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1. Introduction

In this paper, we study the numerical solutions of second order elliptic equations with
Dirichlet boundary conditions by iterative methods. After discretization by using standard
finite-difference method, such problems reduce to the solution of linear systems of the form
Ax = bwhereA is usually symmetric and positive definite. One of the most popular iterative
methods for solving such systems is the conjugate gradient (CG) method, see Axelsson and
Barker[1, p.18]. Ingeneral, the convergence rate of the CG method depends on the condition
numberx (A) of A. The smallek (A) is, the faster the convergence of the method will be.
However, ifx (A) is large, then we can apply the preconditioned conjugate gradient (PCG)
method, i.e. we apply the CG method to the preconditioned syatefix = M~15. The

matrix M, called a preconditioner to the matri is chosen with two criteria in mind:

Mr = d is easy to solve for any vectdr the spectrum oM 1A is clustered and/av/ ~1A

is well conditioned compared with.

One of the successful classes of preconditioners for elliptic problems is the class of mod-
ified incomplete LU (ILU, MILU) factorizations, see for instance, Axelsson and Barker [1,
p.337] and Dupont, Kendall and Rachford [11]. The ILU method computes an approximate
LU factorizationM of A based on the Gaussian elimination in which fill-ins at the'Jth
element are dropped if th@ j)th entry ofA is zero. In the MILU method, the dropped fill-
ins are added back to the diagonal plus an additional tgrrf, Where ¥ » is the mesh-size.

For matricesA arising from the discretization of second-order elliptic problems, usually
k(A) = O(n?). However, it has been proved in Dupont, Kendall and Rachford [11] that
the condition numbers(M ~1A) of the preconditioned systems for the ILU and the MILU
methods are bounded y(n2) and O (n) respectively.

Besides the ILU-type preconditioners, incomplete block Cholesky factorizations (INV,
MINV) are another popular class of block preconditioners for solving two-dimensional
elliptic problems. The motivation behind these preconditioners comes from the complete
block Cholesky decomposition df. For any tridiagonal matriXo1 and non-singular tridi-
agonal matrixD», the INV preconditioner approximates the Schur complenignt Dgl
by the band matrixD; — J““g(Dz‘l). Heregg(Dgl) denotes the tridiagonal matrix with
diagonals identical to the three main diagonaIngfl. In the MINV method, the dropped
bands are added back to the main diagonal. Numerical experiments in [10] indicate that the
condition numbers (M ~1A) of the INV and the MINV methods are bounded Byn?)
and O (n) respectively.

In [4], Chan and Chan propose another class of preconditioners which is based on aver-
aging the coefficients ofA to form a circulant approximation. Part of the motivation is to
exploit the fast inversion of circulant systems via the fast Fourier transform (FFT). They
proved that circulant preconditioners can be chosen sactidt 1A) = O(n), just like
that for the MILU and MINV type preconditioners.

The fact that the condition numbers of the Dirichlet problems are not improved by cir-
culant preconditioners can be explained partly by a result in Manteuffel and Parter [13,
Theorem 3.1]. The result states that in order to improve the condition number, the Dirichlet
boundary condition of a given problem should be retained by the preconditioner. For the
model problem, i.e. the Laplacian operator with Dirichlet boundary condition, its circulant
preconditioner is the same Laplacian operator but with periodic boundary condition. Thus
the boundary condition is changed. We note that this circulant preconditioner, being a cir-
culant matrix, can be diagonalized by the Fourier transform matrix. For general Dirichlet
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problems with discrete matriA, the circulant preconditioner proposed in Chan and Chan
[4] is defined to be the best circulant approximationAdn Frobenius norm, i.e., it is
the best approximation ta in Frobenius norm amongst the class of matrices that can be
diagonalized by the Fourier matrix.

However, we note that for the model problem, i.e., the Laplacian operator with Dirichlet
boundary condition, its discretization matrix can be diagonalized not by the Fourier matrix,
but by the sine-transform matrix. Thus, for general Dirichlet problems, a possible approach
to finding a good preconditioner is to look for the best approximation in Frobenius norm
amongst all matrices that can be diagonalized by the sine-transform matrix. This gives
an exact approximation for the model problem. We remark that Lirkov, Margenov and
Vassilevski in [12] construct a circulant preconditioner that matches boundary condition by
embedding the original Dirichlet boundary value problem to becomperiodic boundary
value problem. It can be proved that the condition number of the preconditioned systems is
of order O (1). However, the cost per PCG iteration, which is dominated by taking FFT on
the embedded problem, will be twice as much as that of the original problem, see [12].

