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In this paper, we employ the preconditioned conjugate gradient (PCG) method to solve Toeplitz

systems An,x = b. Here A, are Toeplitz matrices 7, [p/q] generated by functions p(z)/q(z), where

p(z) = ’1:2:7‘“ p_p2® and q(z) = 222:7”1 q_rz*. Our approach is to precondition A, by the

matrix 7p[q]7n[p]~t. We prove that the rank of the matrix 75 [q]Tn[p] 'An — I, is at most
(v1 +v2), where I, is the n-by-n identity matrix. The PCG method, when applied to solving the
preconditioned system, will converge sufficiently fast. In particular, we show that the solutions of
Tn[p/qlz = b can be obtained in O(n) operations.

KEY WORDS: Toeplitz matrix, banded matrix, generating function, preconditioned conjugate
gradient method

1 INTRODUCTION

Toeplitz systems arise in a variety of practical applications. For example, finding
unknown parameters of stationary autoregressive models in time-series analysis
often involves solutions of Toeplitz systems; see King et al. 4. In signal processing,
solving Toeplitz systems is also required to obtain the filter coefficients in the design
of recursive digital filters; see Chui and A. Chan 7 and Haykin '2. There are
a number of specialized fast direct methods for solving Toeplitz systems, see for
instance Trench 8. For an n-by-n Toeplitz system A, x = b, these methods require
O(n?) operations. Faster methods, which require O(nlog® n) operations, have also
been developed, see for instance Brent, Gustavson and Yun 2, and Bitmead and
Anderson !. Recently, preconditioned conjugate gradient (PCG) methods as an
iterative method for solving Toeplitz systems has received much attention. The
most important result of this method is that the complexity of solving a large class
of Toeplitz system can be reduced to O(nlogn); see for instance Chan and Ng 5.
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In 1986, G. Strang 17 proposed using preconditioned conjugate gradient method
with circulant matrices as preconditioners for solving Toeplitz systems. Since then,
several successful approaches of constructing circulant preconditioners have been
introduced and analyzed; see for instance T. Chan 6 and R. Chan 3. In these papers,
the Toeplitz matrix A, is assumed to be generated by a generating function f, i.e.,
the diagonals of A4,, are given by the Fourier coefficients of f, see Grenander and
Szegd 1. We emphasize that this class of Toeplitz matrices arises in some prac-
tical applications. Typical examples are the kernel of the Wiener-Hopf equation,
see Gohberg and Fel’dman ?, the function which gives amplitude characteristic of
the recursive digital filters, see Chui and A. Chan 7, the spectral density functions
in stationary stochastic process, see Grenander and Szego ! and the point-spread
functions in image deblurring, see Jain 13. It has been shown that if f is a posi-
tive function in the Wiener class (i.e., the Fourier coefficients of f are absolutely
summable), then these circulant preconditioned systems converge superlinearly, see
R. Chan 2.

In this paper, we let 7,[f] be the n-by-n Toeplitz matrix generated by a function
f- The (j, k)th entry of T,[f] is given by the (j-k)th Fourier coefficient of f, i.e.

1

(Talflliw = 5 [ FO)070%d0, 0<jik<n—1.

We propose a new method to construct preconditioners for Hermitian Toeplitz
systems generated by rational functions. More precisely, we consider the generating
functions in the form

flz)= p(z) with 2z = €. (1)

Here the functions p and ¢ are

p(z) = > ppz® and qz) = ) gzt

k=—p k=—v

with p_; = p; for i = 1,2,...,p and ¢_; = ¢; for j = 1,2,...,v. Our approach is
to use the matrices 7,[q]7T,[p]~" to approximate the inverse of 7,[f] so that the
preconditioned matrices are 7,[q] T, [p] " Tnlf]-

