
n—1
Wz < (WP oo W 11)2 = ([WF 0 <2 Y ay]
j=k+1

<2 _Z m%gm/j%g%, Vk>1.
Let S71A, = I+ M + L¥ | where M¥ = S71W ™ and L = 71U, For all

k > 1, we have rank(L%k)) < 2k and

1Ml = 1157 WPl < 157 Wl < @ |HW(k)H < ke )

For the Hermitian matrix (S, *A,)* (S, '4,), we have

where ¢y = 2¢1 /|ag| -

(ST A (ST A, =T+ M® + ¢

where
+ MM

and
L) =) 4 LB o g pp k) o g (k) o g, (k) (k)

=LE*(I + L) 4 M)y (1 + MP*)LE

From (9), it is clear that,

= % « 202 03
1011z < 1Pl + 124" 2 + M 2l Ml < ZF + 25 < 75
where c3 = 2¢y + ¢3, and from (10), we see that, rank (L (k)) <22k =4k
Let the eigenvalues of (S;1A,)* (S, 'A,) — I be ordered as
Spp S Spp < Spf << < <pg

s |

Py < p

N
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then for all p > 4, we have, by Cauchy interlace theorem

—~([P C
] < I, < 22 (11)
4 [z]

where [z] denotes the integral part of x. Let the eigenvalues of (S, 14,)*(S;14,) b

ordered as
Ag SAT <A < <A < <AE < SAT AT ST
4 4 4 4 4 4
Then for all p > 4, we have by (11)
C3 _ + C3
= SAp SAF <15 s (12)
4 4
and for all p > 0, we have by (4)
2 2
Y - <at<S
1 SN S S o (13)

Our idea is to choose Py, that annihilates the 4¢ pairs of extreme eigenvalues. Let

4(k+1)—1 .
X
)\2 )\p
p=4k 1 1

and
Pgy = pop1 -+ pg-1 -
is obtained

(1= 5)

We note that between the roots )\f, the maximum value of ‘( 7
4 D P
4 4
at the point (A5 + /\;). Hence for k£ = 0, we have by (13)
4
z x
max < max - — )1 - — ‘
xe[Ag,A+ [Po(@) H o z€l A,,,ﬁ] AZ)( AE)
by 4 4
3 (A5 —=2p)? 3 2 2
— ¥< H(%fl(ﬂf:%
4>\+>\_ —Llv a2’ 4% ol ’
p=0

p=0
for some constant ¢4 that depends only on f and £. For 1 < k < ¢ — 1, we have by (12)

and (13),
4(k+1)-1
_ max pr(@) < ] max |(1— )\%)(1 _ )\i_)‘
1‘6[)\4(k+1)71 ,)\4(k+1)71] p=dk me[)\%,,\%] 2 2

4 3
_4(k+1)—1 ()\-é-_)\%)2 4(k+1)—1 25 51 43
B aIaAtr;  — H ( z]e) Z(a_Z)

p=4k 27 p=dk 4 0
Cs

:kSZ’



CIRCULANT AND SKEW-CIRCULANT PRECONDITIONERS FOR SKEW-HERMITIAN TYPE TOEPLITZ SYSTEMS$3

for some constant cs that also depends only on f and ¢. Thus

q—1
1 c?
max  [Pag(o)] < eacl " [[ gy = — (14)
vy AT ° LK (g 1)1

for some constant ¢ that depends on f and £ only. We remark that except for the 4¢q pairs of

q_l,)\;_l]. Since Pg, annihilates

extreme eigenvalues, all eigenvalues are in the interval [\

the 4¢ pairs of extreme eigenvalues and satisfies (14) in the interval [A;_;, A}_,], inequality

(7) now follows directly from (8) and (14). 0
When ay = 0, if we assume that g(0) is a positive function as before, we then have

Theorem 3’. Let f(0) = ig(0), where g(0) is a (+1)-times differentiable positive function

in the Wiener class with its (£ + 1)-th derivative in L'[0,2x), £ > 0. Then for large n,

cq
lesqll < WH%H ;

for some constant c that depends on g and £ only.

84 Numerical Results.

We consider the following two problems in this section.
Problem 1.

Let A, be a Toeplitz matrix with diagonals given by

1 k=0,
ap = (L4+k)~H k>0,
—a_p k<O0.

Obviously the generating function of A,, is in the Wiener class. Table 1 shows the number

of iterations required to get H:’;H; < 1077, Here ry is the residual vector at the k-th
iteration. We use the vector of all ones for the right hand side vector b and the zero vector

as our initial guess. We note that as n increases, the number of iterations increases for the

normalized system, while it remains roughly a constant for both normalized preconditioned
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systems.

n AL An (Srlen)*(Sn_lAn) (erlAn)*(erlAn)

16 8 8 7

32 12 8 7

64 16 8 7

128 18 8 8

Table 1. Number of Iterations for Different Systems

Problem 2.

We consider a model linear hyperbolic equation discussed in Holmgren and Otto [5].
For simplicity, we begin with the one-dimensional case first. The equation is:

ou(z,t) N v@u(m, t)

- DL~ gl) (15)

which is defined on the domain
0<ax<1, t>0,
with boundary and initial conditions
u(0,t) =f(=at) ,
u(z,0) =f(z) .