In this paper, we propose a class of block preconditioners which is based on the idea of
constructing the INV preconditioner. However, we will use matrices that can be diagonalized
by the sine transform matrix to approximate the Schur compleent Dgl instead of
using band matrices as in the INV method or the circulant matrices. For a given rkatrix
the optimal sine transform approximationRois the minimizer of| B — K || over the set
of matricesB that can be diagonalized by the discrete sine transform matrix. Hefe
denotes the Frobenius norm. The minimizer, denoted Ky, will be used in constructing
our preconditioners. The motivation behind our choosing the sine transform approximation
rather than circulant ones is that the optimal sine transform approximation gives exact
approximation to the discrete Laplacian with Dirichlet boundary conditions. Therefore we
expect our preconditioners still to be good approximations of elliptic operators that are
small perturbations of the Laplacian. Our theoretical and numerical results in Sections 3
and 5 verify this claim.

The construction of our block preconditione¥sis similar to that of the INV, namely,
both use easily invertible matrices to approximate Schur’'s complements. However, for
elliptic problems on two-dimensional rectangular domains, we will show thafbean
also be constructed from the matrxby taking the optimal sine transform approximations
of eachn-by-n block of A. Thus, the construction o/ is also similar to the so-called
Level-1 circulant approximation of as defined in Chan and Olkin [9]. We will see that the
construction cost oM and the matrix—vector multiplicatiow v for any vecton can be
done inO (n?logn) operations. Furthermore, we will show that the condition number of
the preconditioned system 1A is of orderO(1). ThusM is an efficient preconditioner.

We note that both the construction (based on averaging of the coefficients of the elliptic
operator) and the inversion (using fast sine transforms) of our preconditioner are highly
parallelizable. Moreover, we remark that the construction approach we use can easily be
extended to two-dimensional irregular domains or higher dimensional regular domains.
Our numerical results on two-dimensional rectangular and L-shaped domains show that our
preconditioners work better than the MILU, MINV and circulant preconditioners.

The outline of the paper is as follows. In the next section, we will describe the optimal
sine transform approximation for general matrices. In section 3, we use the optimal sine
transform approximation to construct a block preconditioner on a two-dimensional rectan-
gular domain. We will show that the INV approach is the same as the Level-1 approach and
we will also analyze the spectral condition number of the preconditioned system. In section
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4, we extend the definition of our preconditioner to two-dimensional irregular domains and
also higher dimensional regular domains. Finally, numerical results and concluding remarks
are given in section 5 and section 6 respectively.

2. Sine transform approximations for general matrices

In this section we recall some of the results in approximating a given matrix by matrices
that can be diagonalized by the discrete sine transformsS,Lbe then-by-n discrete sine
transform matrix. 1tgi, j)th entry is given by

2 . mij ..
— sin( ), 1l=<i,j<n
n+1 n+1

We note thafS, is symmetric, orthogonal and the matrix—vector multiplicatfym can be
computed inO (n logn) operations for any-vectorv, see Yip and Rao [14].

Let %, x,, be the vector space containing all théy-n matrices that can be diagonalized
by S,.. GivenB € B,,,, we now show that the produst~1v for any vecton can be done
in O (nlogn) operations. We first emphasize the relationship between the first coluBn of
and its eigenvalues. Sinde= S, A S, for some diagonal matriq, if ¢, = (1,0, ...,0)’
and 1, = (1, 1,..., 1), then we have

D7 1S,Be, = A1, (2.1)

whereD is the diagonal matrix whose diagonal is equai;te,. Thus, by exploiting the fast
sine transform, the matrix and hence the matrix—vector multiplicatiBn v = 5, A=1S,v
can be computed i® (n logn) operations.

Given ann-by-n matrix A, we are interested in finding a matri®# € ,,«, which
minimizes|| A, — B||r in the Frobenius norrh- ||g. We will denote the minimizer by(A,,)
and called it the optimal sine transform approximatiomfo The following lemma gives
some basic properties 6€A;,).

Lemma 2.1. Let A, be ann-by+ symmetric matrix and(A,) be the minimizer of B, —
A, |lFoverall B, € B,x,. Thens(A,) is uniquely determined hy,, and is given by

s(Ay) = 8$,6(8,AnSn)Sn (22)

wheres (S, A, S,) denotes the diagonal matrix whose diagonal is equal to the diagonal of
the matrixS,, A, S,,. Furthermore,

Amin(Az) < Amin(8(A4,)) < Amax(8(An)) < Amax(An)

In particular, if A, is positive definite, thex(A,,) is also positive definite.

