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Summary: Preconditioned conjugate gradient methods are employed to find the
steady-state probability distribution of Markovian queueing networks that have
overflow capacity. Different singular preconditioners that can be handled by
separation of variables are discussed. The resulting preconditioned systems are
nonsingular. Numerical results show that the number of iterations required for
convergence grows very slowly with the queue sizes.
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1 Introduction

In a Markovian queueing network, most of the quantities of interest, for example
the blocking probability and the waiting time for customers in various queues,
can be expressed in terms of the steady-state probability distribution. The
distribution is the solution of the Kolmogorov balance equations. The resulting
matrix system has dimension N, where N is the total number of states in
the network. The matrix, called the generating matrix, is non-symmetric and
is known to have a one dimensional null-space. The steady-state probability
distribution is the normalized right null-vector of this matrix.

The method we employ to find the null-vector is based on the preconditioned
conjugate gradient method. The preconditioner is a singular matrix of order
N which can be handled by separation of variables. Although the original
matrix is singular, we can reduce the problem to solving a non-singular system
by computing the components of the eigenvector which is orthogonal to the
null-space of this chosen separable problem. The nonzero components of the
eigenvector correspond to the states where overflow between the queues take
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place. The effective dimension of the problem can usually be reduced by an
order n, where n is the individual queue size.

In Chan [6], we applied our method to overflow networks with two queues.
The preconditioner was chosen to be the generating matrix of the correspond-
ing 2-queue free model. We observed numerically that the number of iterations
required to attain a given accuracy is almost constant independent of the queue
size n. We then proved analytically that when there is only one server in each
queue, the number of iterations required can grow no faster than O(log?n). As
a corollary, we also established the fast convergence of the preconditioned con-
jugate gradient method when applied to the oblique boundary value problems
with the correponding Neumann problem as preconditioner.

In this paper, we generalize our method in three different directions. In §
2, we apply our method to overflow queueing networks with rectangular state-
spaces but arbitrary number of queues. As preconditioner, we use the generating
matrix of the corresponding free model. In § 3, we consider other possible
preconditioners for these networks by first perturbing the singular system into
a nonsingular one. We introduce a family of preconditioners which includes the
generating matrix of the free model as a limiting case. These preconditioners
are separable such that the corresponding systems can be solved economically.
In § 4, we consider networks where the state-spaces are not rectangular. We
will employ the technique of substructuring to find our optimal preconditioners.
The numerical results are reported in § 5. A comparison is made between this
method and the point SOR method. We see that our method has a much
better performance. In fact, the number of iterations required to attain a given
accuracy grows very slowly with the queue sizes.

2 ¢-Queue Overflow Models

Let us begin by introducing the notations that we will be using. Given a network
with ¢ queues, we assume that customers are coming from ¢ independent, Poisson
sources. In the i-th queue, 1 <7 < g, there are s; parallel servers, and n; —s; — 1
waiting spaces. Customers enter the queue with mean arrival rate A\; > 0. The
service time distributions of the servers are independent and each of them is
exponential distributed with mean p;' > 0. Let p;, 5, ;, denote the steady-
state probability distribution which gives the probability of state (i1,...,iq),
i.e., the probability that i; customers are in the j-th queue, 1 < j < ¢. Since
0 <i; <nj, 1< j < g, the total number of states in the system is N = ngl n;.
For simplicity, let I}, be the identity matrix of order k and J;; be the Kronecker
delta.

The idea of preconditioning the singular generating matrix of an overflow
queueing model by the singular generating matrix of the corresponding free-
model, as discussed in Chan [6], can easily be extended to more general overflow
queueing networks, provided that both matrices have the same dimension. Con-



sider the following g-queue overflow networks. Customers from the i-th Poisson
source, 1 < ¢ < ¢, will enter, wait and be served at the i-th queue if it is not
yet full. In particular, customers cannot jump between the waiting lines and
the overflow of customers from any queue can occur only when the queue is full.
These conditions will ensure that all the N states in the network are accessible.
Hence the generating matrix A will be of the same order as the preconditioner
Ap, the generating matrix of the g-queue free model.

When a particular queue is full, customers entering the queue will overflow
and be served at other queues according to some given queueing disciplines. For
simplicity, let us denote by

il’—>i2'—)""—)ij (21)

the queueing discipline that customers from the i;-th Poisson source can overflow
and be served at the i;-th queue if the ¢;-th, is-th, ---, 4;_1-th queues are all
full and the i;-th queue is not yet full.

To avoid ambiguity, we assume that for any given queue there is at most one
direction of overflow of customers, i.e.

iy jiy e and i ke o = =k (2.2)

Moreover, to prevent customers from wandering within the network, we assume
that any given queueing discipline does not form a loop. More precisely, in (2.1),

k#l = i #i, 1<k 1< (2.3)

Let p be the steady-state probability distribution vector of this network.
Then p is the solution of the following problem:

Ap =0,
'p =1, (2.4)
Diy yin, - iq = 0.

Here A is the generating matrix of the network and 1 is the N-vector of all
ones. Similar to the 2-queue model case discussed in Chan [6], we partition the
generating matrix A as

A=A+ Ry. (2.5)

Here Ag is the generating matrix of the g-queue free model and is given by

4= QG (2.6)
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1 < i < ¢, is a matrix of order n; and is the generating matrix of a 1-queue
free model. We remark that the steady-state probability distribution vector pg
corresponding to Ay is given by

q
Pbo = ® Sfli, (2.8)
i=1

where 1; is the n;-vector of all ones and S; is the diagonal similarity transfor-
mation that symmetrizes G; with normalization condition 17571; = 1. Indeed,
for alli = 1,...q, S?1; is the steady-state probability distribution vector corre-
sponding to G;, i.e. G;S?1; = 0.