The right hand side function is given by

Here v and a are positive constants and f is a scalar function with derivative f’. The

analytical solution of (15) is given by u = f(z — at).

Let k, h denote the time step and spatial step respectively. A time-discretization of
(15) by using the trapezoidal rule gives:

m+1 m
4u™ !t 4 2k du\"" _ 2k(g"™ ! + g™) + 4u™ — 2kv Ou (16)
Oz - R g ox ’
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The spatial grid is uniform in the computational domain with n 4+ 1 gridpoints. Let wu;

denote the approximative solution at the point x;, where

Clearly ug is given directly by the boundary condition. This implies that we have to solve

for n unknowns in each time step. We use centered difference

@ o Uil — Ui
Oz 2h ’

to approximate the spatial derivative in (16) in the interior of the domain. At the outflow

boundary we use one-sided difference

Ou Uy —Up_1
or h ’
Let a = vk/h and v™ = (u]",u’,--- ,ul). By introducing the space-discretization in

(16) for the unknowns at time level m + 1, we have the following system,

{4u7+1+a(uﬁtl_uﬁtl):b’b i:1?23"'an_1a

(4 + 20)um™*! — 20u™ ! = b, .

In matrix form, we have

+1 _
A umTr =0,

where b = (b, by, -+ ,b,)T contains known quantities and
— 4 a 0 —
—-a 4 .
A, = (17)
- 4 «
L O —2a 4+ 2al

We define our circulant and skew-circulant preconditioners as

[ 4 « —a]
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and
4 «

(04
—a 4 . 0

—« —a 4

Notice that since

StA, =1+S;%(A, - S,)=I1+L,,

where L, = S; (A, — S,), we have
(ST AN (ST 'An) =T+ L) I+ Ly) =T+ Ly, .

Here L, = L% + (I + L*)L,. Since rank (L,) = rank (4, — S,) = 2, rank (L,) < 4.
Thus if the conjugate gradient method is applied to normalized preconditioned matrix
(S;1A,)*(S;'A,), the number of iterations is around 5. The same conclusion holds
for the circulant preconditioner C,,. Table 2 gives the number of iterations obtained
experimentally. Here a = 100, b is the vector of all ones and also as before, the zero vector

is our initial guess. Table 2 shows the number of iterations required to get lrell2 907

llroll2
n ALA, (Srlen)*(Sr:lAn) (CglAn)*(CglAn)
16 17 5 6
32 33 ) )
64 67 ) 6
128 101 5 )
Table 2. Number of Iterations for Different Systems
Next we consider the two-dimensional case. The equation is:
0 t 0 t 0 t
U(iﬁl,(L‘g, ) + v, U’(xlaxZa ) + vy U(:El,(IIg, ) :g($1,$2) (18)

ot 0x1 02

which is defined on the domain

0<£L‘1§1, 0<$2§1, t>0,
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with boundary and initial conditions

u(xlaoat) :f(xl - at) )
U(0,$2,t) :f($2 - a‘t) )

w(z1,22,0) =f(21 + 22) .

The right hand side function is given by

g(z) = (v1 +v2 —a)f'(z) .

Here vy, vs and a are positive constants, f is a scalar function with derivative f’. The

analytical solution of (18) is given by u = f(z; + z2 — at).

For simplicity, we assume that v; = v = v and the two spatial steps are equal, i.e.,
hi1 = ha = h. Then as before we let a = vk/h, where k denotes the time step. For each

time step, the discretized system to solve is of the following form:
m+1 — b,

ANU

where Ay = A, @ [+ I ® A, with A,, given by

— 2 a O —
—a 2
A, =
- 2 «
0 —2a 2+ 2al

We note that the A, here is different from the A,, in (17) only at the main diagoanl.

For the 2-dimensional problem, we have tested the following preconditioners:

CN:CTL®I+I®C”,

and
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where C,, and S,, are given by

Cn - )
0 2 «
| @ -a 2 |
and
2 « o
- 2

o
—« —a 2

Different from that in one-dimensional case, here we use the preconditioned conjugate

gradient squared method, see Sonneveld [7], to solve the following preconditioned systems
Cy'Ayu™ = Oy and Syt Ayu™t = Sy'h.

Tables 3, 4 and 5 show the number of iterations required to get % < 1077 for different

a’s. We notice that as n increases, for a = 10, 100, the number of iterations increases for

the original system, while it stays almost the same for both preconditioned systems.

n N =n? Ay S;,lAN C;,lAN
16 256 10 6 6
32 1024 10 6 6
64 4096 10 6 6
128 16384 10 5 5

Table 3. Number of Iterations for « =1
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n N = n? Ay Sy AN Cy An
16 256 47 12 11
32 1024 65 11 11
64 4096 95 11 10
128 16384 124 11 10

Table 4. Number of Iterations for v = 10

n N =n? Ay S;,lAN C;,lAN
16 256 218 21 21
32 1024 329 20 20
64 4096 371 21 18
128 16384 454 23 21

Table 5. Number of Iterations for ¢ = 100

Finally, we would like to mention that our numerical results are similar to that ob-
tained by Holmgren and Otto [5] where they used different choices of circulant precondi-

tioners.
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