Proof
Follows directly from Chan and Jin [7, Lemma 1]. ]

We note that formings(A,) by computing all the diagonal entries 654, S, as in
(2.2) requiresO (n?logn) operations. Chan, Ng and Wong [8] give another approach of
constructings(A,) which reduces the cost t0 (n2) operations. Before we describe how
the matrixs(A,) is formed, we need the following definitions.
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Definition 2.1. LetQ;,i =1, ..., n, ben-byx matrices with th&#, k)th entry given by

1 iflh—kl=i—1
I Y S
Qi k)= _9 ithsk=2n—i+3

0 otherwise

Boman and Koltracht in [3] showed thig®;}!"_, is a basis fofs,,x,,. We note that eacly;
is a sparse matrix with at most 2ion-zero entries. Also, we let

I'n = (151(Q1 oAy, 1;(Q2 0 AL, ..., 1;(Qn o An)ln)[ (23)

whereo is the Hadamard product.
With the help of the above definitions, we can give explicit formula for the entries of the
minimizers(A,).

Lemma 2.2. (Chan, Ng and Wong [8])Let A, = [a;x] be ann-by= symmetric matrix
ands(A;) be the minimizer of B, — A, || over all B, € B, «,. Denotez to be the first
column ofs(A,). If s, ands, are defined respectively to be the sum of the odd and even
index entries of ,, then we have

1
2, = m(z[rn]l—[rnb)
1 o
[2;, = m([rn]i —[raliv2) i=2...,n—-2
with
V4 = L r
[ ]n—l = m(so +[ n]n—l)
1
2, = m(zse +[ruln)

if n is even; and

1

[Z]n—l = m(se'i'[rn]n—ﬂ
1

24, = m(zso+[rn]n)

if n is odd.

We remark that if4,, has no special structure, thencan be computed if (n2) operations

becauseQ; are sparse with only (n) non-zero entries each. Therefosg€A,) can be

computed inO (n?) operations. However, we show below thatif is a band matrix, then
the cost can be reduced.

Corollary 2.1. The construction cost of the optimal sine transformation approximation
s(Ay) is of orderO (¢n) if A, is ann-by+x band matrix with bandwidtid.
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Proof

By the definition of Q; in Definition 1, Q; o A,, has at most 2 non-zero entries for =
3,...,n. Wheni = 1, 2, the number of non-zero entries ¢; o A, is less than 2.
Therefore, the cost of forming, in (2.3) is bounded by (¢rn). Hence by Lemma 2,(A,,)
can be calculated i@ (¢n) operations. [ |

It is well known that the discrete sine transform matjxdiagonalizes the set of sym-
metric tridiagonal Toeplitz matrices. By the definitionfa,,) or (2.2), the optimal sine
transform preconditioner gives exact approximation to all matrices in the set, in particu-
lar to the one-dimensional discrete Laplacian: tridia[2, —1]. Therefore, the system
tridiag[—1, 2, —1]x = b can be solved in exactly one iteration by the PCG method with
s(A,) as preconditioner and the condition number of the preconditioned systértl)s
We therefore expect our preconditioner still to be a good approximation for elliptic opera-
tors that are small perturbations of the Laplacian. In contrast, we remark that the condition
number of the system preconditioned by the optimal circulant preconditione€iggt?),
see Chan and Chan [4]. In the following sections, we will use the optimal sine transform ap-
proximation to construct block preconditioners for elliptic problems in higher dimensional
domains.

3. Two-dimensional rectangular domains

In this section, we apply the optimal sine transform approximation to construct a block
preconditioner on the two-dimensional rectangular domain. The construction is given in
section 3.1 and the analysis of the spectral condition number of the preconditioned system
is given in section 3.2.