The residual matrix Ry consists of terms that correspond to the overflow
disciplines (2.1). To obtain Ry, let us first define

a square matrix of order nj, Je; to be the i-th unit vector in R™ and E; =

ten,'er . Then any queueing discipline of the form i ~ j implies that Rg

contains the following term
q
Rij = Q) B} (“R;)Y-. (2.10)
k=1

This is because overflow from the i-th queue to the j-th queue amounts to adding

i Oking—1(1 = Okjn; —1)Phy,.. by (2.11)

to one side of the Kolmogorov balance equations and

>\i : 6kini—1(1 - 60]61' )pkl,...,k]——l,...,kq (212)



to the other side, for 1 < k; < nj, 1 <j <g. The term in (2.11) indicates that
customers are leaving the state (k1,...,k;) at an additional rate \; when the
i-th queue is full and the j-th queue is not yet full. The term in (2.12) indicates
that customers are entering the state (ki,...,k,) at an additional rate A; from
the state (k1,...,k; — 1,...,k;) when the i-th queue is full.

Queueing disciplines involving more queues mean that the terms added to
Ry have more E; factors replaced by the I, factors. Thus they are more sparse.
For example, the queueing discipline ¢ — j — k means that we have to add to
Ry the term

q
Riji = Q) B B ((R;)™. (2.13)
=1
This follows from the fact that we have to add

>\i ) 6lini—161jnj—1(1 - 6lknk—1)pl1,...,lq

and
>\i : 6lini—16ljn]-—1(1 - 6Olk)pll,...,lk—1,...,lq

for1 <I; <nj,1<j <gq,tothe two sides of the Kolmogorov balance equations.
In general, the queueing discipline in (2.1) implies that Ry has the term

q
. 8i: )
Riyiy = QEY™ - B, (FRy) n. (2.14)
k=1

We note that by assumption (2.3), every term added to Ry has one and
only one /R; factor in it. Here the i and j indicate the original source and the
final destination of the overflowed customers respectively. Thus all the terms
added to Ry have zero column sums, non-negative diagonal and non-positive off-
diagonal entries. This implies that A is an irreducible matrix with zero column
sums, strictly positive diagonal and non-positive off-diagonal entries, as Ag is
already a matrix having these properties. Hence by Frobenius theory on positive
matrix, (see, for instance, Varga [16]), the steady-state probability distribution
vector p of the network exists and is unique.

To obtain p, we first recall that (see Chan [6])

RN = span < py > @Im(4y), (2.15)
and that the generalized inverse AJ of Ay is invertible on

Im(Ap) = {z € RN|1*z = 0}. (2.16)
In view of this, we can write p as

p=po + A&, (2.17)



where & € Im(Ap). Substituting this Ansatz into the equation Ap = 0, we get,
(I + RoA7)é = —Ropo- (2.18)

We claim that the matrix AAJ = I + RoA{ is non-singular, i.e. the singularity
of A is cancelled exactly by the singularity of Ag. In fact, we have

Lemma 1 Consider a system of the form
(Ao + Ro)p = 0,
1*p

bj

Vv 1l
o

If the solution p exists and is unique and 1* Ry = 0 then the matrix (I + ROA(T )
is non-singular.

Proof: We first note that 1*Ry = 0 implies that Im(Ry) € Im(Ap). Thus
(I + RoAY) maps Im(Ap) into itself. Moreover, the existence and uniqueness
of p implies the existence and uniqueness of a & € Im(Ag) that satisfies (I +
RoA{ )& = —Ropo. Thus the matrix is invertible in Im(Ap). Suppose ¥ is in the
kernel of this matrix. By (2.15), there exists a unique § and z € Im(Ap) such
that y = Bpo + x. Hence (I + RoA§ )y = 0 implies that —8py = (I + RoAJ )z +
BRoA§ po. Since Im(Ro) C Im(Ayp), the right hand side is in Im(Ap). Thus by
(2.15) again, 8 = 0 and (I + RyAJ)z = 0. Since z € Im(Ayp), the last equation
implies x = 0. Hence y = 0. Thus the matrix is non-singular. O

Next we claim that those terms added to Ry are sparse. In fact, since
overflow occurs only when at least one of the queues, say the i-th queue, is full,
the corresponding term in Ry has at most N/n; non-zero rows. Moreover, since
every such term represents the overflow from one queue to another, every non-
zero row has at most two non-zero entries. If we permit all possible directions
of overflow within the network, the total number of non-zero rows in Ry will be
bounded above by

mg=N-Y —. (2.19)

Moreover, the total number of non-zero entries in every such row will not exceed
q + 1, since there are only ¢ queues in the network. Thus Ry is also sparse.