For the convergence rate of the preconditioned conjugate gradient (PCG) method,
we prove that if the function f(e') is positive for all 6 in [0, 27], then the

rank(Tulq] Tulpl ™' Tulf] — In) < 2v

where I, is the identity matrix of order n. Since T,[p] and T,[g] are banded Toeplitz
matrices, the matrix-vector multiplications 7, [q]v and T,,[p]~'v can be computed in
O(vn) and O(u?n) operations by banded solvers for any vector v; see for instance
Golub and Van Loan 9. Since T,[f] is generally a dense matrix, the matrix-
vector products can be computed in O(nlogn) operations by using Fast Fourier
Transforms (FFTs), see Chan and Ng 5.
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However, Toeplitz matrices generated by f(z) can be expressed as
Tulf]l = L1Ly + Uy Uy, (2)

where L; and Ly are lower triangular band-Toeplitz matrices of lower bandwidths
{1 and /5 respectively, U; and U, are upper triangular band-Toeplitz matrices of
upper bandwidths u; and wus respectively; see Dickinson 8. Here the values of ¢,
L5, w1 and us depends on p and v in p(z) and ¢(z) respectively. Therefore for
any vector v, the matrix-vector product 7,[f]v can also be computed in O(rn)
operations, where 7 = f; + {5 + u; + us. Hence the total operations per each
iteration of the PCG method is O((t + v + p?)n). It follows that the complexity
of using our method to solve Toeplitz systems generated by f in the form of (1) is
O(v(t + v+ u?)n).

We remark that our preconditioners are different from that recently proposed by
Ku and Kuo 15 for these Toeplitz matrices generated by p(z)/q(z). Their method
basically used the decomposition (2) to construct the minimum-phase LU factoriza-
tion (MPLU) preconditioner K,, for T,[p/q]. They proved that rank(K ;' T,[p/q] —
I,,) is fixed independent of n. In general, the rank depends on both the degree
of p and the degree of ¢q. On the other hand, we show that the bound for the
rank of our preconditioned matrices depends on the degree of ¢ only. Thus our
method is particularly favourable for generating functions with a small degree in
the denominator. In addition, the construction of such K,, requires factorization of
polynomials, see Ku and Kuo 5, whereas the construction of our preconditioners
is not required to do so.

The outline of the chapter is as follows. In §2, we prove the clustering property
of the resulting preconditioned matrices. In §3, we mention a possible application
of our method to Wiener filtering in digital signal processing. Finally, numerical
examples will be given in §4.

2 CONVERGENCE ANALYSIS

Let us consider a family of Hermitian Toeplitz matrices T,[f] whose generating
function f is in the form .

a(z7) | c2)
where a(z), b(z), ¢(z) and d(z) are polynomials in z. We remark that these Toeplitz
matrices appear practically in digital signal processing and the applications will be
discussed in the next section.

For convenience, we express f in (3) as the form p/q in (1) in the following
discussion. In the following, we assume that f(e?®) > 0 for all § € [0, 27]. We also
assume that both p and ¢ have no roots on the unit circle |z| = 1. We emphasize
that these assumptions are always satisfied in digital signal processing, which will
be discussed in §3.

Our approach is to use T,,[q]7.[p] ! to approximate the inverse of 7,,[p/q]. Now,
let us discuss the convergence rate of our algorithm. Once again, we want to prove
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that T,[q]Tn[p) "  Talf] = I + Ly, where I, is the identity matrix of order n and L,
is a low-rank matrix. Then the number of distinct eigenvalues of the preconditioned
matrices is uniformly bounded by a constant.

In the following, after proving a prerequisite lemma, we shall show that (7,[p/q]—
Tulp]Tnl1/q]) is a low-rank matrix. The fact that (7,[q]7n[p] ™' Tnlp/q] — I») is a
low-rank matrix will follow. We shall also find a tight bound for the rank. We
remark that in the following lemmas and theorems, the polynomials p(z) and ¢(z)
are assumed to have no roots on the unit circle |z| = 1.

V2
Lemma 2.1 Let q(z) = Z qez ® and s1, 2, ..., 8, t,t2, ..., tq be the roots of
k=—v1

g (b+d=uv1+wv2+1) such that |s;| <1 and |t;| > 1. Suppose

. i apz ¥ = 4a(z) + 1c(2) max |s;| < |z| < min |¢;]
q(2) a(z"1) " ap(z)” i i

k=—oc0

where
b d
qp(z7") = Zbkz_k and gp(z) = Zd—kzk-
k=0 k=0

Then for any positive integers i and n,

b d
Z bjllb+i_j =0 and Z d—jvd-i-i—j = 0,
i=o i=0
where
W = (Qptim1, Uptie2y -eeees yai) and Vi = (Qg, (i), e VO (ni—1))-
Proof. Let
a (&
qa(z"") = Zakz_k and gc(z) = Zc—kzk-
k=0 k=0
Then

qa(z™h) ¢ = —k gc(2) u —k
—L =y + Rz and =y + E Rz
QB(Z_I) 0 ]; q 0 )
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where af + a¥ = ap; see Dickinson 8. Hence
o0
qa(z7Y) = (aé + Z akzk> qe(z1)
k=1
a [} b
Zakz_k (aé + Zakz_k> (Z bkz_k>
k=0 k=1 k=0

b [e's]
= aéZbkz_k+ E 'ykz_k,
k=0 k=0

where
b

Vi = ijak,j, ke YA

=0

Without loss of generality, assume b > a. Then v, = 0 for any k£ > b. Thus for any
positive integer i, we have

