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Abstract

In this paper, we consider solutions of Toeplitz systems Au = b where the Toeplitz matrices A
are generated by nonnegative functions with zeros. Since the matrices A are ill-conditioned, the
convergence factor of classical iterative methods, such as the Richardson method, will approach 1
as the size n of the matrices becomes large. In [1, 2], convergence of the two-grid method with
Richardson method as smoother was proved for band 7 matrices and it was conjectured that this
convergence result can be carried to Toeplitz systems. In this paper, we show that the two-grid
method with Richardson smoother indeed converges for Toeplitz systems that are generated by
functions with zeros, provided that the order of the zeros are less than or equal to 2. However,
we illustrate by examples that the convergence results of the two-grid method cannot be readily
extended to multi-grid method for n that are not of the form 2¢ — 1.
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1 Introduction

An n-by-n matrix A, is said to be a Toeplitz matrix if it has the form

agp a1 ccr G2 Al-p
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i.e. A, is constant along its diagonals. Given a function f(6), let
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be the Fourier coefficients of f. For all n > 1, let A,, be the n-by-n Toeplitz matrix with entries
ajr = aj—k, 0 < j,k < n. The function f() is called the generating function of the sequence of
Toeplitz matrices A,. We will denote A, = T,[f(#)]. When f is an even function, the matrices A,
are real symmetric. In this paper we study the solutions of Toeplitz systems A,u = b by the multigrid
method.
In Grenander and Szegd [3, pp.64-65], it is shown that the eigenvalues A;(A,) of A, lie in the
range of f(0), i.e.
min f(6) < A\j(A)) < max f(6), 1<j<n. 1)
oc[—n,m) oc[—m,n)

Moreover, the maximum and minimun eigenvalues of A,, satisfy

lim Apax(A4,) = max f(0) and lim Apin(Ap) = min  f(6).

n—00 oc[—m,n) n—00 oc[—n,m)

Consequently, when f(@) is nonnegative and vanishes at some points 6y € [—7, 7], then the condition
number x(A;) of A, is unbounded as n tends to infinity, i.e. A, is ill-conditioned.

Classical iterative methods such as the Jacobi, Gauss-Seidel or SOR methods are not applicable
when the generating function has zeros. Since lim,,_,, k(A;) = 00, the convergence factor is expected
to approach 1 for large n. In [1, 2], Fiorentino and Serra proposed to use multigrid method (MGM)
with Richardson method as smoother for solving Toeplitz systems. Their numerical results show that
the multigrid method gives very good convergence rate for Toeplitz systems generated by nonnegative
functions. The cost per iteration of MGM is of O(nlogn) operations.

However, in [1, 2], the convergence of two-grid method (TGM) is only proved for the so-call band
7 matrices. These are matrices that can be diagonalized by sine transform matrices. In general, 7
matrices are not Toeplitz matrices and vice versa. Thus the author in [2] has posed the question of
whether the convergence of TGM for 7 matrices can be carried over to Toeplitz matrices. In this
paper, we give partial answer to this question.

We first prove that with the smoother and projection operators proposed by Fiorentino and Serra
in [1, 2], TGM indeed converges for Toeplitz systems generated by functions with zeros that are of
order 2 or less. More precisely, using the theory of algebraic multigrid method, we are able to prove
that the convergence factor of TGM for this class of Toeplitz systems is uniformly bounded below
1 independent of n. However, examples will be given to illustrate that the convergence results for
TGM cannot be readily extended to MGM unless n is of the form 2¢ — 1. This is because the coarse
grid operator will not be Toeplitz in this case and it is difficult to estimate the spectral radius of the
coarse grid operator to be used in the Richardson smoother. As a remedy, one can use the damped-
Jacobi method as smoother instead of the Richardson method. The convergence of MGM method
with damped-Jacobi method as smoother can be found in Chan, Chang and Sun [4].

The paper is organized as follows. In §2, we recall the method proposed in [1, 2]. In §3, we analyze
the convergence of TGM for Toeplitz systems where the generating functions have a zero of order
2 or less. In §4, numerical examples are given to illustrate the effectiveness of MGM method with
Richardson smoother when n is of the form 2¢ — 1. In §5, we give some remarks on the choice of
the smoothers, when n is not of the form 2¢ — 1. In particular, we give examples to show that the
Richardson smoother does not work when n is not of this form. Comparison with damped-Jacobi
smoother will be given too. Concluding remarks are given in §6.



