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Abstract

In this paper� we consider solutions of Toeplitz systems Au � b where the Toeplitz matrices A
are generated by nonnegative functions with zeros� Since the matrices A are ill�conditioned� the
convergence factor of classical iterative methods� such as the Richardson method� will approach �
as the size n of the matrices becomes large� In ��� �	� convergence of the two�grid method with
Richardson method as smoother was proved for band � matrices and it was conjectured that this
convergence result can be carried to Toeplitz systems� In this paper� we show that the two�grid
method with Richardson smoother indeed converges for Toeplitz systems that are generated by
functions with zeros� provided that the order of the zeros are less than or equal to �� However�
we illustrate by examples that the convergence results of the two�grid method cannot be readily
extended to multi�grid method for n that are not of the form �� � ��

AMS�MOS� subject classi�cations� ��F���
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� Introduction

An n�by�n matrix An is said to be a Toeplitz matrix if it has the form

An �

�
�������

a� a�� � � � a��n a��n
a� a� a�� � � � a��n
��� a� a�

� � �
���

an�� � � �
� � �

� � � a��

an�� an�� � � � a� a�

�
�������
�

i�e� An is constant along its diagonals� Given a function f	�
� let

ak �
�

��

Z �

��
f	�
e�ik�d�� k � �������� � � � �
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be the Fourier coe�cients of f � For all n � �� let An be the n�by�n Toeplitz matrix with entries
aj�k � aj�k� � � j� k � n� The function f	�
 is called the generating function of the sequence of
Toeplitz matrices An� We will denote An � Tn
f	�
�� When f is an even function� the matrices An

are real symmetric� In this paper we study the solutions of Toeplitz systems Anu � b by the multigrid
method�

In Grenander and Szeg�o 
�� pp�������� it is shown that the eigenvalues �j	An
 of An lie in the
range of f	�
� i�e�

min
��������

f	�
 � �j	An
 � max
��������

f	�
� � � j � n� 	�


Moreover� the maximum and minimun eigenvalues of An satisfy

lim
n��

�max	An
 � max
��������

f	�
 and lim
n��

�min	An
 � min
��������

f	�
�

Consequently� when f	�
 is nonnegative and vanishes at some points �� � 
��� ��� then the condition
number �	An
 of An is unbounded as n tends to in�nity� i�e� An is ill�conditioned�

Classical iterative methods such as the Jacobi� Gauss�Seidel or SOR methods are not applicable
when the generating function has zeros� Since limn�� �	An
 ��� the convergence factor is expected
to approach � for large n� In 
�� ��� Fiorentino and Serra proposed to use multigrid method 	MGM

with Richardson method as smoother for solving Toeplitz systems� Their numerical results show that
the multigrid method gives very good convergence rate for Toeplitz systems generated by nonnegative
functions� The cost per iteration of MGM is of O	n logn
 operations�

However� in 
�� ��� the convergence of two�grid method 	TGM
 is only proved for the so�call band
	 matrices� These are matrices that can be diagonalized by sine transform matrices� In general� 	
matrices are not Toeplitz matrices and vice versa� Thus the author in 
�� has posed the question of
whether the convergence of TGM for 	 matrices can be carried over to Toeplitz matrices� In this
paper� we give partial answer to this question�

We �rst prove that with the smoother and projection operators proposed by Fiorentino and Serra
in 
�� ��� TGM indeed converges for Toeplitz systems generated by functions with zeros that are of
order � or less� More precisely� using the theory of algebraic multigrid method� we are able to prove
that the convergence factor of TGM for this class of Toeplitz systems is uniformly bounded below
� independent of n� However� examples will be given to illustrate that the convergence results for
TGM cannot be readily extended to MGM unless n is of the form �� � �� This is because the coarse
grid operator will not be Toeplitz in this case and it is di�cult to estimate the spectral radius of the
coarse grid operator to be used in the Richardson smoother� As a remedy� one can use the damped�
Jacobi method as smoother instead of the Richardson method� The convergence of MGM method
with damped�Jacobi method as smoother can be found in Chan� Chang and Sun 
���

The paper is organized as follows� In x�� we recall the method proposed in 
�� ��� In x�� we analyze
the convergence of TGM for Toeplitz systems where the generating functions have a zero of order
� or less� In x�� numerical examples are given to illustrate the e�ectiveness of MGM method with
Richardson smoother when n is of the form �� � �� In x�� we give some remarks on the choice of
the smoothers� when n is not of the form �� � �� In particular� we give examples to show that the
Richardson smoother does not work when n is not of this form� Comparison with damped�Jacobi
smoother will be given too� Concluding remarks are given in x��

�



� The Two�Grid Method for Toeplitz Matrices

In this section� we recall the two�grid method proposed by Fiorentino and Serra in 
�� �� for Toeplitz
matrices� Given Au � b� with u� b � IRn� the smoother is de�ned as

u�j��� � Su�j� � b� � S	u�j�� b�
�

where S � I�M��A is the iteration matrix�M depends on the iterative scheme and b� �M��b � IRn�
Let P be the projection operator� The TGM algorithm is given by�

TGM	S� P 


u�j��� � S�	u�j�� b�
�

dn � Au�j��� � b�
dk � Pdk�
Ak � PAP T �

Solve Aky � dk�

u�j����� � u�j��� � P T y�

We note that the global iteration matrix of TGM is

G � 
I � P T 	PAP T 
��PA�S� � 	�


In 
�� ��� S is chosen to be the Richardson iteration� i�e�

S � I �
�



A� 	�


where �
 � 
	A
� the spectral radius of A� For a Toeplitz matrix A generated by an even function f �
we see from 	�
 that 
	A
 � max�������� f	�
� In applications where f is not known a priori� we can
estimate 
	A
 by the matrix ��norm of A� The estimate can be computed in O	n
 operations�

In x�� we will give the convergence proof of TGM for Toeplitz systems where their generating
functions f	�
 are even and satisfy

min
��������

f	�


�� cos �
� � 	�


or

min
��������

f	�


� � cos �
� �� 	�


Since �� cos � are functions with zeros that are of order �� any generating function f	�
 that satis�es
	�
 or 	�
 will have zeros of order less than or equal to �� For if otherwise� then it can easily be shown
that the minimum is zero at the zeros of f	�
�

For these Toeplitz systems� the projection P de�ned in Fiorentino and Serra 
�� reduced to the
classical projectors� namely

P �

�
��

� � �
� � �

� � �
� � �

� � �

�
�� 	�


�



or

P �

�
��
�� � ��

�� � ��
� � �

� � �
� � �

�
�� � 	�


depending on whether 	�
 or 	�
 holds�

� Convergence Analysis

In this section� we discuss the convergence of TGM for Toeplitz matrices whose generating functions
satisfy 	�
 or 	�
� Let us begin by introducing the following notations� We say A � B 	respectively
A � B
 if A�B is a positive 	respectively semi�positive
 de�nite matrix� In particular� A � � means
that A is positive de�nite� For A � �� we de�ne the following inner products which are useful in the
convergence analysis of multigrid methods� see Ruge and Stuben 
�� p��������

hu� vi� � a�hu� vi� hu� vi� � hAu� vi� hu� vi� �
�

a�
hAu�Avi� 	�


Here h�� �i is the Euclidean inner product and a� is the main diagonal entry of A� The respective
norms of the inner products de�ned in 	�
 are denoted by k � ki� i � �� �� �� We �rst note that for the
Richardson smoother de�ned in 	�
� kSk� � � if 
 is properly chosen�

Theorem � ��	
 p���
� Suppose A � � and 
 � 
	A
��� Then

kSek�� � kek�� � 
kek��� �e � IR
n� 	�


where


 � 	��

	A






a�


� �� 	��


Inequality 	�
 is called the smoothing condition� We see from the theorem that kSk� � �� We see also
from 	��
 that 
 � 
	A
 is the best choice since 
 will be the largest�

Let An � Ah and PAhP T � AH � the coarse grid operator� For TGM� the correction operator is
given by

T � I � P T 	AH
��PAh

and hence by 	�
� the global iteration matrix of TGM is

G � TS� �

In the following� we let � � ��

Theorem � ��	
 p���
� Let A � Ah � � and let 
 be chosen such that S satis�es the smoothing
condition ���� i�e�

kSehk�� � kehk�� � 
kehk��� �eh � IRn�

�



where 
 is given by ��	�� Suppose that the projection operator P has full rank and that there exists a
scalar � � � such that

min
eH�IRbn��c

keh � P T eHk�� � �kehk��� �eh � IR
n� 	��


Then � � 
 and the convergence factor of the h
H two
level TGM satis�es

kGk� �

r
��




�
�

Inequality 	��
 is called the correcting condition�
From Theorems � and �� we see that if 
 is chosen as in Theorem �� then we only have to establish

	��
 in order to get the convergence results�

Theorem � Let the generating function f	�
 of A be even and satisfy ��� or ��� and let P be chosen

as in �
� or ��� accordingly� Then there exists a scalar � � � independent of n such that ���� holds�

In particular� the convergence factor of TGM is bounded uniformly below � independent of n�

Proof� We will prove the theorem for the case of 	�
� The proof for the case of 	�
 is similar
and is sketched at the end of this proof� We �rst assume that n � �k � � for some k� For any
eh � 	e�� e�� � � � � en


t � IRn� we de�ne

eH � 	�e�� �e�� � � � � �ek

t � IR

k�

where

�ei �
�

�
e�i� � � i � k�

For ease of indexing� we set ei � � for i � � and i � n� We note that with P as de�ned in 	�
 and the
norm k � k� in 	�
� we have

keh � P T eHk�� � a�

kX
i	�

fe�i�� �
�

�
e�i�� �

�

�
e�ig

�� 	��


Thus 	��
 is proved if we can bound the right hand side above by �kehk� for some � independent of
eh�

To do so� we observe that for the right hand side in 	��
� we have

a�

kX
i	�

fe�i�� �
�

�
e�i�� �

�

�
e�ig

�

� a�

kX
i	�

fe��i�� �
�

�
e��i�� �

�

�
e��i � e�i��e�i�� � e�ie�i�� �

�

�
e�i��e�ig

� a�

kX
i	�

fe��i�� �
�

�
e��i�� �

�

�
e��i � e�i��e�i�� � e�ie�i�� �

�

�
e��i�� �

�

�
e��ig

�



� a�

kX
i	�

fe��i�� �
�

�
e��i�� �

�

�
e��i � e�i��e�i�� � e�ie�i��g

� a�

nX
m	�

	e�m � emem��
 � a�he
h�Tn
�� cos ��ehi

where Tn
�� cos �� is the n�by�n Toeplitz matrix generated by �� cos �� Thus

min
eH�IRk

keh � P T eHk�� � a�he
h�Tn
�� cos ��ehi� �eh � IRn�

Hence to establish 	��
� we only have to prove that

a�he
h�Tn
�� cos ��ehi � �kehk��� �eh � IRn

for some � independent of eh� By de�nition of k � k�� see 	�
� it is equivalent to proving

a�he
h�Tn
�� cos ��ehi � �heh� Ahehi� �eh � IRn

for some � independent of eh�
By 	�
 and 	�
� it is obvious that

�Tn
�� cos �� � Tn
f � � Ah�

where

� � min
��������

f	�


�� cos �
� ��

Hence
a�he

h�Tn
�� cos ��ehi � �heh� Ahehi� �eh � IRn� 	��


where
� �

a�
�
� 	��


Thus 	��
 holds for the case of n � �k � ��
Next we consider the case where n is not of the form �k � �� In that case� we let k � n���

�n � �k � � � n � We then embed the vector eh into longer vectors e

h of size �n by zeros� Then since

keh � P T eHk�� � ke

h � �P T eHk��

and
he


h�T
n
�� cos ��e

hi � heh�Tn
�� cos ��ehi

we see that the conclusion still holds�
We remark that the case of 	�
 can be proved similarly� We only have to replace the function

	�� cos �
 above by 	� � cos �
� Since in this case� f	�
 � �	� � cos �
� we then have

Tn
� � cos �� �
�

�
Ah�

From this� we get 	��
 and hence 	��
 with � de�ned as in 	��
�

�



� Numerical Results

The analysis presented in x� is for TGM where AH � the coarse grid operator� is assumed to be inverted
exactly� In the full multigrid method 	MGM
� AH is not inverted exactly� but is approximated by
using TGM recursively on coarser grids� In this section� we apply MGM for solving ill�conditioned
real symmetric Toeplitz systems Anu � b�

In Table �� we give the convergence history of four nonnegative generating functions when n �
���� � ��� � �� The �rst three are continuous functions and the fourth one� J	�
� is a function with
jump�

J	�
 �

�
�� if j�j � ����
� if j�j � ����

The Toeplitz matrices they formed� except for those generated by the �rst function f	�
 � ��� cos ��
� cos ��� are dense� Since n is of the form �� � �� the coarse grid operators are also Toeplitz matrices�
see for instance Chan� Chang and Sun 
��� We choose as solution a random vector u with kuk� � ��
The right hand side vector b is obtained accordingly� The zero vector is used as the initial guess� When
the size of the coarse grid operator is less than �� we solve the equation exactly� In Table �� we list the
error ku� ujk� where uj is the approximated solution after the j�th V�cycle� As in 
�� ��� we use the
Richardson method with 
pre � max f	�
 for pre�smoother and 
post � max f	�
�� for post�smoother�
In the coarser grid level� we also use the Richardson method with 
Hpre � aH� 
pre�a� for pre�smoother

and 
Hpost � aH� 
post�a� for post�smoother� We use one pre�smoothing and one post�smoothing on
each level� In Figure �� we plot the log of the error against the number of iterations� We clearly see
the linear convergence of the method� Also from the table and the �gure� we see that MGM with
Richardson smoother works very e�ciently�

V�cycle �� � cos � � � cos �� j�j �� J	�


� ��������e��� ��������e��� ��������e��� ��������e���
� ��������e��� ��������e��� ��������e��� ��������e���
� ��������e��� ��������e��� ��������e��� ��������e���
� ��������e��� ��������e��� ��������e��� ��������e���
� ��������e��� ��������e��� ��������e��� ��������e���
� ��������e��� ��������e��� ��������e��� ��������e���
� ��������e��� ��������e��� ��������e��� ��������e���
� ��������e��� ��������e��� ��������e��� ��������e���
� ��������e��� ��������e��� ��������e��� ��������e���
�� ��������e��� ��������e��� ��������e��� ��������e���

Table �� Convergence History for Full Multigrid Method�

�
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Figure �� The Log Error against the Iteration�

� Remarks on the Choice of the Smoother

The smoother used in the above discussion is the Richardson method proposed by Fiorentino and Serra
in 
�� ��� We note that for Toeplitz matrices� the Richardson method is the same as the damped�Jacobi
method which is de�ned by

SJ � I � � � 	diag	A

��A

where ��� � 
		diag	A

��A
��� In fact if A is Toeplitz� then diag	A
 � a� � I� Hence

SJ � I �
�

a�
A� 	��


Let 
 � a���� then SJ � S of 	�
�
If the size n of A is not the form �� � �� the coarse grid operator AH will no longer be Toeplitz

but is a sum of a Toeplitz matrix and a low rank matrix 	with rank �
� see Chan� Chang and Sun 
���
In this case� the Richardson method is di�erent from the damped�Jacobi method on the coarser level�

We note that it is cheaper to use the damped�Jacobi smoother than to use the Richardson smoother
in general in the full multigrid method� For the damped�Jacobi iteration 	��
� we can use the same
� in 	��
 for all coarser level operators� However� the parameter 
 in the Richardson iteration in 	�

cannot be computed easily on the coarser grid� And even if it is computed exactly� the performance
may not be as good as the damped�Jacobi method with a constant ��

To illustrate that� we consider Toeplitz matrices Tn
� � cos �� and Tn
�
�� for di�erent values of n

not of the form �� � �� We solve the systems by the full multigrid method with one pre�smoothing
and one post�smoothing as in x�� For the Richardson smoother� the parameter 
 of the pre�smoother

�



on each coarser level is chosen to be the spectral radius of the coarse grid operator on that level
and the parameter of post�smoother is chosen to be 
��� For the damped�Jacobi smoother� we just
use �pre � a��max f	�
 in pre�smoothing and �post � �a��max f	�
 for all levels� The average
convergence rates of the �rst ten iterations for both smoothers are shown in Table �� We see that the
convergence rate of MGM with damped�Jacobi smoother is about constant independent of n whereas
that of MGM with Richardson smoother is approaching � as n increases�

f	�
 �� � cos � ��

n Richardson damped�Jacobi Richardson damped�Jacobi

�� ���������� ���������� ���������� ����������
��� ���������� ���������� ���������� ����������
��� ���������� ���������� ���������� ����������
��� ���������� ���������� ���������� ����������
���� ���������� ���������� ���������� ����������

Table �� Comparison of the Richardson and the Damped�Jacobi smoothers�

We note that here the Richardson or damped Jacobi method is used as the smoother because they
can take advantage of the Toeplitz structure of the given matrices� Hence the costs per iteration for
these two smoothers are of order O	n logn
 operations for Toeplitz matrices as compared to O	n�

operations for general matrices� However for the Gauss�Seidel smoother� it is not clear if it can make
use of the Toeplitz structure of the matrices and reduce the cost per iteration to the same order�

� Concluding Remarks

In this paper� we have partially answered the conjecture posed by Serra in 
��� For Toeplitz matrices
generated by functions having zeros of order less than or equal to �� we proved that TGM with
Richardson method does converge� However� for MGM� it will be easier to use damped�Jacobi method
as smoother than to use Richardson method� especially when n is not of the form �� � �� We remark
that the convergence of MGM with damped�Jacobi method as smoother is discussed in Chan� Chang
and Sun 
���

�
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