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Abstract

Markov�modulated Poisson process �MMPP� is a generalization of Poisson process and is
commonly used in modeling the input process of communication systems such as data tra�c
systems and ATM networks� In this paper� we give fast algorithms for solving queueing
systems and manufacturing systems with MMPP inputs� We consider queueing systems
where the input of the queues is a superposition of MMPP which is still an MMPP� The
generator matrices of these processes are tridiagonal block matrices with each diagonal block
being a sum of tensor product of matrices� We are interested in �nding the steady state
probability distributions of these processes which are the normalized null�vectors of their
generator matrices� Classical iterative methods� such as the block Gauss�Seidel method are
usually employed to solve for the steady state probability distributions� They are easy to
implement� but their convergence rates are slow in general� The number of iterations required
for convergence increases like O�m� where m is the size of the waiting spaces in the queues�
Here� we propose to use the preconditioned conjugate gradient method� We construct our
preconditioners by taking circulant approximations of the tensor blocks of the generator
matrices� We show that the number of iterations required for convergence increases at most
like O�log

�
m� for large m� Numerical results are given to illustrate the fast convergence�

As an application� we apply the MMPP to model unreliable manufacturing systems� The
production process consists of multiple parallel machines which produce one type of product�
Each machine has exponentially distributed up time� down time and processing time for one
unit of product� The inter�arrival of a demand is exponentially distributed and �nite backlog
is allowed� We consider hedging point policy as the production control� The average running
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cost of the system can be written in terms of the steady state probability distribution� Our
numerical algorithm developed for the queueing systems can be applied to obtain the steady
state distribution for the system and hence the optimal hedging point� Furthermore� our
method can be generalized to handle the case when the machines have more general type of
repairing process distribution such as the Erlangian distribution�

Key Words� Markov�Modulated Poisson Process� Preconditioned Conjugate Gradient Squared
Method� Manufacturing Systems� Hedging Point Policy�

Subject Classi�cations� ��C��� ��F���

� Introduction

The Markov�modulated Poisson process 	MMPP
 is a generalization of the Poisson process and
is widely used as the input model of communication systems such as data tra�c systems �
�
and ATM networks ����� An MMPP is a Poisson process whose instantaneous rate is itself a
stationary random process which varies according to an irreducible n�state Markov chain� If n
is �� then the process is just a Poisson process� We say that the MMPP is in phase k� � � k � n�
when the underlying Markov process is in state k� and in this case the arrivals occur according
to a Poisson process of rate �k� The process is characterized by the generator matrix Q of the
underlying Markov process and the rates ��� ��� � � � � �n�
In this paper� we �rst discuss a numerical algorithm for solving the steady state probability

distributions of queueing systems with MMPP inputs� We then relate queueing systems with
MMPP inputs to the production process in unreliable manufacturing systems under the hedging
point production control� Our algorithm can be applied to solving for the steady state probability
distribution of these systems and hence their optimal hedging points�
We consider a queueing system with 	q � �
 trunks� where each trunk has m waiting spaces

and s multiple exponential servers� The analysis of these queueing systems can be used to
determine call congestions in teletra�c networks with alternate routing� see Hellstern ����� A
call will over�ow to other trunks if its �rst destination trunk is full and will be blocked from
the system if all the trunks are full� The analysis of these queueing systems can be decomposed
into the study of each trunk independently� see Hellstern ����� For each trunk� the over�ow
from other trunks is modeled by a �q�state MMPP which is a superposition of q independent
��state MMPPs� i�e� each trunk is an 	MMPP�M�s�s �m
 queue� The generator matrices of
these processes are 	s�m� �
�q � 	s�m� �
�q tridiagonal block matrices with each diagonal
block being a sum of tensor product of matrices� We are interested in �nding the steady state
probability distributions of the queues which are the normalized null�vectors of the generator
matrices�
Usually classical iterative methods� such as the block Gauss�Seidel method� are used to solve

for the steady state probability distribution� They are easy to implement� but their convergence
rates are slow in general� see numerical results in x�� Here� we propose to use the Preconditioned
Conjugate Gradient 	PCG
 method� Our preconditioners are constructed by taking circulant
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approximation of the tensor blocks of the generator matrix� We prove that the preconditioned
system has singular values clustered around � independent of the size of the waiting spaces
m� Hence the conjugate gradient method will converge very fast when employed to solving the
preconditioned system for large m� In fact� we prove that the number of iterations required
for convergence grows at most like O	log�m
� Numerical examples are given in x� to illustrate
the fast convergence� For the case of single server 	s � �
� our generator matrix corresponds
to a class of Quasi�Birth�Death 	QBD
 process which can be solved e�ciently by the folding
algorithm� see Ye and Li ����� We will compare the complexity of our PCG method with that
of the folding algorithm in x�� The cost of our PCG method increases slower than that of the
folding algorithm when the problem size increases� In fact� for large values of q� 	q � �
� PCG
type method is more e�cient than the folding algorithm�
The analysis of the MMPP queueing systems can be applied to the production planning