By (2.18), we see that £ € Im(Rp). Thus, using the sparsity of Ry, we
can reduce the system in (2.18) to a system which has order at most m, =
gn?~'. However, for general networks, this is often too large to be handled
by direct methods. Since they would require O(m7) = O(¢*n*?~?) storage
spaces. If we use the conjugate gradient method together with the source-and-
target technique of Banegas [2], then in each iteration, only O(qn?~!) storage
is required. (For ¢ = 2, the storage requirement is O(n?), for we have to store

the n; by n; matrices that diagonalize G;, see Chan [6].) The cost per iteration



will depend on the cost of computing (I + RoAg )¢ for & € Im(Rp). Notice that
for any given vector z, the vector-matrix multiplication Rox requires at most
(¢ + 1)m, operations. This work is negligible when compared to the work of
computing A ¢, which is on the order of O(gn?*!) provided that we first obtain
the spectral decomposition of Ay, i.e, diagonalize G;, 1 < i < ¢, see Chan [6].
Once & is found, we can obtain p by using (2.17) and (2.8). We note that if only
a linear functional [*p of p is required, where [ is any N-vector, then the overall
storage requirement will remain at O(gn?~!) as we do not have to store the
entries of p explicitly. This is of considerable advantage over the SOR method
which would require O(n?) storage.

In § 5, we apply this method to the 3-queue model discussed in Kaufman
[12]. It has queueing disciplines 1 — 2, 2 — 3 and 1 — 2 — 3. Our method
requires O(n?) storage, and using the sparity of the problem, the operation count
is reduced to O(n®) per iteration. This algorithm is given in the Appendix
of Chan [5]. We remark that our method is quite suitable for designing an
algorithm that can accept the number of queues and the queueing disciplines as
input parameters.

For single-server cases, s; = 1, using the continuous analogy mentioned in
Chan [6], the term R;, ... ;, that make up Ry corresponds to a forward difference
operator on a particular face in the ¢-dimensional cube (see (2.9)). These faces
correspond to states where overflow occurs. Thus Ry is similar to an operator
which is zero in the g-dimensional cube, but with tangential derivatives on
some of the faces. Ag is similar to a second order elliptic operator with constant
coefficients and transport terms actin on this g-dimensional cube with Neumann
boundary conditions everywhere, (see (2.7) with s; = 1 and A\; &~ p;.) This
operator is of the form

q

Z(Ai + i) 0si + QZ(T% —1)(A\; — p4)0;.

i=1 =1

The matrix A = Ap+ Ry therefore resembles this same operator but with oblique
derivatives on some particular faces. Hence the boundary conditions of A and
Ay are of the same type. In our previous papers, see Chan [5] and [6], we have
shown that a Neumann problem can be used sucessfully to precondition an
oblique derivative problem in the constant coefficient case, we therefore expect
our method to have fast convergence for these kind of models provided that the
elliptic terms are not dominated by the transport terms, i.e. (A;—p;) = O(n™%)
with a > 1.

In § 5, we see that under this assumption, our method converges much
faster than the point-SOR method. The number of iterations required to attain
a given accuracy increases like O(logn) when the queue size n increases. We
also note that when 0 < a < 1, it is easy to show that the solution p tends to
po exponentially fast as n — oo, see Chan [6] § 3.2.



3 Other Separable Preconditioners

The preconditioner Ay discussed in § 2 is not the only viable preconditioner for
these queueing models. In this section, we will develop other possible precondi-
tioners for these models. We will only consider separable preconditioners here
because such systems can be solved economically. For simplicity, we confine our-
selves to the 2-queue model discussed in Chan [6] and Kaufman [12], namely, a
model with overflow discipline 1 — 2. The idea can easily be extended to more
general networks.

Let us consider the model in which overflow is permitted only from the first
queue into the second, i.e. 1+ 2. The corresponding equation of this model is
given by

Ap = (Ao + Ro)p =0, (3.1)
where

Ro = (‘en,‘ey,) © Ry (3.2)
Here A is given by (2.6) with ¢ = 2, and 2R, is defined in (2.9). It is easy
to check that the generating matrix A has a one dimensional null-space with
positive null-vector p, hence we can fix one component of p, and solve the
resulting non-singular system. More precisely, since p is positive, and is unique
up to a multiple constant, we can always set py, the last entry of p, to 1 and
partition the system (3.1) as

=2 3] 10 ]

Using the facts that A is irreducible and has zero column sum, we see that B is
irreducibly diagonally dominant and hence nonsingular. Thus we can proceed
to solve the reduced system Bp = —d by direct or iterative methods, see Kauf-
man [12] and Funderlic and Mankin [10]. However, it is impossible to design a
separable preconditioner for B because its dimension is nins — 1. To get around
this, we can, instead of considering submatrices of A, consider a perturbed ver-
sion of (3.1). More precisely, we fix py such that A\ypy = 1, or equivalently, let

M(ten, ter ®2en,%el, )p = en. We then obtain p from

Ap = {A+ X (Cen, el ®%en,es)}p = en. (3.3)
Notice that A is irreducibly diagonally dominant and therefore non-singular.

Since A is of order nino, it is now possible to design separable preconditioners
for A.

(1) A family of separable preconditioners for A
Let us partition A as A = A; + Ry, where

A = VeI, +1, ®Gs, (3.4)
Ri = X\i-{'es'e), ®tridiag(~1,0,0)}, (3.5)
i = G1+)\1-lemle;1.



Clearly A, is separable and V; is irreducibly diagonally dominant. Hence Ay is
non-singular. We can write p = A7 ¢, and solve the preconditioned system

AA;lgl = (I—|— Rlzifl)fl =en.

Because of the sparsity of Ry, we can reduce this to an ny by ny system. Unfortu-
nately, numerical results show that the convergence rate for this preconditioned
system is very slow.

