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SUMMARY

We describe a two-grid and a multigrid method for linear systems whose coefficient matrices are point
or block matrices from the cosine algebra generated by a polynomial. We show that the convergence
rate of the two-grid method is constant independent of the size of the given matrix. Numerical examples
from differential and integral equations are given to illustrate the convergence of both the two-grid
and the multigrid method. Copyright © 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Consider solving a linear system A,x = b where 4,, € R*"*". Given an iterative method
xUtD) = v, x0) 4 ub, (1)

where V, := I, — wA, and a full-rank matrix p! € R*** with k& < n, a Two-Grid Method
(TGM) for solving A,x = b is defined by the global iteration matrix:

TGM (Vo k) = Vi [T = vl ((05) Anh) ™ (05) A,

see [5]. The TGM becomes a multigrid method (MGM) if the coarse-grid system with the
coefficient matrix (p¥)* A4, pF is solved recursively by using the TGM scheme.

In this paper, we consider A, that are point or block matrices in the DCT III algebra
generated by a polynomial. This kind of matrices appears in the solution of differential
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equations and integral equations, see [3, 6, 9] for instance. We will show that the convergence
rate of the TGM is constant independent of n, i.e. ||TGM (V,,p*)|| < 1. It is the first step in
establishing the optimality of the MGM (see [7]). In fact, the total cost of MGM will be of
O(n) operations if one can find projection operators p¥ such that

[a] the matrix vector product involving pk costs O(n) operations;

[b] the coarse grid matrix Ay = (p¥)!A,p¥ is also a matrix in the DCT III algebra generated
by a polynomial, and can be formed within O(n) operations; and

[c] the convergence rate of the MGM is independent of n.

The conditions [a]-[c] imply that the MGM will be optimal in the sense of Axelsson and
Neytcheva [2], i.e. the problem of solving a linear system with coefficient matrix A, is
asymptotically of the same cost as the direct problem of multiplying A,, to a vector.

The paper is organized as follows. In §2, we define our TGM that satisfies conditions [a] and
[b]. In §3, we show that ||TGM (V,,pk)|| < 1. Finally, §4 gives some numerical results and §5
provides some open problems and future work.

2. TWO-GRID METHOD FOR DCT III MATRICES

In this section we describe our TGM for DCT III matrices that satisfies requirements [a]
and [b]. We start with the unilevel case (i.e. point matrices). Let f be a real-valued even
trigonometric polynomial of degree ¢ defined over (0,27]. The DCT IIT matrix of order n
generated by f is defined as S, (f) = QnAn(f)Q?,, where Ay (f) = diagy<j<,—1 f(7j/n) and

Qn: [V 2_6j71 COS{(i_l)(Qj_l)ﬂ-}] ) 61,1 :1)6]',1 =0 lfj7é17 (2)
n 2n

ij=1

is the DCT III transform matrix. Let A,, = S, (f). Thus A, is a symmetric band matrix of
bandwidth 2¢ + 1.

In order that the coarse grid matrix Ay (k = n/2) is a DCT III matrix, we let p¥ := S, (p)T¥
where p is an even trigonometric polynomial to be defined later, and T* € R**¥ is given by

m = {1 for i€{2j—1,2}, j=1,...,k
nlij ™ 1 0  otherwise.

The operator T* represents a spectral link between the space of the frequencies of size n and
the corresponding space of frequencies of size k according to the following Lemma.