2 The Two-Grid Method for Toeplitz Matrices

In this section, we recall the two-grid method proposed by Fiorentino and Serra in [1, 2] for Toeplitz
matrices. Given Au = b, with u,b € R", the smoother is defined as

w9t = §u) 4 by = S by),

where S = I — M ' A is the iteration matrix, M depends on the iterative scheme and b; = M ~'b € R".
Let P be the projection operator. The TGM algorithm is given by:

TGM(S, P)
ul?) = 8 (u) by);
dp = Aul9¥) — b;
dp = Pdy;
A, = PAPT;
Solve Ay = dy;
wlthy) = o Gv) — pTy

We note that the global iteration matrix of TGM is
G =[I - PT(PAPT)"'PA]S". (2)

In [1, 2], S is chosen to be the Richardson iteration, i.e.
1
S=1--A4, (3)
p

where 2p > p(A), the spectral radius of A. For a Toeplitz matrix A generated by an even function f,
we see from (1) that p(A) < maxge[_r - f(¢). In applications where f is not known a priori, we can
estimate p(A) by the matrix oco-norm of A. The estimate can be computed in O(n) operations.

In §3, we will give the convergence proof of TGM for Toeplitz systems where their generating
functions f(f) are even and satisfy

- f(9)
aer[lgrrl,yr} 1—cosf >0 (4
or
f(0)

(5)

Since 1 + cos 6 are functions with zeros that are of order 2, any generating function f(#) that satisfies
(4) or (5) will have zeros of order less than or equal to 2. For if otherwise, then it can easily be shown
that the minimum is zero at the zeros of f(#).

For these Toeplitz systems, the projection P defined in Fiorentino and Serra [1] reduced to the
classical projectors, namely

06[—17r,7r] 1+ cosf '

P = 1 2 1 (6)



or

P = -1 2 -1 (7)
depending on whether (4) or (5) holds.

3 Convergence Analysis

In this section, we discuss the convergence of TGM for Toeplitz matrices whose generating functions
satisfy (4) or (5). Let us begin by introducing the following notations. We say A > B (respectively
A > B) if A— B is a positive (respectively semi-positive) definite matrix. In particular, A > 0 means
that A is positive definite. For A > 0, we define the following inner products which are useful in the
convergence analysis of multigrid methods, see Ruge and Stuben [5, p.77-78]:

1
(’U,,’U>0 = a0<u5U>a (’U,,’U>1 = (Au,v), <U,1)>2 = a—(A’U,,A’U> (8)
0
Here (-,-) is the Euclidean inner product and ag is the main diagonal entry of A. The respective
norms of the inner products defined in (8) are denoted by || - ||;, 2 = 0,1,2. We first note that for the
Richardson smoother defined in (3), ||S]|; < 1 if p is properly chosen.

Theorem 1 ([5, p.84]) Suppose A > 0 and p > p(A)/2. Then
ISell? < llellf - allell3,  VeeR", (9)

where
ap

plA) o

a=(2-
p ' p

> 0. (10)
Inequality (9) is called the smoothing condition. We see from the theorem that ||S||; < 1. We see also
from (10) that p = p(A) is the best choice since a will be the largest.

Let A, = A" and PA"PT = A" the coarse grid operator. For TGM, the correction operator is
given by

T =1-PTAT) tpAl
and hence by (2), the global iteration matrix of TGM is
G=TS".

In the following, we let v = 1.

Theorem 2 ([5, p.89]) Let A = A" > 0 and let p be chosen such that S satisfies the smoothing
condition (9), i.e.
ISe"[F < lle"[IF — alle™[3,  Ve" € ™,



where « is given by (10). Suppose that the projection operator P has full rank and that there ezists a
scalar B > 0 such that

min _|le" — PTef |2 < gllet|?, Ve e m™ (11)
e cRL/2]

Then B > « and the convergence factor of the h-H two-level TGM satisfies

1G] < ,/1—%.

Inequality (11) is called the correcting condition.
From Theorems 1 and 2, we see that if p is chosen as in Theorem 1, then we only have to establish
(11) in order to get the convergence results.

Theorem 3 Let the generating function f(0) of A be even and satisfy (4) or (5) and let P be chosen
as in (6) or (7) accordingly. Then there exists a scalar > 0 independent of n such that (11) holds.
In particular, the convergence factor of TGM is bounded uniformly below 1 independent of n.