Voti = 0
Votit1 = 0
Votitn—1 = 0
which implies
(b
> bt = 0
j=0
b
D biorin-; = 0
j=0
> bjaprisn-n—; = 0
\ j=0
and then
Q(b+i)—j
b O (b+it1)—j
b; : =0.
=0 :

A(b+itn—1)—j
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b
Hence Z bjupy;—; = 0. Similarly,

j=0
go(z) = (ao + Z apz” )
kf—oo
c d
Zc_kzk = <a0+ Z apz” ) (Zd >
k=0 k=—o0 k=0
d
= <a0+2a k2 ) (Zd k2 )
k=0
= aof Zd_kzk + Z S_pz®,
k=0 k=0
where
d
O_p = Zd_ja,(k,j), keZ™.
j=0
Agsume d > ¢. Then §_j, = 0 for k > d. Thus for any positive integer i, we have
O_(d+i) =0
O_(d+it1) =0
O_(atitn-1y = 0
which implies
¢ d
> d-joirizj) =0
d
deja—(d+i+1—j) =0
7j=0
d
deja—(d-i-i-i-n—l—j) =0
\ j=0
and then
Q—(d+i—j)
Q—(d+it+1-7)

d

> d_; E =0.
=0 -

A (d+it+n—1—j)



BAND-TOEPLITZ PRECONDITIONERS FOR RATIONAL TOEPLITZ MATRICES 7

d
Hence Zd_de+i_j =0. 0
j=0
It follows from Lemma 2.1 that the vectors u;, w;y1, ..., u;4p are linearly depen-
dent and the vectors v;,v;y1, ..., Viyq are also linearly dependent for any positive
integer ¢. Using Lemma 2.1, we now show that (7,[p/q]—Tn[p]|Tn[1/q]) is a low-rank
matrix.

2 vz
Lemma 2.2 Let p(z) = Z pez % and q(z) = Z awz" % Suppose q(2)
k=—p1 k=—11

has respectively b and d roots inside and outside the unit circle |z| =1 (b+d =
vi + vy +1). Then for n > max{u; + po, v1 + 1o},

vank (Tolp/a] — Talp)Tal1/q)) < min{pr, b} + min{ps,d}.

Proof. Let
1
— —k
) E apz "

k=—o00
Then
p(2) - —k
— N = ﬁk zZ 7,
q(2) k;_:oo
where

H2
Br = Z PtOf—t.

t=—p1

Let Too[p] = [pijl, Tool1/q] = [aij] and X = [z;5] = Too[p]To0[1/g]- Then

oo
E DisQsj

§=—00

oo
= E Di—sQs—j

§=—00

Z PeC(i—j)—t-

t=—00

:L’i]'

Therefore X is a Toeplitz matrix generated by p(z)/q(z), i.e., Teo[P|To[1/q] =
T[p/q]- To clarify the finite case, let us introduce some notations. Define

p*[.l/l 0 0 IR PR 0

p—(ul—l) P—py 0 0

P—(u1i-2) P—(p1—1) P-p -~ 0

M, = : : . . .
0

P p—2 T ot P—(u1-1) P—m
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and
p1 P2ttt Pus—1 Pus
Do P ot Dps 0
N, =
: 0 0
Pus1 Py O - e 0
Dhs 0O 0 - .- 0

For any positive integer k, let

up Vi
u2 V2

E, = : and Fj = R
uy Vi

where u; and v;, i = 1,2, ..., k, are defined in Lemma, 2.1. Also, for any positive in-
tegers m and n, let 0,, , denote the m-by-n zero matrix. Then it is straightforward
to show that
NpFy,
Tulp/d) — Tulp]Tn(1/q] = 0(”*#1*#2);” . (4)
MpEul
Hence the entries of T,[p/q] — Tn[p]Tn[1/q] are zeros except possibly entries in its
first uo rows and last p; rows. It follows that

rank (Tn[p/q] — Tulp]Tall/q]) < pa + p2. ()
If 41 > b, then by the result of Lemma 2.1, up41, Upy2, ..., Uy, can be expressed as
linear combinations of uy, us, ..., up. For k=1,2, ..., (u1 —b), let

b
Wyt = E fk’jllj.