Lemma 1. Let Q,, be given as in (2) with size m. Then
(T Qn = Qr[®r, O4I11], (3)

where

P = diags:l,...,k {\/5(305 <%>] , O = diagszl,...,k [—\/§Sin <7(S ;;)w)] )

and Iy is the permutation matriz (1,2,... k) — (L,k,k—2,...,2).
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Proof: We break (3) into three different cases:
[Qn]Zsfl,t + [Qn]Zs,t - [(ﬁk]t,t[Qk]s,ty 1 S S>t S k: (4)

[Qn]Zsfl,k+1 + [Qn]Zs,kJrl = 0; 1 S S S k)

and [@Qnlas—1,t+k + [@nl2s,t+k = [Oklk+2—t kt2—t[Qrls k+2—t, 1<s<k,2<t<k.
The first two identities can be proven using (2) and the cosine summation formula. For
the last one, we can simply observe that (4) holds even for ¢ > k, and that [®gleyr,trr =

Olkro—tkr2—t and [Qrls,i+x + [Qrls,k+2—¢ =0. [
Notice that Ax = (pk)!S,(f)pk = (TF)ES,(p)Sn(f)Sn(p)TE = (TF)!Q. A, (fp?*)QLTE. Hence
by Lemma 1, it is straightforward to verify that Ay = Sk( f) where

f(x) = 2[cos™(@/4) f (x/2)p* (x/2) + sinX(w/4) f(x — x/2)p*(x — x/2)], w€[0,7]. (5)

From this, it is easy to obtain the Fourier coefficients of f (z) and hence the nonzero entries of
Apg.

To ensure the convergence of our TGM, we choose p as follows: if f has a unique zero
2% € [0, 7], then

p(z) =[2 —2cos(z — (7 — mo))]m/ﬂ ~ |z —(m— x0)|2m/2], x € [0, 7], (6)

R (P I sin?(z/2) |z — 2°|*
B > Bmin = min {'L zlgIle P (1‘/2) f(l’) < OO} > (7)

0 < p*a) +p*(r —2). (8)

Here the equivalence relation f ~ ¢ indicates that f and g are both nonnegative and there
exist positive constants ¢ and C such that cg(z) < f(z) < Cg(x), uniformly with respect to z.

If f has more than one zero in [0, 7], then p will be the product of the polynomials of the
kind (6), satisfying the condition (7) for every single zero and globally the condition (8). We
point out that conditions (6) and (8) are not surprising and indeed are in common with the
conditions on other structures such as 7, symmetric Toeplitz and circulant matrices (see e.g.
[8, 10]). Condition (7) is new and is special for the DCT III algebra.

We note that if f is a trigonometric polynomial of degree ¢, then f can have a zero
of order at most 2c¢. If none of the root of f are at w, then by (6) and (7), 8 < e
Therefore the degree of p is less than or equal to [¢/2]. If 7 is one of the roots of f, then
B = min{i : lim,_. (z — 7)%/(cos®(x/2) f(x)) < +oo}. In this case, B < c+1 and consequently
the degree of p is less than or equal to [(c + 1)/2]. In both cases, S, (p) is banded, and hence
the cost of a matrix vector product involving p¥ is O(n). Thus the condition [a] in §1 is
satisfied. Regarding the condition [b], the representation of A can be obtained formally in
O(1) operations since Ay = S (f) and f is given in (5). In fact, if 0 < 2° < 7/2 is a zero
of f, then by (6), p(m — 2°) = 0 and hence by (5), f(22°) = 0, i.e. y° = 22° is a zero of f.
Furthermore, because p(m — %) = 0, by (8), p(z°) > 0 and hence the orders of z° and y° are
the same. Similarly, we can show that if 7/2 < z° < m, then y° = 2(7 — 2°) is a root of f
with the same order as z°; and if 2° = 7, then y° = 0 with order equals to the order of z°
plus two. More precisely, we can obtain the roots of f and their orders by knowing the roots
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of f and their orders. Finally, each iteration of (1) costs O(n) operations as A,, is banded. In
conclusion, each iteration of our TGM requires O(n) operations.
For 2-level (i.e. block) banded DCT III matrices, i.e. matrices of the form

(Qn ® Qn)An2 (f(CU1,ZU2))(Qn ® Qn)t

for some 2-variate trigonometric polynomial f, we can extend our TGM directly to them
by using tensor arguments. In particular, we choose p(z1,22) to be an even trigonometric
polynomial that satisfies the following conditions: if f(z,z2) has a unique zero (z9,z9) €
[0, 7]%, then