3.1. Construction of preconditioners

Consider the two-dimensional elliptic problems

— (a(x, Yux)x — (b(x, y)uy)y = f(x,y) (3.1

on the unit square [A] x [0, 1] with Dirichlet boundary condition. Assume that the coef-
ficient functionsa(x, y), b(x, y) satisfy

0 < cmin < a(x, y), b(x,y) < cmax (3.2)

for some constantsyi, andcmax. Let the domain be discretized by using a uniform grid
with n internal grid points in each co-ordinate direction. With the usual five-point centered
differencing, the resulting discretization matdxwill be ann?-by-n? symmetric positive
definite matrix of the form

Dy A
Az Dy As

A= (3.3)
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Here D; are symmetric tridiagonal matrices for<li < n andA; are diagonal matrices for
2<i<n.
Let

L = Az . (3.4)
A, O
be the block lower triangular matrix. Then the block Cholesky factorizatioA o&n be

written as
A=E+LT Y +LH

whereX is a symmetric block diagonal matrix with diagonal blo&ssatisfying

X1 = D
Y Di—AiSHA;, 2<i<n (3.5)

Because of the work and storage required in large problems for computing the Schur com-
plementsy;, carrying out the complete block Cholesky factorization is not an efficient way
for solving the systemdx = b.

Concus, Golub and Meurant in [10] focus on sparse approximations on the matyices
Their idea is to approximatg; by band matrices consisting of the three main diagonals of
3;. More precisely, their precondition@f is defined as follows:

M=(A+L)A YA+ LY
whereA is a symmetric block diagonal matrix with diagonal bloekssatisfying

A1 = D1
Ai = Di—T3(AiAHA), 2<i<n (3.6)

Here 93(AiA,.‘_11A,-) is the tridiagonal matrix consisting of the three main diagonals of
AiATH A

The preconditioneM is called the INV preconditioner in [10] and eag} is proved to
be positive definite by showing that the minimum row sum of matrices A; 1 are greater
than zero. Hence, the factorization process (3.6) can be carried outfar 2 n. It was
also proved that the inverse of afby-n symmetric tridiagonal matrix is determined by two
n-vectors which can be computed @(n) operations and hence formil‘Jng(AiAi__llA,-)
only need9®) (n) operations. As a result, forming the INV preconditior¢and computing
M~y can be done ir0 (n2) operations.

In this paper, we use an optimal sine transform preconditioner to approximate each
3;. We follow the approach in [10] and propose, for any matfithat satisfies (3.3), a
preconditionef (A) of the form

SA)=E+L0)E Y E+ LY (3.7)

© 1997 by John Wiley & Sons, Ltd. Numer. Linear Algebra Appl., Vol. 4, 351-368 (1997)
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Here
0

s(Az) O
s(Az) - (3.8)

~
Il

s(Ap) O
is a block lower triangular matrix which approximatesnd
1 0

A

hIp)

M>
Il

0 o
is a diagonal block matrix with diagonal blocks satisfying

1 = s(Dy)
i = s(D)—s(ADSs(A), 2<i<n (3.9)

M> M

In order to ensure the above factorization can be carried out, we show in the next theorem
that eachs; is positive definite. In addition, the theorem also proves that the preconditioner
s(A) actually comes from the matrix by taking the optimal sine transform approximations
to eachn-by-n block of A. Thus, the construction of our preconditioner is similar to that of
the Level-1 circulant preconditioners proposed by Chan and Olkin [9].

Theorem 3.1. Let A be ann?-by+2 symmetric positive definite matrix of the form given
in (3.3). Define

s(D1)  s(A2)
s(A2) s(D2) s(A3)
G = (3.10)

- s(Ap)
s(Ay)  s(Dy)

wheres(-) is the optimal sine approximation. Then is positive definite and the block
Cholesky factorization af is given by

S+ IE+1LY

whereL ands are given in (3.8) and (3.9) respectively. In particular = §(A) and hence
s(A) andX; are positive definite.

Proof
The positive definiteness @ follows from Chan and Jin [7, Theorem 1]. Similar to (3.5),
the block Cholesky factorization @f is given by

G=(@+ Lo Yo+L

Numer. Linear Algebra Appl., Vol. 4, 351-368 (1997) © 1997 by John Wiley & Sons, Ltd
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where® is a symmetric block diagonal matrix with diagonal bloekssatisfying

@, s(D1)
O = s(D)—s(ADD;s(A), 2<i<n

Comparing this with the definition of in (3.9), we see thab = ¥ and hence the block
preconditionef (A) is identical toG. [ ]

In the following, we apply the recursion formula (3.9) to show that both the preconditioner
§(A) and the solution of the linear systefnd)x = b can be obtained ir0 (n?logn)
operations. Since matrices, s(D;) ands(A;) all belong to®,,«,,, we letA;, A;j andA?
be their corresponding eigenvalue matrices. Specifically, we have

3= SuAiSy,  s(D;) =S,A%S, and s(A;) = S,A’S, (3.11)