Notice that A; resembles the finite difference approximation of a second
order elliptic operator on the square with a Dirichlet boundary condition on
one of the sides and Neumann boundary conditions on the remaining sides. In
fact, if \; = p; = s; = 1, then V; = tridiag(—1,2,—1) — efe;. This is exactly
the finite difference approximation of a simple second order ordinary differential
operator with a Neumann type data at one end and a Dirichlet type data at
the other. Thus the slow convergence is due to the fact that A; is not a good
approximation to A, it changes the oblique derivative in A into a Dirichlet
boundary condition; see Chan [5].

Notice that A; is not the only non-singular separable preconditioner for A,
in fact, there exists a family of non-singular separable preconditioners. Let us
define, for any 3,

Vg = G1+ P - (lenllezl),
Aﬁ = Vﬁ®In2 +In1 ®G27
Rz = M- {‘en ‘el ®tridiag(—1,1 - 3,0)}. (3.9)

We note that A = Ag + Rp. Clearly Ag is separable. When 8 > 0, Vj is irre-
ducibly diagonally dominant and hence Ag is nonsingular. We can then define
p = Aglfg, and solve for £g. These preconditioners correspond to operators
with a mixed type of boundary condition on the side in question. Our numeri-
cal results show that the performance improves when (3 gets closer to zero. This
can also be explained by using the continuous analogy.

Let us consider the case when 3 = 0. We obtain Vp = G4 and 4y = A,.
This is the preconditioner considered previously. It is singular and corresponds
to the operator with Neumann boundary conditions on every sides. Hence we
cannot set p = /Ig L& and solve for &. However, we can still design a singular
separable preconditioner for the non-singular matrix A, see (IT) below.

For 8 < 0, the preconditioners again correspond to operators with mixed
type boundary conditions. Numerical results show that the convergence rate
is slower when 8 becomes more negative. We remark that V3 in (3.7) can be
symmetrized by a diagonal matrix, but it is no longer definite. More precisely,
by the Cauchy interlace theorem (see Parlett [14]), V3, and hence Ag, has one
negative eigenvalue.

(II) Separable Preconditioner for A when 3 =0



By (2.15), there exists unique scalar « and & € Im(Ap) such that p =
apo + A(T o- Since we have set \ipy = 1, a is no longer arbitrary. Thus we
need an extra equation for «. Recalling A = Ag + Ry, (3.3) becomes

Alapo + AJ &) = (I + RoAf)éo + aRopo = en.

Moreover, since § € Im(Ap), we have 1%, = 0. Combining these equations,
we have the following (N + 1) by (N + 1) system

Ff= (I+ﬁoA3r) R%po ] { i‘; ] = [ & } . (3.10)

We claim that F' is non-singular. To prove this, suppose that (£, 3)* is in
the kernel of F. This implies that A(8py + Af¢) = 0 and 1*¢ = 0. Since A
is non-singular, the first condition implies that Bpy + Agrg = 0. The second
condition implies that ¢ € Im(Ap), which by the definition of AZ, implies
that AT¢ € Im(Ap). Thus by (2.15), we have 8 = 0 and AJ¢ = 0. By the
invertability of Al on I'm(Ap), we have £ = 0. Hence F is non-singular and it
is legitimate to solve for f in (3.10). By the sparsity of Ry, we can also reduce
(3.10) to an (n2 + 1) by (n2 + 1) system.

Notice that by (3.3), A differs from A by a rank one matrix. Thus Ry differs
from the Ry in (3.2) by a rank one matrix. Hence the N by N leading sub-matrix
of FF* differs from the preconditioned matrix (I + RoA7)(I + RoA7)* by at
most a rank three matrix. Using the Cauchy interlace theorem, the singular
values of (I + RoAf) will interlace the singular values of F, except possibly
a few outlying ones. In particular, if the singular values of (I + ROA[)") are
clustered, so will be the singular values of F'. (We remark that, in Chan [6], we
have shown that the singular values of (I + RyA{) are indeed clustered around
(14 A1/A2)? in the single-server case.) The numerical results in § 5 show that
the convergence rate for these two systems are very similar.

4 An Overflow Model with Restricted State-Space

In this section, we consider a model in which overflow occurs even before a
queue is full. The resulting problem is still a homogeneous system of the form
Ap = 0, but with some of the entries of p being set to zero. Thus the dimension
N4 of A is less than the dimension NV of the preconditioner Ay. We introduce
two methods here to solve this queueing problem. In the first, we partition
the state space into subspaces in which we can find separable preconditioners.
In the second, we embed the state space into one where we can use Ag as a
preconditioner.

Let us consider the following 2-queue network. Customers entering the first
queue will wait and be served at the second queue if all the spaces in the first
queue is filled. Moreover, we assume that a customer waiting for service in

10



the first queue is moved to and served at the second queue if a server in the
second queue becomes available. Thus, some of the states are not admissible
here. More precisely, we have

pm':() $1<t<n,0< )< s9. (41)

We may associate the values of p; ; with the following L-shaped region:

ne — 1 T1
T1 0 T Qy I3 Figure 1
52 l2
L pij =0
0 T1 S1 ny—1

In the figure, [, 2,3 are line segments defined by

11



ll = {81} X [0, So — 1], (42)
ls = [81 +1,n1 — 1] X {82}, (43)
l3 = {m — 1} X [SQ,TLQ — 2] (44)
For simplicity, we let
D) Ell UlQUl3U{(81,82),(’n1 —1,’!7,2—1)}, (45)

and 71 to be the set of all boundary states that are not in 7».