j=1
Also, for i =1,2, ..., py and j =1, 2, ..., b, define S, » = [si;], where
1 if i=4,i<b
Sij = 0 if Z#],Zgb
f(ifb),j if i>0
Then E,, = Su, »Ep and hence
rank(E,,) <rank(Ep) <b for u; >b. (6)

If pip > d, by the result of Lemma 2.1 again, v4i1, Va42, .., V4, can be expressed
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as linear combinations of vq,va, ..., vq. For k=12, ..., (u2 — d), let

d
Virk = Y 0kjV;-
=1

Also, fori =1,2, ..., pp and j =1, 2, ..., d, define W,,, 4 = [w;;], where
1 if i=j1<d
Wij = 0 if Z#],ng
Then F),, = W, ¢F; and hence

rank(F),,) <rank(Fy) <d for u» > d. (7

Our final result follows from (4), (5), (6) and (7):

rank(Tn[p/q] — Tolp]) Tn[1/4]) rank(E,, ) + rank(F),,)

<
< min{p, b} + min{us, d}.

O

Now we show that (7,[q]T.[p] ‘Tnlp/q] — I.) is a low-rank matrix by using
Lemma 2.2.

Theorem 2.3 Let p(z Z pez "% and q(z Z qrz"". Suppose T, [p] is
k=—p1 k=—v1
invertible. Then for n > max{u; + po,v1 + 2},

rank{(Ta[a] Tnlp] ™) Talp/d] — In] < v1 + 12,
where I, is the identity matriz of order n.

Proof. Suppose ¢(z) has respectively b and d roots inside and outside the unit
circle |z| = 1. Let

Ru(p,q) = Tulp/a] = TulpITu[1/q]-

With the notations defined in Lemma 2.2, we have

(TulglTulp] ") Tulp/d]

[
= %[q] [0 (Tolp] s [l/q]+R (r,q))
= TaldTall/d] + Tald] Talp] ™! (p, q)
= In— Ru(q,9) + Tald] Tulp] ' Ru(p, q)
NyWy,,aFa NpWys,aFa

- In - O(Tlflllfllz),n + ﬁL[Q]ﬁL[p]71 0(n7u17u2),n
MySu, pEp M,S,, vEp
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NgWos . 0u,y,(n—b—d) 0u,,0
= In+ |- O(n—ul—uz),d O(n—ul—uz),(n—b—d) O(TL—Vl—VQ),b +
01/1,(1 Oul,(n—b—d) quul,b
N PWuz,d Ouz,(n—b—d) Ouz,b
Tald)Talp] " | O —pz)d On—pps—pz),(n—b-a)  On—pus—pz)b
Oul,d Oul,(nfbfd) Mpsul,b J
Fy
O(n—b—d),n
Ey
Hence
(o
rank[(7,[q] Tn[p] 1) Tnlp/q] — I,.] < rank [ O(n—t—d),n J <b+d=vi+rvs.
Ey

a
Now let us discuss the cost of solving 7,[f]x = b by preconditioned conjugate
gradient method with B,[p/q] as preconditioners, where f is in the form described
in (1). The cost per iteration in the PCG method is about 10n operations plus
the cost of computing T,[p/q]v, Tnlg]v and T,[p]~'v for some vectors v. Since
the matrix 7,[p/q] can be expressed in terms of the sum of two products of band-
Toeplitz matrices as described in (2), the matrix-vector multiplication 7,[p/q]v
can be computed in O(n) operations. Since 7,[p] and Ty [q] are both band-Toeplitz
matrices, the product 7,[g]v and 7,[p]~'v can also be found in O((v; + v2)n) and
O((p1p2)n) operations. Therefore we conclude that the cost per PCG iteration is
O((v1 + v2 + pap2)n) operations.
Moreover, v; = vs = v, say, for Hermitian cases. As 7,[q]7,[p] ' is not Hermi-
tian in general, we use

Balp/a) = § (Tl Tulp)™" + Tolp) ™ Tuld))

as our preconditioner for 7,[p/q] so that PCG method can be applied. Then it
follows from Theorem 2.3 that

rank(Bn [p/q|Ta[p/a] — In) < 4v.