Proof: We will prove the theorem for the case of (4). The proof for the case of (5) is similar
and is sketched at the end of this proof. We first assume that n = 2k + 1 for some k. For any
et = (e1,e9,-++,e,)t € R?, we define

o - k
€ :(617627"'7ek)t€]R7
where )
éi:ie%’ 1< <k,

For ease of indexing, we set e; = 0 for 4 < 0 and ¢ > n. We note that with P as defined in (6) and the
norm || - ||p in (8), we have

k
1 1
le" — PTe || = ag ;{62”1 — 5242 = 56%}2- (12)

Thus (11) is proved if we can bound the right hand side above by j3||e”||; for some 3 independent of

el

To do so, we observe that for the right hand side in (12), we have
k
1 1
ao 2{62&1 ~ 5242 §€2i}2
1=

k
2 1, 1, 1
= ao E :{€2i+1 + —€5i40 + —€5 —€e2i12€2i41 — €2i€2+1 + —€2i+2€2;}

‘ 4 4 2
1=0
k
1 1 1 1
< ap Z{e%iJrl + Zeguz + Ze%i — €2i12€2i+1 — €2i€2i41 T ZG%HZ + Ze%i}
i=0
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k
1
2 2
= Qo Z{€2i+1 T 9Ci+2 T 562 — €2it2€2i41 — €2i€2i 41}
i—0

= Z (€2, — emem41) = ag(e”, To[1 — cos O]e”)
m=1

where 7,[1 — cos 0] is the n-by-n Toeplitz matrix generated by 1 — cos . Thus

min ||e" — PTef||2 < ag(e”, To[1 — cos 6]e™), Vel € r™.
e cRF

Hence to establish (11), we only have to prove that

ag(e™, Th[1 — cos B]e) < Blle"||3, Vel € m™
for some 3 independent of e”. By definition of || - ||1, see (8), it is equivalent to proving
ag(e™, Th[l — cosBleM) < Blel, Ale?), Vel e R®

for some £ independent of e”.
By (4) and (1), it is obvious that

YTl — cos 0] < T, [f] = A",

where 16)
7= aer[rgrrl,w} 1 —cos# > 0.
Hence
ao(eh,n[l — cos 0]6h> < ﬁ(eh,Aheh>, Vel € R”, (13)
where a
g="1% 14
. (14

Thus (11) holds for the case of n = 2k + 1.
Next we consider the case where n is not of the form 2k + 1. In that case, we let k = n/2,

7 =2k 4+ 1 >n . We then embed the vector e/ into longer vectors e” of size 7 by zeros. Then since
et — PTel |2 < fleh — PTeH |2

and y y
(", Ta[1 — cos B]eM) = (e, T, [1 — cos A]eM)

we see that the conclusion still holds.
We remark that the case of (5) can be proved similarly. We only have to replace the function
(1 — cos @) above by (1 + cosf). Since in this case, f(0) > v(1 + cos0), we then have
1
Ta[l 4 cos 0] < = AR,
Y

From this, we get (13) and hence (11) with 3 defined as in (14). 0



4 Numerical Results

The analysis presented in §3 is for TGM where A, the coarse grid operator, is assumed to be inverted
exactly. In the full multigrid method (MGM), A is not inverted exactly, but is approximated by
using TGM recursively on coarser grids. In this section, we apply MGM for solving ill-conditioned
real symmetric Toeplitz systems A,u = b.

In Table 1, we give the convergence history of four nonnegative generating functions when n =
2047 = 2 — 1. The first three are continuous functions and the fourth one, .J(6), is a function with

jump:
92
J(0) = { 1

The Toeplitz matrices they formed, except for those generated by the first function f(0) = 6 —4 cos 0 —
2 cos 20, are dense. Since n is of the form 2¢ — 1, the coarse grid operators are also Toeplitz matrices,
see for instance Chan, Chang and Sun [4]. We choose as solution a random vector v with ||u|s < 1.
The right hand side vector b is obtained accordingly. The zero vector is used as the initial guess. When
the size of the coarse grid operator is less than 8, we solve the equation exactly. In Table 1, we list the
error ||u — u;|| where u; is the approximated solution after the j-th V-cycle. As in [1, 2], we use the
Richardson method with p,,. = max f(6) for pre-smoother and pp,s; = max f(6)/2 for post-smoother.
In the coarser grid level, we also use the Richardson method with p‘g«e = aOH ppre/ao for pre-smoother

if 0] <m/2,
if |0 > /2.

and pg)st = aOH Ppost/ao for post-smoother. We use one pre-smoothing and one post-smoothing on
each level. In Figure 1, we plot the log of the error against the number of iterations. We clearly see
the linear convergence of the method. Also from the table and the figure, we see that MGM with
Richardson smoother works very efficiently.