As D; and A; are band matrices, by Corollary 2.1, forming@D;) ands(A;) costsO (n)
operations. By (2.1)Al‘1 and A¢ can be computed i (n logn) operations. Using (3.9),

we have the following equality which relates the eigenvalues of matbicesd>; _1
d -1
Ai = Af = ATA AT

Therefore,A; can be obtained from;_1 in O (nlogn) steps. Hence, formin@ and the
preconditioners (A) require only O (n?logn) operations. Finally in solving the system
§(A)x = b, we are required to multiply each; by some vector and to solve systems with
coefficient matrices:;. By noting the equalities in (3.11), it is easy to see that the system
§(A)x = b can also be solved i® (n2logn) operations.

We note that, by Theorem 1, the preconditiofie4) can also be constructed by using
the approach used in constructing Level-1 circulant preconditioners in Chan and Olkin [9].
The cost will be cheaper but still requirégrn logn) operations. As we will see in section 4,
the INV approach of constructirigA) in (3.7) can be easily extended to irregular domains
but the Level-1 approach in (3.10) cannot.

3.2. Convergence analysis of the preconditioners

In this subsection, we are going to show that the condition numbers of the preconditioned
systemsc(5(A)~1A) are bounded by a constant which is independent of the size of the
matrix A. Hence, the convergence rate of the conjugate gradient method when applied to
the preconditioned systerfigd) 1A is linear, see Axelsson and Barker [1, p.26].

Before we present our proof, let us introduce the following notations Al,gtbe any
n?-by-n? matrix partitioned as

A11 A12 ... A1,

Ao1 Azp ... Az,
Ann = : S :

Apr Ap2 ... Aun

© 1997 by John Wiley & Sons, Ltd. Numer. Linear Algebra Appl., Vol. 4, 351-368 (1997)
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HereA; ; are square matrices of orderThen we define (A,,) to be the matrix

8(A11) 6(A12) ... 8(Arn)
R 8(A21) 6(A22) ... 8(A2n)
S(Ann) = . . . .

S(An,l) 5(An,Z) “ee S(An,n)

where each blocB(4; ;) is the diagonal matrix of order whose diagonal is equal to the
diagonal of the matri¥; ;. The following lemma relates eigenvalues of matridgs and

8(Any) and is useful in our analysis of the convergence rate.

Lemma 3.1. (Chan and Jin [7])Given anyn?-by-2 symmetric matrix,,,,, we have
dmin(Ann) < Amin(8(Ann)) < Amax(8(Ann)) < Amax(Ann)
In particular, if A, is positive definite, thed(A,,) is also positive definite.
Using thes (-) notation, we can give another formula fA).

Lemma 3.2. Let A be ann?-by-n? symmetric positive definite matrix of the form given in
(3.3). Then A

Proof A
We first observe that((/ ® S,)A(I ® Sy)) is equal to

8(SnDlsn) 8(SnA2Sn)
3(SpA2Sn)  3(SpD2Sy) 6(SpA3Sn)

8(SnAnSn)
8(SpAnSn)  8(SpDySp)

Then the lemma follows by using (2.2) and (3.10). ]
With the help of these two lemmas, we prove the main theorem in this section.

Theorem 3.2. Let A be the five-point discretization matrix of (3.1) on the unit square
satisfying conditions (3.2). K(A) is the preconditioner defined in (3.7), we have
KE(A)LA) < ()2 (3.13)
Cmin
Proof
Let Ay be the five-point discretization matrix of the Laplace operator on the unit square,
ie.,

Ay = tridiag[-1, 2, —1] ® I, + I, ® tridiag[—1, 2, —1]

Then
cminAL < A < cmaxAL (3.14)

Numer. Linear Algebra Appl., Vol. 4, 351-368 (1997) © 1997 by John Wiley & Sons, Ltd
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see [4, (4.2)]. Multiplying(I ® S,;) on the left and on the right of the matrices in the above
inequality and applying Lemma 3.1, we have

cmind (1 ® S)ALU @ Sy)
5((1 ® SAU ® 51))
cmad(( ® )AL ® S,))
cmax(I ® SDALU © Sy)

cmin(f @ Sp)AL(I ® Sy)

1A IA

Multiplying again the left and the right of the above matrices(byw S,,) and by noting
(3.12), we then have

CminAL < §(A) =(UI® Sn)g((l Q SAU Q@ S ® Sp) = §(A) < CmaxAL (315)

This shows thaf(A) — cminAL andcmaxAL — S(A) are positive semidefinite matrices.
Combining (3.14) and (3.15), we have

Cmin x'ALx - x'Ax - Cmax X' ALx

0<

CmaxX'ArLx T x!'S(A)x T cmin XTALx

Hence, the theorem is proved. [ |

4. Extension to other domains

In this section, we apply the optimal sine transform approximation to constructing precon-
ditioners for two-dimensional irregular domains and higher dimensional regular domains.
The two cases will be discussed respectively in sections 4.1 and 4.2.