of manufacturing systems� We consider manufacturing systems of multiple parallel machines
producing one type of product� Usually positive inventory is stored to hedge against uncertain
situations such as breakdown of machines and shortfall of products� see Akella and Kumar ����
It is well�known that the hedging point policy is optimal for one�machine manufacturing systems
in some simple situations� see ��� �� ��� ���� For two�machine �owshops� hedging policies are
no longer optimal but near�optimal� see ���� ���� A hedging point policy is characterized by a
number h� the machines keep on producing the product at the maximum possible production
rate if the inventory level is less than h� maintain the inventory level h as far as they can if the
inventory level reaches h� and stop producing if the inventory level exceeds h� When the optimal
policy is a zero�inventory policy 	i�e� the hedging point is zero
� then the policy matches with
the just�in�time 	JIT
 policy� The JIT policies have strongly been favored in real�life production
systems for process discipline reasons even when they are not optimal� By using the JIT policy�
the Toyota company can manage to reduce work�in�process and cycle time in the presence
of the stochastic situations mentioned above� see Monden ����� We focus ourselves in �nding
optimal hedging point policies for the manufacturing systems�
We note that in ��� �� ��� ���� only one�machine systems are considered and in addition

the repairing process of the machine is assumed to be exponentially distributed� Ching and
Zhou ��� then consider one�machine manufacturing systems with the repairing process being
Erlangian distributed� Our algorithm proposed here can deal with the more general case of
multiple machines� Each machine is unreliable and has exponential up time and down time�
and the demand is a Poisson process� The production process of the machines can be modeled
as an MMPP� The generator matrix for the machine�inventory system is a particular case of
the queueing systems discussed above� with the queue size m being the size of the inventory
which in practice can easily go up to the thousands� Our numerical method developed for the
queueing networks above is well suitable for solving the steady state probability distribution
for these processes� Given a hedging point� the average running cost of the machine�inventory
system can be written in terms of the steady state probability distribution� Hence the optimal
hedging point can also be obtained� Moreover our algorithm can also handle the case when the
repair time has a more general distribution� e�g� the Erlangian distribution�
The outline of the paper is as follows� In x�� we give the generator matrix for the queueing
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system 	MMPP�M�s�s �m
� In x�� we construct preconditioners by taking circulant approxi�
mations of the tensor blocks of the generator matrices� In x�� we prove that the preconditioned
systems have singular values clustered around �� The cost count of our method is given in x�� In
x�� we applied our method to the production planning of manufacturing systems with multiple
parallel machines� Numerical examples are given in x� to illustrate the fast convergence rate of
our method� Finally concluding remarks are given in x
�

� The Queueing System

In this section� we present the queueing system 	MMPP�M�s�s�m
 arising in telecommunica�
tion networks� see for instance Hellstern ����� In order to construct the generator matrix of the
queueing process� we �rst de�ne the following queueing parameters�

�i� ���� the mean arrival time of the exogenously originating calls�

�ii� ���� the mean service time of each server�

�iii� s� the number of servers�

�iv� m� the number of waiting spaces in the queue�

�v� q� the number of over�ow queues� and

�vi� 	Qj ��j
� � � j � q� the parameters of the MMPP�s modeling over�ow parcels� where

Qj �

�
�j� ��j�
��j� �j�

�
and �j �

�
�j �
� �

�
� 	�


Here �j�� �j� and �j � � � j � q� are positive MMPP parameters� Conventionally� an in�nitesimal
generator Q has non�negative o��diagonal entries and zero row sum� For ease of presentation�
in our discussion� all the in�nitesimal generators are of the form �Qt which has non�positive
o��diagonal entries and zero column sum�
The input of the queue comes from the superposition of several independent MMPPs� which

is still an MMPP and is parametrized by two �q � �q matrices 	Q��
� Here

Q � 	Q� � I� � � � � � I�
 � 	I� �Q� � I� � � � � � I�
 � � � � � 	I� � � � � � I� �Qq
� 	�


� � 	�� � I� � � � � � I�
 � 	I� � �� � I� � � � � � I�
 � � � �� 	I� � � � � � I� � �q
 	�


and
� � �� �I�q �

where I� and I�q are the � � � and �
q � �q identity matrices respectively and � denotes the

Kronecker tensor product� In the following� we will drop the subscript of the identity matrix I
if the dimension of the matrix is clear from the context�
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We can regard our 	MMPP�M�s�s�m
 queue as a Markov process on the state space

f	i� j
 j � � i � s�m� � � j � �qg�

The number i corresponds to the number of calls at the destination� while j corresponds to
the state of the Markov process with generator matrix Q� Hence the generator matrix of the
queueing process is given by the following 	s�m��
�q� 	s�m��
�q tridiagonal block matrix
A�

A �

�
BBBBBBBBBB�

Q� � ��I �
�� Q� �� �I ���I

� � �
� � �

� � �

�� Q� �� s�I �s�I
� � �

� � �
� � �

�� Q� �� s�I �s�I
� �� Q� s�I

�
CCCCCCCCCCA
� 	�


For simplicity� let us write n � 	s � m � �
�q� The steady state probability distribution
vector p � 	p�� p�� � � � � pn


t is the solution to the matrix equation Ap � � with constraints

nX
i��

pi � �

and
pi � �� for all � � i � n�

Note that the matrix A is irreducible� has zero column sums� positive diagonal entries and non�
positive o��diagonal entries� From Perron�Frobenius theory� the matrix A has a ��dimensional
null�space with a positive null�vector� see Varga ���� p����� Therefore the steady state probability
distribution vector p exists�
Many useful quantities such as the steady state distribution of the number of calls at the

destination� the blocking probability and the waiting time distribution can be obtained from the
vector p� see Hellstern ����� We note that p can be obtained by normalizing the solution x of
the non�singular system