Thus the preconditioned matrix B,[p/q|Tn[p/q] can be written as the sum of the
identity matrix and a matrix of rank not greater than 4v and hence it has at most
(4v + 1) distinct eigenvalues. Consequently, if we apply conjugate gradient method
to solve the preconditioned system

Bulp/qlTnlp/qlx = Bn[p/q]b,

the method will converge in at most (4v + 1) iterations in exact arithmetic.
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We remark that if B,,[p/q] is not positive definite, we can consider applying the
conjugate gradient method to the following normalized preconditioning system

(Tald Tolpl ™ Tulp/d))” (Tald Talp) ™ Talp/a)) x
= (TaldTulpl ‘Tulp/d))" (Tald Talp) *) b.

We see that it is also possible to generalize this preconditioning technique to non-
Hermitian Toeplitz matrices generated by p/q, where

2 vz
p =3 mzt and qz)= Y @zt

k=—p1 k=—uv1
with py # po, v1 # vo, p—i # pr and g_j # g in general. The corresponding
clustering property can be determined by the following corollary of Theorem 2.3.

2 V2

Corollary 2.4 Let p(z) = Z pez " and q(z) = Z awz~". Suppose T, [p] is

k=—p1 k=—v1
invertible. Then for n > 2max{u + po,v1 + va},

rank((7,[q)Ta[p] " Tulp/a) (Tald) Tulp) ' Tulp/d]) — In] < 2(v1 + ws),
where I, is the identity matriz of order n.

Proof. By Theorem 2.3, there exists a matrix L, with rank(L,) < (v1 + v2)
such that

Tald) Talp] ™ Talp/d] = In + Ly
Then

(Tald Talp) ™ Talp/ ) * (Taldl Talpl~* Tolp/4))

(In + Lg)*(I, + L)
= (In + LZ)(In + Lq)
I, + Ly + L (I, + Ly).

Hence the result follows. d

3 APPLICATIONS TO WIENER FILTERING

In this section we consider possible applications of our methods to Wiener filtering
in digital signal processing. To present the problem properly, let us introduce some
terminologies used in signal processing. Let {z;} be a discrete-time stationary
zero-mean complex-valued input process. A transversal filter of order n is of the

form
n
Z; = E WETi—k,
k=1

where #; is the predicted value of x; based on the data {:rk}f;}_l and {wg}p_,
are the impulse responses of the filter. It is studied in the book by Haykin 2
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that given the correlation (second order statistics) of the input process {z;} and
the cross-correlation between the input process and the desired response {d;}, the
optimal impulse responses of the filter are given by the solution of the linear system
of equations

R,w =b, (8)

where R, is an n-by-n Hermitian Toeplitz matrix given by

To 1 tr Tp—2 Tp-1
T ro 1L - Taa
Rn = 1 To
T -
n—1 Tn-2 - r1 To
and b is a vector of the form (by,bs,---,b,)T. The entries r; = £(z;7;—;) are the

correlations of the input process and b; = €(z;d;+;—1) are the cross-correlations of
the input process and the desired responses, where £ is the expectation operator.
The Toeplitz system (8) is commonly called the discrete Wiener-Hopf equations,
see Haykin !2.
We note that for a discrete-time stationary process, if the correlations of the
[ee]

process are absolutely summable, i.e. Z |ri| < oo, then 7, can be expressed in
k=—o00
the form
™
rp = f(e?)et*?dg.
—T

Here f, called the spectral density function of the stationary process, is given by

where |z| = 1; see Haykin 2. We note that the Toeplitz matrix R, is generated by
f(2). In many practical applications in signal processing, the underlying spectral
density functions of the input stochastic processes are always rational functions; see
Haykin '2 and Proakis et al. 6. These stochastic processes include, for instance,
moving average (MA) processes, autoregressive (AR) processes and autoregressive-
moving average (ARMA) processes. We remark that the ARMA process is driven
by adding white noise to a filter with transfer function H(z),

"
Z a,kzk
H(z) =20
Z b_kzk
k=0
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and its corresponding spectral density function f(z) is given by
f(z) =0’H(2)H(z™Y),

where o2 is the variance of white noise. If we apply the preconditioned conjugate
gradient method with our preconditioners proposed and analyzed in the previous
section, the impulse responses of the discrete Wiener-Hopf equations can be effi-
ciently determined.