4.1. Two-dimensional irregular domains

For ease of presentation, we consider irregular domains that are a union of rectangular do-
mains. In this case, the matrixstill has the form given in (3.3) but the diagonal submatrices
D; of A are of different sizes and the submatriggsmay not be square matrices. We note
that the number of submatrices a&f that are not square is proportional to the number of
rectangular regions used in forming the given domain. For an L-shaped domain, there is
only oneA; that is not square; and for a T-shaped domain, the number is two.

When theA; are square, we can carry out the construction of the preconditioner just as
we did in section 3. Therefore let us concentrate on the sub-blogkwlfiere theA; are
not square. In particular, let us consideto be of the form

_ (D1 A
A= ( A2 Do
where D1 and D, are respectively1-by-n1 andnz-by-n, symmetric tridiagonal matrices

and A3 is annp-by-n; rectangular matrix with(Az);; = 0 fori # j. Without loss of
generality we assume that > no.

© 1997 by John Wiley & Sons, Ltd. Numer. Linear Algebra Appl., Vol. 4, 351-368 (1997)
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The block preconditionef(A) in this case will still be of the form given by (3.7) except
that theX;, which are approximations tB;, are defined as follows:

$1 = s(Dp)
(D) — 5(A2E! )5 (Engny 27 EL )5 (En ny Ab)

nz,ni nz,ni

™
[N}
|

whereE,, ,, is annp-by-ny matrix such thatE,, ,,,); ; = §;;, the Kronecker delta. We
note that the matri,, ,, 57 *EZ ,  is thena-by-n2 principal submatrix of:;*. Hence

it is a dense matrix without any special algebraic structure. Constructing the optimal sine
transform approximation to the matrix requir@@z%) operations according to (2.3).

Thus, we conclude that for a givenirregular domain which is the unierrettangular re-
gions, the construction cost of the preconditiaftet) is bounded by (mn?)+ O (n?logn)
wheren is the size of the largest diagonal blockAfFor an L-shaped or T-shaped domain,
the cost will still be bounded b@ (n2logn). Onces(A) is formed, the cost of solving the
system§(A)y = v is the same as in the rectangular case, i.e., it is boundet{b¥logn).

4.2. Higher dimensional rectangular domains

In this section, we extend the construction of our preconditioner to the three-dimensional
cubic domain [01]3. The approach can easily be generalized to higher dimensional regular
domains.

By applying the usual seven-point centered differencing wittternal grid nodes in each
co-ordinate direction, the resulting discretization mattiwill be ann3-by-n3 symmetric
positive definite matrix of the form given in (3.3) with; and D; beingn?-by-n? diagonal
matrices and:2-by-n? tridiagonal block matrices respectively. If we Ietbe the matrix
defined in (3.4), then the block Cholesky factorizatiomois given by

A=E+L) Yz +LY

where  is a symmetric block diagonal matrix with easR-by-n? diagonal blockss;
satisfying (3.5).

To emulate the approach of constructing the INV preconditioner, namely using an easily
invertible matrix to approximate the Schur complem&at we introduce the so-called
Level-2 circulant approximation t&;, see Chan and Olkin [9]. We need the following
notation first. For any:2-by-n? block matrixA,,, we denote(A,,); j:x to be the(, j)th
entry of the(k, I)th block of A,,,,. Let P be the permutation matrix that satisfies

(PtAnnP)i,j;k,l = (Ann)k,l;i,j» 1 < i’j <n, 1 <k/l<n
Then we define an approximaticiA,,,) to A, by
S:(Ann) = P:S:(Pt:g\(Ann)P)Pt (41)

By Theorem 3 in [7], the approximatiaiiA,,,) can be diagonalized b, ® S,,. Specifically
we have,
$(Ann) = (Sp @ Sp)3((Sp @ Sp) Ann(Sy & S,))(Sn ® Sn)