Gx � 	A� ene
t
n
x � en� 	�


Here en � 	�� � � � � �� �

t is an n�vector� The matrix G is non�singular because it is irreducible

diagonally dominant with the last column being strictly diagonal dominant� We will solve the
linear system 	�
 by conjugate gradient 	CG
 type methods� see ��� �
�� The convergence rate of
CG type methods depend on the distribution of the singular values of the matrix G� The more
clustered the singular values of G are� the faster the convergence rate will be� see Axelsson and
Barker ����
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However� this is not the case for our matrix G and we will see in the numerical results
in x� that the convergence for the system 	�
 is very slow� To speed up the convergence� a
preconditioner is used� In essence� we solve� instead of 	�
� the preconditioned system

GC��w � en 	�


for w by CG type methods� Obviously� the solution x to 	�
 is given by C��w� A good
preconditioner C is a matrix such that it is easy to construct� the preconditioned matrix GC��

has clustered singular values around one and the preconditioned system Cy � r can be solved
easily for any vector r� see Axelsson and Barker ���� We will show that our preconditioner
satis�es these three criteria in the next three sections�

� Construction of Our Preconditioners

In this section� we discuss the construction of preconditioners for the linear system 	�
� Our
preconditioner C is constructed by exploiting the block structure of the generator matrix A in
	�
� Notice that the generator A can be written as the sum of tensor products�

A � I �Q�B � I �R� �� 	�


where B and R are 	s�m� �
� 	s�m� �
 matrices given by

B �

�
BBBBBBBBBB�

� �� �
�� �� � ���

� � �
� � �

� � �

�� �� s� �s�
� � �

� � �
� � �

�� �� s� �s�
� �� s�

�
CCCCCCCCCCA

and

R �

�
BBBBBB�

� �
�� �

��
� � �
� � � �

� �� �

�
CCCCCCA
�

For small s� we observe that B and R are close to the tridiagonal Toeplitz matrices

tridiag���� �� s���s�� and tridiag���� �� ��
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respectively� Our preconditioner is then obtained by taking the �circulant approximation� of
the matrices B and R� which are de�ned by c	B
 and c	R
 as follows�

c	B
 �

�
BBBBB�

�� s� �s� ��
�� �� s� �s�

� � �
� � �

� � �

�� �� s� �s�
�s� �� �� s�

�
CCCCCA � 	



and

c	R
 �

�
BBBBBB�

� ��
�� �

��
� � �
� � � �

� �� �

�
CCCCCCA
� 	�


We note that c	B
 and c	R
 are the Strang�s circulant approximations of the Toeplitz matrices
tridiag���� �� s���s�� and tridiag���� �� �� respectively� see Chan ���� Clearly� we have

Lemma � rank	B � c	B

 � s� � and rank	R� c	R

 � ��

Using the theory of circulant matrices� see Davis ���� we also have

Lemma � The matrices c	B
 and c	R
 can be diagonalized by the discrete Fourier transform

matrix F � i�e�
F �	c	B

F � � and F �	c	R

F �  

where both � and  are diagonal matrices� The eigenvalues of c	B
 and c	R
 are given by

�j � �	�� e
���i�j���
s�m�� 
 � s�	�� e

���i�j����s�m�
s�m�� 
� j � �� � � � � s�m� �� 	��


and

	j � �� e
���i�j���
s�m�� j � �� � � � � s�m� �� 	��


Thus� the matrices c	B
 and c	R
 can be inverted easily by using fast Fourier transforms�
We �rst approximate our matrix A in 	�
 	and hence G in 	�

 by

D � I �Q� c	B
� I � c	R
� �� 	��


We observed that D is irreducible� has zero column sums� positive diagonal entries and non�
positive o��diagonal entries� Hence D is singular and has a null�space of dimension one� More�
over� D is unitarily similar to a diagonal block matrix�

	F � � I
D	F � I
 � I �Q��� I � � � � diag	D�� C�� C�� � � � � Cs�m��
� 	��


�



Here the blocks are
Ci � Q� �iI � 	i�� i � �� � � � � s�m� �� 	��


and D� � Q with D� being the only singular block�
Let

C� � Q� e�qe
t
�q � 	��


where e�q � 	�� � � � � �� �

t is a �q�vector� Since C� is irreducible diagonally dominant with the

last column being strictly diagonal dominant� it is non�singular� Our preconditioner C for the
matrix G in 	�
 is de�ned as

C � 	F � I
diag	C�� C�� � � � � Cs�m��
	F
� � I
� 	��


which is clearly non�singular�

� Convergence Analysis

In this section� we study the convergence rate of our algorithm when m� the number of waiting
spaces� is large� In the queueing systems considered in Hellstern ����� the number of waiting
spaces m in each queue is much larger than the number of over�ow queues q� In x�� we apply
the MMPP to model manufacturing systems of q parallel machines and m possible inventory
states� In practice� the number of possible inventory states is much larger than the number of
machines in the manufacturing systems and can easily go up to thousands�
We prove that if all the queueing parameters �� �� s� q and �ij are �xed independent of m�

then the preconditioned system GC�� in 	�
 has singular values clustered around � as m tends
to in�nity� Hence when CG type methods are applied to solving the preconditioned system 	�
�
we expect fast convergence� Numerical examples are given in x� to demonstrate our claim� We
start the proof by the following lemma�

Lemma 	 We have rank	G� C
 � 	s� �
�q � ��

Proof
 We note that by 	�
� we have rank	G� A
 � �� From 	�
� 	��
 and Lemma �� we see
that rank	A�D
 � 	s� �
�q� From 	��
� 	��
 and 	��
� we see that D and C di�er by a rank
one matrix� Therefore� we have

rank	G� C
 � rank	G�A
 � rank	A�D
 � rank	D � C
 � 	s� �
�q � ��

Hence the inequality is proved�

Theorem � The preconditioned matrix GC�� has at most �		s� �
�q � �
 singular values not
equal to ��






Proof
 We �rst note that

GC�� � I � 	G� C
C�� � I � L��

where rank	L�
 � 	s� �
�
q � � by Lemma �� Therefore

C��G�GC�� � I � L��	I � L�
 � L��

is a matrix of rank at most �		s� �
�q � �
�

Thus the number of singular values ofGC�� that are distinct from � is a constant independent
of m� In order to show fast convergence of preconditioned conjugate gradient 	PCG
 type
methods with preconditioner C� one still needs an estimate of �min	GC

��
� the smallest singular
value of GC��� If �min	GC

��
 is uniformly bounded away from zero independent of m� then
the method converges in O	�
 iterations! and if �min	GC

��
 decreases like O	m��
 for some

 � �� then the method converges in at most O	log�m
 steps� see Van der Vorst ���� or Chan
��� Lemma ��
����
In the remaining of this section� we show that even in the worst case where �min	GC

��

decreases in an order faster than O	m��
 for any 
 � � 	e�g� like O	e�m

� we can still have
a fast convergence rate� Note that in this case the matrix equation 	�
 is very ill�conditioned�
Our trick is to consider a regularized equation of 	�
 as follows�

C��	G�G�m����I
C��w � C��G�en 	��


where � is any positive constant�
In the following� we prove that the regularized preconditioned matrix

C��	G�G�m����I
C��

has eigenvalues clustered around � and its smallest eigenvalues decreases at a rate no faster than
O	m����
� Hence PCG type methods will converge in at most O	log�m
 steps when applied to
solving the preconditioned linear system 	��
� Moreover� we prove that the ��norm of the error
introduced by the regularization tends to zero at a rate of O	m��
� In order to prove our claim�
we have to get an estimate of the upper and lower bounds for jjC��jj�� We begin our proof by
the following lemma�

Lemma � Given any matrix W � if the smallest eigenvalue of W �W �� denoted by �min	W �
W �
� satis�es �min	W �W �
 � 
 � �� then jjW��jj� � ��
�

Proof
 For any arbitrary x� using the Cauchy�Schwartz inequality� we have


jjxjj�� � �min	W �W �
jjxjj�� � x�	W �W �
x � �x�Wx � �jjxjj�jjWxjj��

Since Wx is arbitrary� this implies jjW��jj� � ��
�

Now we are ready to estimate jjC��jj��

�



Lemma � Let the queueing parameters �� �� s� q and �ij be independent of m� Then there exist

positive constants �� and �� independent of m such that

�� � jjC��jj� � ��m
��

Proof
 We �rst prove the left hand side inequality� From 	��
� we see that C is unitarily
similar to a diagonal block matrix� We therefore have

jjCjj� � max fjjC�jj�� jjC�jj�� � � � � jjCs�m��jj�g �

Using 	��
� 	��
 and 	��
� it is straightforward to check that jjCijj� and jjCijj�� � � i � s�m���
are all bounded above by

�

��
� q

�
max
j
f�j�g�max

j
f�j�g

�
� �	�� s�� �
�

Using the inequality
jj � jj� �

p
jj � jj�jj � jj��

we see that jjCijj�� i � �� � � � � s�m� �� are all bounded above by ����� Thus jjCjj� � ���� and
hence �� � jjC��jj��
Next we prove the right hand side inequality� We note again by 	��
 that

jjC��jj� � max
�
jjC��

� jj�� jjC
��
� jj�� � � � � jjC

��
s�m��jj�

�
�

From 	��
� we can see that C� is a �
q � �q nonsingular matrix with entries independent of m�

Thus jjC��
� jj� is bounded independent of m� To obtain bounds for jjC

��
i jj�� i � �� � � � � s�m���

we �rst symmetrize the matrices� De�ne " � "� � � � � � "q where

"j �

�
� �
�

�j�
�j�

	
� j � �� � � � � q�

We see that jj"jj� and jj"
��jj� are bounded independent of m� By 	�
 and 	�
� we see that Q"

is a symmetric semi�de�nite matrix� Thus

Ci" � Q"� �i"� 	i�"� i � �� � � � � s�m� ��

are symmetric matrices too� By 	��
� we see that 		i�" � 		i�"

�
� i � �� � � � � s �m� �� are

diagonal positive semi�de�nite matrices� Therefore�

�min	Ci"� 	Ci"

�
 � �min	�i"� 	�i"