4 NUMERICAL EXAMPLES

In this section, we compare the convergence rate of our preconditioner with T.
Chan’s circulant preconditioner®, Ku and Kuo’s MPLU factorization preconditioner!®
and the Toeplitz preconditioner 7,[1/f] discussed in Chan and Ng 4. We first test
their performance on the following five generating functions:

1-01"'  1-01z
1-0.82-1 " 1-082

22

(z = 0.999)(1 — 0.9992)(z — 0.5)(1 — 0.52)
Shi ke F 104+ 0 ke

(i)
(i)

(iii)

27l 4342 ’
. ' +3+2 .
(IV) 3 _k ] k’
Yoper kTR 104> k2
) (1-0.22"(1+0.3271)(1 - 05271 . 1+22
(1-0.7271) (14 0.5271) (15—-2)2+2)(2-=2)

We remark that the Toeplitz matrices generated by the functions (i)—(iv) are
symmetric while the Toeplitz matrices generated by the function (v) are non-
symmetric. In the test, we used the vector of all ones as the right-hand-side vector
and the zero vector as the initial guess. The stopping criterion is ||rg||2/]|ro]l2 <
107, where 1}, is the residual vector after k iterations. All computations are done
by Matlab (V4.2) on an HP 715/50 workstation. Tables 1-4 show the numbers
of CG iterations required for convergence with different choices of preconditioners,
while Table 5 shows the number of CG iterations for the normalized preconditioned
systems. In the tables, I denotes that no preconditioners are used, C is T.Chan’s
circulant preconditioner®, K is Ku and Kuo’s MPLU factorization preconditioner!®,
T is the Toeplitz preconditioner 7,[1/ f] discussed in the paper Chan and Ng 4 and
B is our proposed band-Toeplitz product preconditioner. We remark that the cost
of the method using circulant preconditioner is O(n logn) operations per CG iter-
ation, whereas the others are just O(n) operations per CG iteration.

As for the comparison of floating point operations in conjugate gradient iter-
ations for different preconditioners, Table 6 shows the numbers of matrix-vector
products and solvers required in the PCG iteration for the n-by-n band-Toeplitz,
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TABLE 1: Number of CG iterations for generating function.

n I |C|K|T|B
16 6 | 5] 2|22
32 9 151|222
64 (11| 5| 2 | 2| 2
128 || 15| 5 | 2 | 2| 2
256 || 18 | 4| 2| 2| 2

TABLE 2: Number of CG iterations for generating function (ii).

n I |C|K|T|B
16 8 6 | 3 3] 3
32 6 |93 (3|3
64 42 |10 3 |13 |3
128 || 112 |11 | 3 | 4| 3
256 | 276 |12 | 3 | 4 | 3

banded triangular Toeplitz preconditioners. We remark that the number of float-
ing point operations required of band-Toeplitz, banded triangular Toeplitz matrix-
vector products and solvers can be found in Golub and van Loan 1°. For simplicity,
we list their number of floating point operations in Table 7. Tables 8-10 show the
bandwidths of band-Toeplitz, banded triangular Toeplitz matrices involved and
their corresponding number of floating point operations for different examples. We
note that the cost per iteration of using various preconditioners are almost the same
except for generating function (vi).

From the numerical results, we see that the convergence performances of our
preconditioners and MPLU factorization preconditioner are both better than those
of T. Chan’s circulant preconditioner and without using preconditioner. We note
that the inverse of a Toepltiz matrix generated by rational function is non-Toeplitz,
but it is closely related to Toepltiz matrices. Since our preconditioners and MPLU
factorization preconditioner are the approximations of the inverse of the Toepltiz
matrix, we expect that their performance are better than that of circulant pre-
conditioner. For the generating function (iii), number of iterations required for
convergence using our band-Toeplitz product preconditioners is less than that us-
ing MPLU factorization preconditioner. Therefore, we see that our method is useful
for generating functions with small v.