V-cycle | 6 —4cosf — 2cos 20 6] 62 J(0)
1 1.333962e-01 1.294058e-01 | 3.972341e-01 | 1.535674e-01
2 6.023454e-03 1.062903e-02 | 9.420688e-02 | 1.663342e-02
3 5.143994e-04 8.542301e-04 | 3.525454e-02 | 2.284307e-03
4 5.842898e-05 6.930363e-05 | 1.193746e-02 | 2.652951e-04
5 4.015539e-06 7.010466e-06 | 3.785376e-03 | 3.537911e-05
6 4.992195e-07 5.342456e-07 | 1.301305e-03 | 3.999559e-06
7 3.888069e-08 5.415987e-08 | 4.876845e-04 | 5.136616e-07
8 4.339097e-09 4.115722e-09 | 1.745122e-04 | 5.910621e-08
9 3.382731e-10 4.293213e-10 | 6.132923e-05 | 7.366634e-09
10 3.627324e-11 3.270896e-11 | 2.144583e-05 | 8.642967e-10

Table 1: Convergence History for Full Multigrid Method.
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Figure 1. The Log Error against the Iteration.

5 Remarks on the Choice of the Smoother

The smoother used in the above discussion is the Richardson method proposed by Fiorentino and Serra
in [1, 2]. We note that for Toeplitz matrices, the Richardson method is the same as the damped-Jacobi
method which is defined by

S;=1—w-(diag(4)) 4

where w! > p((diag(A)) tA)/2. In fact if A is Toeplitz, then diag(A) = ag - I. Hence

Sy=1-2A. (15)
ag
Let p = ag/w, then Sy = S of (3).

If the size n of A is not the form 2¢ — 1, the coarse grid operator A will no longer be Toeplitz
but is a sum of a Toeplitz matrix and a low rank matrix (with rank 2), see Chan, Chang and Sun [4].
In this case, the Richardson method is different from the damped-Jacobi method on the coarser level.

We note that it is cheaper to use the damped-Jacobi smoother than to use the Richardson smoother
in general in the full multigrid method. For the damped-Jacobi iteration (15), we can use the same
w in (15) for all coarser level operators. However, the parameter p in the Richardson iteration in (3)
cannot be computed easily on the coarser grid. And even if it is computed exactly, the performance
may not be as good as the damped-Jacobi method with a constant w.

To illustrate that, we consider Toeplitz matrices T,,[1 — cos 6] and T,[6?] for different values of n
not of the form 2¢ — 1. We solve the systems by the full multigrid method with one pre-smoothing
and one post-smoothing as in §4. For the Richardson smoother, the parameter p of the pre-smoother



on each coarser level is chosen to be the spectral radius of the coarse grid operator on that level
and the parameter of post-smoother is chosen to be p/2. For the damped-Jacobi smoother, we just
use wyre = ag/ max f(#) in pre-smoothing and wpesy = 2a9/ max f(#) for all levels. The average
convergence rates of the first ten iterations for both smoothers are shown in Table 2. We see that the
convergence rate of MGM with damped-Jacobi smoother is about constant independent of n whereas
that of MGM with Richardson smoother is approaching 1 as n increases.

f(0) 2 —2cosf 62
n Richardson damped-Jacobi | Richardson damped-Jacobi
64 | 0.29297382 0.11414715 0.40202522 0.31879256
128 | 0.44943557 0.11809467 0.55478058 0.33836982
256 | 0.61484019 0.12755175 0.68098468 0.33169762
512 | 0.74128849 0.12531082 0.77651215 0.34075431
1024 | 0.81458679 0.12633265 0.84132052 0.33728271

Table 2: Comparison of the Richardson and the Damped-Jacobi smoothers.

We note that here the Richardson or damped Jacobi method is used as the smoother because they
can take advantage of the Toeplitz structure of the given matrices. Hence the costs per iteration for
these two smoothers are of order O(nlogn) operations for Toeplitz matrices as compared to O(n?)
operations for general matrices. However for the Gauss-Seidel smoother, it is not clear if it can make
use of the Toeplitz structure of the matrices and reduce the cost per iteration to the same order.

6 Concluding Remarks

In this paper, we have partially answered the conjecture posed by Serra in [2]. For Toeplitz matrices
generated by functions having zeros of order less than or equal to 2, we proved that TGM with
Richardson method does converge. However, for MGM, it will be easier to use damped-Jacobi method
as smoother than to use Richardson method, especially when n is not of the form 2¢ — 1. We remark
that the convergence of MGM with damped-Jacobi method as smoother is discussed in Chan, Chang
and Sun [4].
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