2
p(gyl,mQ) ~ H <Z|wr_£.2|2[5/2]> ,
r=1

(29,28) €M (a9 ,28)

2 . ,
Z lim st(mr/Q) |z, — 20| < ool
<z, —a) €082 (2,/2) (a1, T2)

r=

8 > ﬂminzmin{i

0 < Z pZ(ijl)iQ)
(81,82)EM (z1,22)U{(z1,22)}

with M(Z’l,l’g) = {(1‘1,7(—1’2),(7’( —1’1,1’2),(7’( — X1, T —1‘2)}.

3. PROOF OF CONVERGENCE

In this section, we show the optimality of our TGM by proving that || TGM (V,,pk)|| < 1. This
is a weaker version of condition [c] in §1. We give the proof for the point case, as the proof for
the 2-level case is similar by tensor argument. In the following, || - ||» denotes the Euclidean
norm, and |- ||x = ||X'/2+]|, for nonnegative definite X. We start with the following theorem.

Theorem 1. [7] Let A,, be positive definite and V,, be defined as in (1). Suppose that there
exist positive a and v independent of n such that

Vaxalla, < lxall%, = all%alls, diag(any-1a,s V% € BT, (9)
and
min {[X, = Py Yelldiaga,) < V%l VX, € R (10)
yrERF

Then, v > a and ||[TGM (Vy,,pE)||a, < V1 —a/y < 1.
Thus our TGM will converge linearly if we can verify (9) and (10). We first verify (9).

Lemma 2. Let A, = S,(f) with f being a nonnegative trigonometric polynomial and let
Vo =In — A/l flleo in (1). Then (9) holds.

Proof: Since A,, = S,,(f), we can check that

n .
Ui 2 .
[Andis =3 f (;) [@u)2,>0, 1<i<n. (11)
Jj=1
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Hence @ = min;{[A4,];} > 0 and is independent of n. Now choose 0 < a < @/||f]|co, then
(I — An/|Iflloo)? < I, — (a/a)A,,. Since diag(A,)™! < a 11, we have (I, — A, /]| flle)? <
I, — aA£/2diag(An)_1A:/2, which is equivalent to (9).

It remains to verify (10) for which we use a proof technique developed in [8].

Lemma 3. Let A, = S,(f) with f being a nonnegative trigonometric polynomial. Then (10)
holds for our TGM.

Proof: Let a = max;{[A4,]ii}. By (11), 0 < @ < oo. Notice that || - ||

“diag(An) < || - ||3. Hence
it is enough to prove that there exists v > 0 such that

min ||x, — phyel3 < (v/@)lIxall%,,  Vxn € R™.
yrERF*
We will establish this by showing that there exists a positive v independent of n such that

—1 -
%0 = oA [P0 Ph] R xa 3 < (V/a)lixalls,,  Vxn € R
But this is equivalent to showing that

Wn(p)th(p) < (V/d)sn(f)

with W, (p) := I, — pk [(pﬁ)tp’fl]_1 (pk)t. Here X <Y means that Y — X is positive definite.
Since W,,(p)! Wy (p) = W2(p) = W, (p), the preceding inequality becomes

Wa(p) < (v/@)Sn(f)- (12)

Recall that p¥ = S, (p)Tk. Using (3), we can permute Q,W,,(p)Q., into a 2x 2 block diagonal
matrix where the first block of this matrix is given by

R

and the jth block, j = 2,... ,k, is given by

I - 1 { ¢ €j5i } -
c? + s? cjsj 57
Here ¢; = ﬁcos(mg-n]/Q)p(mg-n]), s;=— 2Sin(£l75-n]/2)p(ﬂ' - mg-n]), and asg-"] =(j —1)m/n.
Due to the continuity of f and p, (12) is proven if
I - H [ ]”2]3[ ]p[ ] (7/5)diag(f[$]) (13)

where plz] = [cos(z/2)p(a), — sin(z/2)p(r — )] and flz] = [f(@), f(x — 2)]". Let
R(x) = diag % (flz) (12 el 1) diag™ ¥ (f[a])

If we can show that all the entries of R(z) are uniformly bounded, then R(z) < (y/a)l, for
some v > 0. Hence by the Sylvester inertia, (13) holds, and we are done.