Next we apply our method to a finite impulse response (FIR) system identifica-
tion problem. Figure 1 is a block diagram of an FIR system identification model.
The input signal zj drives the unknown system to produce the output sequence yy.
We model the unknown system as an FIR filter. If the unknown system is actually
an FIR system, then the model is exact. We formulate the discrete Wiener-Hopf
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TABLE 3: Number of CG iterations for generating function (iii).

n I |C|K|T)|B
16 81 86|63
32 |16 9 | 6 | 6| 3
64 || 24 10| 6 | 6 | 3
128 {31 9 | 6 | 6| 3
256 (38| 9 16 |63

TABLE 4: Number of CG iterations for generating function (iv).

n I |C|K|T|B
16 8| 86|66
32 |15]11 ) 6 | 6| 6
64 |26 | 11| 6 | 6| 6
128 || 47|10 | 6 | 6 | 6
256 || 56 | 10| 6 | 6 | 6

TABLE 5: Number of CG iterations for generating function (v).

n I |C|K|T|B
16 || 11 | 8 | 6 | 6| 6
32 (|13 8| 5|66
64 ||17| 7|5 | 6|6
128123 | 7| 5 | 6| 6
256 || 24| 7| 5|66

TABLE 6: The number of matrix-vector (MV) products and solvers (SO) required in each PCG
iteration for different preconditioners.
Matrices

Band-Toeplitz B;: MV

Band-Toeplitz Bs: SO
Banded Lower Triangular Toeplitz Li: MV
Banded Lower Triangular Toeplitz Ly: SO
Banded Upper Triangular Toeplitz U;: MV
Banded Upper Triangular Toeplitz Us: SO

T | B

el =R=]

== =D O
OO OO ==
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TABLE T7: Flop counts of matrix-vector (MV) products and solvers (SO) for band Toeplitz type

preconditioners with lower bandwidths p and upper bandwidths q.

Matrices lower | upper flops
Band-Toeplitz B;: MV P q 2n(p+q)
Band-Toeplitz By: SO P q 2n(pg+p +q)
Banded Lower Triangular Toeplitz L;: MV P 0 2np
Banded Lower Triangular Toeplitz Lo: SO P 0 2np
Banded Upper Triangular Toeplitz U;: MV 0 q 2nq
Banded Upper Triangular Toeplitz Us: SO 0 q 2nq

TABLE 8: The lower bandwidths of L, L2 and the upper bandwidths of U, Us for Examples
(i)=(v) and the corresponding flops for MPLU factorization preconditioner K.

Ll L2 U1 U2 ﬂOpS
GO Lt 1]1]1] 3
@ | 2|2]2]2]| 16n
)| 1|8 ] 1] 8| 36n
Gv) || 1| 8] 1|8 | 36n
(v) | 31313 ]| 3| 24n

TABLE 9: The lower bandwidths of L, L and the upper bandwidths of U, Us for Examples

(i)=(v) and the corresponding flops for Toeplitz preconditioner 7.

Ll L2 U1 U2 ﬂOpS
O T 1 [1]1] 8n
G) | 213 1]3] 2| 20m
i) | 1] 8| 1|8 | 32m
vy | 8 | 1] 8| 1| 32n
V) |2 3]3] 2] 20m

TABLE 10: The lower and upper bandwidths of By and Ba for Examples (i)—(v); and the corre-
sponding flops for our preconditioner B.

B; By flops

lower | upper | lower | upper
(1) 1 1 1 1 10n
(i) 0 0 2 2 16n
(iii) 8 8 1 1 38n
(iv) 1 1 8 8 164n
(v) 3 3 2 3 34n
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Unknown System

]
o ®
FIR System {wg}}_, 4,T )

FIGURE 1: FIR System Identification Model

n I |C|K|T|B
8 4 |42 1]2]2
16 8 |42 |2]2
32 (|13 4|2 |22
64 || 17| 4| 2 | 2| 2
128 {119 | 4 | 2 | 2| 2

TABLE 11: Number of iterations for ARMA process.

equations (8) by using the known statistics (correlations) of the input process and
estimating the cross-correlations between the input process and the desired re-
sponses from the data samples to construct the Toeplitz matrix and the right-hand
side vector respectively. By solving these discrete Wiener-Hopf equations, the FIR
system impulse responses can be found.

We used ARMA process as the input process and considered transfer function

H(z) given by
10 —0.01
H(z)= — it I
V2 \ 2-05
The corresponding spectral density function (generating function of Toeplitz ma-
trices) is
—2+100.01 — 27!
J2) = —z+25—z71
Table 6 shows the number of iterations for different orders of the FIR filter. We
see that our methods converge very fast.
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