Using this equality, we can relate the eigenvalues af,,,) with its first column as in (2.1).
Hence, the inverse Gf(A,,) can easily be computed.
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Now we apply the approximatiof(-) to eachX; and define the block preconditioner
S(A) for the matrixA as
SA)=E+DENE+LH
where
0
S(A2) 0
= 5(A3)

N

s(Ap) O
is a block lower triangular matrix which approximatesnd

31 0

hIy)

M
1l

0 %,
is a diagonal block matrix with diagonal blocks of ordern? satisfying

1 = 3Dy
i = $(D) —5(ANSAEA), 2<i<n (4.2)

M M

Similar to Theorem 3.1, we can prove that the preconditiénéy can be obtained from
A by taking thes(-) approximation of each?-by-n? block of A. Hence by Theorem 1 in
[7], 5(A) is positive definite. Also, since matricels are diagonal and; have the same
graph structure as two-dimensional discretization matrices, by (4.1), we see that obtaining
eachs(A;) ands (D;) requiresO (n2 logn) operations. Hence by (4.2) the construction cost
of the preconditionef(A) is of order0O (n2logn).

5.  Numerical experiments

In this section, we compare the performance of our method with the MILU, MINV and the
circulant type preconditioning method proposed in [12]. The equation we used is
%[(1+ eexﬂ‘)g—Z] + %[(1+ % sin(2r (x + y)))g—Z] = f(x,y) (5.1)
with u = 0 on the boundary. The here is a parameter controlling the variation of the
coefficient functions. We discretize the equation using the standard five-point scheme. The
initial guess and the right hand side are chosen to be random vectors and are the same for all
methods. All computations are done by Matlab on a SUN sparc workstation. The iterations
are stopped when the residual veotpat thekth iteration satisfies|r¢||2/||rol|2 < 1075.

In Tables 1(a)-2(b), we show the numbers of iterations required for convergence for
(5.1) with different choices of and preconditioners. The notation in the second row of the
tables indicates the type of preconditioner we used wahdC meaning no preconditioner
or the circulant type preconditioner as proposed in [12]. The paraméseequal to Y &

© 1997 by John Wiley & Sons, Ltd. Numer. Linear Algebra Appl., Vol. 4, 351-368 (1997)



364

R. Chan and C. Wong

Table 1(a). Numbers of iterations for the unit square
€ 0.0 0.01
n 1 5(A) MINV MILU C I S(A) MINV MILU C
8 22 1 5 9 1 25 3 5 9 3
16 43 1 7 13 1 47 3 7 13 3
32 82 1 11 19 1 91 3 11 19 3
64 154 1 16 27 1 159 3 16 27 3
128 306 1 23 39 1 339 3 23 39 3
Table 1(b). Numbers of iterations for the unit square
€ 0.1 1.0
n 1 5(A) MINV MILU C I s(A) MINV MiLU
8 25 5 5 9 5 30 9 4 9 9
16 47 5 7 13 5 59 10 6 13 9
32 96 5 11 19 5 121 10 9 18 9
64 185 6 15 27 5 247 10 13 26 9
128 388 6 23 39 5 515 11 20 37 9
Table 2(a). Numbers of iterations for the L-shaped domain
€ 0.0 0.01
n 1 s(A) MINV  MILU 1 S(A)  MINV  MILU
8 21 3 4 9 21 3 4 9
16 39 4 6 12 41 4 6 12
32 74 4 10 18 77 4 10 18
64 144 4 14 25 153 4 14 25
128 286 4 22 37 297 4 22 37
Table 2(b). Numbers of iterations for the L-shaped domain
€ 0.1 1.0
n I §(A) MINV MILU I §(A) MINV MILU
8 22 5 4 9 25 8 4 9
16 41 5 7 12 47 10 6 12
32 81 6 10 17 93 11 9 17
64 161 6 14 25 195 13 14 25
128 323 7 22 36 405 17 20 36
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Table 3. Number of million flops per PCG iteration

S(A) MINV MILU C
m n=2"-1 n=2"-1 n=2"-1 n=2"
5 0.13 0.04 0.04 0.22
6 0.56 0.18 0.17 0.94
7 2.39 0.71 0.69 4.00
8 10.23 2.86 2.79 16.95

whereh is the mesh size. Tables 1(a), (b) and 2(a), (b) are the results on the unit square
and on the L-shaped domain,[§] x [0, 1] U [3. 1] x [0, 3] respectively. Note that the
circulant preconditioner proposed in [12] is not defined in irregular domains. We see from
the tables that the numbers of iterations fo§(A), MILU, MINV and C grow asO (n),