�
� i � �� � � � � s�m� �� 	�



From 	��
� we have

�min	�i"� 	�i"

�
 � �jj"��jj��� sin�

�
	i� �
�

s�m� �

�
� i � �� � � � � s�m� ��

��



Since

sin � � min



��

�
� �	� �

�

�



�
� �� 	 ��� ���

we have

�min	�i"� 	�i"

�
 � �jj"��jj��� min



�	i� �
�

	s�m� �
�
� �	� �

i� �

s�m� �

�
�

�
��

m�
jj"��jj��� � i � �� � � � � s�m� ��

By Weyl�s Theorem ��� p� �
��� we then have

�min	�i"� 	�i"

�
 �

�

m�
� i � �� � � � � s�m� ��

where � � ��jj"��jj��� is a positive constant independent of m�
Thus by 	�

� we get

�min	Ci"� 	Ci"

�
 �

�

m�
� i � �� � � � � s�m� ��

Hence by Lemma �� we have

jj"��C��
i jj� �

�

�
m�� i � �� � � � � s�m� ��

Therefore�

jjC��
i jj� � jj"jj�jj"

��C��
i jj� �

�m�

�
jj"jj� i � �� � � � � s�m� ��

Since jjC��
� jj� is bounded above independent of m� we have

jjC��jj� � max



jjC��

� jj��
�m�

�
jj"jj�

�
� ��m

��

where �� is a positive constant independent of m� Hence we have proved the lemma�

Theorem � Let the queueing parameters �� �� s� q� and �ij be independent of m� Then for any

positive �� the regularized preconditioned matrix

C��	G�G�m����I
C�� 	��


has eigenvalues clustered around � and the smallest eigenvalue decreases at a rate no faster than
O	m����
� Furthermore� the error introduced by the regularization is of the order O	m��
�

��



Proof
 We note by Theorem � that

C��	G�G�m����I
C�� � I � L� �m����C��C���

where L� is a Hermitian matrix with rank	L�
 � �		s� �
�
q � �
� By Lemma �� we have

lim
m��

m����jjC��C��jj� � lim
m��

m�� � ��

Thus by Cauchy�s interlace theorem ��� p��
��� the regularized preconditioned matrix in 	��
 has
eigenvalues clustered around � as m tends to in�nity� The error introduced by the regularization
is given by m����jjC��C��jj� which by Lemma � tends to zero like O	m

��
�
As for the smallest eigenvalue of the regularized preconditioned matrix in 	��
� we note that

min
jjxjj���

x�	G�G�m����
x

x�C�Cx
�
minjjxjj��� x

�	G�G�m����
x

maxjjxjj��� x
�C�Cx

�
��

m���
� 	��


where the right�most inequality follows from Lemma �� We recall that �� and � are positive
constants independent of m� Hence the smallest eigenvalue of the regularized preconditioned
matrix in 	��
 decreases no faster than O	m����
�

Thus we conclude that PCG type methods applied to 	��
 with � � � will converge in
at most O	log�m
 steps� see Van der Vorst ���� or Chan ��� Lemma ��
���� To minimize the
error introduced by the regularization� one can choose a large �� Recall that regularization is
required only when the smallest singular value of the matrix GC�� in 	�
 tends to zero faster
than O	m��
 for any 
 � �� In view of Lemma � 	or cf� 	��

� this can only happen when the
smallest singular value of G has the same decaying rate� This will imply that the matrix G is
very ill�conditioned� We note however that in all our numerical tests in x�� we found that there
is no need to add the regularization�

� Cost Analysis

In this section� we derive the computational cost of the Preconditioned Conjugate Gradient
	PCG
 type method� We compare our PCG method with the block Gauss�Seidel 	BGS
 method
used in Hellstern ���� and the folding algorithm of Ye and Li ����� We show that the cost for
PCG type algorithms is O	�q	s�m��
 log�	s�m� �
 � q	s�m��
�q
� The computational
cost per iteration of the BGS method is O		s�m� �
��q
� see Hellstern ����� Thus PCG type
methods require an extra O	log�	s�m��

 of work per iteration compared with BGS method�
However� as we will soon see in the numerical examples of x�� the fast convergence of our method
can more than compensate for this minor overhead in each iteration�
When the queue has single server� i�e� s � �� our generator matrix A corresponds to a class

of Quasi�Birth�Death 	QBD
 process which can be solved e�ciently by the folding algorithm of
Ye and Li ����� The complexity of the folding algorithm is approximately ���

�
��q log�	s �m �

�
 � �	s�m� �
��q operations� where � � 
 � �� We will compare the computational cost of

��



our PCG method with the folding algorithm in x�� Our PCG method is more e�cient than the
folding algorithm for large problems�
In PCG type algorithms for 	�
� the main cost per iteration is to compute the matrix�vector

multiplication of the form GC��y twice for some vector y� By using the block tensor structure
of A in 	�
� the multiplication of Gz requires 	s �m � �
q�q operations for any vector z� By
	��
� we see that C��y is given by