We remark that this model is similar to the one discussed in Kaufman, Serry
and Morrison [11], except that we have added one more feature. Namely, we
permit overflow from the first queue to the second queue when the first queue
is full. The Kolmogorov balance equations of our model are given by

A1 = 8iny —10jn0—1Xj—s2) + A2(1 = 6jny—1) + min(é, s1) 1 + min(j, s2) pa]ps ;
= (1 =Xic1-s1Xs2—1—5)[M (1 = 6s0)pi—1,; + (1 = §jnp—1)min(j + 1, s2) ops jt1]

(1= 350)[M (isy Xs2—j + Oing—1Xj—s2) + A2(1 = Xim1—51 Xss—j)IPij—1  (4.6)
(1 = 8iny —1)[(1 = Ximsy Xso—1—j)min(i 4+ 1, 81) 1 + S2p12Xi—s, 0jsy |Pit 1,55

+ +

for 0 <i<mny and 0 < j < ny. Here

1, 1>0,
Xl_{ 0, 1<0. (47)

We note that these equations imply (4.1) and that the steady-state probability
distribution p satisfies the homogeneous equation

Ap=0. (4.8)

Here A is the generating matrix of dimension N4. Since p is a probability
distribution, we supplement (4.8) with

1"p =1, (4.9)
Di,j Z 0. (410)

It is straightforward to check that A is an irreducible matrix with zero column
sums, strictly positive diagonal and non-positive off-diagonal entries. Hence the
solution p to (4.8) - (4.10) exists and is unique. Moreover,

pi,j > 0. (4.11)

Considering the continuous analogy, we find that the matrix A resembles
an second order elliptic operator acting on the L-shaped region with Neumann

12



boundary conditions on 7; and oblique boundary conditions on 75. The idea of
the previous sections would suggest the partition

A=A+R, (4.12)

with A resembling the same operator but with Neumann boundary conditions
everywhere. R will then be an operator that is zero in the L-shape region, but
has tangential derivatives along 75. We note that A has the form

i T, D 0
A=|E ¢ D, |. (4.13)
0 E T,

Here T; represents couplings between the pairs of states in ;, C'y couplings
between the pairs of states on the interface 7, and D; and E; couplings between
the pairs belonging to 2; and 7. The dimension of C} is equal to the number
of states on 7, which is equal to ny — s. This is small when compared to
the dimension of T;, which is equal to the total number of states in ;. The
dimension of T7 is sine and that of Ty is (n2 — s2)(n1 — s1 — 1). We note that
in (4.13)

E, = [_/\1 'In2752,0]*, (414)

D2 = [_Sllu’l . In2—3270]: (415)

where 0 is the zero matrix of order (n2 — s2) by (n1 — s1 — 2). Thus they are
sparse.

We claim that the matrix R is sparse. We first note that, depending on the
ordering of the states, any index j, 1 < j < N4, corresponds to a unique state
(j1,j2) in the L-shaped domain. Using this notation, it is straightforward to
check that

R =R; + R,. (4.16)
Here R, is a diagonal matrix given by
A1+ 5249 (J1,J2) = (n1 —1,s2),
= A (41, J2) € L Uls\{(n1 — 1,s2)},
Ry)i; = g 4.17
(F1)is sty Gred) € L\{(m — 1,2)}, (.17)
0 otherwise.

and R; is given by

. —Ar (ki k2 —1) and (j1,72) € L Uls,
(R2)kj = —S2p2 (k1 + 1,k2) and (j1,j2) € l2, (4.18)
0 otherwise.

Thus the number of non-zero rows is equal to the number of states on 75, which
is equal to
NREnl +n2—81—1. (419)
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Moreover, every such rows has at most two non-zero entries. It can be shown
that A is still singular with a one dimensional null-space. However, A is not
separable. Hence Atz cannot be computed economically. In the following, we
will design singular, separable preconditioners that are close to A in the sense
that they represent the same operator in the L-shaped region and have the
same type of boundary conditions. The first idea comes from the theory of

substructuring.

4.1 Partitioning of the State-Space

The method of substructuring has been used for solving elliptic problems de-
fined in irregular regions, see Bj¢rstad and Widlund [3], Dryja [8], Buzbee et
al. [4] and Concus et al. [7]. The idea is to partition the problem into subprob-
lems which correspond to subregions into which the original region has been
partitioned. We can then solve each of these subproblems separately by direct
methods while the interactions between the subregions are solved by a direct or
iterative method. Since the number of nodes on the interface usually is small
compared to the number of nodes in each subregions, the size of this interface
problem is usually small compared to the original problem. If we are using
iterative methods to solve the interface problem, then in each iteration, we will
have to solve the subproblems once in each subregion. However, if the bound-
ary conditions for the original region are such that separation of variables is
possible, then solving the subproblems by direct methods will require very little
work.

To be more specific, let us consider the problem of solving Laplace’s equation
in the L-shaped region depicted in Figure 1, with Neumann boundary conditions
everywhere. Follows the idea from Bj¢rstad and Widlund [3], we construct
the following preconditioner. We first solve the problem defined on ; with
Neumann boundary conditions on the boundary of ; including 7. This is a
separable problem. Having solved this problem, we use the value of the solution
on the interface 7 as Dirichlet data and solve a Dirichlet-Neumann problem on
Qs with Dirichlet boundary condition on the interface 7 and Neumann boundary
conditions on the remaining three sides. This problem is also separable.