For i # j, it holds
s — cos(x/2) sin(z/2) p(x)p(m — x)
ks cos? (z/2)p? (x) + sin® (z/2)p* (7 — ) \/f () f(r — )

and we have to consider the following three cases:
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1. 2% € (0,m): (7) implies that p(m — z)/\/f(z) € L, and, up to the change of
variables y = 7 — z, that p(y)/v/f(m—y) € L*. In addition, (8) implies that
cos(z/2) sin(x/2)/(cos? (x/2)p? (x) + sin’(z/2)p* (7 — x)) € L.

2. 2% = 0: (7) implies that sin(z/2)p(r — x)/+\/f(z) € L*, and, up to the change of
variables y =7 — z, that cos(y/2)p(y)/\/f(m —y) € L. In addition, (8) implies that
1/(cos?(z/2)p?(x) + sin?(x/2)p? (1 — x)) € L.

3. #° = m: (7) implies that p(m — z)/(cos(z/2)\/f(z)) € L*, and, up to the change of
variables y = m — z, that p(y)/(sin(y/2)\/f(m —y)) € L. In addition (8) implies that
P2 (@) sin®(5/2) + pP(x — 2)/ cos*(@/2) > p*(2) + PP (m — 2) > 0.

Thus in all cases, [R(x)];; € L. The cases [R(x)];j, j = 1,2, can be dealt with in the same
manner. O

4. NUMERICAL EXPERIMENTS

We test our TGM and MGM (standard V-cycle) for two types of DCT-III systems with
generating functions having zero at 0 (differential like problems) and at 7 (integral like
problems). The projectors are chosen as in §2 and we use the smoothing (1) twice in each
iteration with w = ||f||~! and w = 2||f]| 7! respectively. In the V-cycle, the exact solution of
the system is found by a direct solver when the coarse grid dimension equals to 16¢ where d = 1
for the point case and d = 2 for the block case. In all tables, x. denotes the exact solution,
and we give the numbers of iterations required for convergence for both the TGM and the
MGM. We point out that the CPU timings are consistent with the iteration counts. We stop
the iterations when the two norm of the residual is less than 10~7. Finally, we stress that the
matrices at every level (except for the coarsest) are never formed since we need only to store
the nonzero Fourier coefficients of the symbols at every level for matrix-vector multiplications.
Thus, besides the O(n) operations complexity of our V-cycle, the memory requirements is also
very low since there are only O(1) nonzero Fourier coefficients of the symbols at every level.

4.1. Case z° =0

Consider 4,, = S,(f,) where f,(z) = [2 — 2cos(x)]?, which has a unique zero at 2° = 0
of order 2q. Since S, (f,) is singular, here, we consider the solution of the perturbed system
[Sn(fq) + w -eel]x = b, where e is the vector of all ones. Notice that the position of the
zero at the coarser levels is exactly the same as at the finest level. Consequently the function
p(z) in the projectors is the same at all the subsequent levels. To test condition (7), we tried
p(z) = [2 = 2cos(m — z)|* for different w. According to (7), we must choose w at least equal
to 1 if ¢ = 1 and at least equal to 2 if ¢ = 2,3. These are confirmed in Table I. We also
see that our choice of w guarantees the linear convergence of the multigrid method with rate
independent of the size n.