0D, 0(/n), O(y/n) andO (1) respectively. We emphasize that although the numbers of
iterations forC are roughly the same as those §¢A), the cost per PCG iteration fa@r is
approximately twice that far(A). Itis becausé€ is the circulant preconditioner constructed
for the problem that it extends the original Dirichlet boundary value problem periodically
in the y-direction [12]. Hence( is a 2:2-by-22 circulant block matrix having block size
2n-by-2n. We will present results to show th&tA) is better tharC in terms of the overall
computational complexity and the cost per PCG iteration. We also remark that the MILU
and MINV preconditioning methods are less sensitive to the changes in

We note that in Table 1(b), the numbers of iterations for the preconditigAerseem to
grow slightly whereas by Theorem 2 they should be bounded independefofrgern.
Owing to computational time limitation, let us illustrate the results for latdsrperforming
the experiment for the case= 1 with the tolerance set to 18. In this case, the numbers
of iterations corresponding 0 = 32, 64, 128 256 512 become 77,7, 7, 7 respectively.
These numerical results agree with the theoretical results in Theorem 2.

In Table 3, we compare the number of floating point operations (flops) per PCG iteration
for different types of preconditioners in Matlab. In order to exploit the fast sine transform
(FST) and the fast Fourier transform (FFT) algorithms, we chaose 2" — 1 for the
sine transform preconditioners and= 2" for the circulant preconditioners. We note that
C is a circulant block matrix of sizerZ-by-2n2 with 2n-by-2n circulant block, see [12],
and therefore the cost per PCG iteration €diis twice that fors(A). We observe from
Table 3 that the cost per PCG step for the sine transform preconditioner is relatively more
expensive than those for the MILU and MINV preconditioners. However, we find that the
Matlab implementations of the FST and FFT algorithms are not optimal. Fonb< 8,
the Matlab implementations of teedimensional FST and FFT are aboutl®gn flops and
3.5n logn flops respectively. On the other hand, the optimal implementations of both the FST
and the FFT algorithms should bé logr flops, see [2,14]. Thus, for our method, where
the dominant cost is in taking the FST, there should be alb5%- 3.6 times speed up if
optimal implementation is used. Similarly, there is a factor.6f3.5 ~ 1.4 times speed up
for the circulant preconditioning method. The cost per iteration of our preconditioner will
therefore be comparable with those of the MINV and MILU preconditioners. In addition,
we note that the FST is easier to parallelize than tridiagonal solvers. We also remark that
after taking into account the optimal implementation of FST and FFT, we find that the
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Figure 1(a). € = 0.01, 0:§(-), x: MINV, +: MILU, *: C

circulant preconditione€ still costs twice that of the precondition&fA). This is due to

the fact that computing v by FFT involves solving a block tridiagonal system with a
complex right-hand side vector whif¢A)~1v by FST only involves a real right-hand side
vector. In terms of Matlab flops count, the circulant preconditioning method will require,
in addition, roughly twice more computational work than that of our preconditioner.

In Figure 1(a), (b), we plot the total number of flops that are required for solving (5.1)
by the PCG method against the grid sizeThe counts are obtained by using Matlab’s
implementation of FST and FFT. We observe that the total number of flops for convergence,
with the preconditionef(-), is always less than that of the circulant preconditiorfeend
grows with a rate slower than those of the MINV, MILU preconditioners. It is expected
that the overall computational cost for solving (5.1) with the sine transform preconditioner
will be cheaper than those of the other three preconditioners especiallymbdarge. As
mentioned above, the cost can be further reduced Byfdptimal implementation of FST
is used.

6. Concluding remarks

In this paper, we have developed preconditioners for Dirichlet problems based on a sine
transform matrix. We find our preconditioner by looking for the best approximation in Frobe-
nius norm amongst all matrices that can be diagonalized by the sine-transform
matrix. This gives exact approximation to the Laplacian operator with Dirichlet boundary
condition. We have since applied our idea to problems in queueing networks [5] and image
processing [6] where the boundary conditions are Neumann in nature. Since the Lapla-
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Figure 1(b). € =1, 0:3(-), x:MINV, + MILU, x C

cian operator with Neumann boundary condition can be diagonalized by a cosine transform
matrix, we construct our preconditioners in these cases by looking for the best approximation
in Frobenius norm amongst all matrices that can be diagonalized by the cosine transform
matrix. The numerical results there show great improvement over methods previously used.
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