	F � I
diag	C��
� � C��

� � � � � � C��
s�m��
	F

� � I
y�

It involves the matrix�vector multiplications of the form

	F � � I
z and 	F � I
z�

By using fast Fourier transforms� they can be obtained in �	s�m��
�q log�	s�m��
 operations�
The vector

diag	C��
� � C��

� � � � � � C��
s�m��
z

can be obtained by solving 	s�m��
 linear systems involving the matrices Ci� i � �� � � � � s�m���
Since each matrix is of size �q��q� if Gaussian elimination is used� O		s�m��
��q
 operations
will be required� We now show that it can be reduced to O		s�m� �
q�q
 operations�
First we recall from the de�nitions of Ci� Q and � in 	��
� 	�
 and 	�
 that

Ci � 		Q� � �iI � 	i��
� I � � � � � I
 � 	I � 	Q� � �iI � 	i��
� I � � � � � I


� � � �� 	I � I � � � � � 	Qq � �iI � 	i�q

 	��


where Qj and �j� j � �� � � � � q� are given in 	�
� By using Schur�s triangularization theorem ���
p����� we can �nd �� � unitary matrices Uij and lower triangular matrices Lij such that

U�
ij	Qj � �iI � 	i�j
Uij � Lij � � � i � s�m� �� � � j � q� 	��


For i � �� � � � � s�m� �� de�ne
Ui � Ui� � � � � � Uiq

and

Li � 	Li� � I � � � � � I
 � 	I � Li� � I � � � � � I
 � � � �� 	I � I � � � � � I � Liq
�

We see from 	��
 and 	��
 that

U�
i CiUi � Li� � � i � s�m� ��

Hence the vector C��
i w can be computed as UiL

��
i U�

i w�
The vector�matrix multiplication of the form Ujw and U

�
jw can be done in �	q�

q
 operations
by making use of the formula

Ujw � 	U�j � I � � � � � I
	I � U�j � I � � � � � I
 � � � 	I � I � � � � � I � Uqj
w�

��



We note that the matrix Li is a lower triangular matrix and each row of it has at most q non�
zero entries� Hence L��i w can be obtained in q�q operations� Thus for any vector w� the vector
C��
i w can be obtained in �	q�q
 operations� Hence we conclude that the vector

diag	C��
�
� C��

�
� � � � � C��

s�m��

r

can be computed in �	s�m� �
q�q operations approximately�
In summary� each iteration of PCG type methods needs �	�	s�m� �
�q log�	s�m� �
 �

�	s�m��
q�q
 
 O	m log�m
 operations as compared to O		s�m��
�
�q
 
 O	m
 operations

required by the BGS method� As we have proved in x�� PCG type methods will converge in
at most O	log�m
 steps 	see also the numerical results in x�
� therefore the total complexity of
our methods will be O	m log��m
� As a comparison� the numerical results in x� show that the
number of iterations required for convergence for the BGS method increases linearly like O	m
�
Therefore the total complexity of the BGS method is about O	m�
 operations�
As for storage� PCG type methods� the folding algorithm and the BGS method require

O	�q	s �m � �

 memory� Clearly� at least O	�q	s�m � �

 memory is required to store the
approximated solution in each iteration�

� The Failure Prone Manufacturing Systems

In this section� we study a general kind of failure prone manufacturing system� These systems
consist of q multiple parallel machines producing one type of product� Each machine is subject
to random breakdowns and repairs� The processing time for one unit of product� the up time
and the down time of each machine are exponentially distributed� The inter�arrival time of a
demand is exponentially distributed� The systems allow �nite backlog and a penalty cost is
associated with the rejection of a demand� Moreover there is an inventory cost for holding each
unit of product and a shortfall cost for each unit of backlog�
The hedging point policy has been shown to be optimal for one�machine one�product man�

ufacturing systems with repair time being exponentially distributed� see ��� �� ��� ���� In those
works� the discrete inventory levels of the product is approximated by continuous �uid �ow
model� Analytic optimal control is found to be threshold 	hedging point
 type by solving a
pair of Hamilton�Jacobi�Bellman equations� The control is optimal in the sense that it mini�
mizes the average 	or discounted
 running cost of the manufacturing systems� In this paper�
we focus ourselves in �nding the optimal hedging point for the manufacturing systems under
consideration�
It should be noted that in ��� �� ��� ��� ��� ���� only one machine is considered and the

machine has only two states� up and down� Here we consider q parallel unreliable machines�
The production process of the machines is then an MMPP� The states of the machines and the
inventory level can be modeled as an irreducible continuous time Markov chain� For di�erent
values of the hedging point h� the average running cost C	h
 can be written in terms of the
steady state distribution of the Markov chain� Therefore the optimal hedging point can be
obtained by varying di�erent values of h� Let us �rst de�ne the following parameters for the
manufacturing systems as follows 	see Ching and Zhou ���
�

��



�i� q� the number of machines�

�ii� ���j�� the mean up time of the machine j� j � �� � � � � q�

�iii� ���j�� the mean repair time for the machine j� j � �� � � � � q�

�iv� ���j � the mean processing time for � unit of product on machine j� j � �� � � � � q�

�v� ���� the mean inter�arrival time of demand�

�vi� h� the hedging point� and

�vii� g� the maximum allowable backlog�

For each machine j� j � �� � � � � q� let Qj be the generator matrix of the machine states and
�j be the corresponding production rate matrix� Here