By using tensor arguments, our results plainly extend to the block case. We test it with
fo(z,y) = fy(x) + fy(y). The results are shown in Table II. We note that such kind of linear
systems arises in the uniform finite difference discretization of elliptic constant coefficient

differential equations on a square with Neumann boundary conditions, see e.g [9].
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Table I. Twogrid/Multigrid - 1D Case: (x.); = i/N.

g=1 q=2 q=3
n w=0 w=1|lw=1|w=2 w=1 w=2 | w=3
16 25/1 7/1 15/1 13/1 -/1 34/1 32/1

32 || 26/26 | 7/7 | 16/16 | 15/15 | 36/36 | 35/34 | 34/32
64 | 27/60 | 7/7 | 16/17 | 16/16 | 36/63 | 35/35 | 35/34
128 || 28/125 | 7/7 | 16/18 | 16/16 | 36/123 | 35/35 | 35/35
256 || 28/251 | 7/7 | 16/18 | 16/16 | 36/225 | 35/35 | 35/35
512 || 20/497 | 7/7 | 16/18 | 16/16 | 36/391 | 35/35 | 35/35

Table II. Twogrid/Multigrid - 2D case: (xc); = [i/n1] /n2 + i (mod n1)/n;.

g=1 qg=2 q=3
N =nino w=0 |w=1|lw=1| w=2 w=1 w=2|w=3
67 O Y I S R ey U ey M Ry
322 22/22 16/16 | 36/36 35/1 75/75 -/1 -/1
642 22/52 16/16 | 36/36 | 36/36 75/119 74/74 | 73/73
1282 22/108 | 16/16 | 36/36 | 36/36 75/296 T4/74 | 73/73
2562 22/217 | 16/16 | 36/37 | 36/36 75/670 74/74 | 73/73
5122 22/430 | 16/16 | 36/37 | 36/36 | 75/1329 | 74/74 | 73/73

4.2. Casez® =7

DCT III matrices where the generating function has a root at m appear in solving integral
equations, for example the image restoration problems with Neumann (reflecting) boundary
conditions, see [6]. According to (6)—(8), if 2° = m, then the generating function of the
coarser matrix Ay has a unique zero at 0. Therefore, starting from the second coarser level,
the problem becomes the one as in §4.1. Using tensor arguments, we can extend the results
straightforwardly to the block case where we have (z9,29) = (m, 7). We test our TGM with
f(z1,22) = 4+ 2coszy + 2cosx2. Table IIT gives the results in the block case and confirms
the convergence of our two-grid and multigrid method. We have performed the experiments
with different kind of data vectors in order to check the independence of the convergence with
respect to the possible subspaces where the data vector and the solution belong: we observe
that this parameter does not affect the convergence rate.

5. OPEN PROBLEMS AND FUTURE WORK

The numerical evidences reported in the previous section have shown that our MGM (V-
cycle) is optimally convergent even when the systems are ill-conditioned. This represents two
directions of work that will be of interest both in theory and applications:

e to extend the convergence analysis from TGM to MGM under the assumptions considered
in this paper (also making use of the new tools introduced in [1]);

e since the DCT III problems with zeros at (w,m) (or close to (m, 7)) are encountered
in a variety of image restoration applications (see e.g. [3, 6]), it would be interesting
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Table IIT. Twogrid/Multigrid - 2D Case: A) (x¢); = i/(nin2), B) (x¢); = [i/n1] /n2 +i (mod ni1)/n1,
C) (xe); = [i/m1] /n2 + i (mod n1)/n1 + 1072(=1)", D) (x)i = [i/n1] /n_z + i (mod n1)/n1 +
1071 (=1)", E) (x¢)i = |i/n1] /n2 + i (mod n1)/n1 + (—1)%,

niy - N2 A B C D E
16° NS T S
322 5/5 | 7/7 | 7)T | 7)7 | T)7
64> 5/5 | 77| 7/t | )7 | T)7
1282 5/4 | 7/6 | 7/6 | 7/6 | 7/6
256> 5/4 | 7/6 | 7/6 | 7/6 | 7/6
5127 5/4 | 7/6 | 7/6 | 7/6 | 7/6

to check the robustness of our procedure with respect to noise and the changes in the
regularization parameter (for the latter see [4]).
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