Using the analogy between the queueing model and this continuous problem,
we construct our preconditioner accordingly. The numerical results in § 5 show
that this preconditioner is very good. In matrix terms, we partition our matrix
A as

A=A+R, (4.20)
where
- T, D; 0
A= [ go ; } =|E Cy, 0 |. (4.21)
2 52 0 B, T
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Here

E, = [0, E»], (4.22)
and
i | Th D
Ay = [ B } (4.23)
with
Cy=C1 =\ - Iny_s,. (4.24)

Comparing (4.21) with (4.13), we have

I 0
R - R + 0 Cl - 02 D2 . (425)
0 0 0

Since R, D, and Cy — C, are sparse, R is also sparse. In fact it has at most
m=n,+2ny, —s — 8y —2 (4.26)

non-zero rows, and every such rows has at most two non-zero entries. Notice
that the sub-matrix Ay corresponds to a Neumann problem on the subregion
Q1. In fact, 3 R

Ao=G1 @1, + I, 411 ® G, (4.27)

where G4, of dimension s; + 1, is the same as G; in (2.7) but with s; replacing
n; — 1 there. Thus Ay is the generating matrix of a 2-queue free model with s;
spaces in the first queue and n, — 1 spaces in the second queue. Hence A is
separable, has a one dimensional null-space and a positive null-vector. Let us
denote its null-vector by pg.
On the other hand, 75 corresponds to a mixed type problem defined on 2,.
In fact,
To=Vi® I,y + In,—s,—1 @ Vs. (4.28)

Here
Vi = tridiag(—A1, Adr + s1p01, —S1001) — A1 - €ny—s—1€5, _g, 1 (4.29)
is a matrix of order n; — sy — 1 and
Vo = tridiag(—Az, Az + s2p2, —S2412) — Sapiz - €1€] — Ao - €y sn€yy, 5, (4.30)
is a matrix of order mo — so. It is clear that 75 is separable and since V;

is irreducibly diagonally dominant, 75 is non-singular. Thus by ~(4.21), Ais
singular, and has a one dimensional null-space. The null-vector of A is given by

_ Do
- Po_ . 4.31
p { —T5 Ba o } (4.31)
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We note that the p;; are not necessarily positive. Let us define the generalized
inverse AT of A as ~
A 0

At = )
~Ty B AL T

(4.32)

We have

Lemma 2

T
T2

() Im(A) = {z = { } € RN4|z; € Im(Ag)}.

(ii) A" is invertible on I'm(A). More precisely, for all y € Im(A), there exists

a unique z € Im(A), such that
Atz =y, (4.33)
where 2 = Ay. Thus for all y € Im(4),
AATy = At Ay =y. (4.34)
(iii) For all y € RN4, there exist a unique o and & € Im(A) such that,
y=ap+ At¢. (4.35)

(iv) Let p be the solution to (4.8) - (4.10), then there exist a unique o # 0 and

& € Im(A) such that, }
p=ap+ ATE (4.36)

Proof: We first note that Ag is the generating matrix of a 2-queue free model,

hence (i) - (iii) follow easily from the fact that T5 is non-singular and the remarks

we made in (2.15) - (2.16). Thus let us prove (iv). By (iii), it suffices to show

that a # 0. Suppose @ = 0, then p = [go ] = At¢ € Im(A). By (i),
1

po € Im(Ay), hence 1*py = 0, contradicting (4.11). O

We remark that even though A cannot be symmetrized, we still have a decom-
position of the state space as in (4.35). Notice that in (4.21), A is in block
lower triangular form. Since Ay and T} are separable, and in view of (4.14) and
(4.22), E, is sparse, thus Atz can be computed easily for any = € Im(A). We
remark that E» picks up the Dirichlet data on 7.

Using (iv) in Lemma 2 and since p is unique up to a multiple constant, we
may let y
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and normalize it by (4.9) after we find it. Putting this Ansatz into (4.8), we get
(I + RAT)¢ = —Rp. (4.38)

It can easily be checked that Rp # 0. We remark that since R has m non-zero
rows, where m is given by (4.26), (4.38) is practically an m by m system.

Let us calculate the cost of computing RATz for any z. Since R has at
most 2m non-zero entries, Rz can be computed in 2m operations. Next let us

consider solving
i [ Yo } [ Zo } :
U1 T

where zy € Im(Ay). Notice that by (4.21), Agyg = xo. Since Ay is separable,
this system can be solved in O(n3) operations. Let us remark that when s; <
n, we can diagonalize G and then solve the resulting tridaigonal systems with
respect to G2. This requires only 4n,s; operations, see Chan [5]. Having found
Yo, we solve

Toy, = =1 — Enyo. (4.39)

Since E, is sparse, the right hand side of this equation can be computed in ny—s»
operations. Since T% is separable too, y; can be solved by first diagonalizing V5
and then solving the resulting tridiagonal systems. We note that we can use the
Fast Fourier transform to perform the diagonalization. This follows from the
fact that V5 is the generating matrix of a 1-queue single-server model with the
service rate sous. Thus the work for solving (4.39) is roughly 5(ns — s2)(n1 —
s1) + 2(n2 — s2) log(na — s3). The first term here is the work required to solve
the resulting tridiagonal systems. Combining these results, we see that the work
required to compute RA*z is

dnssy + 5(ne — s2)(n1 — s1) + 2(n2 — $2) log(na — s2), (4.40)
and the memory requirement is
S% + O(nl - Sl) (4.41)

We note that there are many other viable separable preconditioners. For
example, instead of solving the Dirichlet-Neumann problem corresponding to
T, we may solve a Dirichlet problem on ,. This is also a separable problem.
However, using the continuous analogy, see Bj¢rstad and Widlund [3], we expect
that this preconditioner will not lead to an optimal method.