Qj �

�
�j� ��j�
��j� �j�

�
and �j �

�
�j �
� �

�
�

	cf� 	�

� Each machine has two states� either �up� or �down�� Since there are q machines�
there are �q states for the system of machines� We denote the set of machines states by #� The
superposition of the q machines forms an MMPP and is characterized by the following �q � �q

generator matrix

Q � 	Q� � I� � � � � � I�
 � 	I� �Q� � I� � � � � � I�
 � � � �� 	I� � � � � � I� �Qq


	cf� 	�

� The corresponding production rate matrix is given by

� � 	�� � I� � � � � � I�
 � 	I� � �� � I� � � � � � I�
 � � � �� 	I� � � � � � I� � �q


	cf� 	�

�
We let 
	t
 be the state of the system of machines at time t� Therefore 
	t
 has �q possible

states� The inventory level takes integer value in ��g� h�� because we allow maximum backlog
of g and the hedging point is h� Here negative inventory means backlog� We let x	t
 be
the inventory level at time t� The machines�inventory process f	
	t
� x	t

� t � �g forms an
irreducible continuous time Markov chain in the state space

f	
� x
 j 
 	 #� x � �g� � � � � �� � � � � hg�

Each time when visiting a state� the process stays there for a random period of time that
has an exponential distribution and is independent of the past behavior of the process� If we
order the state spaces of the machine�inventory process lexicographically� we get the following

��



	h� g � �
�q � 	h� g � �
�q generator matrix H for the machine�inventory system�

H �

�
BBBBBBBBBB�

Q�� ��I �
�� Q��� �I ��I

� � �
� � �

� � �

�� Q��� �I ��I
� � �

� � �
� � �

�� Q�� � �I ��I
� �� Q� �I

�
CCCCCCCCCCA
�

where I is the �m��m identity matrix� Clearly� the matrixH has the same tensor block structure
as that of the generator matrix A in 	�
� In fact� H is a particular case of A with s � �� � � �
and m � h� g� �� Therefore the techniques and algorithms developed in the previous sections
can be used to obtain the steady state distribution of the process e�ciently� Numerical results
are given in x� to illustrate the fast convergence�
Important quantities such as the average running cost of the machine�inventory system can

be written in terms of its steady state distribution� Let

p	
� x
 � lim
t��

Prob f
	t
 � 
� x	t
 � xg

be the steady state probability distribution� and let

pj �
X
k��

p	k� j
� j � �g��	g � �
� � � � � �� � � � � h�

be the steady state distribution of the inventory level of the system� The average running cost
for the machine�inventory is then given by

C	h
 � cI

hX
j��

jpj � cB

��X
j��g

jpj � cP�p�g� � � h � b� 	��


where cI is the inventory cost per unit of product� cB is the backlog cost per unit of product�
cP is the penalty cost for rejecting an arrival demand and b is the maximum inventory capacity�
see Ching and Zhou ���� Hence once pj are given� we can easily �nd h� which minimizes the
average running cost function C	h
 by evaluating C	h
 for all � � h � b�
We remark that our method can be generalized to handle the case when each machine has the

Erlangian distribution of l phases� Suppose the mean times of repair for machine j� j � �� � � � � q�
are the same in each phase and are equal to ���j�� In this case� the generator matrix for the
machine�inventory system can be obtained by replacing the generator matrix of the machine
states and its corresponding production rate matrix by $Qj and $�j respectively� where

$Qj �

�
BBBBB�

�j� ��j�
��j� �j�

��j� �j�
� � �

� � �

� ��j� �j�

�
CCCCCA and $�j �

�
BBBBB�

�i �
�
�
� � �

� �

�
CCCCCA �

��



Hence we see that the techniques and algorithms developed previously can be applied to this
case too�

� Numerical Results

In this section� we illustrate the fast convergence rate of our method by examples in queueing
systems and manufacturing systems� The conjugate gradient squared 	CGS
 method� see Son�
neveld ��
�� is used to solve the preconditioned system 	�
� The method does not require the
transpose of the iteration matrix GC��� Using the folding algorithm� one can obtain the steady
state probability vector with a residual error of order ����� to ������ see Ye and Li ����� In
order to compare our method with the folding algorithm� the stopping criterion for CGS and
BGS methods is set to be

jjApkjj� � ��
����

where pk is the computed steady state probability distribution at the k�th iteration and

jj	y�� y�� � � � � yn

tjj� �

vuut nX
i��

y�i �

In all our numerical examples� the residual errors lie between ����� to ����� which are com�
parable to the folding algorithm� see Ye and Li ����� The initial guess for both methods is the
vector of all ones normalized such that its l��norm is equal to �� All the computations are done
on an HP ����
� workstation with MATLAB�
Let us �rst give the numerical results for the queueing networks� We compare the numerical

results of CGS� preconditioned CGS and BGS methods for the number of over�ow queues q �
�� �� �� � and the number of servers s � �� The MMPP parameters are arbitrarily chosen to be
�j� � ���� �j� � ���� j � �� � � � � q� The other queueing parameters are given by � � �� � � � and
�j � ��q� j � �� � � � � q� We recall that the size of the matrix is 	s�m��
�

q� 	s�m��
�q� The
number of iterations required for convergence are given in Table �� The symbols I� C and BGS
represent the methods used� namely� CGS without preconditioner� CGS with our preconditioner
C in 	��
 and the block Gauss�Seidel method respectively� Numbers of iterations greater than
���� are signi�ed by �%%��

s � � q � � q � � q � � q � �

m I C BGS I C BGS I C BGS I C BGS

�� �� � ��� �� � ��� �
 �� ��� �� �� ���
�� ��� 
 ��� ��� � ��� ��
 �� ��� ��� �� ���
�� �� � ��� �� � ��� �� �� ��� �� �� ���
��
 �� 
 ��� �� �� ��� �� �� ��� �� �� ���
��� �� 
 ��� �� �� ��� �� �� �
� �� �� ���
��� �� 
 ���� �� �� �

 �� �� ���� �� �� ��

���� �� 
 �� �� �� �� �� �� �� �� �� ��

��



Table �
 Number of Iterations for Convergence�

We see that the numbers are roughly constant independent of m for the CGS method with
our preconditioner C� For the BGS method� the convergence rate is approximately linear in m�
Recall from x� that the costs per iteration of the CGS method with preconditioning and of the
BGS method are respectively O	�q	s�m��
 log�	s�m��

 and O	�

�q	s�m��

 operations�
we conclude that the total cost of obtaining the steady state probability distribution vector
for the CGS method with preconditioning is approximately O	�q	s �m � �
 log�	s �m � �


operations while for BGS method� it is approximately O	��qm	s�m� �

 operations�
We next compare the �op counts between our PCG method and the folding algorithm for the

single server case 	s � �
� For simplicity� we set 	s�m��
 � �q and we consider q � �� �� � � � � ��
Our PCG method converges within �� iterations for all the numerical examples tested� We recall
that the number of operations in each iteration of PCG is

�f�	s �m� �
�q log�	s�m� �
 � �	s�m� �
q�qg�

Therefore the total number of operations is at most

��f�	s �m� �
�q log�	s�m� �
 � �	s�m� �
q�qg�

The minimum cost of the folding algorithm is given by

��

�
��q log�	s�m� �
 � �	s�m� �
��q�

see Ye and Li ����� In Figure � in the Appendix� we depict the computational costs of our PCG
method and the folding algorithm for di�erent values of q� We see that the computational cost
of our PCG method increases at a slower rate than that of the folding algorithm� The cross�over
point is at q � ��
Next we test our algorithm for the failure prone manufacturing systems� We assume that

all q machines are identical� and in each month 	� weeks
� each machine breaks downs once
in average� The mean repairing time for a machine is one week� Therefore we have �j� �
���� �j� � �� j � �� � � � � q� The mean time for the arrival of demand is ��� week and the mean
time for the machine system to produce � unit of product is � day� therefore we have � � � and
�j � ��q� j � �� � � � � q�
In Table �� we give the number of iterations required for convergence for all three methods�

As in the queueing systems case� we see also that the numbers are roughly constant independent
of 	g�h
 for the CGS method with our preconditioner C� For the BGS method� the convergence
rate is again approximately linear in 	g � h
�

�




q � � q � � q � � q � �

g � h I C BGS I C BGS I C BGS I C BGS

�� �� � ��� �� � ��� �� 
 ��� �� � �
�
�� ��� � ���� ��� 
 ��
� ��� 
 ���� �
� �� ����
�� �� � �� �� 
 �� �� � �� �� �� ��
��
 �� 
 �� �� 
 �� �� � �� �� �� ��
��� �� 
 �� �� � �� �� � �� �� �� ��
��� �� 
 �� �� � �� �� � �� �� �� ��
���� �� 
 �� �� � �� �� � �� �� �� ��

Table �
 Number of Iterations for Convergence�

Finally� we consider examples of �nding the optimal hedging point h�� We keep the values of
the machine parameters the same as in the manufacturing system example above� except that
we set q � � and g � ��� Moreover� the inventory cost cI and backlog cost cB per unit of
product are �� and ���� respectively� the maximum inventory capacity b is ��� and the penalty
cost cP for rejecting a demand is ������ see 	��
� In Table �� we give the optimal pair of values
	h�� C	h�

� the optimal hedging point h� and its corresponding average running cost per week
C	h�
 for di�erent values of �i and ��

� � � � � � � � �

�i � � 	���
�
 	������
 	���������

�i � ��� 	����

 	�����
 	������


Table 	
 The Optimal 	h�� C	h�

 for Di
erent �i and ��

� Concluding Remarks

In this paper� we propose a fast algorithm for solving the steady state probability distribution
for queueing systems with MMPP inputs� The MMPP is commonly used in modeling the inputs
of many physical systems� see He�es �
� and Hellstern ���� for instance� Here we relate the
MMPP to the production process of unreliable manufacturing systems under the hedging point
production control� Our algorithm derived for the queueing systems can be applied to obtain
the optimal hedging point� Numerical examples are reported to illustrate the fast convergence
rate of our algorithm�
For the manufacturing systems� there are two possible generalizations of the model� The

maximum allowable backlog g and the number of machines q 	with an associated cost
 can be
considered as decision variables for the optimization problem� We can also consider the machine
failure rate �j� to be dependent on the production rate �j � Note that in this case it has been
shown that the optimal policy is still of hedging point type if �j� is a linear function of the
production rate �j in one�machine case� see Hu ����� It would be interesting to extend our
method to these two cases�

��
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Figure �� Computational Flops of the PCG and

the Folding Algorithm for Single Server Case
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