4.2 Embedding of the State-Space

Capacitance matrix methods have been developed for solving elliptic problems
in irregular regions such as the L-shaped region in Figure 1, see O’Leary and
Widlund [13], Proskurowski and Widlund [15] and Astrakhantsev [1]. The idea
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is to embed the state-space into a larger space where there is a separable pre-
conditioner. Here we design an algorithm that adopts this approach.

Recall that Ag resembles a Neumann problem on the whole rectangular
region [0,n; —1] x [0,n2 — 1]. If we order the states in the L-shaped region first,
then we can write

A A }

Ao = [ Ay Az

where A;; and Ass are square matrices of dimension N4 and N — N4 respec-
tively. We claim that Ass is nonsingular. In fact, by the definition of Ay,

(4.42)

Ay =Vi @Iy, + Iy, —g,—1 @ Go, (4.43)

where V; is given by (4.29) and G, of dimension s, is the principal submatrix
of (G5 obtained by deleting the last ns — so columns and rows of GG5. Since V;
and G are irreducibly diagonally dominant, A,, is nonsingular.

Consider the N by N matrix

_ A A12
Ay = { 0 A ] , (4.44)

where A is the generating matrix in (4.8). Clearly if p is the solution to (4.8) -
(4.10), then py = { p ] is the unique solution to

0
Anpn =0, (4.45)
1ypy =1, (4.46)
and
(pN)k,; >0, 1<k,j<N. (4.47)

Here 1x = (1,1,...,1) € RN. Since 1549 =0 and 1*A = 0, it follows that
13 Ay = 0. (4.48)
Moreover, by (2.15) and (4.46), there exists a unique & € Im(Ay), such that
pN = po + AF &, (4.49)

where pg is given by (2.8). Define

_ [ A=A O
Ry = An — Ag = [ T 0]. (4.50)
Then (4.45) and (4.49) imply that
(I + RnAY)é = —Rnpo- (4.51)
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By (4.50) and Lemma 1, the matrix (I + Ry Ag) is nonsingular. Thus we can
solve (4.51) either by direct or iterative methods.
We claim that the matrix Ry is sparse. In fact, by the definition of Ag

-1 (kl — 1,](?2) and (jl,jQ) €ly,
(Ao1)k,j = —s2p2 (k1 k2 +1) and (ji,J2) € l2, (4.52)
0 otherwise.

On the other hand, it is straightforward to check that
A=A+ D, (4.53)
where A is given by (4.13) and D is a diagonal matrix such that

At (J1,d2) €1y,
Djj =q s2p2 (J1,]2) € Iz, (4.54)
0 otherwise.

By (4.12) and (4.53), A — A;; = R — D. From (4.16) - (4.18), we see that
R — D still has Nj nonzero rows and every such rows has at most two nonzero
entries. Here N is given by (4.19). Moreover, by (4.50) and (4.52), the number
of nonzero rows in Ry is equal to

NRENR+82:n1+n2+82_81_1, (455)

and every such rows has at most two nonzero elements. Hence Ry is sparse.

Using the sparsity of Ry, we can reduce the dimension of the problem (4.51)
to Ng. If conjugate gradient type methods are used, then in each step, we have
to compute a vector of the form RyAf¢ where ¢ € Im(Ry). We note that
though ¢ is sparse, the computation of Ry AF ¢ still requires O(n?) work and
O(n?) storage spaces. These counts are considerably higher than the counts
given in (4.40) and (4.41).

This algorithm has not yet been tested. However, considering the fast con-
vergence of the capacitance method for elliptic problems and the continuous
analogue of the queueing models, we conjecture that this algorithm also has a
fast convergence rate.

5 Numerical Results

In this section, we report on the numerical results for the models discussed in
previous sections. All the computations were carried out on the Cyber-760 at
the Mathematics and Computing Laboratory of the Courant Institute. Single
precision, between fourteen and fifteen decimal digits, was used throughout.
Craig’s method, used in the computations, is a version of the ordinary conjugate
gradient method applied to the normal equations; see Elman [9]. The Orthodir
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method is a generalized conjugate gradient method in which the transpose of
the matrix is not needed; see Young and Jea [17]. Convergence is said to occur
at the k-th step if

|7 ]2
[[roll2

< tolerance.

Here r}, is the residual vector at the k-th step and

1 m

2 2 m

T _——E:L’- Vr € R™.
|| ||2 m A

i=1

The initial iterant xg is chosen to be identically zero.

Tables 1 gives the results of our method when applied to the 3-queue model
discussed in § 2. The number of iterations increases like order O(logn;). Table
2 shows the time in seconds required in each phase of the algorithm. Tables
3 and 4 compare our method with the point SOR method. w* is the optimal
relaxation factor obtained experimentally. We see that our method performs
much better than the point SOR method especially when the s; are small.

Tables 5 and 6 report on the performance of the family of preconditioners
discussed in § 3. The parameter 3 in the tables indicates which preconditioner
we are using. If 8 # 0, the preconditioner is /15 which is nonsingular and is given
by (3.8). If 8 = 0, the preconditioner is defined by (3.10). Recall that when
B = 1, the preconditioner resembles a Dirichlet problem while when g = 0, it
resembles a Neumann problem. We see that the number of iterations decreases
as || — 0. However, we remark that for sufficiently small 3, arithmetic overflow
will occur. This is because by (3.7) and (3.8), the smallest eigenvalue of A5 tends
to zero as |B] — 0. For comparison, we also report in the tables the number of
iterations required if Ay is used as preconditioner.

For the L-shpaed region described in § 4, tables 7 and 8 give the number
of iterations required for convergence when the method introduced in § 4.1 is
used. In all cases, we see that the number of iterations increases at most like

O(logn;).
Table 1: Number of iterations by the Orthodir Method (tolerance = 10~5)
| Parameters I siti =N +(ng — 1)~ N =1,i=1,2,3

(n1,n2,n3) N || s; o S; o S; o
1 2 3 1 2 3 1 2 3
@44 G4 1101010 3] 9] 9] 9 3] 9] 9] 9
(8,8,8) 512 1(14]14 | 14 3114|114 | 14 6|13 |13 | 13
(16,16,16) | 4096 1118 | 18| 18 3|18 |18 |18 ) 9|17 | 17| 17

Table 2: Time in seconds by the Orthodir Method (tolerance = 10~°)
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| Parameters I siti =N+ (i — D)2 N =1,5,=3,1=1,2,3 |
nE =ng =nNng 4 8 16
Initialization 0.015 0.065 0.308
Iteration 0.362 3.492 28.407
No. of iterations 9 14 18
Time per iteration || 0.0402 0.249 1.578
Generating p 0.039 0.407 4.526
Total time 0.416 3.964 33.241

Table 3: Comparison with the Point SOR method

| Parameters || sipi =N+ (i —1)"2 N, =1,i=1,2,3

Method point SOR: Initial guess p =0 Orthodir

nig | s;i| N w* Relaxation factor w Iterations
1.0 14| 15| 16| 1.7 1.8 | 1.9 w*

4 | 1| 64 || 1.700 || 474 | 206 | 159 | 115 | 69 | 190 | ** 69 10
4 | 3| 64 || 1.593 || 183 | 76| 54| 34| 53| 104 | ** 30 9
8 | 1| 512 1.831 ¥R kR 907 | 660 | 489 | 300 | F* || 242 14
8 | 7 | 512 | 1.715 || 458 | 199 | 154 | 111 | 64 | 77 | 305 49 12

*

*

more than 1000 iterations

Table 4: Time Comparison between the Orthodir and the Point SOR methods

| Parameters I st =N+ — 1) Y N =1,i=1,23,a=2
Problem n; =4,s;, =3 n; =8,8 =7 n; =8,8;, =1
Dimension N 64 512 512
Method Orthodir | pt SOR || Orthodir | pt SOR | Orthodir | pt SOR
w* 1.593 1.715 1.831
No. of iterations 9 30 12 49 14 242
Time for iteration 0.364 0.498 2.822 5.936 3.365 31.225
Time per iteration 0.0405 0.0166 0.2352 0.1211 0.2404 0.1290
Total time 0.420 0.529 3.274 5.997 3.815 31.282
Table 5: Number of Iterations by the Craig’s Method, (tolerance = 10~1)
Parameters Tl =5 =1,i=1,2
(n1,m2) g Ao
1.00 | .75 | .50 | .25 | .10 | .01 | .001 0| -.01|-25]-75
(8,8) 8 8 8 8 8 8 9| 10 8 9 9 7
(16,16) 16| 16 | 15| 13 | 12 9 9| 12 9 16 22 8
(32,32) 281 26| 23| 20| 15| 10 10 || 14 10 23 39 10
(64,64) 48 | 43| 37| 28 | 20| 12 11 || 17 12 38 *ok 12

** more than 30 iterations

Table 6: Number of Iterations by the Orthodir Method, (tolerance = 10~10)
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Parameters % =1-1i(ni— 1) pui=s=1i=1,2
(n1,n2) B Ay
1.00 | .75 | .50 | .25 | .10 | .01 | .001 0| -01|-25]-75
(8,8) 7 8 8 8 8 8 ok 9 8 8 8 7
(16,16) 15 15| 15| 16 | 16 | 16 1T 16 16 16 || 15
(32,32) 24| 23| 22| 21| 21| 21 0026 21 23 28 || 21
(64,64) 36 | 33| 31| 27| 25| 24 030 25 32 44 || 25
** more than 30 iterations
Table 7: Number of Iterations by the Orthodir Method, (tolerance = 10~°)
| Parameters || sipi =N+ (g — D)™ N =1,i=1,2 |
(n1,n2) a=1 a=2 a=3
(s1,s2) | Tterations || (s1,s2) | Iterations || (s1,s2) | Iterations
(10,10) 2.2) ] (55) 0| @4 11
(20,20) (4,4) 15| (5,5) 15 | (8,8) 13
(40,40) (8.8) 17| (5,5) 18 | (16,16) 16
(80,80) || (16,16) 20 || (5,5) 22 || (32,32) 18
Table 8: Number of Iterations by the Orthodir Method, (tolerance = 10~°)
| Parameters || sii =X+ (n; — 1)~ =1,i=1,2 |
(s1,82) a=3 a=2 a=2
(n1,n9) | Iterations || (ni,ns) | Iterations || (ni,ns) | Iterations
(10,10) || (17,18) 12 | (27,28) 15 || (15,15) i1
(10,10) | (25,26) 14 | (35,36) 16 | (30,30) 16
(10,10) | (41,42) 17 || (51,52) 18 | (60,60) 19
(10,10) | (73,74) 20 || (83,84) 21 || (120,120) 23
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